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Microlocal regularity of Besov type
for solutions to quasi-elliptic non linear
partial differential equations

Gianluca Garello and Alessandro Morando

Abstract. Using a standard linearization technique and previously obtained
microlocal properties for pseudodifferential operators with smooth coefficients,
the authors state results of microlocal regularity in generalized Besov spaces
for solutions to non linear PDE.

1. Introduction

In previous papers, [4], [5], [6], [7], the authors studied the problem of Lp and
Besov continuity and local regularity for pseudodifferential operators with smooth
and non smooth symbols, whose derivatives decay at infinity in non homogeneous
way. Particularly in [6], [7] emphasis is given on symbols with quasi-homogeneous
decay; in [8] also microlocal properties were studied.
Pseudodifferential operators whose smooth symbols have a quasi-homogeneous
decay at infinity were first introduced in 1977 in Lascar [9], where their microlocal
properties in the L2−framework were studied.
Symbol classes of quasi-homogeneous type and several related problems have been
developed in the meantime, see e.g. Segàla [10] for the local solvability, Garello [2]
for symbols with decay of type (1, 1), Yamazaki [13] where non smooth symbols in
the Lp−framework are introduced and studied under suitable restrictive conditions
on the Fourier transform of the symbols themselves.
The aim of the present paper is to apply the previous results to the study of
microlocal properties of fully non linear equations, by means of the linearization
techniques introduced by M. Beals and M.C. Reeds in [1] and well described in
[11], [3]. Namely, consider the non linear equation

F (x, ∂αu)α∈I = 0, (1.1)
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where F (x, ζ) ∈ C∞(Rn×CN ) for suitable positive integer N , and I is a bounded
subset of multi-indices in Zn+. After the linearization obtained by differentiating
with respect to the xj variable:∑

α∈I

∂F

∂ζα
(x, ∂βu)

β∈I∂
α∂xju = −∂F

∂xj
(x, ∂βu)

β∈I , (1.2)

we reduce the study of (1.1) to the following linear equation∑
α∈I

aα(x)∂αuj = fj(x), uj = ∂xju, (1.3)

where the coefficients aα(x) and the forcing term fj(x) are clearly non smooth, but
their regularity depends on u itself. Precisely here we are considering the regularity
of solutions to (1.1) in the framework of quasi-homogeneous Besov spaces Bs,M∞,∞,
which are introduced in Section 2, by means of a suitable decomposition of Rn in
anisotropic dyadic crowns.
In §3 pseudodifferential operators and symbol classes are defined and in §4 we
introduce the microlocal properties of Besov type Bs,M∞,∞ for pseudodifferential
operators with smooth symbols, obtained in [8]. Such results apply in §5 to the
study of the microlocal regularity for solution to equations of type (1.3), with
coefficients of Besov type and, in the last section, to quasi-linear and fully non
linear equations.

2. Quasi-homogeneous Besov spaces

In the following M = (m1, . . . ,mn) is a weight vector with positive integer com-
ponents, such that min

1≤j≤n
mj = 1 and

|ξ|M :=

 n∑
j=1

ξ
2mj
j

 1
2

, ξ ∈ Rn (2.1)

is called quasi-homogeneous weight function on Rn.

We set m∗ := max
1≤j≤n

mj ,
1
M :=

(
1
m1
, . . . , 1

mn

)
, α · 1

M =
∑n
j=1

αj
mj

and

〈ξ〉2M := (1 + |ξ|2M ). Clearly the usual euclidean norm |ξ| corresponds to the quasi-
homogeneous weight in the case M = (1, . . . , 1).
By easy computations, see e.g. [6] we obtain the following

Proposition 2.1. For any weight vector M there exists a suitable positive constant
C such that

i) 1
C 〈ξ〉 ≤ 〈ξ〉M ≤ C〈ξ〉

m∗ , ξ ∈ Rn,

ii) |ξ + η|M ≤ C(|ξ|M + |η|M ), ξ, η ∈ Rn;
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iii) (quasi-homogeneity) for any t > 0, |t1/Mξ|M = t|ξ|M ,
where t1/Mξ = (t1/m1ξ1, . . . , t

1/mnξn);

iv) ξγ∂α+γ |ξ|M ≤ Cα,γ〈ξ〉
1−α· 1

M

M , for any α, γ ∈ Zn+ and ξ 6= 0.

For t > 0, h ≥ −1 integer, we introduce the notations: t
h
|M| = t

h
m1 . . . t

h
mn

and t
h
M ξ =

(
t
h
m1 ξ1, . . . , t

h
mn ξn

)
.

In the following û(ξ) = Fu(ξ) =
∫
e−ix·ξu(x) dx stands for both the Fourier

transform of u ∈ S(Rn) and its extension to S ′(Rn).

Proposition 2.2. Consider u ∈ L∞(Rn), R > 0, such that supp û ⊂ BMR :=
{ξ ∈ Rn ; |ξ|M ≤ R}. Then for any α ∈ Zn+ there exists cα > 0 independent of
R such that

‖∂αu‖L∞ ≤ cαRα·
1
M ‖u‖L∞ . (2.2)

Proof. Consider φ ∈ C∞(Rn) such that suppφ ⊂ BM2 , φ(x) = 1 in BM1 and set

φR(ξ) = φ
(
R−

1
M ξ
)

. Since φR(ξ) = 1 in BMR , we obtain û(ξ) = φR(ξ)û(ξ). Thus

u = F−1 (φRû) = F−1φR ∗ u =

= (2π)−nR
1
|M|

(∫
e
i
(
R

1
M ·

)
·η
φ(η) dη ∗ u

)

= (2π)−nR
1
|M|

(
φ̂
(
−R 1

M ·
)
∗ u
)
∈ C∞(Rn) ,

(2.3)

where F−1 denotes the inverse Fourier transform. Moreover

∂αu = (2π)−n(−1)|α|R
1
|M|Rα·

1
M (∂αφ̂)

(
−R 1

M ·
)
∗ u . (2.4)

Then

‖∂αu‖L∞ ≤ (2π)−nR
1
|M| ‖(∂αφ̂)

(
−R 1

M ·
)
‖L1 Rα·

1
M ‖u‖L∞

= (2π)−nR
1
|M|

∫ ∣∣∣(∂αφ̂)
(
−R 1

M ξ
)∣∣∣ dξ Rα· 1

M ‖u‖L∞

= (2π)−n
∫ ∣∣∣∂αφ̂(η)

∣∣∣ dη Rα· 1
M ‖u‖L∞ = cαR

α· 1
M ‖u‖L∞ .

(2.5)

�

Proposition 2.3 (Quasi-homogeneous dyadic decomposition). For some K > 1 let
us consider the cut-off function φ(t) ∈ C∞0 ([0,+∞]) such that 0 ≤ φ(t) ≤ 1, φ(t) =
1 for 0 ≤ t ≤ 1

2K , φ(t) = 0, when t > K. Set now ϕ0(ξ) = φ
(∣∣2−1/Mξ

∣∣
M

)
−φ(|ξ|M )

and

ϕ−1(ξ) = φ (|ξ|M ) , ϕh(ξ) = ϕ0

(
2−h/Mξ

)
for h = 0, 1, . . . . (2.6)
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Then for any α, γ ∈ Zn+ a positive constant Cα,γ,K exists such that:

suppϕ−1 ⊂ CK,M−1 := BMK

suppϕh ⊂ CK,Mh :=
{
ξ ∈ Rn ; 1

K 2h−1 ≤ |ξ|M ≤ K2h+1
}
, h ≥ 0;

(2.7)

∞∑
h=−1

ϕh(ξ) = 1 , for all ξ ∈ Rn; (2.8)

∣∣ξγ∂α+γϕh(ξ)
∣∣ ≤ Cα,γ,K2−(α· 1

M )h, ξ ∈ Rn , h = −1, 0, . . . . (2.9)

Moreover for any fixed ξ ∈ Rn the sum in (2.8) reduces to a finite number of terms,
independent of the choice of ξ itself.
Setting now for every u ∈ S ′(Rn)

uh = ϕh(D)u := F−1 (ϕhû) , (2.10)

we obtain:
∞∑

h=−1

uh = u, with convergence in S ′(Rn); (2.11)

and, for every integer k ≥ 0 there exists Ck > 0 such that

1

Ck
2hk‖uh‖L∞ ≤

∑
α· 1
M =k

‖∂αuh‖L∞ ≤ Ck2hk‖uh‖L∞ , h = 0, 1 . . . . (2.12)

Proof. It is trivial to prove (2.7). For every fixed ξ ∈ Rn we have φ
(∣∣2−h/Mξ∣∣

M

)
=

1 for any suitably large integer h; then (2.8), (2.11) follow.
For every integer h ≥ 0 we obtain∣∣ξγ∂α+γϕh(ξ)

∣∣ =
∣∣∣(2−h/Mξ

)γ (
∂α+γϕ0

) (
2−h/Mξ

)∣∣∣ 2−h(α· 1
M ) ≤ Cα,γ,K2−h(α·

1
M ),

where Cα,γ,K = max
η
|ηγ∂α+γϕ0(η)| is independent of h; thus (2.9) is proved.

In order to prove at the end (2.12), let us consider χ(ξ) ∈ C∞0 (Rn) identically
equal to one in a suitable neighborhood of supp ϕ0. We can then write

ϕ0(ξ) =

 ∑
α· 1
M =k

ξαχα(ξ)

ϕ0(ξ), (2.13)

with

χα(ξ) =
ξαχ(ξ)∑

α· 1
M =k(ξα)2

∈ C∞0 (Rn). (2.14)
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Thus we have:

ûh(ξ) = ϕ0

(
2−

h
M ξ
)
û(ξ) =

∑
α· 1
M =k

(
2−

h
M ξ
)α

χα

(
2−

h
M ξ
)
û(ξ)

=
∑

α· 1
M =k

2−hα·
1
M ξαχα

(
2−

h
M ξ
)
ûh(ξ)

= 2−hk
∑

α· 1
M =k

χα

(
2−

h
M ξ
)
D̂αuh(ξ) .

(2.15)

We have then verified.

2hkuh =
∑

α· 1
M =k

2
h
|M|

((
F−1χα

)
(2

h
M ·)
)
∗Dαuh, (2.16)

which in view of the Young inequality and Proposition 2.2 shows (2.12). �

We call the sequences ϕ := {ϕh}∞h=−1, defined in (2.6), and {uh}∞h=−1, defined
in (2.10), respectively quasi-homogeneous partition of unity and quasi-homogeneous
dyadic decomposition of u.
Following the arguments in [12, §10.1] we can introduce now the classes of quasi-
homogeneous Besov functions and state their properties in suitable way.

Definition 2.4. For any s ∈ R and u ∈ S ′(Rn) we say that u belongs to the
quasi-homogeneous Besov space Bs,M∞,∞ if

‖u‖ϕ
Bs,M∞,∞

:= sup
h=−1,...

2sh‖uh‖L∞ <∞ (2.17)

is satisfied for some quasi-homogeneous partition of unity ϕ.

Different choices of the partition of unity ϕ in (2.17) give raise to equivalent
norms, noted by ‖ · ‖Bs,M∞,∞ . The space Bs,M∞,∞ has Banach structure and when

M = (1, . . . , 1) and s > 0, it is the usual Hölder-Zygmund space.

Proposition 2.5. Let us consider a sequence of Schwartz distributions {uh}∞h=−1 ⊂
S ′(Rn) and a constant K > 1 such that supp ûh ⊂ CK,Mh for any h ≥ −1. Set now
u :=

∑∞
h=−1 uh.

The following properties are satisfied:

sup
h≥−1

(
2rh‖uh‖L∞

)
<∞⇒ u ∈ Br,M∞,∞, r ∈ R,

and
‖u‖Br,M∞,∞ ≤ C sup

h≥−1

(
2rh‖uh‖L∞

)
,

(2.18)

where the constant C is independent of the sequence {uh}∞h=−1.
When r > 0, (2.18) is true for all the sequences of Schwartz distributions {uh}∞h=−1

with supp ûh ⊆ BK,Mh := BMK2h+1 = {ξ ∈ Rn : |ξ|M ≤ K2h+1}, h = −1, 0, . . . .
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Proposition 2.6 (Quasi-homogeneous Meyer multipliers). Consider a family of
smooth functions {mh}∞h=−1 such that for any α ∈ Zn+:

‖∂αmh‖L∞ ≤ Cα2hα·
1
M . (2.19)

Then the linear operator L =
∑∞
h=−1mh(x)ϕh(D) maps continuously Bs,M∞,∞ into

itself, for any s > 0.

Proof. Consider the quasi-homogeneous partition of unity in Proposition 2.3, with
K = 1, and for any h = −1, 0, . . . and T > 2 write:

m̂h =

∞∑
k=−1

ϕk

((
2hT

)− 1
M ·
)
m̂h =

∞∑
k=−1

m̂h,k . (2.20)

Notice that m̂h,−1(ξ) = φ
(∣∣∣(2hT )− 1

M ξ
∣∣∣
M

)
m̂h(ξ), and when h ≥ 0, m̂h,k(ξ) =

ϕ0

((
2h+kT

)− 1
M ξ
)
m̂h(ξ).

Thus for any u ∈ S ′(Rn), by setting Mku =
∑∞
h=−1mh,kuh for k ≥ −1, we have:

Lu =

∞∑
h=−1

mhϕh(D)u =

∞∑
h=−1

mhuh =

∞∑
k=−1
h=−1

mh,kuh =

∞∑
k=−1

Mku. (2.21)

Notice now that for any h, k ≥ −1:

‖mh,kuh‖L∞ ≤ ‖mh,k‖L∞‖uk‖L∞ ;

supp m̂h,−1uh ⊂ BT,Mh + C1,M
h ⊂ BK,Mh ;

supp m̂h,kuh ⊂ CT,Mh+k + C1,M
h ⊂ CK,Mh+k , for suitable constants T,K.

(2.22)

Using now (2.12) and (2.19), for any integer l > 0 there exist positive constants
Cl > 0 such that

‖mh,k‖L∞ ≤ Cl
∑

α· 1
M =l

‖∂αmh,k‖L∞2−(h+k)l ≤ Cl2−kl. (2.23)

Thus for any s > 0:

2s(h+k)‖mh,kuh‖L∞ ≤ 2s(h+k)‖mh,k‖L∞‖uh‖L∞

≤ Cl2sh2(s−l)k‖uh‖L∞ ≤ Cl2(s−l)k‖u‖Bs,M∞,∞ .
(2.24)

Thus for any s > 0, l ≥ 1 and k ≥ −1, in view of Proposition 2.5, we get

‖Mku‖Bs,M∞,∞ ≤ Cl2
(s−l)k‖u‖Bs,M∞,∞ . (2.25)

Then, by choosing l > s, in view of (2.21) and (2.25) we conclude that ‖Lu‖Bs,M∞,∞ ≤
Cs‖u‖Bs,M∞,∞ . �
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Theorem 2.7. Consider F ∈ C∞(C) such that F (0) = 0, s > 0. Then, for any
u ∈ Bs,M∞,∞ and suitable C = C(F, ‖u‖L∞), we have:

F (u) ∈ Bs,M∞,∞ and ‖F (u)‖Bs,M∞,∞ ≤ C‖u‖Bs,M∞,∞ . (2.26)

Proof. Using the notations in Proposition 2.3 let us define for any integer p ≥ 0,
Ψpu = Ψp(D)u, where Ψp(ξ) =

∑
−1≤h≤p−1

ϕh(ξ). Since F (0) = 0 setting moreover

Ψ−1(ξ) = 0 we can consider the telescopic expansion:

F (Ψ0u) +

∞∑
p=0

(F (Ψp+1u)− F (Ψpu)) =

∞∑
p=−1

(F (Ψp+1u)− F (Ψpu)) . (2.27)

By means of standard computations we have for any p ≥ 0

F (Ψp+1u)− F (Ψpu) = up

∫ 1

0

F ′(Ψpu+ tup) dt. (2.28)

Thus by setting

mp(x) =

∫ 1

0

F ′(Ψpu+ tup) dt , (2.29)

we obtain F (u) =
∑∞
p=−1mpup = Lu. It is now sufficient to verify that mp defined

in (2.29) is a Meyer multiplier.
Without any loss of generality, it is enough to consider m̃p = G (Ψpu), with G =
F ′ ∈ C∞. Then

∂αG (Ψpu) =
∑

G(q) (Ψpu) (∂γ1Ψpu) . . . (∂γqΨpu) ,

where 1 ≤ q ≤ |α|, γ1 + · · ·+ γq = α and |γj | ≥ 1, j = 1, . . . , q.
It follows from the Proposition 2.2 that for any multi-index γj :

‖∂γΨpu‖L∞ ≤ C2p(γj ·
1
M )‖Ψpu‖L∞ .

Then for a suitable positive constant C depending on α,G and ‖u‖L∞ :

‖∂αG (ψpu) ‖L∞ ≤ C2p(γ1·
1
M +...γq· 1

M ) ≤ C2p(α·
1
M ),

which ends the proof. �

Remark 2.8. Set F̃ (t) = F (t) − F (0), with F ∈ C∞(C). Since the constant func-
tions belong to Bs,M∞,∞, we obtain that for any u ∈ Bs,m∞,∞, F (u) fulfills (2.26), for
any s > 0.

3. Quasi-homogeneous symbols

In this section, we recall the definition of some symbol classes which are well
behaved on the quasi-homogeneous structure of the spaces Bs,M∞,∞. Here we just
collect some basic definitions and a few related results, referring the reader to
[6, 8] for a more detailed analysis. Let M = (m1, . . . ,mn) be a vector with positive
integer components obeying the assumptions of the previous §2.
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Definition 3.1. For m ∈ R and δ ∈ [0, 1], SmM,δ will be the class of functions

a(x, ξ) ∈ C∞(Rn×Rn) such that for all α, β ∈ Zn+ there exists Cα,β > 0 such that:

|∂βx∂αξ a(x, ξ)| ≤ Cα,β〈ξ〉m−α·1/M+δβ·1/M
M , ∀x, ξ ∈ Rn . (3.1)

We also set SmM := SmM,0.

For each symbol a ∈ SmM,δ, the pseudodifferential operator a(x,D) = Op(a) is

defined on S(Rn) by the usual quantization

a(x,D)u = (2π)−n
∫
ei x·ξa(x, ξ)û(ξ) dξ, u ∈ S(Rn). (3.2)

It is well-known that (3.2) defines a linear bounded operator from S(Rn) to itself.
In the following, we will denote by OpSmM,δ the set of pseudodifferential operators

with symbol in SmM,δ (and set OpSmM := OpSmM,0 according to Definition 3.1).

From Proposition 2.1, iv), it is clear that 〈ξ〉mM ∈ SmM , for every m ∈ R.
For pseudodifferential operators in OpSmM,δ, a suitable symbolic calculus is devel-

oped in [8, Propositions 2.3-2.5] under the restriction δ < 1
m∗ ; in particular the

composition a(x,D)b(x,D) of two operators a(x,D) ∈ OpSmM,δ, b(x,D) ∈ OpSm
′

M,δ

belongs to OpSm+m′

M,δ , for all m,m′ ∈ R as long as δ < 1
m∗ .

The analysis of linear partial differential equations with rough coefficients needs
the introduction of non smooth symbols studied in [8]. We recall the definitions
and the main properties.

Definition 3.2. For r > 0, m ∈ R and δ ∈ [0, 1], Br,M∞,∞S
m
M,δ is the set of measurable

functions a(x, ξ) such that for every α ∈ Zn+

|∂αξ a(x, ξ)| ≤ Cα〈ξ〉m−α·1/MM , ∀x, ξ ∈ Rn; (3.3)

‖∂αξ a(·, ξ)‖Br,M∞,∞ ≤ Cα〈ξ〉
m−α·1/M+δr
M , ∀ξ ∈ Rn. (3.4)

As in the case of smooth symbols, we set for brevity Br,M∞,∞S
m
M := Br,M∞,∞S

m
M,0.

Theorem 3.3. If r > 0, m ∈ R, δ ∈ [0, 1] and a(x, ξ) ∈ Br,M∞,∞SmM,δ, then for all

s ∈](δ − 1)r, r[

a(x,D) : Bs+m,M∞,∞ → Bs,M∞,∞ (3.5)

is a linear continuous operator.
If in addition δ < 1, then the mapping property (3.5) is still true for s = r.

Since the inclusion SmM,δ ⊂ Br,M∞,∞S
m
M,δ is true for all r > 0, a straightforward

consequence of Theorem 3.3 is the following

Corollary 3.4. If a ∈ SmM,δ, for m ∈ R and δ ∈ [0, 1[, then (3.5) is true for all

s ∈ R. If δ = 1, (3.5) is true for all s > 0.
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4. Microlocal properties

In this section we review some known microlocal tools and properties concerning
the pseudodifferential operators introduced above. For the proofs of the results
collected below, the reader is addressed to [8]. In the sequel, we will set T ◦Rn :=
Rn × (Rn \ {0}), and M = (m1, . . . ,mn) will be a vector under the assumptions
of §2.

Definition 4.1. We say that a set ΓM ⊆ Rn \ {0} is M−conic, if

ξ ∈ ΓM ⇒ t1/Mξ ∈ ΓM , ∀ t > 0 .

Definition 4.2. A symbol a ∈ SmM,δ is microlocally M−elliptic at (x0, ξ0) ∈ T ◦Rn
if there exist an open neighborhood U of x0 and an M−conic open neighborhood
ΓM of ξ0 such that for c0 > 0, ρ0 > 0:

|a(x, ξ)| ≥ c0〈ξ〉mM , ∀ (x, ξ) ∈ U × ΓM , |ξ|M > ρ0 . (4.1)

Moreover the characteristic set of a ∈ SmM,δ is Char(a) ⊂ T ◦Rn defined by

(x0, ξ0) ∈ T ◦Rn \ Char(a) ⇔ a is microlocally M-elliptic at (x0, ξ0) . (4.2)

Definition 4.3. We say that a ∈ S ′(Rn) is microlocally regularizing on U × ΓM if
a| U×ΓM ∈ C∞(U×ΓM ) and for every m > 0 and all α, β ∈ Zn+ a positive constant
Cm,α,β > 0 exists in such a way that:

|∂αξ ∂βxa(x, ξ)| ≤ Cm,α,β(1 + |ξ|)−m , ∀ (x, ξ) ∈ U × ΓM . (4.3)

Proposition 4.4. (Microlocal parametrix). Assume that 0 ≤ δ < 1/m∗. Then a ∈
SmM,δ is microlocally M−elliptic at (x0, ξ0) ∈ T ◦Rn if and only if there exist symbols

b, c ∈ S−mM,δ such that

a(x,D)b(x,D) = I + r(x,D) and c(x,D)a(x,D) = I + l(x,D) , (4.4)

being I the identity operator and the symbols r(x, ξ), l(x, ξ) microlocally regulariz-
ing at (x0, ξ0).

Definition 4.5. For (x0, ξ0) ∈ T ◦Rn, s ∈ R, we define mclBs,M∞,∞(x0, ξ0) as the set
of u ∈ S ′(Rn) such that:

ψ(D)(φu) ∈ Bs,M∞,∞ , (4.5)

where φ ∈ C∞0 (Rn) is identically one in a neighborhood of x0, ψ(ξ) ∈ S0
M is a

symbol identically one on ΓM ∩ {|ξ|M > ε0}, for 0 < ε0 < |ξ0|M , and finally
ΓM ⊂ Rn \ {0} is an M−conic neighborhood of ξ0.
Under the same assumptions, we also write

(x0, ξ0) /∈WFBs,M∞,∞(u) .

The set WFBs,M∞,∞(u) ⊂ T ◦Rn is called the Bs,M∞,∞−wave front set of u.

We say that a distribution satisfying the previous definition is microlocally in
Bs,M∞,∞ at (x0, ξ0). Moreover the closed set WFBs,M∞,∞(u) is M − conic in the ξ vari-

able.
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Finally we say that x0 /∈ Bs,M∞,∞ − singsupp (u) if and only if there exists
a function φ ∈ C∞0 (Rn), φ ≡ 1 in some open neighborhood of x0, such that
φu ∈ Bs,M∞,∞.

Proposition 4.6. If u ∈ mclBs,M∞,∞(x0, ξ0), with (x0, ξ0) ∈ T ◦Rn, then for any

ϕ ∈ C∞0 (Rn), such that ϕ(x0) 6= 0, ϕu ∈ mclBs,M∞,∞(x0, ξ0) .

Proposition 4.7. Let π1 be the canonical projection of T ◦Rn onto Rn, π1(x, ξ) = x.
For every u ∈ S ′(Rn) and s ∈ R we have:

Bs,M∞,∞ − singsupp(u) = π1(WFBs,M∞,∞(u)) .

Theorem 4.8. Let a ∈ SmM,δ for δ ∈ [0, 1/m∗[, m ∈ R and (x0, ξ0) ∈ T ◦Rn. Then
for all s ∈ R

u ∈ mclBs+m,M∞,∞ (x0, ξ0) ⇒ a(x,D)u ∈ mclBs,M∞,∞(x0, ξ0) . (4.6)

Theorem 4.9. Let a ∈ SmM,δ, for m ∈ R, δ ∈ [0, 1/m∗[, be microlocally M−elliptic

at (x0, ξ0) ∈ T ◦Rn. For s ∈ R assume that u ∈ S ′(Rn) fulfills a(x,D)u ∈
mclBs,M∞,∞(x0, ξ0). Then u ∈ mclBs+m,M∞,∞ (x0, ξ0).

As a consequence of Theorems 4.8, 4.9, the following holds.

Corollary 4.10. For a ∈ SmM,δ, m ∈ R, δ ∈ [0, 1/m∗[ and u ∈ S ′(Rn), the inclusions

WFBs,M∞,∞(a(x,D)u) ⊂WFBs+m,M∞,∞
(u) ⊂WFBs,M∞,∞(a(x,D)u) ∪ Char(a) (4.7)

hold true for every s ∈ R.

5. Non regular symbols

In this section, the microlocal regularity results discussed in §4 are applied to
obtain microlocal regularity results for a linear partial differential equation of
quasi-homogeneous order m ∈ N of the form

A(x,D)u :=
∑

α·1/M≤m

aα(x)Dαu = f(x) , (5.1)

where Dα := (−i)|α|∂α and the coefficients aα belong to the Besov space Br,M∞,∞ of

positive order r. It is clear that A(x, ξ) =
∑
α·1/M≤m aα(x)ξα ∈ Br,M∞,∞SmM .

We assume that A(x,D) is microlocally M−elliptic at a given point (x0, ξ0) ∈
T ◦Rn; according to Definition 4.2 and the quasi-homogeneity of the norm |ξ|M ,
this means that there exist an open neighborhood U of x0 and an open M−conic
neighborhood ΓM of ξ0 such that the M−principal symbol of A(x,D) satisfies

Am(x, ξ) =
∑

α·1/M=m

aα(x)ξα 6= 0, for (x, ξ) ∈ U × ΓM . (5.2)

The forcing term f is assumed to be in some Bs,M∞,∞, with a suitable order of
smoothness s, microlocally at (x0, ξ0) (cf. Definition 4.5).
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Theorem 5.1. Let A(x,D)u = f be a linear partial differential equation, as in
(5.1), with coefficients in the space Br,M∞,∞ of positive order r. Assume that A(x,D)

is microlocally M -elliptic at (x0, ξ0) ∈ T ◦Rn. If f ∈ mclBs−m,M∞,∞ (x0, ξ0) and

u ∈ Bs−δr,M∞,∞ , for 0 < δ < 1/m∗ and (δ − 1)r + m < s ≤ r + m, then u ∈
mclBs,M∞,∞(x0, ξ0).

Remark 5.2. Assuming in (5.1) A(x,D) with coefficients in Br,M∞,∞, r > 0, u a

priori in Bs−δr,M∞,∞ for (δ − 1)r +m < s ≤ r +m, δ ∈]0, 1/m∗[, we obtain

WFBs,M∞,∞(u) ⊂WFBs−m,M∞,∞
(A(x,D)u) ∪ Char(A) .

Following [11], [7], non smooth symbols in Br,M∞,∞S
m
M can be decomposed, for a

given δ ∈]0, 1], into the sum of a smooth symbol in SmM,δ and a non smooth symbol

of lower order. Namely, let φ be a fixed C∞ function such that φ(ξ) = 1 for
〈ξ〉M ≤ 1 and φ(ξ) = 0 for 〈ξ〉M > 2. For given ε > 0 we set φ(ε1/Mξ) :=
φ(ε1/m1ξ1, . . . , ε

1/mnξn).
Any symbol a(x, ξ) ∈ Br,M∞,∞SmM can be split in

a(x, ξ) = a#(x, ξ) + a\(x, ξ), (5.3)

where for some δ ∈]0, 1]

a#(x, ξ) :=

∞∑
h=−1

φ(2−hδ/MDx)a(x, ξ)ϕh(ξ).

One can prove the following proposition (see [7, Proposition 3.9] and [11] for the
proof):

Proposition 5.3. If a(x, ξ) ∈ Br,M∞,∞S
m
M , with r > 0, m ∈ R, and δ ∈]0, 1], then

a#(x, ξ) ∈ SmM,δ and a\(x, ξ) ∈ Br,M∞,∞Sm−rδM,δ .

Proposition 5.4. Assume that a(x, ξ) ∈ Br,M∞,∞SmM , m ∈ R, is microlocally M−elliptic

at (x0, ξ0) ∈ T ◦Rn, then for any δ ∈]0, 1], a#(x, ξ) ∈ SmM,δ is still microlocally

M−elliptic at (x0, ξ0).

Proof. The microlocal M−ellipticity of a(x, ξ) yields the existence of positive con-
stants c1, ρ1 such that

|a(x, ξ)| ≥ c1〈ξ〉mM , when (x, ξ) ∈ U × ΓM and |ξ|M > ρ1 , (5.4)

where U is a suitable open neighborhood of x0 and ΓM an open M−conic neigh-
borhood of ξ0. On the other hand, for any ρ0 > 0 we can find a positive integer
h0, which increases together with ρ0, such that ϕh(ξ) = 0 as long as |ξ|M > ρ0

and h = −1, . . . , h0 − 1. We can then write:

a#(x, ξ) =

∞∑
h=h0

φ
(

2−hδ/MDx

)
a(x, ξ)ϕh(ξ), |ξ|M > ρ0 . (5.5)
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Set for brevity φ
(
2−hδ/M ·

)
= φh(·).

By means of (5.5), the Cauchy-Schwarz inequality and [7, Lemma 3.8], when
|ξ|M > ρ0 we can estimate

|a#(x, ξ)− a(x, ξ)|2

=

∣∣∣∣∣ ∞∑h=h0

(φh(Dx)− I) a(x, ξ)ϕh(ξ)

∣∣∣∣∣
2

=
∞∑

h=h0

h+N0∑
k=h−N0

〈(φh(Dx))− I) a(x, ξ)ϕh(ξ), (φk(Dx)− I) a(x, ξ)ϕk(ξ)〉

=
N0∑

t=−N0

∞∑
h=h0

〈(φh(Dx)− I) a(x, ξ)ϕh(ξ), (φh+t(Dx)− I) a(x, ξ)ϕh+t(ξ)〉

≤
N0∑

t=−N0

∞∑
h=h0

‖ (φh(Dx))− I) a(·, ξ)‖L∞ |ϕh(ξ)|

×‖ (φh+t(Dx)− I) a(·, ξ)‖L∞ |ϕh+t(ξ)|

≤ C2
N0∑

t=−N0

∞∑
h=h0

2−hδr2−(h+t)δr‖a(·, ξ)‖2
Br,M∞,∞

≤ C2
∞∑

h=h0

2−2hδr‖a(·, ξ)‖2
Br,M∞,∞

≤ C22−2h0δr‖a(·, ξ)‖2
Br,M∞,∞

,

where C denotes different positive constants depending only on δ,N0 and r. Since
‖a(·, ξ)‖Br,M∞,∞ ≤ c

∗〈ξ〉mM , let us fix ρ0 large enough to have C2−h0δr < c1
2c∗ (with c1

from (5.4)). Then for (x, ξ) ∈ U × ΓM and |ξ|M > max {ρ0, ρ1}

|a#(x, ξ)| ≥ |a(x, ξ)| − |a#(x, ξ)− a(x, ξ)| ≥ c1
2 〈ξ〉

m
M (5.6)

follows and the proof is concluded. �

Proof of Theorem 5.1

Consider now the linear partial differential equation (5.1), with A(x,D) microlo-
cally M−elliptic at (x0, ξ0). For an arbitrarily fixed δ ∈]0, 1/m∗[, we split the
symbol A(x, ξ) as A(x, ξ) = A#(x, ξ) + A\(x, ξ), according to Proposition 5.3. In
view of Propositions 5.4, 4.4 there exists a smooth symbol B(x, ξ) ∈ S−mM,δ such
that

B(x,D)A#(x,D) = I +R(x,D) ,

where R(x,D) is microlocally regularizing at (x0, ξ0).
Applying now B(x,D) to both sides of (5.1), on the left, we obtain:

u = B(x,D)f −R(x,D)u−B(x,D)A\(x,D)u . (5.7)

Assume that f ∈ mclBs−m,M∞,∞ (x0, ξ0) and u ∈ Bs−δr,M∞,∞ for (δ−1)r+m < s ≤ r+m.

Since A\(x, ξ) ∈ Br,M∞,∞S
m−rδ
M,δ , one can apply Theorem 3.3 and Corollary 3.4 to

find that B(x,D)A\(x,D)u ∈ Bs,M∞,∞; moreover Theorem 4.8 and Corollary 3.4

give B(x,D)f ∈ mclBs,M∞,∞(x0, ξ0) and R(x,D)u ∈ Bs,M∞,∞. This shows the result
of Theorem 5.1.
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By means of the argument stated above, we obtain the following general result for
non regular pseudodifferential operators.

Corollary 5.5. For a(x, ξ) ∈ Br,M∞,∞SmM , r > 0, u belonging a priori to Bs−δr,M∞,∞ , for
(δ − 1)r +m < s ≤ r +m, δ ∈]0, 1/m∗[, we have

WFBs,M∞,∞(u) ⊂WFBs−m,M∞,∞
(a(x,D)u) ∪ Char(a) .

6. Some applications to non linear equations

In this section, we apply the previous results to the study of microlocal proper-
ties for a class of quasi-linear and fully non linear partial differential equation of
weighted elliptic type.
For M = (m1, . . . ,mn), satisfying the assumptions in §2, and a given positive
integer m, let us first consider the quasi-linear equation of quasi-homogeneous
type ∑

α·1/M≤m

aα(x,Dβu)β·1/M≤m−1D
αu = f(x) , (6.1)

where aα(x, ζ) ∈ C∞(Rn × CN ) are given functions of the vectors x ∈ Rn,
ζ = (ζβ)β·1/M≤m−1 ∈ CN and f(x) is a given forcing term. We assume that
the equation (6.1) is microlocally M−elliptic at a given point (x0, ξ0) ∈ T ◦Rn,
meaning that the M−principal symbol Am(x, ξ, ζ) :=

∑
α·1/M≤m

aα(x, ζ)ξα of the

differential operator in the left-hand side of the equation satisfies

Am(x, ξ, ζ) 6= 0 for (x, ξ) ∈ U × ΓM , (6.2)

where U is a suitable neighborhood of x0 and ΓM a suitable M−conic neighbor-
hood of ξ0.
Under the previous assumptions, we may prove the following

Theorem 6.1. Consider r > 0, 0 < δ < 1
m∗ , σ < s ≤ r + m, where σ =

σr,δ,m := max{(δ − 1)r + m, r + m − 1}. Let u ∈ Br+m−1,M
∞,∞ ∩ Bs−δr,M∞,∞ be a

solution to the equation (6.1), microlocally M−elliptic at (x0, ξ0) ∈ T ◦Rn, with
f ∈ mclBs−m,M∞,∞ (x0, ξ0). Then u ∈ mclBs,M∞,∞(x0, ξ0).

Proof. In view of Theorems 3.3 and 2.7, from u ∈ Br+m−1,M
∞,∞ it follows that

Dβu ∈ Br,M∞,∞, as long as β · 1/M ≤ m− 1, hence aα(·, Dβu)β·1/M ∈ Br,M∞,∞.

Then, since u ∈ Bs−δr,M∞,∞ , 0 < δ < 1
m∗ and (δ−1)r+m < s ≤ r+m, we can apply

Theorem 5.1 to A(x, ξ) :=
∑

α·1/M≤m
aα(x,Dβu)β·1/M≤m−1ξ

α ∈ Br,M∞,∞SmM , which is

microlocally M−elliptic at (x0, ξ0) because of (6.2). This shows the result. �

We observe that if rδ ≥ 1, then Br+m−1,M
∞,∞ ∩Bs−δr,M∞,∞ = Br+m−1,M

∞,∞ , since s−δr ≤
r+m−δr ≤ r+m−1. If r > m∗, we may always find δ∗ ∈]0, 1/m∗[ such that rδ∗ ≥
1, the minimum admissible value being δ∗ = 1

r . Then the microregularity result

of Theorem 6.1 applies to an arbitrary solution u ∈ Br+m−1,M
∞,∞ of the equation
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(6.1) with δ∗ = 1
r (note that σ = r +m− 1 when r > m∗). We can then state the

following

Corollary 6.2. For r > m∗, r + m − 1 < s ≤ r + m, let u ∈ Br+m−1,M
∞,∞ be a

solution to the equation (6.1), microlocally M−elliptic at (x0, ξ0) ∈ T ◦Rn, with
f ∈ mclBs−m,M∞,∞ (x0, ξ0). Then u ∈ mclBs,M∞,∞(x0, ξ0).

Let us consider now the fully non linear equation

F (x,Dαu)α·1/M≤m = f(x) , (6.3)

where m is a given positive integer, F (x, ζ) ∈ C∞(Rn × CN ) is a known function
of x ∈ Rn, ζ = (ζβ)β·1/M≤m−1 ∈ CN .
Let the equation (6.3) be microlocally M−elliptic at (x0, ξ0) ∈ T ◦Rn, meaning that
the linearized M−principal symbol Am(x, ξ, ζ) :=

∑
α·1/M=m

∂F
∂ζα

(x, ζ)ξα satisfies

∑
α·1/M=m

∂F

∂ζα
(x, ζ)ξα 6= 0 for (x, ξ) ∈ U × ΓM , (6.4)

for U a suitable neighborhood of x0 and ΓM a suitable M−conic neighborhood of
ξ0. Under the assumptions above, we may prove the following

Theorem 6.3. For r > 0, 0 < δ < 1
m∗ , assume that u ∈ Br+m,M∞,∞ , satisfying in

addition
∂xju ∈ Br+m−δr,M∞,∞ , j = 1, . . . , n , (6.5)

is a solution to the equation (6.3), microlocally M−elliptic at (x0, ξ0) ∈ T ◦Rn. If
moreover the forcing term satisfies

∂xjf ∈ mclBr,M∞,∞(x0, ξ0) , j = 1, . . . , n , (6.6)

we obtain
∂xju ∈ mclBr+m,M∞,∞ (x0, ξ0) , j = 1, . . . , n . (6.7)

Proof. For each j = 1, . . . , n, we differentiate (6.3) with respect to xj finding that
∂xju must solve the linearized equation∑

α·1/M≤m

∂F

∂ζα
(x,Dβu)β·1/M≤mD

α∂xju = ∂xjf −
∂F

∂xj
(x,Dβu)β·1/M≤m . (6.8)

From Theorems 3.3 and 2.7, u ∈ Br+m,M∞,∞ yields that ∂F
∂ζα

(·, Dβu)β·1/M≤m ∈ Br,M∞,∞.

Because of the hypotheses (6.5), (6.6), for each j = 1, . . . , n, Theorem 5.1 applies
to ∂xju, as a solution of the equation (6.8) (which is microlocally M−elliptic at
(x0, ξ0) in view of (6.4)), taking s = r +m. This proves the result.

�

Lemma 6.4. For every s ∈ R, assume that u, ∂xju ∈ Bs,M∞,∞ for all j = 1, . . . , n.

Then u ∈ Bs+1/m∗,M
∞,∞ . The same is still true if the Besov spaces Bs,M∞,∞, B

s+1/m∗,M
∞,∞

are replaced by mclBs,M∞,∞(x0, ξ0),mclB
s+1/m∗,M
∞,∞ (x0, ξ0) at a given point (x0, ξ0) ∈

T ◦Rn.
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Proof. Let us argue for simplicity in the case of the spaces Bs,M∞,∞, the microlocal
case being completely analogous.

In view of Theorem 3.3, that u belongs to B
s+1/m∗,M
∞,∞ is completely equivalent to

show that 〈D〉1/m
∗

M u ∈ Bs,M∞,∞. By the use of the known properties of the Fourier

transform, we may rewrite 〈D〉1/m
∗

M u in the form

〈D〉1/m
∗

M u = 〈D〉1/m
∗−2

M u+

n∑
j=1

Λj,M (D)(Dxju) ,

where Λj,M (D) is the pseudodifferential operator with symbol 〈ξ〉1/m
∗−2

M ξ
2mj−1
j ,

that is

Λj,M (D)v := F−1
(
〈ξ〉1/m

∗−2
M ξ

2mj−1
j v̂

)
, j = 1, . . . , n .

Since 〈ξ〉1/m
∗−2

M ξ
2mj−1
j ∈ S

1/m∗−1/mj
M , the result follows at once from Corollary

3.4. �

As a straightforward application of the previous lemma, the following consequence
of Theorem 6.3 can be proved.

Corollary 6.5. Under the same assumptions of Theorem 6.3 we have that u ∈
mclB

r+m+ 1
m∗ ,M∞,∞ (x0, ξ0).

Remark 6.6. We notice that if rδ ≥ 1 then every function u ∈ Br+m,M∞,∞ automati-

cally satisfies the condition (6.5); indeed one can compute ∂xju ∈ B
r+m−1/mj ,M
∞,∞ ⊂

Br+m−rδ,M∞,∞ being 1/mj ≤ 1 ≤ rδ for each j = 1, . . . , n. As already observed before,
for r > m∗ we can always find δ∗ ∈]0, 1/m∗[ such that rδ∗ ≥ 1 (it suffices to choose
an arbitrary δ∗ ∈ [1/r, 1/m∗[); hence, applying Theorem 6.3 with such a δ∗ we con-
clude that if r > m∗ and the right-hand side f of the equation (6.3) obeys the con-
dition (6.6) at a point (x0, ξ0) ∈ T ◦Rn then every solution u ∈ Br+m,M∞,∞ to such an

equation satisfies the condition (6.7); in particular u ∈ mclBr+m+1/m∗,M
∞,∞ (x0, ξ0).
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