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Abstract  
Introduction: The finite element method (FEM) has been proposed as a method to analyze stress 
distribution in nickel-titanium (NiTi) rotary instruments but has not been assessed as a method of 
predicting the number of cycles to failure (NCF). The objective of this study was to predict NCF and 
failure location of NiTi rotary instruments by FEM virtual simulation of an experimental nonstatic 
fatigue test. Methods: ProTaper Next (PTN) X1, X2, and X3 files (Dentsply Maillefer, Baillagues, 
Switzerland) (n = 20 each) were tested to failure using a customized fatigue testing device. The device 
and file geometries were replicated with computer-aided design software. Computer-aided design 
geometries (geometric model) were imported and discretized (numeric model). The typical material 
model of an M-Wire alloy was applied. The numeric model of the device and file geometries were 
exported for finite element analysis (FEA). Multiaxial random fatigue methodology was used to 
analyze stress history and predict instrument life. Experimental data from PTN X2 and X3 were used 
for virtual model tuning through a reverse engineering approach to optimize material mechanical 
properties. Tuned material parameters were used to predict the average NCF and failure locations of 
PTN X1 by FEA; t tests were used to compare FEA and experimental findings (P <.05). Results: 
Experimental NCF and failure locations did not differ from those predicted with FEA (P = .098). 
Conclusions: File NCF and failure location may be predicted by FEA. Virtual design, testing, and 
analysis of file geometries could save considerable time and resources during instrument development. 
(J Endod 2015;41:1867–1870)  
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Since their introduction, nickel-titanium (NiTi) rotary instruments have considerably simplified 
endodontic practice by improving speed, accuracy, and safety during root canal shaping (1, 2). 
Continuous enhancements in the design and manufacture of NiTi rotary instruments have significantly 
reduced but not completely eliminated the occurrence of failure during canal shaping (3, 4). Although 
rare, breakage of NiTi rotary instruments may lead to incomplete chemomechanical treatment of the 
root canal system and hinder healing, particularly in the presence of preexisting apical radiolucency (5, 
6). Furthermore, excessive removal of the tooth structure can occur during fragment elimination 
procedures (5, 6). Although many variables can contribute to instrument failure, the primary causes are 
cyclic bending fatigue and torsional overload. Torsional overload is related to the risk of taper lock, 
and its incidence might be reduced by performing a glide path and preliminary enlargement (7–9). 
However, NiTi instrument failures are mainly caused by cyclic bending fatigue, which occurs when a 
NiTi instrument rotates in a curved root canal (10–14). During rotation, the instrument material is 
alternatively subjected to compressive and tensile stresses (11). Such stresses may initiate crack 



formation and propagation, leading to eventual failure (4, 15). Instruments that fail because of bending 
fatigue usually exhibit no specific macroscopic patterns, and failure may occur without any visible 
warning (1, 5, 16, 17). Canal shape, instrument geometry, rotational speed, torque, instrument surface 
treatments, and the chemical composition of NiTi alloys are the main factors affecting the number of 
cycles to failure (NCF) of NiTi rotary instruments (2, 4, 18–21). Standardized experimental conditions 
are not possible for extracted teeth (22), but several self-designed devices and methods have been used 
to assess the NCF of NiTi rotary instruments in vitro (22). However, there is no international standard 
for testing the cyclic fatigue behavior of endodontic rotary instruments in vitro (22). A 3-dimensional 
computerized approach based on the finite element method (FEM) (23–27) has been recently proposed 
to analyze stress distribution in bending fatigue. This approach takes cyclic loading conditions into 
consideration (25, 27) but makes no attempt to predict NCF.  

The objective of this study was to assess the possibility of predicting the NCF and failure location 
of NiTi rotary instruments by the virtual simulation of an experimental fatigue test (nonstatic loading 
condition) using the FEM.  

Materials and Methods 
 

ProTaper Next (PTN) X1, X2, and X3 files (n = 20 each), 25 mm in length, were tested to failure 
using a tempered steel fatigue testing device developed by Dentsply Maillefer (Baillagues, 
Switzerland), which produced a reproducible simulation of rotary instrumentation within a curved 
canal. Testing configurations adopted for every file type are reported in Figure 1 and Table 1. Testing 
configurations for file X1 and files X2 and X3 differ with respect to canal depth and the position of the 
curvature center of the component simulating the inner canal wall. The testing device is covered with a 
glass or steel element to prevent the file leaving the canal during rotation. Each file was inserted, 
leaving the noncutting tip outside the canal, and rotation initiated with an electric motor (X-Smart, 
Dentsply Maillefer) at the suggested settings (300 rpm, 5 Ncm). Time to failure was recorded and 
converted to NCF. Experimental tests were performed by Dentsply Maillefer; tested files were 
photographed with a digital camera after failure (Canon EOS 350D, 8 Mpx resolution, ISO 100, f 18, 
1/60 seconds; Canon, Tokyo, Japan), and failure locations were measured in millimeters from the tip of 
the instrument (image analysis, caliper).  

The customized fatigue testing device and file geometries were computer replicated (Supplemental 
Video S1) with computer-aided design software (SolidWorks 2013; Dassault Systems, Waltham, MA). 
Computer-aided design geometries (geometric model) were imported in a prepost processor 
(Hypermesh 12.0; Altair, Troy, MI) and discretized (numeric model). The main body of each file was 
modeled with 18,000 brick elements, with an average size of 0.1 mm (Fig. 2). The tip and neck of the 
file were modeled with tetrahedral elements with the same average dimensions. The typical material 
model of an M-Wire alloy (NiTi alloy), taken from the literature (28), was applied. The testing device 
was modeled with 2000 shell element and was considered a rigid material. Contact between the file and 
the testing device was introduced with a penalty contact formulation implemented in LS-Dyna 
(LS-Dyna R7.1; Livermore, Livermore, CA). The penalty method introduces a force at the contact 
detection points that penetrates across the target surface with the purpose of eliminating penetration 
(29). The numeric model of the customized fatigue testing device and the file geometries were exported 
into the finite element solver (LS-Dyna R7.1) for finite element analyses (FEA). The FEA aimed to 
mimic the experimental test performed with the Maillefer customized fatigue testing device. The file, 
in rest configuration (straight file), was inserted into the testing device and then bent by the simulated 
canal walls (rigid shell elements). It was finally put into rotation at 300 rpm. The stress state in the 
brick elements of each file model was recorded every 0.2 seconds for 2 seconds (Supplemental Videos 
S2–S4).  



Traditional life prediction methods developed for uniaxial variable amplitude loading could not be 
used in this study because of the complexity of the stress-strain state and the loading history over time 
(multiaxial random loading). Element stress history must be analyzed by applying an appropriate 
multiaxial random fatigue (MRF) criterion. Few methodologies concerning MRF have been proposed, 
and research on the topic is still in progress. A recent MRF methodology, proposed by Carpinteri et al 
(30) and named the C-S criterion, was adopted in this study to analyze the stress history of each file 
element. The C-S criterion was implemented in Matlab 2014 (The MathWorks Inc, Natick, MA) with 
the assumption that the stress history recorded in the first 2 seconds was identically repeated until 
failure. The C-S criterion was used to calculate the time to failure for each brick element and, as a 
consequence, to predict the file NCF (the minimum NCF in the file).  

The mechanical properties of a material are not provided, and the influence of manufacturing 
surface defects cannot be evaluated a priori. As a consequence, a reverse engineering approach for 
model tuning was adopted to obtain the required information. Several material properties were taken 
into account through the Matlab model and were tuned to match the experimental NCF of PTN X2 and 
X3 files. Material parameters were altered through an optimization algorithm implemented in Matlab 
2014 to reduce the difference between the file NCF obtained with FEM and the experimental NCF. The 
tuned material parameters were then used to predict the average NCF of PTN X1 file with FEA. Failure 
locations for each file type were recorded and compared with the failure locations of the files 
photographed after failure in the Maillefer customized fatigue testing device; t tests were performed to 
compare FEA and experimental results (P = .05).  

Results 
The main results of the analyses are presented in Table 2. The NCF of PTN X2 and X3 files was 

used for the tuning of material parameters involved in the C-S criterion. Their P values for the NCF 
were subsequently extremely large (P = .896 and .787, respectively). There was also no significance in 
the NCF of the PTN X1 file (P = .098). Therefore, no significant statistical difference was found 
between the experimental NCF and the NCF predicted by FEA.  

In addition, no significant statistical difference was found between the experimental failure 
locations and the failure locations predicted by FEA (P = .148 for PTN X1 file, P = .995 for PTN X2 
file, and P = .481 for PTN X3 file).  

Possible failure locations predicted with FEA, together with the experimental failure locations 
obtained from the photographed files, are shown in Figure 3. For every file type, vertical lines indicate 
95% confidence intervals of the experimental failure locations, whereas the highlighted point denotes 
the location of the element with the smallest NCF where the predicted failure occurred.  

Discussion 
Multiaxial loading usually acts on NiTi rotary instruments during shaping (31, 32) as a result of the 

simultaneous presence of bending and torsion. Given a file type (geometry and material), the torsional 
overload largely depends on the preexisting root canal size and the apical force exerted during 
instrumentation, whereas the cyclic bending fatigue depends on unmodifiable anatomic factors such as 
the root canal radius and degree of curvature (22). File rotation around a curved axis (the axis of the 
file inserted into a curved canal root) leads to a continuously varying complex stress state including 
normal and shear components (15) and, therefore, to a fatigue phenomenon, which accounts for up to 
90% of endodontic instrument mechanical failures (2, 33).  

In the present study, FEA analysis was introduced as a virtual testing approach to predict 
mechanical behavior of the NiTi file. FEA is a numeric method that calculates the stress field in any 
file geometry according to the file material properties and the boundary loading conditions (27). Virtual 
testing results obtained by simulating the rotation of ProTaper Next X1, X2, and X3 instruments were 
compared with the experimental results obtained with a customized fatigue testing device. A reverse 
engineering approach was used to overcome the lack of information regarding the material behavior 



and the local stress concentration effects caused by manufacturing surface defects (5, 34, 35).  
The instrument stress state obtained by FEA was elaborated according to the C-S criterion 

proposed by Carpinteri et al (30) to calculate the NCF and failure location caused by cyclic bending 
fatigue. The C-S criterion is applicable when stresses are below the yield strength of the material (ie, 
no plasticity phenomena occur during load application). The applicability of the C-S criterion is not 
influenced by file rotation speed or, more generally, by the applied load frequency. The authors verified 
the applicability of the C-S criterion; for the analyzed cases, the stress state was far below the yield 
strength of the material, and, therefore, no plasticity occurred during load application.  

Unknown material properties (eg, the normal stress fatigue limit and the shear stress fatigue limit) 
were required for the application of the C-S criterion, and a reverse engineering approach was 
performed to estimate them. Material properties were modified and optimized to reduce the difference 
between the file NCF obtained with FEA and the NCF obtained with the fatigue testing device for 
ProTaper Next X2 and X3. The tuned parameters are specific for the material used to manufacture the 
analyzed files. The same parameters can be used for any FEA in which the file material is kept the 
same. If the file material changes, the material properties change and must be found through a further 
tuning process. The optimized material properties and the fatigue prediction model based on the C-S 
criterion were used to predict the NCF of the ProTaper Next X1.  

The results presented here show that virtual simulation through FEA can be usefully adopted to 
predict the file NCF and the failure location. As a consequence, given the material properties obtained 
through the reverse engineering approach, FEA can be effectively used to virtually design new file 
geometries. Therefore, the FEA approach would potentially overcome the usual expensive trial and 
error approach based on repetitive prototype manufacturing and testing. This study shows the 
feasibility of numerically analyzing instrument geometries to predict the file NCF and location of 
failure. The evaluation of material mechanical properties through a reverse engineering approach based 
on a multiaxial random fatigue criterion allows the virtual verification of new file geometries toward 
cyclic bending fatigue failure. The virtual analysis of file behavior may lead to a considerable saving of 
time and resources during instrument development. The evaluation of the material properties through a 
reverse engineering approach could be avoided if the material properties and the manufacturing defects 
are properly characterized and taken into account.  
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Figures 

 

Figure 1. A scheme of the device used for cyclic bending fatigue testing of investigated files; the 
testing device with its main dimensions as reported in Table 1. a, contact angle; a, initial straight 
portion of the canal; b, curved portion of the canal; c, final straight portion of the canal; CA, center of 
the osculating circle for the outer canal wall; CB, center of the osculating circle for the inner canal 
wall; p, canal depth; RA, radius of the osculating circle for the outer canal wall; RB, radius of the 
osculating circle for the inner canal wall; X,Y, reference system.  

 

 

Figure 2. Finite element model of the PTN X1 file. 
 
 



 
 

 

 

Figure 3. Comparison between FEA and experimental failure locations; vertical red lines denote 95% 
confidence intervals for the experimental failure locations, and highlighted green points denote the 
location of the element with the smallest NCF.  

Tables 
 

 
TABLE 1. Testing Configurations Adopted for Each Investigated File  

Dimensions  X1  X2, X3 
RA [mm]  5  5 
RB [mm]  4.6  4.6 
Alpha [�]  78  78 
a [mm]  6  6 
b [mm]  7  7 
c [mm]  1  1 
p [mm]  0.6  0.8 
XCB [mm]  +0.18  +0.04 
YCB [mm]  �0.04  �0.45 
 

 

TABLE 2. Main Results of the Analyses  
Cyclic fatigue test   FEA  P value  

Instrument NCF  Fracture length*  NCF  
Fracture 
length  

NCF  
Fracture 
length  

X1 X2 X3  

671 � 170 
[592; 751] 522 
� 67.2 [491; 

5.59 � 0.38 
[5.41; 5.79] 5.46 
� 0.50 [5.23; 

605 
518 
329  

5.77 5.46 
5.40  .10 .89 .78 .15 .99 .48  



553] 334 � 61.1 
[305; 362]  

5.69] 5.44 � 0.16 
[5.37; 5.51]  

 
FEA, finite element analysis; NCF, number of cycles to failure. 
Mean � standard deviation; in square brackets, 95% confidence interval for the mean. 
*Length and location from the file tip in mm (mean � SD). 
 

 


