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Abstract

This paper describes the rationale followed for the integration of
Dual-PECCS, a cognitively-inspired knowledge representation and rea-
soning system, into two rather different cognitive architectures, such as
ACT-R and CLARION. The provided integration shows how the rep-
resentational and reasoning mechanisms implemented by our framework
may be plausibly applied to computational models of cognition based on
different assumptions.

1 Introduction

In this work we illustrate how the knowledge representation and reasoning
system Dual-PECCS,1 aimed at performing the conceptual categorization
tasks, was integrated into two different cognitive architectures: ACT-R [1]
and CLARION [2]. Our system represents a unifying suite, where different
sorts of cognitively-inspired common-sense reasoning (prototypical reasoning
and exemplars-based reasoning) and standard monotonic categorization proce-
dures are integrated and autonomously executed according to the stimulus being
categorized. Although potentially conflicting, these different types of reasoning
are harmonized according to the theoretical tenets coming from the dual process
theories [3]. On the other hand, from a representational perspective, the sys-
tem relies on the hypothesis that concepts are “heterogeneous proxytypes” [4].
This work is organized as follows: in Section 2 we sketch the main elements
inspiring our system and its theoretical bases as well as its overall architecture,
in Section 3 we show how our hybrid system for conceptual categorization was
integrated into ACT-R and CLARION, and finally we elaborate on the future
works.

2 Heterogeneous Proxytypes and Dual Process
Model of Categorization

As mentioned, the two main theoretical cornerstones inspiring our system are
the heterogeneous proxyxtypes approach and the dual process theory of reason-

1So named after ‘Dual Prototypes and Exemplars-based Conceptual Categorization Sys-
tem’.
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ing and rationality. According to the ‘heterogeneous proxytypes’ approach (for a
detailed account, please refer to [4]), conceptual structures in cognitive systems
and architectures are assumed to be formed by heterogeneous representations
(or bodies of knowledge) referring to the same conceptual entity. That is, the
different bodies of knowledge act as ‘semantic pointers’ in the sense intended
by [5] towards the same reference concept. Each body of knowledge provides
specific types of information and specific access and reasoning procedures to the
concept they refer to. Such heterogeneous representations are ‘proxytypes’ [6],
in the sense that they can be contextually activated by external stimuli, coming
from the environment, and ‘go proxy’, in working memory, for their reference
category. The proxyfication may be then the result of activities such as concept
identification, recognition, retrieval, and so forth. This approach also allows
to tackle the problem of the ‘contextual activation’ of knowledge: i.e., given
a specific perceived stimulus to be categorized, only a specific portion of the
available conceptual knowledge is activated (specifically, only what is “contex-
tually relevant” w.r.t. the stimulus at hand). In other terms, according to this
perspective we only proxyfy (i.e., activate in our working memory) the type of
representation which is closer to the percept (see [4] for further details).

The different types of conceptual representations hypothesized to co-exist
in the heterogeneous proxytypes approach are typicality-based representations
of a given concept, as well as representations in terms of necessary and/or
sufficient conditions. The typicality-based representations included in this ap-
proach regard not only prototypes but also exemplars-based representations of
a given category.2 In this respect, Dual-PECCS is then equipped with a hy-
brid knowledge base composed of heterogeneous representations for the same
conceptual entities: that is, for a given concept the hybrid knowledge base in-
cludes prototypes, exemplars and classical representations (representations in
terms of necessary and sufficient conditions). For example: the heterogeneous
representation of the concept tiger includes prototypical and exemplar-based
representations semantically pointing to the same conceptual entity, as well as
a representation encoding necessary information. Namely, the prototypical rep-
resentation grasps information such as that tigers are wild animals, their fur in
most cases has yellow and black stripes, etc.; the exemplar-based representa-
tions grasp information on individuals, such as a given individual of white-tiger,
which is a particular tiger with white fur. On the other hand, the classical body
of knowledge is filled with necessary and sufficient information to characterize
the concept representing, for example, the taxonomic information that a tiger
is a mammal and a carnivore.

From a reasoning perspective the retrieval of such representations is driven
by different process types. In particular, prototype and exemplar-based re-
trieval is based on a fast and approximate kind of categorization, and benefits
from common-sense information associated to concepts.3 On the other hand,

2According to the exemplars perspective, a given category is mentally represented as set
of specific exemplars explicitly stored within memory: e.g., the mental representation of the
concept cat is the set of the representations of (some of) the cats we encountered during
our past experience. For a detailed review regarding the differing theories about concepts,
prototypes and exemplars, please refer to [7, 8].

3Let us assume that we have to categorize a stimulus with the following features: “it
has fur, woofs and wags its tail”. In this case, the result of a prototype-based categorization
would be dog, since these cues are associated to the prototype of dog. Prototype-based
reasoning, however, is not the only type of reasoning based on typicality. In fact, if an
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the retrieval of classical representation of concepts is featured by explicit rule
following, and makes no use of common-sense information. These two differing
categorization strategies have been widely studied in psychology of reasoning in
the frame of the dual process theory, that postulates the co-existence of two dif-
ferent types of cognitive systems [3]. The systems of the first type (type 1 ) are
phylogenetically older, unconscious, automatic, associative, parallel and fast.
The systems of the second type (type 2 ) are more recent, conscious, sequential
and slow, and featured by explicit rule following. We assume that both sys-
tems can be composed in turn by many sub-systems and processes. Following
the hypotheses in [9, 10], the heterogeneous conceptual representation of our
system includes, then, two main sorts of components that are based on differ-
ent types of representations and that share these two sorts of processes: Type
1 processes have been designed to deal with prototypes- and exemplar-based
retrieval and categorization, while Type 2 processes have been designed to deal
with deductive inference.

The two sorts of system processes interact, since Type 1 processes are exe-
cuted first and their results are then refined by Type 2 processes. In the imple-
mented system the typical representational and reasoning functions are assigned
to the System 1 (hereafter S1), which executes processes of Type 1, and is asso-
ciated to the Conceptual Spaces framework [11], where the reasoning functions
are implemented as similarity calculations in a metric space. On the other hand,
the classical representational and reasoning functions are assigned to the Sys-
tem 2 (hereafter S2) to execute processes of Type 2, and are associated to a
standard Description Logics based ontological representation (in our case the
OpenCyc ontology containing more than 230K concepts was used). The details
of such integrated framework as well as the results of different experiments can
be found in [12, 13]. In the next section we briefly describe the categorization
pipeline of the system by presenting the dynamics of the interaction between
S1 and S2 processes; a fuller account of this process is documented in [14].

2.1 Categorization Pipeline of the DUAL-PECCS

The whole categorization pipeline of the systems works as follows. The current
input to the system is a simple linguistic description, like ‘The animal that eats
bananas’, and the expected output is a given category evoked by the description
(the category monkey in this case).

The system answers rely on the the output of S1 and S2, respectively. The
categorization provided by S1 is based on approximate, defeasible, inference
and is error prone. It runs on the conceptual spaces framework and implements
both forms of typicality based reasoning: prototype and exemplar based cate-
gorization. In particular, according to the linguistic stimulus being categorized
Dual-PECCS chooses, based on a similarity calculation between the stimulus
and the typical representations available in S1 knowledge base, whether to select
an exemplar or a prototype (we refer to this process as S1 categorization). By
following a preference that has been experimentally observed in human cogni-
tion [15], our algorithm favors the results of the exemplars-based categorization

exemplar corresponding to the stimulus being categorized is available, too, it is acknowledged
that humans use to classify it by evaluating its similarity w.r.t. the exemplar, rather than
w.r.t. the prototype associated to the underlying concepts [8]. This type of common sense
categorization is known in literature as exemplars-based categorization.
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if the knowledge-base stores any exemplars similar to the input being catego-
rized. Once the result of S1 is selected (i.e., either a prototype or an exemplar
is proxyfied in working memory), such approximate categorization result is then
checked with the ontological knowledge base of S2 (we refer to this process as
S1-S2 categorization). This check is implemented by type 2 processes, and it is
therefore based on deductive inference. If the categorization result provided by
S1 (based on the similarity calculation between the input and S1 representa-
tions) is consistent with the ontology, then the categorization succeeded and the
category provided by S2 is returned along with the top scoring class returned
by S1. Otherwise, the system evaluates a fixed amount of S1 candidates, mean-
time keeping track of the inconsistent elements: in case all such candidates are
inconsistent w.r.t. the ontology in S2, the output of S2, computed indepen-
dently of S1, is returned along with the top scoring class initially returned by
S1. The control strategy implements a tradeoff between ontological inference
and the output of S1, which is more informative but also formally less reliable.

3 Integrating Dual-PECCS into ACT-R and
CLARION

The proposed system has been integrated into two of the most widely known
cognitive architectures: ACT-R [1] and CLARION [2]. The underlying ratio-
nale behind such integration efforts is to investigate whether our approach is
compatible with architectures implementing different cognitive theories of mind;
in this case, it can be considered a candidate general framework for represent-
ing and reasoning on conceptual information, and eventually tested with even
further architectures.

One main difference between the two architectures is that CLARION na-
tively assumes the perspective of the dual process theory; ACT-R, on the other
hand, is not natively dual process based. Therefore, in the latter architecture,
the dual mechanisms of reasoning needed to be explicitly designed and instanti-
ated within an already existing general framework. In particular, in ACT-R cog-
nitive mechanisms emerge from the interaction of two types of knowledge: the
declarative knowledge, that encodes explicit facts that the system knows, and
the procedural knowledge, that encodes rules for processing declarative knowl-
edge. The declarative module is used to store and retrieve pieces of information
called chunks, that are featured by a type and a set of attribute-value pairs,
similar to frame slots. Finally, the central production system connects these
modules by using a set of IF-THEN production rules.

Differently, in CLARION, cognitive processes are mainly subject to the ac-
tivity of two sub-systems, called Action Centered Sub-system (ACS) and the
Non-Action Centered Sub-system (NACS). Both sub-systems store information
using a two-layered architecture, i.e., they both include an explicit and an im-
plicit level of representation. The working memory, acting as temporary storage
for decision making, is a part of the ACS, which also maintains the active be-
havior strategies. To hold general knowledge, the NACS provides a semantic
memory consisting of both a rule-based layer that encodes explicit, symbolic
knowledge, and of an underlying distributed layer with implicit, sub-symbolic
representations. For both architectures we mainly focused on the Declarative
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(e.g. indicating whether or not outcomes are satisfactory). The role of the
meta-cognitive subsystem is to monitor, direct, and modify the operations of the
action-centred subsystem dynamically as well as the operations of all the other
subsystems.

Each of these interacting subsystems consists of two levels of representation
(i.e. a dual representational structure). Generally, in each subsystem, the top level
encodes explicit knowledge and the bottom level encodes implicit knowledge.
The distinction between implicit and explicit has been amply discussed elsewhere
(Reber 1989, Stanley et al. 1989, Seger 1994, Cleeremans et al. 1998, Sun 2002).
The two levels interact, for example, by cooperating in actions through
a combination of the action recommendations from the two levels respectively,
as well as by cooperating in learning through a bottom-up and a top-down process
(to be discussed below). Essentially, it is a dual-process theory of mind (Chaiken and
Trope 1999); see figure 2.

It has been intended that this cognitive architecture satisfies some basic require-
ments as follows. It should be able to learn with or without a priori domain-specific
knowledge to begin with (Reber 1989, Sun et al. 2001). It also has to learn
continuously from on-going experience in the world. As indicated by Medin et al.
(1987), Nosofsky et al. (1994), and others, human learning is often gradual and
ongoing. As suggested by Reber (1989), Seger (1994), Anderson (1983), and others,
there are clearly different types of knowledge involved in human learning
(e.g. procedural versus declarative, implicit versus explicit, or subconceptual versus
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Figure 2. CLARION architecture: ACS, the action-centred subsystem; NACS, the non-
action-centred subsystem; MS, the motivational subsystem; MCS, the meta-cognitive
subsystem.
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Figure 1: ACT-R Architecture with the used modules in dotted frames (left
side), adapted from [1]; CLARION cognitive architecture with the working
memory and the declarative memory emphasized through shaded frames (right
side), adapted from [16].

Memory and Working Memory buffers, and on the corresponding retrieval mech-
anisms.

Besides, the dual process strategies of concept categorization have been inte-
grated into the ACT-R and CLARION processes and connected to the retrieval
request executed in the Working Memory. In the Extended Declarative Memory
(equivalent to its counterpart, NACS, in CLARION) every concept is repre-
sented as an empty chunk (that is, a chunk having no associated information,
except for its WordNet synset ID and a human readable name), referred to by
the external bodies of knowledge (prototypes and exemplars) acting like seman-
tic pointers. The novel dual process-based categorization mechanism triggers
both the S1 categorization and the S1-S2 categorization procedures. In this
setting, when the categorization result of S1 is returned, the representation
activated in the Extended Declarative Long Term Memory is proxyfied (i.e.,
recalled to the working memory) in order to perform the S2 consistency check,
in the dual process perspective.

As regards as the ACT-R implementation, we have integrated our hybrid
knowledge base directly into the declarative memory, differently from other ap-
proaches that have extended the knowledge capabilities of ACT-R based on the
introduction of a new, ad-hoc, external module of declarative memory [17, 18].
We designed a novel retrieval request implementing the S1-S2 categorization
mechanism by extending the repertoire of the retrieval buffer through a new
action (symbolized by the operator $). Such action allows a direct access to the
heterogeneous information represented by the S1-S2 external bodies of knowl-
edge. We designed two types of $ requests that are executed according to the
specific type of request received from the retrieval buffer, the approximate cate-
gorization request and the consistency request. The approximate categorization
request is activated when the retrieval request is generic (the request chunk does
not contain a filler for the concept id slot), and does not include information
about the concept type to be retrieved (this task is similar to the open request
that is possible to execute in ACT-R [19]).
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This kind of request triggers the S1 retrieval system, and its output of a
classification request is a chunk-like translation of the exemplar or the proto-
type resulting from the execution of the S1 retrieval on the typicality-based
knowledge. We introduced the conceptual finsts, by building on the notion of
declarative finsts [20] delivered in ACT-R, to keep track of the representations
that have been recently retrieved by the system S1. In our implementation,
conceptual finsts allow S1 to exclude the elements already inspected and found
inconsistent by S2. On the other hand, if the $ request specifies the concept to
which it refers, then we are dealing with a consistency check request, to be sent
to the S2 system (i.e., we want to know whether the category assigned by S1 is
compliant with a general ontological model): in this case, if the $ request chunk
contains a filler for the concept id slot, we convert the request and redirect it
to the S2 system that checks whether the features of the chunk are compatible
with the proposed classification. The output of this request is a chunk where
the slot concept id is filled with the conceptual representation resulting from
S2. The integration at the representational and reasoning level in CLARION
followed the same rationale indicated in ACT-R, but it has been adapted to
the specific requirements of the architecture. In particular, we adopted both
implicit and explicit representational layers provided by the NACS in order to
create a direct mapping with our hybrid architecture: S1 (and its typicality-
based information represented with conceptual spaces) has been mapped onto
the implicit layer, while S2 (the classical, ontology-based representation, has
been mapped onto the explicit one). The mapping between the sub-symbolic
module of CLARION and the dimension-based representations of the concep-
tual spaces has been favored, since such architecture also synthesizes the implicit
information in terms of dimensions-values pairs. The dual process based catego-
rization mechanisms have been implemented based on the following procedure:
every request is encoded in working memory as a particular type of instance
(instance chunk). The dimensions and values of every instance chunk are filled
through an update of the implicit module with the information extracted from
the external stimulus (in the present case a linguistic description). Such process
is executed in the ACS module, and it is arranged as a series of rounds, each
producing a query to the implicit S1 component and to the explicit S2 module.
The ACS module initializes the input layer of the S1 module, based on the
instance chunk being considered. This initialization requires to handle external
stimuli (the world) along with internal information, at disposal of CLARION
agents. Let us start from the sensory input space: this space represents the
agent’s percepts, and is encoded as a set of pairs 〈dimension,value〉. Populat-
ing the sensory input space (and therefore building the instance chunk for the
request to be sent to the NACS declarative memory) involves adding the ap-
propriate set of 〈dimension,value〉 pairs (when such information, extracted from
the input stimuli, is available). Filling a value of a dimension in CLARION is
based on the sub-symbolic activation of that dimension when the external input
is processed. In our implementation, the available dimensions that a chunk can
assume is based on the set of dimensions defined in [13] for encoding Conceptual
Spaces (therefore the internal information that CLARION can process is fixed).
It is worth noting that the activated chunk can lack of some information (i.e., a
dimension not filled with its corresponding value), since by definition percepts
include noisy or partially missing information. After building the chunk request,
a retrieval request is executed on the S1 knowledge base, with the aim at retriev-
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ing an exemplar or a prototype-based representation. The obtained S1 result
is then proxyfied and temporarily stored in working memory, and checked, as
previously illustrated, with the external S2 knowledge base, the Cyc ontology.

4 Conclusions

We have illustrated the integration between the representational and reason-
ing assumptions presented in the Dual-PECCS with the ACT-R and CLAR-
ION representational and reasoning modules. Such integration has shown a
good level of compatibility with two general cognitive systems making differ-
ent theoretical assumptions about the architecture of human cognition. As a
future work, we plan to integrate the proposed representational and reasoning
framework into further general cognitive architectures (e.g., SOAR, Micro PSI,
OpenCog). Such set of integrations, should it prove to be feasible, will allow us
to simulate brain disorders related to the activation and retrieval of conceptual
information. Disorders such as the Semantic Dementia can be thought, in fact,
as involving access to conceptual structures that inhibit, in different ways, the
“proxyfication” process of the different representational elements of our hybrid
framework.
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