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A hybrid optimization algorithm for surgeries scheduling

Paolo Landaa,∗, Roberto Aringhierib, Patrick Sorianoc, Elena Tànfania,
Angela Testia

aDepartment of Economics and Business Studies, University of Genova, Italy
bDepartment of Computer Science, University of Torino, Italy

cDepartment of Management Sciences and CIRRELT, HEC Montréal, Canada

Abstract

This paper deals with the Operating Room (OR) planning problem at an
operational planning level. The problem addressed consists in two interre-
lated sub-problems usually referred to as “advance scheduling” and “alloca-
tion scheduling”. In the first sub-problem, the decisions considered are the
assignment of a surgery date and an OR block to a set of patients to be
operated on over a given planning horizon. The second aims at determining
the sequence of selected patients in each OR and day. We assume that the
duration of surgeries are random variables with known probability distribu-
tions. For each sub-problem an integer linear stochastic formulation is given.
A hybrid two-phase optimization algorithm which exploits the potentiality of
neighborhood search techniques combined with Monte Carlo simulation is de-
veloped to solve the overall problem. The approach developed searches for a
feasible and robust solution designed to balance the trade-off arising between
the hospital and patient perspectives, i.e. maximizing the OR utilization and
minimizing the number of patient cancellations. The contribution of this
paper is twofold. The former, more methodological, is to provide an efficient
algorithmic framework to solve the joint advance and allocation scheduling
problem taking into account the inherent uncertainty of surgery durations.
The latter, more practical, is to provide a tool to develop robust offline OR
schedules which consider the trade-off between reducing surgery cancella-
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tions and postponements while maximizing the operating theater utilization.
To evaluate the efficiency of the proposed algorithmic approach, in terms of
quality of solutions and solution time, we provide a computational analysis
on a set of instances based on real data.

Keywords: Operating room planning and scheduling, uncertain surgery
duration, Metaheuristic, Monte Carlo simulation
2000 MSC: 90B50, 90C11, 90C27, 90C59

1. Introduction

Operating Rooms (ORs) are one of the most expensive resources in hos-
pitals. Their management typically needs to take into account numerous
factors (e.g., personnel availability, surgical instruments, ICU and ward bed
capacities, etc.) and involves the actions of different players, such as sur-
geons, nurses and patients [1].

The management of ORs has been a challenging research topic over the
last decades. Recently, exhaustive literature reviews [2, 3] on operating room
planning and scheduling problems have been published classifying the differ-
ent problem versions by using multiple fields and perspectives. The literature
on OR planning problems is usually classified starting by the level of decisions
taken in the analysis. In particular strategic (long term), tactical (medium
term) and operational (short term) problems deal, respectively, with the case
mix planning, master surgery scheduling and patient scheduling problems,
even if there is not a univocal definition of the problems addressed [2]. The
operational level is usually decomposed into two phases: advance scheduling
and allocation scheduling. The first, also referred to as surgical case assign-
ment problem (SCAP), assigns a surgery day and an OR to a set of elective
patients waiting for surgery; while the allocation scheduling determines the
sequencing of the assigned patients in each OR and day.

Another major classification item refers to whether or not uncertainty is
incorporated into the analysis (stochastic versus deterministic contexts). The
main sources of uncertainty considered are usually associated with the arrival
of emergency patients, the patients’ length of stay and surgery durations.

In this paper we deal with the joint advance and allocation scheduling
problem (operational level) while assuming that patient surgery durations are
stochastic variables which follow a priori given distribution functions. Note
that the uncertainty pertaining to surgery duration has a major and direct
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impact on the quality of the schedules and it has been largely addressed in
the literature. In [4] the authors develop a stochastic programming model
with recourse and a sample average approximation method for the SCAP
with the aim of minimizing patients costs and OR overtime costs. Dealing
with the same problem, in [1] a column generation approach to maximize the
OR utilization and level the requirements for hospital beds in two subsequent
phases is proposed, while in [5] the authors develop a local search heuristic
aimed at maximizing the utilization of operating theater and minimizing the
overtime risks by introducing planned slack times. In [6] a two-stage stochas-
tic model with binary decision variables and simple recourse is introduced.
The model determines the assignment of surgeries to ORs by minimizing
the maximum cost associated with uncertain surgery durations. In [7] a
cardinality-constrained robust optimization approach is proposed. The ap-
proach allows to exploit the flexibility of a linear programming model but
does not require the generation of a huge number of scenarios. The model
minimizes a patient centered objective function, which takes into account
waiting time, urgency and tardiness of patients. In [8], the authors propose
a chance constrained model which maximizes the expected utilization of ORs,
the solution algorithm solves a series of MIP models based on a normal ap-
proximation of cumulative surgery durations. In [9, 10] the authors propose
an online approach to adjust a patient schedule affected by a delay during
its execution. Possible adjustments are the allocation of some overtime or
rescheduling the patient surgery. A hybrid simulation and offline optimiza-
tion model is developed to evaluate the impact of the online algorithm.

Few papers have addressed the simultaneous assignment and sequencing
of patients, i.e. the advance scheduling combined with the allocation schedul-
ing. In [11] the authors develop an optimization model to manage surgery
time uncertainty using a two-stage stochastic model with recourse, includ-
ing in the objective function the patient waiting times as well as the OR
idle time and overtime. Other authors [12] develop a two-stage stochastic
MIP model that determines the allocation of patients to ORs, the sequence
of surgeries and the start time for each surgeon. The aim in their work
is to minimize the total expected operating cost. More recently in [13], a
rolling horizon approach combined with robustness is used to schedule and
reschedule patients into OR blocks. The sequencing of patients is introduced
as a component of the overall procedure which aims at keeping limited the
number of disruptions and patient cancellations.

Finally, some authors have used simulation to compare different schedul-
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ing and sequencing strategies and tested the solution robustness against the
randomness of surgery duration (see, e.g., [9, 10, 14–17]).

The contribution of this paper is twofold. The former, more method-
ological, is to provide an efficient algorithmic framework to solve the joint
advance and allocation scheduling problem taking into account the inherent
uncertainty of surgery durations. The latter, more practical, is to provide a
tool to develop robust offline OR schedules which consider the trade-off be-
tween reducing surgery cancellations and postponements while maximizing
the operating theater utilization.

For each problem a stochastic mathematical programming formulation
is given. Afterwards, a hybrid two-phase optimization algorithm is devel-
oped. The method exploits neighborhood search techniques combined with
Monte Carlo simulation to deal with the uncertainty of surgery durations.
The hybrid approach searches for a feasible and robust solution designed to
balance the trade-off arising between the hospital and patient perspectives,
i.e., maximizing the OR utilization and minimizing the number of patient
cancellations. This trade-off is strongly influenced by the sequencing of the
patients within the OR blocks [17] which is explicitly taken into account here.

The proposed hybrid approach is tested on a set of instances based on
real data. Experiments are reported to analyze the impact of varying search
criteria, operating time distributions parameters, as well as the critical over-
time probability level. The paper is organized as follows. In Section 2 the
problem is formally introduced and the stochastic optimization formulations
for the two problems reported. The components of the proposed hybrid so-
lution algorithm are then given and explained in Section 3 while Section 4
reports and analyzes the computational experiments. Section 5 closes the
paper discussing also the implementation of our approach in the hospital
practice.

2. Problem statement and model formulations

We consider a surgery department composed of several specialties or dis-
ciplines which share a set of available ORs. We assume a block scheduling
management strategy where the surgical specialties are assigned a given num-
ber of OR blocks over a given planning horizon in which they can schedule
their elective patients. The duration of each OR block is determined a priori
but we assume that for the whole operating theater a certain amount of over-
time can be used to avoid surgery cancellations if some blocks are running
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late. The problem addressed herein aims at determining the surgery dates
and ORs for a set of patients to be operated on, while determining the se-
quence of patients within each OR and day. A planning horizon of one week
is considered.

Let I, J , and K be respectively the sets of patients, surgical specialties,
and operating rooms, each indexed by the corresponding lower cased letter,
i, j, and k. The surgery days within the planning horizon are from Monday
to Friday. Therefore T = {1, ..., 5}, indexed by t, denotes the set of dates
corresponding to the surgery days to be scheduled.

For each patient i, the expected deterministic surgery duration pi, the
stochastic surgery duration εi and the expected Length of Stay (LOS) µi are
given. In addition, let Ij be the subset of patients that belong to specialty
j, j ∈ J , and Ih the subset of patients having LOS µi = h, h = 1, ..., µmax,
where µmax represents the longest LOS. Clearly, subsets Ij define a partition
of I as do subsets Ih.

In the practical setting of the hospital considered here, each specialty j has
its own post-surgery beds from Monday to Friday and there is no availability
restriction, whereas the weekend stay beds are a shared resource among all
surgical specialties for which availability is limited (given limited hospital
staffing over the weekends). Let χ be the maximum number of common stay
beds available for the department in the weekend. Let us also define Th as the
subset of T for which patients with a LOS h require a bed for the weekend
if scheduled on any of the days in Th. As an example, those patients having
a LOS equal to 3 days can be scheduled on Monday, Tuesday or Wednesday
without requiring a weekend bed (since they can be discharged before Friday
evening). To the contrary, if one such patient is scheduled either on Thursday
or Friday it will need to stop hospitalized during the weekend and therefore
T3 = {4, 5}.

Each OR time block within the planning horizon is uniquely defined by
a pair of indices (k, t) which represents the OR k and the day t of the week
when the block is scheduled. Let skt be the length of OR time block (k, t),
i.e., the time available for surgery in that block. Following a block scheduling
operating policy, each specialty j is assigned to a different set of OR blocks
where it can schedule its surgical cases. The number and distribution of
the OR blocks (k, t) available for each specialty during the week is given by
the cyclic timetable of the department, referred to as the Master Surgical
Schedule (MSS). Let Π be a matrix of binary values used to input the MSS,
such that element πjkt is set to 1 if specialty j is assigned to OR k on day t
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and 0 otherwise.
Finally, we suppose that a maximum number of overtime units, noted

L, are available for the overall planning horizon. Each overtime unit has a
duration equal to ` and we suppose that ` ≤ mini∈I εi so that the addition of
an overtime unit will not enable the realization of a surgery that otherwise
could not have been started before the normal end of the OR block. The
total amount of overtime available for the department is therefore equal to
L× `.

Our problem can be seen as a special case of the “surgery process schedul-
ing” problem which is usually composed of two subsequent steps [18, 19]. The
first step (advance scheduling or SCAP) consists in assigning a specific OR
time block to each patient over the planning horizon. The second step (allo-
cation scheduling) determines the detailed sequencing of surgical procedures
within each block and the allocation of the resources needed to perform them
as efficiently as possible.

According to this hierarchical view, in Section 2.1 and 2.2 we propose
two mathematical formulations that address these two steps and allow to
outline the different decisions and objectives considered in our approach. To
face the surgery duration variability, we adopt a modeling approach based
on chance constraint programming [20]. In this approach, the focus is on the
reliability of the system, i.e., the ability of the system to satisfy feasibility
in an uncertain environment. This reliability is expressed as a minimum
requirement on the probability of satisfying constraints [21].

2.1. The patient assignment model

The first step seeks a robust assignment of the set I of patients to the
available OR time blocks (k, t) in such a way as to maximize the overall
OR utilization while leveling the OR blocks utilization over the planning
horizon. The solution must satisfy the operational constraints regarding the
OR blocks length and the maximum number of beds available during the
weekend, following the “week surgery” ward organization discussed earlier.

In health care settings characterized by long waiting list, the set of pa-
tients I who must be scheduled in the planning horizon is usually determined
on the basis of patient expected surgery durations, while taking into account
the patients urgency and priority.

We consider xikt as the binary decision variables of the problem, with the
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following definitions:

xikt =

{
1 if patient i ∈ I is assigned to OR k ∈ K on day t ∈ T ;

0 otherwise.

Variables xikt allow the following formulation of the problem:

max z = y (1a)

s.t.
∑

k∈K,t∈T
xikt ≤ 1 ∀i ∈ I (1b)

∑

i∈Ij
xikt ≤ πjkt|Ij| ∀j ∈ J, k ∈ K, t ∈ T (1c)

µmax∑

h=1

∑

i∈Ih

∑

t∈Th

∑

k∈K
xikt ≤ χ (1d)

∑

i∈I
εixikt = skt + ykt ∀k ∈ K, t ∈ T (1e)

P [ykt ≥ 0] ≤ α ∀k ∈ K, t ∈ T (1f)

ykt ≥ y ∀k ∈ K, t ∈ T (1g)

xikt ∈ {0, 1} , ykt ∈ R, y ∈ R (1h)

Constraints (1b) are the assignment constraints implying that each pa-
tient can be scheduled at most once during the planning horizon. Con-
straints (1c) ensure that each patient i ∈ Ij can only be assigned to an
OR time block that is assigned to the specialty j ∈ J , to which the pa-
tient belongs, i.e., that is one for which πjkt = 1. The term |Ij| enables the
assignment of more than one patient of the specialty to a given OR block
(provided that the available time is sufficient). The weekend stay bed avail-
ability constraint (1d) ensures that the number of patients requiring a bed
for the weekend is less than or equal to χ, the maximum number of beds
available for the weekend. Note that constraint (1d) can be easily applied to
deal with bed constraints for every day of the planning horizon if required.

Let us introduce a set of auxiliary stochastic slack variables ykt ∈ R.
Constraints (1e) define their values in such a way that when ykt > 0, ykt
measures the overtime needed to complete all the surgeries assigned to OR
block (k, t). On the other hand, when ykt < 0, the variable measures the
unused operating time (undertime) in OR block (k, t). The solution reliability
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is expressed by the chance constraints (1f), which limits the probability α ∈
[0, 1) that a given OR block (k, t) needs some amount of overtime to complete
the surgeries assigned.

To maximize the overall utilization, we adopted a bottleneck objective
function aimed at maximizing the minimal utilization of OR time blocks
(k, t): the basic idea is to minimize the undertime of the OR time block less
utilized. This is modeled as usual by introducing an auxiliary variable y ∈ R
forced by constraints (1g) to be lesser or equal to the minimum value of
ykt, and then maximizing the variable y in the objective function (1a). The
chance constraint (1f) guarantees the correctness of this formulation since it
imposes that a given number of OR time blocks (k, t) are in undertime, that
is the corresponding ykt are less than or equal to zero.

Let us recall that the chance constrained model (1a)–(1f) solves the
stochastic patient advance scheduling step by determining the robust as-
signment of patients to OR blocks over the planning horizon. The patient
sequence within each OR block (allocation scheduling step) is not yet de-
termined. In fact, the overtime and undertime computed in (1e) are not
affected by the patient sequencing because we assume that surgery duration
distributions are mutually independent. In order to deal with this aspect,
the overtime allocation model is developed and reported in the next section.

2.2. The overtime allocation model

The schedule determined by the previous model gives the robust assign-
ment of patients to OR blocks and indicates the OR blocks which need some
amount of overtime in order to operate on all patients in I. Indeed the
obtained schedule maximizes the OR utilization and levels the occupation
among the set of available OR blocks.

What remains to be determined is how should any available overtime be
allocated to the different OR blocks over the planning horizon in order to
avoid surgery cancellations or at least reduce them as much as possible.

Recall that L× ` is the total amount of overtime available for the whole
department during the planning horizon considered, where L and ` are the
number of overtime units available and the duration of each overtime unit,
respectively. This assumption is quite close to what is observed in practice in
many hospitals where a given predetermined budget of overtime will generally
be available. This overtime is then allocated, as the need arises, among
specific ORs that are running late in multiples of 15 or 30 minutes – in
order to complete the procedures in progress or perform some that have not
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yet started but will clearly go beyond the duration of the block so as to
reduce cancellations. It cannot be divided exactly as the ykt values would
indicate since the assignment of overtime must be decided online before the
real duration of the procedures becomes known with certainty.

Starting with the solution of model (1a)–(1h), let B be the set of OR
blocks (k, t) such that ykt ≥ 0. The value of ykt ≥ 0 measures the overtime
required to accomplish all the surgeries assigned to OR block (k, t). The sum∑

(k,t)∈B ykt, gives the total overtime required to perform all the surgeries in
the schedule. If it is greater than L × `, the decision regarding the over-
time allocation becomes crucial in order to minimize the number of patients
canceled from the schedule.

Let Ikt be the set of patients assigned to OR block (k, t) ∈ B, i.e. i ∈ Ikt
if and only if xikt = 1. Let us introduce the set Okt as the set of all possible
(ordered) sequences of patients in Ikt, ∀(k, t) ∈ B, and defineO = ∪(k,t)∈BOkt.
Let us also define Iokt as an ordered subset of patients for (k, t) ∈ B and
o ∈ Okt, where the order of patients in Iokt is such that if i < i′ then the
surgery of patient i is scheduled before that of patient i′. Finally, let pokt
denote the first patient in Iokt whose surgery needs overtime to be finished
and let ϕpo

kt
be the amount of surgery time for that patient that exceeds skt,

the duration of block (k, t), with ϕpo
kt
< εpo

kt
of course.

The decision variables ukt ∈ Z+ give the number of overtime units as-
signed to each time block (k, t) ∈ B. Indeed, for a given o ∈ Okt, let zikt be
an auxiliary binary variable equal to 1 if patient i ∈ Iokt is not covered by the
overtime assigned to OR time block (k, t) ∈ B, 0 otherwise.

For any given o ∈ O, the overtime allocation problem can be formulated
as follows, where to simplify notation we use p in place of pokt, i.e., p ≡ pokt.

min z(o) =
∑

(k,t)∈B

∑

i∈Io
kt

zikt (2a)

s.t.
∑

(k,t)∈B
ukt ≤ L (2b)

`ukt ≥ ϕp (1− zpkt) ∀(k, t) ∈ B (2c)

`ukt ≥ ϕp +
i−1∑

h=p+1

εh + εi
(
1− zikt

)

∀(k, t) ∈ B, i ∈ Iokt, i > p (2d)
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zikt ∈ {0, 1} , ukt ∈ Z+ (2e)

The objective function (2a) minimizes the number of patients not covered
by the overtime allocation, that is the number of patients canceled from
the schedule. Constraints (2b) limits the total number of overtime units
that can be assigned to blocks (k, t) to the maximum number available L.
Constraints (2c) and (2d) impose that variables zikt be equal to 1 if and only
if the total amount of overtime assigned to the time block (k, t) ∈ B is not
enough to cover the time required for operating patient i ∈ Iokt. It is worth
pointing out that the solution of the overtime allocation problem finds the
sequence o ∈ O which minimizes z(o), i.e., argmin {z(o) : o ∈ O}.

3. Hybrid Solution Approach

In this section, the hybrid two-phase algorithm developed to solve the
overall surgery scheduling problem is described. As reported in [22], health
care optimization problems are challenging, often requiring the adoption of
unconventional solution methodologies. The solution approach proposed in
this paper belongs to this family. In the proposed hybrid optimization ap-
proach, Monte Carlo simulation is exploited to take into account the uncer-
tainty of surgery durations while an optimization engine computes a solution.
We should point out that the patient assignment model corresponding to the
first sub-problem of the overall problem studied here is in fact a stochas-
tic version of the SCAP which is NP-hard in its deterministic version [23].
Efficient exact solutions for solving realistic sized instances of the problem
studied here are therefore unlikely.

The proposed hybrid algorithm starts from any deterministic solution
which gives the assignment of patients to the available OR blocks (pre-
schedule), which can be obtained by means of deterministic models or al-
gorithms as those proposed in [23, 24].

The first phase of the algorithm adapts the pre-schedule to find a feasible
and robust solution with respect to the stochastic surgery durations that
maximizes the occupation of the operating rooms while evenly distributing
the workload among the OR blocks. This solution is computed by means of
a neighborhood search algorithm which first seeks to regain the feasibility of
the starting solution with respect to the chance constraints (1f), and then
tries to improve its reliability while preserving feasibility.
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The second phase of the algorithm seeks to minimize the number of pos-
sible cancellations by assigning the available overtime while maintaining the
reliability of the first phase schedule. This solution is computed by using a
pre-defined sequencing to order the selected patients within each OR block
and then by applying a sequence of greedy procedures to assign the available
overtime. Note that the impact of different sequencing rules is evaluated and
compared.

This Section is organized as follows. Section 3.1 describes the basic ele-
ments of the proposed algorithm, sections 3.2–3.4 detail the three optimiza-
tion modules which compose the overall solution approach, while the whole
hybrid algorithm is summarized in Section 3.5.

3.1. Basic elements of the algorithm

The algorithm is based on two main elements. The first is the set of neigh-
borhoods exploited by the optimization modules introduced in Section 3.2
and 3.3, while the second is the scenario generation and the sampling needed
by the Monte Carlo simulation.

Neighborhoods. The optimization procedure exploits the following neighbor-
hoods already discussed in [23].

The first, named p-swap(in, in), evaluates and performs exchanges of two
patients that belong to two different OR blocks assigned to the same surgical
specialty. The second neighborhood, named p-swap(in, out), evaluates and
performs exchanges of two patients where one patient is included in the
current OR schedule while the other is not. Note that the two neighborhoods
operate on the decision variable xikt in two different ways depending on how
the first patient is selected. In the first case, the patient can belong to any
feasible OR blocks (k, t) while, in the second, the patient is selected from
the OR block (k, t) whose utilization is the minimal one. In the first case,
the complexity is quadratic in the number of patients while it is linear in the
second case.

In order to disrupt a current solution, we introduce the p-drop(in) neigh-
borhood which removes from the solution the patient with the minimum
surgery duration in the OR block having the highest probability to go into
overtime. The rationale here is to free operating time in order to promote
swaps between patients. The complexity of this neighborhood is linear in the
number of patients.
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The last neighborhood, named p-add(out, in), adds patients that are not
currently scheduled in order to fill as much as possible the OR blocks, without
exceeding the capacity chance constraints (1e)-(1f). Patients can be added
only to an OR block assigned to their surgical specialty. The complexity of
this neighborhood is linear in the number of patients.

Scenarios for Monte Carlo simulation. Monte Carlo simulation is exploited
to deal with the variability of patient surgery durations. We developed a
stochastic scenario generation procedure in order to generate the value εi for
each patient i ∈ I following a predetermined distribution probability F (εi).

In the literature, several authors recommend the use of the lognormal
distribution for simulating surgery times [25–29]). In [30] the authors propose
a new approach based on a three parameter lognormal, however we did not
adopt this approach because it requires more data than what was available
in our dataset such as age and experience of surgeon, hospital organization,
type of surgical intervention, and so on. Other works propose the Gaussian
distribution to generate surgery times [5].

In our study, we have used lognormal distributions but the method can
easily be adapted to other continuous distributions. The stochastic surgery
times are generated by lognormal random variables using mean µ equal to
the patient expected surgery time and standard deviation σ a function of the
patient expected surgery duration pi, as follows:

σ(Fεi) = ϑpi with (0 ≤ ϑ ≤ 1).

Each scenario is composed of a realization of the surgery duration follow-
ing the Fεi distribution for each patient i ∈ I. The main idea is therefore
to check the feasibility and to measure the reliability of each incumbent so-
lution during the neighborhood exploration exploiting the set of scenarios
generated by a Monte Carlo simulation procedure.

Clearly, the quality of the final solution may depend significantly on the
number of scenarios considered during the computation. At the same time,
the number of scenarios affects the running time of the method. To reduce
the computational overhead while maintaining the quality, we introduce the
idea of scenario sample, that is the N scenarios generated by the Monte Carlo
procedure are partitioned into S samples, each one composed of N

S
scenarios.

We will denote the sth scenario sample with Ss.
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3.2. Local Search for Feasibility

The first optimization module is the Local Search for Feasibility (LS-
F). LS-F consists of an iterated sequence of swaps and deletions of patients
in such a way as to increase the reliability of the solution by reducing the
probability that an OR block (k, t) goes into overtime.

Given a pre-schedule coming from an initial deterministic feasible solution
of the patient assignment problem and a sample Ss, LS-F aims at making
feasible the chance constraints (1f) with respect to the scenarios belonging
to Ss.

At each iteration, LS-F evaluates – for each OR block (k, t) and for each
scenario in Ss – if considering the stochastic surgery duration the current
solution is not feasible, (i.e., if the percentage of OR blocks in overtime
among the considered scenarios sample is greater than the critical overtime
probability level α).

If the current solution is not feasible, LS-F tries to reach feasibility
through an iterated local search which exploits the three neighborhoods
p-swap(in, in), p-swap(in, out) and p-drop(in). The local search performs
swaps until the overall overtime can be reduced; when the local search stops
the exploration, if the solution is feasible with respect to the chance con-
straints (1f) then LS-F finishes its execution, otherwise a p-drop(in) is applied
and the local search starts again.

Note that the local search applies the two swap neighborhoods selecting
patients belonging to any pair of OR blocks. Furthermore, the neighborhood
p-swap(in, out) can only be applied after the first drop.

3.3. Tabu Search for Improvement

The second optimization module referred to as Tabu Search for Improve-
ment (TS-I) is applied to the feasible solution determined by LS-F (i.e., it is
the input of TS-I). It aims at improving the quality of the solution computed
by LS-F, that is to optimize the objective function (1a), without decreasing
reliability.

At each iteration, TS-I first performs the exploration of the two neigh-
borhoods (p-swap(in, in) and p-swap(in, out)) following a first improvement
criterion. For a swap, the exploration selects the former patient from the OR
block (k, t) less utilized and the latter from one of the remaining OR blocks
in such a way as to optimize the objective function (1a). Only feasible swaps
are allowed, that is swaps preserving the feasibility of the LS-F solution. If
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no improvement is found, TS-I tries to add a patient (dropped during LS-F)
exploring the neighborhood p-add(out, in).

In order to avoid looping over already visited solutions, TS-I employs two
tabu lists having fixed length l1 and l2, respectively, and implemented using
tabu tags [31]. The first tabu list forbids a patient to be part of a swap
for the next l1 iterations while the second tabu list forbids a patient to be
assigned back to the previously assigned OR block for the next l2 iterations.
Obviously, it is required that l1 < l2. The rationale here is to block the
patient i ∈ I in order to allow TS-I to adjust the solution after moving it
from OR block (k, t); then, we prevent patient i from being assigned back to
(k, t) to allow the algorithm to compose an exchange in two stage when the
exchange is not allowed to be done directly. The effectiveness of this setting
is already discussed in [32, 33]. TS-I performs NI iterations.

3.4. Overtime Allocation and Patient Sequencing

The last optimization module is the Overtime Allocation and patient Se-
quencing (OA-S). OA-S first selects a suitable patient sequencing and then
determines the allocation of the available overtime in order to minimize the
number of patient canceled from the schedule according to model (2a)–(2e).
Given a solution x, the list L of patients not included in the schedule after
performing LS-F and TS-I, and the amount of overtime units available L,
OA-S is heuristically solved as follows.

First, the worst case scenario g ∈ N (or one of the worst case scenarios)
is identified, i.e., the scenario which results in the largest number of OR
blocks going into overtime with solution x. OA-S then orders the patients
according to the selected sequencing criterion and assigns the overtime units
in order to maximize the number of patients covered by the assigned overtime,
i.e., the patients whose surgeries can be completed within the available OR
block operating time (i.e., OR block length skt plus the allocated overtime).
Finally, if some overtime units are still available, the algorithm allocates
them in order to insert as much patients as possible from L in the schedule.
Using g as reference to perform these adjustments to the schedule will enable
the procedure to preserve the reliability level of x as well as reduce the
computational overhead.

Patient Sequencing. We will consider the four patient scheduling strategies
that were studied in [17, 34], which are:
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• Increasing duration (ID): patients are ranked by their surgery duration
and the OR block sequence begins with the shortest surgery time and
finishes with the longest one;

• Decreasing duration (DD): patients are ranked by their surgery dura-
tion, the OR block sequence begins with the longest surgery time and
finishes with the shortest one;

• Half increasing duration (HID): patients are sorted by increasing
surgery duration, the OR block sequence begins with the shortest
surgery time, then the second shortest is placed at the end of the block,
then the third starts after the first one, and so on;

• Half decreasing duration (HDD): patients are sorted by decreasing
surgery duration, the OR block sequence begin with the longest surgery
time, then the second longest is placed at the end of the block, then
the third starts after the first one and so on.

Overtime allocation. Let us introduce ygkt with

ygkt =
∑

i∈I
εgixikt − skt,

which represents the overtime (ygkt > 0) or undertime (ygkt < 0) of OR block
(k, t) under the worst case scenario g ∈ N .

The overtime allocation is then solved by a sequence of two greedy al-
gorithms: the first greedy allocates units of overtime in such a way as to
maximize the number of patients operated and then the second tries to in-
sert patients not scheduled exploiting any the residual overtime units still
available.

In particular, the first greedy algorithm assigns the required overtime to
the OR blocks in order to cover the maximum number of patients operated
while minimizing the unused operating time for all blocks. More specifically,
let ukt be the units of overtime required by block (k, t) such that ygkt > 0

ukt =

⌈
ygkt
`

⌉

and let L′ be the number of overtime units still available. At each iteration,
the greedy algorithm assigns ukt ≤ L′ overtime units to the OR block (k, t)
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requiring the minimal value of ukt. If there is a tie, the algorithm selects
the OR block (k, t) for which the unused portion of the allocated overtime
`ukt − ygkt is minimized.

After the end of the first greedy procedure, some overtime units could
still be available, i.e., L′ > 0. In that case, a second procedure will seek to
increase the utilization of OR blocks in undertime, i.e., those having ygkt < 0.
To exploit the residual overtime L′, the second greedy heuristic tries to insert
patients from L in the current schedule adopting the Best Fit Decreasing
(BFD) greedy criterion for the Bin Packing Problem (see, e.g., [35]). In this
way, a patient p is inserted in the OR block (k, t) in order to minimize the
unused overtime allocated to block (k, t) computed as follows

(skt + `ukt)−


εgp +

∑

i∈(k,t)

εgixikt




where

ukt =

⌈
ykt + εgp

`

⌉
.

3.5. Hybrid algorithm

The whole hybrid solution approach, which exploits the optimization
modules described in the previous sections, is depicted by the pseudo code
of Algorithm 1 below.

After generating the N scenarios and dividing them into S samples Ss,
the first phase of the algorithm consists in determining a list of robust solu-
tions x?s for each sample s. Starting from an optimal deterministic solution
(pre-schedule), each robust solution is computed by applying first LS-F, to
guarantee the reliability of the solution, and then TS-I, to improve its qual-
ity by maximizing the OR utilization without deteriorating the reliability.
Note that in our computational analysis we will consider different ways to
determine the initial pre-schedule.

From the list x?1, . . . , x
?
S, the second phase starts by discarding those so-

lutions which are not feasible with respect to the whole set of scenarios N .
Among the remaining (feasible) solutions, the algorithm selects the best one
x̄, that is the one which maximizes the objective function (1a). If no feasible
solutions are available, the algorithm selects the least infeasible solution and
makes it feasible by applying LS-F. Then, OA-S computes the final solution
x? by minimizing the number of patients canceled from the pre-schedule x̄.
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Algorithm 1: two-phase algorithm
Input : problem data.

1 begin
2 generate N scenarios; split them into S samples Ss;

// start first phase

3 for s = 1, . . . , NS do
4 x0

s := getInitialSolution ( );
5 x1

s := LS-F ( x0
s, Ss );

6 x?s := TS-I ( x1
s, Ss );

// end first phase, start second phase
7 x̄ := selectBestFeasibleSolution ( x?1, . . . , x

?
S ,N );

8 x? := OA-S( x̄, L, L );
// end second phase

Output: return x?;

4. Computational Analysis

The proposed algorithm has been tested on a set of instances based on
real data. The computational environment and benchmark instances are
described in Section 4.1.

A series of computational experiments was carried out to evaluate the
impact of the main parameters and components of the algorithm. First, in
Section 4.2, the impact on the algorithm behavior of using alternative initial
solutions x0

s is evaluated. The default value has been set to the deterministic
solution (DET), i.e., the pre-schedule, while the effects of choosing the feasi-
ble solution computed after LS-I or the best solution computed during TS-I,
have been analyzed and compared. In Section 4.3 we perform a sensitivity
analysis to assess the impact of alternative values of parameters α and σ,
while in Section 4.4 changes of the patient sequencing rule and the overtime
availability are evaluated. Finally, in Section 4.5 the solutions obtained by
the algorithm are analyzed with respect to the resulting OR occupation rate.

4.1. Computational environment and parameter tuning

In order to generate realistic test instances, real waiting list data pro-
vided by the Department of General Surgery of the San Martino University
Hospital, Genova, Italy, have been used. In particular, the data provided
contain all the relevant information regarding a real waiting list composed of
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400 patients. For each patient i in the waiting list the date of referral di, the
expected surgery duration pi and the expected LOS µi are given.

B1 B2

Id |I| |J | |K| skt χ Id |I| |J | |K| skt χ

1 85 6 6 6 14 5 128 6 6 9 14
2 98 6 6 7 14 6 163 6 6 12 14
3 100 6 7 6 14 7 199 6 6 15 14
4 115 6 7 7 14 8 230 6 6 18 14

Table 1: Characteristics of the benchmark sets B1–B2.

From these information, we generated 2 different benchmark sets whose
characteristics are summarized in Table 1: each benchmark is composed of
4 instances by varying the number of patients |I|, the number of operating
rooms |K| and the OR time block duration skt. All instances are charac-
terized by the same number of surgical specialties |J | = 6 and number of
weekend stay beds χ = 14. The duration of one overtime unit is set to
` = 30 minutes.

The set of patients I, the pre-schedule and the MSS are determined by
solving the deterministic model reported in [23]. Since both MSS and the set
I can have a significant effect on performance measures in our computational
experiments, we report the MSSs used in Figure 1 while the average distri-
bution of surgery durations of the patients belonging to set I is reported in
Figure 2.

Figure 1: MSS adopted for instances with 6 and 7 ORs.

Preliminary computational tests (not detailed here) were performed to
tune some of the algorithm parameters and set their default values. For
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Figure 2: Average distribution of patient surgery durations in test data.

instance, the tabu lists lengths l1 and l2 were set to 8 and 12, respectively,
while the number of scenarios N and of samples S were set to 1000 and
10. These values proved to produce better results on average and shorter
running time. Table 2 reports the default values used for all the algorithm
parameters as well as the alternative values explicitly tested in the following
computational experiments. In the following sections, the results reported
were obtained using the default parameter values (i.e., those in the third
column of Table 2) except when explicitly stated otherwise.

Parameter Description Default value Other values
l1, l2 length of tabu list 1 and 2 8 and 12
NI number of iterations for TS-I 300
N number of scenarios 1000
S number of samples 10
α reliability (1f) 0.05 0.10, 0.15
σ variability of pi 0.1 0.15, 0.20, 0.30, 0.40
L number of overtime units 5 10, 15, 20
x0

s initial solution DET LS-F, TS-I
– sequencing DD ID, HID, HDD

Table 2: Algorithm parameters.

Finally, the algorithm was coded in standard C++ and compiled with
gcc 4.4.3. All tests were performed on a 1.73 GHz Intel core i7 processor,
with 4 GB of RAM running under Linux Ubuntu 14.10.

4.2. Impact of the initial solution

Recall that, for each sample exploration, the procedure is initiated from
an initial solution (see line 4 of Algorithm 1). Obviously, for the first iteration
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the deterministic solution is the only one available. However, after the first
loop of the procedure has been completed (on the first sample), different
choices regarding the initial solution can be taken at the start of each of the
following sample explorations.

In Table 3 the impact of the following three decision rules on the quality
of the final solution and on running time is analyzed: always starting from
the deterministic solution (DET); starting from the solution computed after
LS-F; and starting from the best solution computed during TS-I. For each
instance in B1, three different reliability levels α ∈ {5%, 10%, 15%} are also
evaluated. The number of patients deleted pd for each instance and for each
value of α are reported, while in the last column the average running time is
given.

Instances

init 1 2 3 4 avg.
sol. 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15% secs

DET 15 15 8 17 16 10 28 27 23 26 26 23 498.7
LS-F 15 15 8 17 16 10 28 29 23 23 26 23 485.6
TS-I 23 23 23 24 24 0 28 28 28 22 22 0 193.3

Table 3: Number of patients canceled and running time using different initial solutions.

As can be observed, the algorithm’s behavior is very similar, both in
terms of number of patients deleted and average running time, when using the
deterministic solution or the feasible solution computed after LS-F. However,
when using the best solution computed during TS-I, the behavior is quite
different. First, the running times are much shorter, roughly about 25% of
what they are when using either of the other two strategies. In addition,
the number of cancellations varies significantly from one instance to another
when compared with the other strategies: it is much higher for instances 1
and 2, somewhat lower for instance 4, and when the reliability level α is set
to 15%, no cancellations occur for instances 2 and 4.

In order to get a clearer understanding of the difference in behavior that
the different strategies produce, Figure 3 depicts the evolution of the total
number of OR blocks that are in overtime at the beginning of each successive
sample exploration loop (cf. line 4 of Algorithm 1) for instance 3 (the one
where the quality of the final solutions is similar). Note that the total number
of OR blocks in each sample is equal to 3500, i.e., the number of OR blocks
in the planning horizon (35 for instance 3) times the number of scenarios in
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Figure 3: Instance 3: number of OR blocks in overtime at the beginning of each iteration.

each sample (100).
As can be seen, the total number of OR blocks that are in overtime

when the procedure passes to a new sample or scenarios is quite different
depending on the chosen strategy. When restarting from the deterministic
solution every time, this number is rather high and quite stable, which is to
be expected since it is the same schedule that is tested against different yet
similar samples of scenario realizations. Likewise, the behavior when using
the LS-F solution at the start of the next sample exploration is also somewhat
predictable exhibiting a lower number of overtime blocks than with the first
strategy (since the initial solution was already feasible with respect to the
previous sample) but this number varying somewhat when changing samples
(since the scenarios composing successive samples are different).

To the contrary, the behavior when using the TS-I solution is counter-
intuitive at first glance since one might expect it to be even lower than
with the previous strategy and quite stable, which is not the case. It varies
significantly from one sample to the next and it is close to 0 several times. On
second thought, this is not totally surprising in fact since the best solution
found by TS-I on the previous sample was obtained after applying the LS-F to
make it feasible and then improving its quality by inserting additional cases
without reducing the reliability. It should therefore share similar qualities
with respect to the feasibility with the one used in the second strategy. If two
successive samples are quite similar, then it is quite normal that the number
of OR blocks in overtime be low or even non existing. If the consecutive
samples are quite different, then one should expect that the number of OR
blocks in overtime be high since the schedule is fuller than the one obtained
after the LS-F only and it will need much modifications by LS-F to recover
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feasibility. In fact, the first situation explains the much shorter running
times of this strategy since in that case LS-F does not need to runs as long
to restore feasibility and LS-F is the more computationally expensive part of
the overall procedure.

Figure 3 also provides some insights to understand the ability of the
algorithm with the TS-I solution strategy to drastically reduce the number
of patients canceled. When starting from the solution computed by TS-I,
the information regarding the previous sample is in some sense transferred
to the next one via this initial solution. This process may act as a kind of
of continuous refining of the solution and allow a better use of the available
overtime units.

4.3. Solution reliability vs. variability of the surgery duration

The choice of the α and σ parameter values can have a significant impact
on the final solutions. A sensitivity analysis of their impact was performed
to provide additional insights on the algorithm behavior. Recall that the
value of α measures the level of reliability of the obtained solution (when α
increases, the level of reliability decreases). Whereas, the value of σ repre-
sents the level of variability when generating the stochastic surgery duration
as described in Section 3.1.

For each instance in B1 and for each value of α and σ (see Table 2) the
number of patients canceled (pd) and the corresponding hours of unused OR
capacity (hd) are reported in Tables 4 and 5, respectively.

Instances

1 2 3 4
α → 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

σ
10% 15 15 8 17 16 10 28 27 23 26 26 23
15% 16 16 8 24 15 10 28 27 22 22 25 22
20% 15 15 19 16 15 11 28 28 23 24 22 22

Table 4: Number of patients canceled varying α and σ parameters.

The results reported in Table 4 give several interesting insights. As ex-
pected, increasing the value of α decreases the number of patients canceled.
On the other hand, increasing the value of σ does not affect the solution
significantly. This tends to illustrate that the algorithm seems to be capable
of dealing quite well with the larger variability of the surgery durations. It
can also be seen from these results that the particular characteristics of an
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instance may have a significant impact on the quality of the solutions ob-
tained. Indeed, analyzing in more detail instances 2 and 3, one can note that
they are very similar with respect to the number of patients to be scheduled
and OR capacity (see Table 1). Nevertheless, there is a considerable differ-
ence in the number of patients canceled in the schedules obtained for the
two instances, this value in instance 3 in the case of α = 15% being almost
double than for instance 2 and same α (and this for all values of σ).

The results reported in Table 5 confirm the previous remarks: the hours
of unused OR capacity decrease as the value of α increases. On the other
hand, the metric increases slightly when the value of σ increases. This is most
probably related to the behavior of the algorithm reported above which seems
to be capable of keeping at a relatively similar level the number of patient
cancellations as the variability of surgery duration increases.

Instances

1 2 3 4
α → 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

σ
10% 29.9 29.9 13.9 31.3 31.8 18.4 69.0 70.3 59.2 49.7 51.8 49.8
15% 28.8 28.8 18.7 49.7 31.0 19.9 68.4 69.4 59.2 43.6 47.1 46.1
20% 30.3 30.3 28.4 34.5 31.1 21.7 67.8 67.7 59.8 57.6 45.9 53.5

Table 5: Unused hours of OR capacity with varying α and σ parameters.

4.4. Impact of sequencing rules and overtime availability

The algorithm has been tested comparing four alternative sequencing
rules to schedule patients within the OR blocks (see Section 3.4).

Preliminary tests on the B1 instances show a smaller reduction of the
OR capacity (2.5 hours on average) when using DD and HDD with respect
to ID and HID. This limited impact is essentially due to the fact that the
solutions of the instances derived from real data usually have a small number
of patients scheduled in each OR block (k, t), i.e., between 2 and 4 patients.

Thus, the analysis is given for benchmark set B2 which is characterized
by a greater OR capacity time skt as reported in Table 1. The main purpose
here is to evaluate the impact of the four sequencing rules when more patients
can be scheduled in each OR block. From an operational point of view, this
means that we have two or more surgery teams that will follow each other
in the same OR block, in sequence. The first team will perform their set of
surgeries, then the second team will perform theirs, and so on.
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Instances

5 6 7 8
Seq. Rule pre post pre post pre post pre post

ID 2.7 8.7 4.1 13.6 3.8 10.2 4.3 18.9
DD 1.6 7.6 2.0 11.4 1.5 7.9 1.4 16.1
HID 1.9 7.9 2.1 11.5 3.1 9.5 2.3 16.9
HDD 2.5 8.5 3.6 13.0 3.6 10.0 3.6 18.2

L 5 10 15 20
pre post pre post pre post pre post

so 1 2 1 3 1 5 1 7
pd 26 24 23 19 25 20 19 14

Table 6: Impact of sequencing rules on benchmark set B2.

The results are reported in Table 6. The upper part of the table presents
the total number of operating time hours that would be lost if no overtime
was available. For each instance and for each sequencing rule, this value is
reported before (pre) and after (post) applying the OA-S procedure. The
lower part of the table reports for each instance the number of overtime
units L available, the number of OR blocks in overtime so, and the number
of canceled patients pd. It is important to note that these information are not
affected by the sequencing rule selected but only by the patients scheduled
in each OR block and the realization of surgery durations.

The results reported in Table 6 illustrate the superiority of DD rule as
expected. Surprisingly, the HID rule results as the second best option and
gives results close to those of DD except for Instance 7. Finally, the worst
results are obtained using the ID sequencing rule. Note that similar results
have been discussed in [9, 10, 17].

A particular remark is in order regarding the value so which is always
1 before applying OA-S. This means that the reliability after applying TS-I
is greater than that imposed by the chance constraints (1f). This can be
justified by the fact that more than one scenario can become feasible just
after dropping a patient during the LS-F. Finally note that this behavior
is maintained by the algorithm when solving instances in B1 and when α
increases, that is so is usually less than the expected number of scenarios
(e.g., if α = 0.05 and N

S
= 100 then so should be around 5).

The impact of changing the overtime availability to be allocated by the
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OA-S has also been investigated. Recall that after selecting the best and
feasible solution x̄ over the set of solutions computed by LS-F and TS-I for
each sample, OA-S starts allocating the L available overtime units with the
aim of reducing the number of patient cancellations. Recall also that OA-S
works on the solution x̄ obtained after performing LS-F and TS-I on the
worst scenario g ∈ N , that is the one with the largest number of OR blocks
(k, t) in overtime.

Instances

1 2 3 4 avg.
L L× ` pd hd pd hd pd hd pd hd imp.

5 2.5 15 29.9 17 31.3 28 69.0 26 49.7 –
10 5.0 13 24.3 15 25.9 26 63.1 24 44.7 5.5
15 7.5 12 21.9 14 23.9 25 60.6 23 42.3 7.8
20 10.0 11 18.9 13 22.4 25 60.6 23 42.3 8.9
40 20.0 8 13.4 9 15.4 21 51.2 19 34.8 16.3
45 22.5 7 10.9 9 15.4 20 47.7 18 32.3 18.4
50 25.0 6 9.5 8 13.0 19 44.7 17 30.8 20.5

Table 7: Impact of varying the number of available overtime units L.

Table 7 reports the results obtained considering different amounts of over-
time units available for a planning horizon of one week. In the first and second
columns the number of overtime units L and the corresponding total hours
of overtime available are reported, respectively. Seven cases are considered
which correspond to values of L ranging from 5 to 50. As stated previously,
the length of an overtime unit ` is set to 30 minutes. Let us also recall that in
our test instances the minimum value of expected surgery durations is equal
to 1.5 hours, which corresponds to 3 overtime units.

For each instance in B1 the number of patients canceled (pd) and the
corresponding unused hours of OR capacity (hd) are reported. Finally, the
last column gives the average decrease in the unused hours of OR resulting
from the increase in overtime availability computed with respect to the first
row, L = 5, which corresponds to an overtime availability of 2.5 hours. This
metric can be viewed as a proxy of the benefit of additional overtime capacity
in terms of decreasing the OR time wasted when some patients need to be
canceled from the pre-schedule.

As should be expected, in almost all instances and cases, increasing the
overtime availability results in a decrease in both the number of patients
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canceled and the unused OR time. The greatest decrease of the number
of patients canceled is observed when increasing the number of overtime
units from 5 to 10, while shifting from 15 to 20 does not allow to reduce
the number of canceled patients for instances 3 and 4. Further increases in
overtime availability result in decreasing benefits.

The decrease in the unused OR time capacity follows the same pattern
as that of canceled patients, i.e., that of diminishing returns. For L = 5,
10 and 15, the average decrease of the unused OR capacity (last column) is
always greater than the additional hours of overtime provided. For instance,
increasing the number of overtime units from 5 to 10, i.e., increasing the
overtime availability by 2.5 hours, results in a reduction of 5.5 hours of the
unused OR hours. This means that the benefit almost doubles the additional
overtime hours. However, this positive impact decreases as the number of
additional overtime units increases, and starting with L = 20 the benefits
become less than the additional overtime provided.

4.5. Evaluating OR utilization

As reported in Section 2 in order to achieve a high level of OR utilization,
which is the second main objective of the solution approach, a max min
objective function is introduced in the patient assignment model (1a). The
aim is therefore to maximize the utilization of the OR block which has the
minimal utilization. In this section we analyze further the quality of the
algorithm solutions in terms of OR occupation. We use as OR occupation
metric the minimal utilization of the OR blocks denoted z as in (1a).

Instances

1 2 3 4
α → 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

σ
10% 61.0% 61.0% 21.7% 29.4% 29.4% 57.1% 0.0% 0.0% 0.0% 14.7% 28.8% 15.2%
15% 42.4% 42.4% 43.3% 1.2% 29.8% 44.9% 0.0% 0.0% 0.0% 16.6% 28.6% 15.5%
20% 27.8% 27.8% 0.0% 32.1% 32.1% 46.4% 0.0% 0.0% 0.0% 2.6% 30.1% 2.0%

avg. z 54.7% 54.7% 46.3% 55.8% 60.2% 69.1% 38.2% 38.1% 38.2% 51.5% 59.6% 51.3%

Table 8: Impact on OR utilization: improvement of z between the solutions computed
after LS-F and TS-I.

Table 8 reports the percentage improvement of the solution computed af-
ter LS-F and TS-I, the latter referred as solution x̄ (see line 7 in Algorithm 1),
which measures the utilization of the OR block which has the minimal utiliza-
tion. For each instance, we also report the results when varying the values of
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α and σ. It is worth recalling that the α and σ parameters measure, respec-
tively, the level of reliability of the final solutions (i.e., the critical probability
level used in the chance constraints (1f)) and the variability of the stochastic
surgery times (i.e., the standard deviation of the distributions used to gener-
ate the surgery duration). The last row reports the average value of x̄ with
respect to the OR capacity skt.

As can be observed, the percentage improvement decreases when the
variability of the surgery durations increases. Nevertheless, the behavior is
greatly affected by the different instances and also varies significantly with re-
spect to the value of α. The surgery time variability impacts in a slightly dis-
similar way when combined with different values of α, as shown by instances
2 and 4. A somehow particular behavior is experienced solving instance 3. In
this case, the TS-I is not capable to improve the objective function z. This
seems due to the characteristics of the instance which make it more difficult
to maintain the solution feasibility (with respect to the chance constraints)
during the improvement phase. Note that for this instance the average oc-
cupation rate never reaches the 40%. Recall however that this corresponds
to the OR block having the least utilization in the worst case scenario so it
is bound to be low.

Instances

1 2 3 4
α → 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

σ
10% 64.6% 64.6% – – 32.2% 61.1% 2.3% 2.1% 2.0% – – –
15% – – 50.1% 5.4% 33.2% 49.3% 5.3% 4.8% 5.9% 20.2% 34.4% 21.7%
20% 38.4% 38.4% 6.4% 38.2% 37.0% 58.8% 9.5% 11.9% – 12.5% – 13.3%

Table 9: Impact on OR utilization: percentage improvement of z between the solutions
computed after LS-F and OA-S.

In Table 9 the percentage improvements between the solutions computed
after LS-F and OA-S are reported for the same instances and for each value
of α and σ parameters. In order to have a consistent comparison among the
results in Table 8 and Table 9, the percentage improvement is reported just
for those instances in which the solution x̄ is the one computed using the
sample Ss which contains the worst scenario g ∈ N . This solution is in fact
the solution used by the OA-S to start the overtime allocation phase.

The solutions after OA-S always increase the percentage improvement of
z with respect to the solutions obtained after the TS-I (see Table 8). On
average, the increase is higher for the σ = 20% case, where it is below 8 for
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instances 1 and 2 and rises up to 11 for instances 3 and 4. The impact of
different values of α is confirmed. In fact looking at the σ = 20% case, the
greatest and lowest percentage increases of OR utilization are both found in
instance 2 (about 12%, from 46.4% to 58.8%, for α = 15% and around 5%
for α = 5 and 10%).

5. Conclusions

In this paper we presented an efficient algorithmic framework for solving
the problem of assigning and sequencing a set of elective surgical patients to
a set of available OR time blocks, over a one week planning horizon, while
taking explicitly into account the uncertainty of surgery durations. As in
many practical contexts, a given amount of overtime is available to miti-
gate the unavoidable consequences of surgery time variability. The method
therefore seeks to assign this overtime resource in order to balance the trade-
off between hospital and patient perspectives, i.e., maximize OR utilization
while minimizing surgery cancellations (due to OR blocks running late).

The problem is decomposed into two sub-problems which are solved in two
sequential phases. Integer stochastic formulations are proposed for both sub-
problems. The hybrid algorithm developed combines neighborhood search
techniques with Monte Carlo simulation, which is used to deal with the vari-
ability of surgery times. In addition, greedy algorithms are developed for the
overtime allocation.

A set of instances based on real data have been constructed to test the al-
gorithm behavior and the robustness of the solutions produced. An extensive
computational results analysis has been performed to analyze the impact of
the main algorithmic components and parameters. The computational anal-
ysis demonstrated the capability of the proposed method to deal efficiently
with the trade-off between hospital and patient perspectives in reasonable
computational times.

The proposed approach could represent a useful decision tool to be used
by OR managers to determine reliable/robust OR schedules (i.e., planning
and sequencing of patients). The approach has the advantage of exploiting
the trade off between achieving an acceptable level of OR utilization rate
while limiting the negative effects of surgery cancellations and postpone-
ments. Despite the efficiency demonstrated by the proposed approach, it has
not yet been integrated in the hospital practice. The main reasons are linked
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to difficulties in introducing and interfacing stand alone resolution methods
into the hospital information systems.

Finally, the proposed approach can be considered as the starting point for
defining a new methodological approach to deal with stochastic health care
problems arising in real life applications. As a matter of fact, this approach
allows the combination of the potential of local search metaheuristics to deal
with combinatorial optimization problems, with the well known capability
of Monte Carlo simulation to represent stochastic phenomena. Furthermore,
the idea of gathering scenarios in samples makes the algorithm framework
more flexible and computationally efficient.

Acknowledgment’s

All the authors acknowledge support from the Italian Ministry of Edu-
cation, University and Research (MIUR), under the grant n. RBFR08IKSB,
“Firb – Futuro in Ricerca 2008”. Patrick Soriano’s research on this project
was also supported by the Natural Sciences and Engineering Research Coun-
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and scheduling: A literature review, European Journal of Operational
Research 201 (2010) 921–932.

[3] F. Guerriero, R. Guido, Operational research in the management of the
operating theatre: a survey, Health Care Management Science 14 (2011)
89–114.

[4] D. Min, Y. Yih, Scheduling elective surgery under uncertainty and down-
stream capacity constraints, European Journal of Operational Research
206 (2010) 642–652.

29



[5] E. Hans, G. Wullink, M. van Houdenhoven, G. Kamezier, Robust
surgery loading, European Journal of Operational Research 185 (2008)
1038–1050.

[6] B. Denton, J. Miller, H. Balasubramanian, T. Huschka, Optimal alloca-
tion of surgery blocks to operating rooms under uncertainty, Operations
Research 58 (2010) 802–816.
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level Metaheuristic for the Operating Room Scheduling and Assignment
Problem, Computers & Operations Research 54 (2015) 21–34.
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