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Abstract

In this work we present a hybrid knowledge representation system aim-
ing at extending the representational and reasoning capabilities of classical
ontologies by taking into account the theories of typicality in conceptual
processing. The system adopts a categorization process inspired to the
dual process theories and, from a representational perspective, is equipped
with a heterogeneous knowledge base that couples conceptual spaces and
ontological formalisms. The system has been experimentally assessed in
a conceptual categorization task where common sense linguistic descrip-
tions were given in input, and the corresponding target concepts had to
be identified. The results show that the proposed solution substantially
improves the representational and reasoning “conceptual” capabilities of
standard ontology-based systems.

1 Introduction

One of the main open problems in the field of ontology engineering is that formal
ontologies do not allow –for technical convenience– neither the representation of
concepts in prototypical terms nor forms of approximate, non monotonic, con-
ceptual reasoning. Conversely, in Cognitive Science evidences exist in favor of
prototypical representation of concepts, and typicality-based conceptual reason-
ing has been widely investigated in the field of human cognition. The early work
of Rosch [29] showed that ordinary concepts do not obey the classical theory
(stating that concepts can be defined in terms of sets of necessary and sufficient
conditions). Rather, they exhibit prototypical traits: e.g., some members of a
category are considered better instances than other ones; more central instances
share certain typical features –such as the ability of flying for birds– that, in
general, cannot be thought of as necessary nor sufficient conditions. These re-
sults influenced pioneering KR research, where some efforts were invested in
trying to take into account the suggestions coming from Cognitive Psychology:
artificial systems were designed –e.g., frames [26] and early semantic networks–
to represent concepts in “non classical”, prototypical terms.

However, these systems were later sacrificed in favor of a class of formalisms
stemmed from structured inheritance semantic networks and based in a more
rigorous semantics: the first system in this line of research was the KL-ONE
system [3]. These formalisms are known today as description logics (DLs) [27].
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In this setting, the representation of prototypical information (and therefore the
possibility of performing non monotonic reasoning) is not allowed,1 since the
formalisms in this class are primarily intended for deductive, logical inference.

Under a historical perspective, the choice of preferring classical systems,
which are based on a well defined –Tarskian-like– semantics left unsolved the
problem of representing concepts in prototypical terms. Although in the field of
logic oriented KR various fuzzy and non-monotonic extensions of DL formalisms
have been designed to deal with some aspects of “non-classical” concepts [30, 15],
nonetheless various theoretical and practical problems remain unsolved [6].

In this paper a conceptual architecture is presented that, embedded in a
larger knowledge-based system, aims at extending the representational and rea-
soning capabilities available to traditional ontology-based frameworks. The
whole system implementing the proposed conceptual architecture is part of a
larger software pipeline; it includes the extraction of salient information from
the input stimulus, the access to the hybrid knowledge base, and the retrieval
of the corresponding concept (Figure 1). The paper is structured as follows: in
Section 2 we illustrate the theoretical motivations inspiring the proposed sys-
tem, its general architecture and the main features of the knowledge-base. In
Section 3 we provide the results of a twofold experimentation to assess the accu-
racy of the system in a categorization task. Finally, we conclude by presenting
some related works (Section 4) and outlining future developments (Section 5).

2 The System

Two cornerstones inspiring the current proposal are the dual process theories of
mind and the heterogeneous approach to concepts in Cognitive Science. The
theoretical framework known as dual process theory postulates the co-existence
of two different types of cognitive systems [5, 18]. The systems of the first type
(type 1 ) are phylogenetically older, unconscious, automatic, associative, parallel
and fast. The systems of the second type (type 2 ) are more recent, conscious,
sequential and slow, and featured by explicit rule following.

We assume that both systems can be composed in their turn by many sub-
systems and processes. According to the hypotheses in [6, 10], the conceptual
representation of our system includes two main sorts of components, based on
two sorts of processes. Type 1 processes are used to perform fast and approx-
imate categorization, and benefit from prototypical information associated to
concepts. Type 2 processes, used in classical inference tasks, do not take ad-
vantage from prototypical knowledge. The two sorts of system processes are
assumed to interact, since type 1 processes are executed first and their results
are then refined by type 2 processes. Another source of inspiration for our work
has been the heterogeneous approach to the concepts in Cognitive Science and
Philosophy [23]. According to this perspective, concepts do not constitute a uni-
tary phenomenon; rather, concepts can consist of several bodies of knowledge,
each one conveying a specific type of information.

Before starting with the description of the system, we introduce the theo-
retical framework inspiring our present work.

1This is the case, for example, of exceptions to the inheritance mechanism.
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2.1 Theoretical Framework

According to the aforementioned hypotheses (dual process theory and heteroge-
neous approach to the concepts), we designed a hybrid conceptual architecture
that builds on a classical ontological component, and on a typicality based one.
Both components represent a specific conceptual body of knowledge, together
with the related reasoning procedures, in a dual process perspective. A DL
formalism is the base of the ontological component, which permits to express
necessary and/or sufficient conditions to define concepts. For example, if we
consider the concept water, the classical representation should contain the in-
formation that water is a natural substance, whose chemical formula is H2O.
On the other hand, the prototypical traits include information about the fact
that water usually occurs in liquid state, and it is mostly a tasteless, odorless
and colorless fluid.

According to our dual process view, in the implemented system the typical
representational and reasoning functions are assigned to the system 1 (hereafter
S1), that executes processes of type 1, and are associated to the Conceptual
Spaces framework [11]. On the other hand, the classical representational and
reasoning functions are assigned to the system 2 (hereafter S2), to execute
processes of type 2, and are associated to a standard DL-based ontological rep-
resentation. Different from what proposed in [7], the access to the information
stored and processed in both components is assumed to proceed from the S1 to
the S2. In the following we introduce the two representational and reasoning
frameworks used in our system.

2.2 Conceptual Spaces

Conceptual spaces (CS) are a geometrical representational framework where
knowledge is represented as a set of quality dimensions [11]. A geometrical
structure is associated to each quality dimension. In this framework instances
may be represented as points in this multidimensional space, and their similarity
can be computed as the intervening distance, based on some suitable metrics.
In this setting, concepts correspond to regions, and regions with different geo-
metrical properties correspond to different sorts of concepts.

Conceptual spaces are suitable to represent concepts in “typical” terms, since
the regions representing concepts can have soft boundaries. Prototypes have a
natural geometrical interpretation, in that they correspond to the geometrical
centre of a convex region; conversely, given a convex region we can associate
to each point a certain centrality degree, that can be interpreted as a measure
of its typicality. Although other forms of typicality-based representation (e.g.
the exemplars) are not presently accounted for by our system, this framework
can be extended to consider both the exemplar and the prototypical accounts
of typicality [9].

Conceptual spaces can be also used to compute the proximity between any
two entities, and between entities and prototypes. Concepts, in this framework,
are characterized in terms of domains; a domain is “a set of integral dimensions
that are separable from all other dimensions” [12]. Typical domain examples are
color, size, shape, texture. In turn, domain information can be specified along
some dimensions: e.g., in the case of the color domain, relevant dimensions are
hue, chromaticity, and brightness. In order to compute the distance between two
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points p1, p2 we use Euclidean metrics to calculate within-domain distance, while
for dimensions from different domains we use the Manhattan distance metrics,
as suggested in [11, 1]. The weighted Euclidean distance distE is computed as
follows

distE(p1, p2) =

√√√√ n∑
i=1

wi(p1,i − p2,i)2 ,

where i varies over the n domain dimensions and wi are dimension weights.
In our implementation of Conceptual Spaces, we represent points as vectors

(with as many dimensions as required by the considered domain), whose compo-
nents correspond to the point coordinates, so that a natural metrics to compute
the similarity between them is cosine similarity. In this perspective two vectors
with same orientation have a cosine similarity 1, while two orthogonal vectors
have cosine similarity 0. The normalized version of cosine similarity (ĉs), also
accounting for the above weights wi is computed as

ĉs(p1, p2) =

∑n
i=1 wi(p1,i × p2,i)√∑n

i=1 wi(p1,i)2 ×
√∑n

i=1 wi(p2,i)2
.

In the metric space we have defined, the distance between an individual and
prototypes is computed with the Manhattan distance. The distance between two
concepts can be computed as the distance between two regions: namely, we can
compute the distance between their prototypes, or the minimal distance between
their individuals2, or we can apply more sophisticated algorithms. Further
details about technical issues can be found in [14].

Optionally, a context k can be defined as a set of weights, to grade the
relative relevance of the considered dimensions –thus resulting in the following
formulas: distE(p1, p2, k) and ĉs(p1, p2, k)–, and to adapt the computation to
a variety of settings, such as, e.g., default values vs. known values, explicitly
asserted values vs. computed values and/or inherited, etc..

We stress that inference in conceptual spaces can be performed on incom-
plete and/or noisy information: that is, it is frequent the case that only partial
information is available to categorize a given input individual, and for some
individuals the values of one or more dimensions can be undefined. Concep-
tual spaces are robust to this sort of lack of information, which is conversely
problematic in the context of formal ontologies. In such cases we restrict to
considering domains that contain points in the input: if the description for a
given individual does not contain values for some domains, the distance for those
domains is set to a default value.

2.3 S1: Modeling Domains and Dimensions in Conceptual
Spaces

A processing format for the modelling of Conceptual Spaces has been provided
and proposed in [25]. Although the format has been developed by attempt-
ing to keep it as general as possible (to extend its usage to further domains),
the present implementation has been devised based on specific representational

2Individuals can be thought of as exemplars, that is elements that belong to the given
concept by sharing properties and their related sets of values.
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needs described in more detail in Section 3. The basic format structure pro-
cessed by the system is named genericDescription; it encodes the salient aspects
of the entities being considered. A genericDescription is a super-domain that
hosts information about physical and non physical features arranged into nine
domains: size, shape, color, location, feeding, locomotion, hasPart, partOf, man-
Relationship.

The size of entities is expressed through the three Euclidean dimensions;
the shape allows expressing that an object has circular, square, spherical, cu-
bic, etc., shape. The color space maps object’s features onto the L?a?b? color
space. L? (0 ≤ L ≤ 100) is the correlate of lightness, a? (−128 ≤ a ≤ 127) is
the chromaticity axis ranging from green to red, and b? (−128 ≤ b ≤ 127) is
the chromaticity axis ranging from blue to yellow. The location space indicates
the place where the object being modeled can be typically found. It actually
results from the combination of five dimensions, and namely: humidity, indi-
cated as a percentage; temperature, ranging in [−40◦, 50◦]; altitude, ranging in
[−11000, 8848]; vegetation, ranging in [0, 100]; time. In turn, time contains a
partitioning of the hours of the day into sunrise (4–6 AM), morning (6–12 AM),
afternoon (12–5 PM), evening (5–10 PM) and night (10 PM–4 AM). The domain
feeding is currently specific to animals, and it allows mapping an element over
two dimensions, typeOfFood and amountOfFood. The typeOfFood is associated
to an integer indicating 1: herbivore, 2: lectivore, 3: detritivore, 4: necrophage,
5: carnivore. The underlying rationale is that close elements (e.g., necrophage
and carnivore, that are one step apart in the proposed scale) are represented
as close in this space due to their proximity under an ethological viewpoint,
whilst different categories (e.g., herbivore and carnivore) are featured by larger
distances in the considered scale [13]. Similar to the previous one, also the
locomotion domain combines two dimensions: the former dimension is used to
account for the type of movement (1: swim, 2: dig, 3: crawl, 4: walk, 5: run,
6: roll, 7: jump, 8: fly), and the latter one is used to account for the speed, ex-
pressed in km/h [2]. The hasPart and partOf domains are used to complement
the analogous ontological properties: in particular, we collected information
about the following dimensions: name, number, and partSize, partColor that are
intended to specialize the above illustrated spaces. Finally, the manRelation-
ship space is used to grasp entities as related to man by function (both a train
and a horse can be used as ‘transport’), product (chicken produce ‘eggs’, and
‘chicken’ themselves are a food product), symbol (‘lion’ can be used as a symbol
for ‘strength’ and ‘royalty’).

A simplified example of the lion prototype information is reported below.

<object name="lion">

<genericPhysicalDescription>

<size name="lion_size">

<x>70</x>

<y>120</y>

<z>200</z>

</size>

<color name="beige">

<l>63</l>

<a>13</a>

<b>32</b>

</color>

<location name="savanna">

<humidity>50</humidity>
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<temperature>40</temperature>

<altitude>100</altitude>

<vegetation>50</vegetation>

</location>

<locomotion name="walk">

<movement>4</movement>

<speed>10</speed>

</locomotion>

<locomotion name="run">

<movement>5</movement>

<speed>40</speed>

</locomotion>

</genericPhysicalDescription>

</object>

2.4 S2: Ontological Component of the Knowledge Base

The representation of the classical component S2 is implemented through a for-
mal ontology. As already pointed out, the standard ontological formalisms leave
unsolved the problem of representing prototypical information. Furthermore, it
is not possible to execute non monotonic inference, since classical ontology-based
reasoning mechanisms contemplate exclusively deductive processes.

In this setting we cannot represent even simple prototypical information,
such as ‘A typical rose is red’. This is due to the fact that being red is neither
a necessary nor a sufficient condition for being a rose, and therefore it is not
possible neither to represent and to automatically identify a prototypical rose
(let us call it #roseP ) nor to describe (and to learn from new cases) the typ-
ical features of the prototypical roses. Such aspect have, on the other hand, a
natural interpretation in terms of the Conceptual Spaces framework. The onto-
logical component of a given concept, therefore, mainly represents taxonomical
necessary information and, as will be described below, is used as control module
w.r.t. the output provided by the inferences performed within the conceptual
spaces.

2.5 Inference in the hybrid S1-S2 system

Categorization (i.e., the process of assigning a given instance to a certain cate-
gory) is one of the classical inferences automatically performed both by symbolic
and sub-symbolic artificial systems. In our system categorization is based on
a two-step process involving both the typical and the classical component of
the conceptual representation. These components account for different types
of categorization: approximate or non monotonic (performed on the conceptual
spaces), and classical or monotonic (performed on the ontology). Different from
classical ontological inference, in fact, categorization in conceptual spaces pro-
ceeds from prototypical values. Prototypical values need not be specified for all
class members, that vice versa can overwrite them: one typical example is the
case of birds that (by default) fly, except for atypical birds, like penguins, that
do not fly.

The whole categorization process can be summarized as follows. The system
takes in input a textual description d and produces in output a pair of cate-
gories 〈c0, cc〉, the output of S1 and S2, respectively (see Algorithm 1). If the
S2 system classifies it as consistent with the ontology, then the classification
succeeded and the category provided by S2 (cc) is returned along with c0, the
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Algorithm 1 Inference in the hybrid system.

input : textual description d
output : a class assignment, as computed by S1 and S2

1: C← S1(d) /* conceptual spaces output */

2: for each ci ∈ C do
3: cc← S2(〈d, ci〉) /* ontology based output */

4: if cc == NULL then
5: continue /* inconsistency detected */

6: end if
7: if cc equals ci then
8: return 〈c0, cc〉
9: else

10: if cc is subclass of ci then
11: return 〈c0, cc〉
12: end if
13: end if
14: end for
15: cc← S2(〈d,Thing〉)
16: return 〈c0, cc〉

top scoring class returned by S1 (Algorithm 1: line 8). If cc –the class computed
by S2– is a subclass of one of those identified by S1 (ci), both cc and c0 are
returned (Algorithm 1: line 11). Thus, if S2 provides more specific output, we
follow a specificity heuristics; otherwise, the output of S2 is returned, following
the rationale that it is safer.3 A pair of results is always returned, including
both the output of S1 and the output of S2, thereby providing typically valid
answers (through S1) that are checked against a logically valid reasoning con-
ducted on the ontological knowledge base (through S2). In so doing, we follow
the rationale that despite the S1 output can contain errors, it furnishes approx-
imate answers that cannot be obtained by resorting only to classical ontological
inference.

If all results in C are inconsistent with those computed by S2, a pair of classes
is returned including c0 and the output of S2 having for actual parameters d
and Thing, the meta-class of all the classes in the ontological formalism.

An important function provided by S2 regards the explanation of the de-
tected inconsistencies. This function is obtained by recurring to standard DL
reasoners.4 One main problem encountered in the explanation of inconsistencies
regards the fact that reasoners’ output is usually quite verbose, since it provides
the whole chain of all the possible reasons explaining why a given model is not
consistent w.r.t. the represented assertions. For example, let us suppose that
the ontological KB is provided with an assertion about the fact that whale isA
fish. Since whales are not fishes (they are in the order of cetacea and cetacea
are mammalia) an inconsistency is detected. The initial results obtained by

3The output of S2 cannot be wrong on a purely logical perspective, in that it is the result of
a deductive process. The control strategy implements a tradeoff between ontological inference
and the output of S1, which is more informative but also less reliable from a formal point of
view. However, in next future we plan to explore different conciliation mechanisms to ground
the overall control strategy.

4To actually access the KBs we used the Jena framework, https://jena.apache.org.
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Figure 1: The software pipeline takes in input the linguistic description, queries
the hybrid knowledge base and returns the categorized concept.

the reasoner will report all the clauses (i.e. all the models) provoking such
an incostitency. Not only it will report that —since whale isA mammal and
mammal and cetacea are disjoint— whales cannot be fishes; it will also provide
a huge amount of information about the facts that such an inconsistency has
generated. For example, it will provide information about the fact that whales
cannot be reptiles, birds and so on. Although factually correct and complete,
this explanation is quite long (in an ontological KB with good coverage each
class contains many subclasses) and is it not very informative for the punctual
explanation of the raised inconsistency. The only relevant information, in this
case, regards the fact that the tested class whale cannot be classified as fish
because mammal and fish are mutually disjoint classes. Therefore we designed
and implemented a software layer that runs on top of Jena explanation utilities
to extract a laconic explanation from the longer one: the main focus of the
laconic explanation is to make apparent the cause of the inconsistency. In so
doing, we adopted a simple heuristic according to which the only explanation
reported is that focused on the tuples of classes under investigation.

2.6 Categorization Pipeline of the Dual Process Architec-
ture

The whole system embedding the proposed conceptual architecture works as
follows. The input to the system is a simple linguistic description, like ‘The
animal that eats bananas’, and the expected output is a given category referred
to the description (e.g. the category monkey in this case). After the Information
Extraction (IE) step, an internal representation is fed into the structure of
the hybrid knowledge representation system which is then concerned with the
categorization task by adopting the strategies described above.

A shallow IE approach has been devised: the morphological information
computed from input sentences has been used to devise a finite-state automaton
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to describe the input sentences’ structure. In this setting, the POS (Part-Of-
Speech) information has been computed through the Stanford POS Tagger [31].
Then POS information has been used to encode the automaton states and tran-
sitions, that allow individuating salient information. In this automaton, states
contain some kind of salient information required in the internal representation
(e.g., the place where animals live; the description of their skin or fur ; the func-
tion of an artifact, etc.; see below, Section 2.3). On the other hand, transitions
between any two states encode connectives and prepositions that contain mod-
ifications to the the noun phrase they are referred to (like in ‘the big carnivore
with byellow and black stripesc’). This approach makes no use of the sentence
dependency structure, and has many known limitations determined from merely
using morphological information, and also inherent in finite-state machines (e.g.,
they cannot deal with parenthetical clauses, like relative clauses). It would not
scale to handle more complex sorts of language. We defer to future work the
adoption of richer language models; in particular, we will extend to the present
context a deep semantic approach developed to perform IE from legal texts [20].
Despite these limitations, this approach allowed us to complete the automati-
zation of the software pipeline going all throughout from the linguistic input
description to its final conceptual categorization, thus improving the evalua-
tion of the whole implemented system. In the following we describe the new
experimentation and compare current and past results (where the IE step was
performed in supervised fashion).

3 Experimentation

We have designed an experimentation on a categorization task to the ends of
assessing the overall system. In the past experiments we tested the system
over a restricted domain (the animal kingdom domain) [14]. Additionally,
in [22] we tested the system in a broader context, since we were interested in
assessing its robustness and the discriminative features of the S1 component in
a multi-domain setting. Finally, in the present experimentation we tested the
whole software pipeline, including the Information Extraction step (which, on
the other hand, was simply performed in a supervised fashion in experiments 1
and 2).

The dataset used for the new experiment is composed of 87 “common-sense”
linguistic descriptions.5 Each stimulus st = 〈d, T 〉 is a pair of description and
target, such as 〈‘The big carnivore with yellow and black stripes’, ‘tiger’〉 (please
refer to Figure 1). The target T is the “prototypically correct” category, and
in the following it is referred to as the expected result. The set of stimuli
was devised by a team of neuropsychologists and philosophers in the frame of a
broader project aimed at investigating the role of visual load in concepts involved
in inferential and referential tasks (further details on neural correlates of lexical
processing in [24]). The expected prototypical target category represents a gold
standard, since it corresponds to the results provided within a psychological
experimentation, where 30 subjects were requested to provide the corresponding
target concept for each description. Such input was then used for querying our
system as in a typicality based question-answering task.

5The full list of the stimuli is available at the URL: http://www.di.unito.it/~radicion/
datasets/CCIS_2014/stimuli.txt.
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In Information Retrieval such queries are known to belong to the class of “in-
formational queries”, i.e., queries where the user intends to obtain information
regarding a specific information need [16]. Furthermore, this class of queries is
characterized by uncertain and/or incomplete information, thereby resulting in
the most complex to interpret, if compared to queries where users search for the
URL of a given site (‘navigational queries’), or look for sites where some task
can be performed, like buying music files (‘transactional queries’). Additionally,
informational queries are by far the most common ones –based on the analysis
of 1.5M user web logs [16]–, and they are therefore of the utmost applicative
interest.

3.1 Summary of previous experiments

A first experiment was made by using as S2 component publicly available com-
mon sense domain ontologies. Namely, we selected the Animal in Context Ontol-
ogy (ACO) developed by the Veterinary Medical Informatics Laboratory at the
Virginia-Maryland Regional College, and the BBC WildLife Ontology.6 They
were both retrieved by using a mixed search over Sindice and Swoogle, and
they were selected as guaranteeing a granularity of information and a coverage
adequate for describing the stimuli being categorized (belonging to the animal
domain). In this case we recorded a categorization accuracy of the S1-S2 about
95% with S2 using the ACO ontology, and over 92% with S2 using the BBC on-
tology. The accuracy was determined by comparing the results provided by the
system with that ones provided by the human subjects in the above mentioned
psychological experiment. Full details are provided in [25].

In order to deeply assess the accuracy of the system in a more demanding
experimental setting, we devised a second experiment where we used as S2 the
knowledge base OpenCyc.7 OpenCyc is one of the largest ontologies publicly
available, in that it is an enormous attempt at integrating many diverse se-
mantic resources (such as, e.g., WordNet, DBpedia, Wikicompany, etc.). In
this case we compared the results obtained by our S1-S2 systems with the re-
sults obtained by the Google and Bing search engines for the same queries [22].
Differently from the previous experiment, we decided to make use of an ency-
clopedic source of knowledge in order to investigate the differences with results
obtained by plugging into S2 domain-specific knowledge bases. In this case the
hybrid knowledge based S1-S2 system was able to categorize and retrieve most
of the new typicality-based stimuli provided as input and still showed a better
performance w.r.t. the general purpose search engines Google and Bing used
in question-answering mode. The major problems encountered in this experi-
ment derived from the difficulty of mapping the linguistic structure of stimuli
containing very abstract meaning in the representational framework of S1 as
they are actually encoded according to the conceptual space. For example, it
was impossible to map the information contained in the description “the place
where kings, princes and princesses live in fairy tales” onto the features used
to characterize the prototypical representation of the concept Castle. On the
other hand, the system shows good performances when dealing with less ab-
stract descriptions based on perceptual and metric-reducible features such as

6Available at the URLs: http://vtsl.vetmed.vt.edu/aco/Ontology/aco.zip and http:

//www.bbc.co.uk/ontologies/wo.
7http://www.cyc.com/platform/opencyc.
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Table 1: Analysis of the POS-tagger and automaton failures and analysis of the
correct results, in categorizing artifacts, plants, animals. Overall 36 descriptions
of artifacts, 6 of plants and 45 of animals were considered.

POS-tagger errors automaton errors successes in the IE step
∑

] stimuli (%) 11 (12.6% of 87) 22 (25.3% of 87) 54 (62.1% of 87) 87
S1 successes 3 (27.3% of 11) 6 (27.3% of 22) 50 (92.6% of 54) 59

shape, color, size. The final categorization accuracy obtained by the system was
around 77%, while Google and Bing successfully categorized 65% and 57.5% of
linguistic descriptions, respectively.

3.2 New Experimentation

A new experiment to assess the whole pipeline has been devised: specifically,
in this case the information available in the descriptions has been extracted
through the automatic Information Extraction (IE) process and then used to
query the hybrid knowledge base. The S2 system has been equipped with the
OpenCyc ontology, like in the previous experiment. The dataset included 87
stimuli, 36 related to the artifacts domain, 6 to plants and 45 about animals.

Overall, 59 targets were correctly categorized out of the 87 input descrip-
tions, thereby attaining 67.8% of correct responses. If we further examine the
results, we can i) disaggregate cases where failures in the IE step were deter-
mined by the POS-tagger, or by the automaton that did not match the input
descriptions structure; ii) compare failures to success cases. Interestingly, this
analysis unveils that in some cases also in presence of noisy or lacking infor-
mation the S1 component is able to retrieve the expected category. Detailed
figures are reported in Table 1. The first two cells in the first row report the
errors committed in the two stages preceding the access to the hybrid knowl-
edge base. The second row illustrates how S1 recovers from partial or lacking
information provided by the POS tagger and by the automaton: S1 obtained
a correct categorization in 27% of cases when wrong and/or incomplete infor-
mation was received by the POS tagger and by the automaton. On the other
hand, the second row shows that even when all the linguistic information is cor-
rectly extracted and mapped onto the internal S1 format, it does not suffice to
provide the expected categorization for all stimuli (the final accuracy for these
cases was 92.6%). This datum is in line with previous results [14, 25]; although
encouraging, it suggests that the current stage of development of the hybrid
system is not yet sufficient to solve the prototypical categorization problem.

Differently from what emerged in past experimentation —where S2 detected
some inconsistencies in the categories returned by S1— in this case S2 did not
detect an inconsistency of S1’s output as expected. In particular, given the
description “An intelligent grey fish” (associated to the target concept Dolphin),
the S1 system returned Dolphin, but S2 did not raise the inconsistency since
OpenCyc erroneously represents Dolphin as a subclass of Fish, rather than a
subclass of Mammal. Of course, by correcting the information available in the
ontological knowledge base, we would obtain a refined, and ontologically correct,
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result.
A concluding remark is about the advantages of the S1-S2 system w.r.t.

adopting solely the S2 for the categorization task. As we have experimentally
observed, S2 alone is not able to categorize this kind of descriptions [14], which
proves to be a challenging task even for state-of-the-art search engines such as
Google and Bing [22].

4 Related work

In the context of a different field of application, a solution similar to the one
adopted here has been proposed in [4]. The main difference with their proposal
concerns the underlying assumption on which the integration between symbolic
and sub-symbolic system is based. In our system the conceptual spaces and the
classical component are integrated at the level of the representation of concepts,
and such components are assumed to convey different –though complementary–
conceptual information. On the other hand, the previous proposal is mainly
used to interpret and ground raw data coming from sensors in a high level
symbolic system through the mediation of conceptual spaces.

In other respects, our system is also akin to that ones developed in the field
of the computational approach to the above mentioned dual process theories.
A first example of such “dual based systems” is the mReasoner model [19],
developed with the aim of providing a computational architecture of reasoning
based on the mental models theory proposed by Philip Johnson-Laird [17]. The
mReasoner architecture is based on three components: a system 0, a system
1 and a system 2. The last two systems correspond to those hypothesized
by the dual process approach. System 0 operates at the level of linguistic pre-
processing. System 1 uses this intensional representation to build an extensional
model, and uses heuristics to provide rapid reasoning conclusions; finally, system
2 carries out more demanding processes to search for alternative models, if the
initial conclusion does not hold or if it is not satisfactory.

A second system that is close to our present work has been proposed by [28].
The authors do not explicitly mention the dual process approach; however, they
build a system for conversational agents (chatbots) where agents’ background
knowledge is represented using both a symbolic and a sub-symbolic approach.
They also associate different sorts of representation to different types of rea-
soning. Namely, deterministic reasoning is associated to symbolic (system 2)
representations, and associative reasoning is accounted for by the sub-symbolic
(system 1) component. Differently from our system, however, the authors do
not make any claim about the sequence of activation and the conciliation strat-
egy of the two representational and reasoning processes. It is worth noting that
other examples of this type of systems can be considered that are in some sense
analogous to the dual process proposal: for example, many hybrid, symbolic-
connectionist systems –including cognitive architectures such as, for example,
CLARION8–, in which the connectionist component is used to model fast, as-
sociative processes, while the symbolic component is responsible for explicit,
declarative computations. However, at the best of our knowledge, our system
is the only one that considers this hybridization with a granularity at the level
of individual conceptual representations.

8http://www.cogsci.rpi.edu/~rsun/clarion.html
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5 Conclusions

In this work we have presented a knowledge-based system relying upon a cog-
nitively inspired architecture for the representation of conceptual knowledge.
The system is grounded on a hybrid framework coupling classical and prototyp-
ical representation and reasoning, and it aims at extending the representational
and reasoning capabilities of classical ontological-based systems towards more
realistic and cognitively grounded scenarios, such as those envisioned by the
prototype theory. The results obtained in new experimentation reveal that in
a broader and composite domain including artifacts, animals and plants (w.r.t.
past experimentation, mainly considering the animal kingdom) the proposed ar-
chitecture provides encouraging results in tasks of prototype-based conceptual
categorization.

In next future we plan to test the proposed approach in the area of biomedical
domain to assess disease diagnosis tasks by grounding S2 on SNOWMED,9 and
S1 on conceptual spaces representing the typical symptoms of a given disease.
A further development of the current work consists in extending the hybrid
knowledge base with an additional layer of typicality-based representation (and
reasoning): the exemplars. In particular, exemplar-based representations can be
implemented by adopting the conceptual spaces [8] and therefore the proposed
approach seems to be useful for the development of a system endowed with
an integrated suite of categorization capacities. Such integrated prototype-
exemplar based categorization could also be plausibly adopted in the area of
cognitive architectures [21].
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