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Abstract. In this paper the linearized finite theory of elas-
ticity is applied to obtain linear constitutive equations for con-
strained materials reinforced by two orhogonal families of fi-
bres. Explicit expressions for the three stress tensors are de-
rived for inextensible in both fibre directions materials, for in-
compressible materials and finally for materials that are both
incompressible and inextensible in the two fibre directions.
Comparison with the corresponding constitutive equations pro-
vided by the classical approach shows that the classical equa-
tions are not accurate to first order in the strain.
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1. Introduction

The aim of this paper is to apply the linearized finite theory of
elasticity to obtain the constitutive equations for constrained hy-
perelastic materials reinforced by two families of fibres.
The linearized finite theory of elasticity (LFTE in the following)

formulated by Hoger and Johnson in [1], [2] and Marlow in [3] pro-
vides linear constitutive equations for constrained materials derived
by linearization of the corresponding finite constitutive equations.
Recent contributions concerning the constitutive equations for the
three stress tensors according to LFTE can be found in [10], while
in [11] the method of LFTE is extended to second-order constitu-
tive equations. The results obtained in [1], [2], [3], [10] emphasize
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the need to use the LFTE in order to have the accuracy required by
a linear model, since the classical linear theory of elasticity (CLTE
in the following) provides constitutive equations that are not ac-
curate to first order in the displacement gradient. The application
of LFTE also to static problems (see [1], [3], [8], [9]) or dynamical
problems (see [6], [7]) confirms the inadequacy of CLTE.
In this paper, starting from [2], [10], in Section 3 we obtain

the constitutive equations for the three stress tensors appropriate
for constrained materials with orthotropic symmetry according to
LFTE. In Section 4 we provide explicit results for fibre-reinforced
materials inextensible in both fibre directions, for incompressible
materials and for fibre-reinforced incompressible materials inexten-
sible in both fibre directions. Finally in Section 5 we compare our
constitutive equations with the constitutive equations obtained by
Spencer in [4], [5] according to the classical approach. Comparison
shows that also for orthotropic constrained materials the stress-
strain relations provided by CLTE are not accurate to first-order
in the strain.

2. Linear constitutive equations according to the

Linearized Finite Theory of Elasticity

In this section we briefly recall the constitutive equations appro-
priate for the so-called linearized finite theory of elasticity for solid
hyperelastic constrained materials. We refer to [2], [10] for all de-
tails concerning the procedure of linearization.

Denote by B0 and B = f (B0) the reference configuration and the
deformed configuration, respectively; f is the deformation function
which carries the point X ∈ B0 into the point x = f(X) ∈ B.
The displacement u, the deformation gradient F, the displace-

ment gradient H, the right Cauchy-Green deformation tensor C

and the finite Green strain tensor EG are defined as follows

(1) u (X) = f(X)−X

(2) F = Grad f

(3) H = Gradu = F− I

(4) C = FTF
2



(5) EG =
1

2
(C− I) ,

respectively; in the previous formulas Grad denotes the gradient
operator with respect to X, while I is the identity tensor.
For an elastic material subject to a single constraint the finite

constraint equation is

(6) ĉ (EG) = 0;

for a constrained finite hyperelastic material with strain energy den-
sity W = Ŵ (EG) the Cauchy stress T is given by

(7) T = Td +Tr,

where Td and Tr are the determinate stress and the reaction stress,
defined as follows

(8) Td = (detF)−1 F
∂Ŵ

∂EG

(EG)F
T

(9) Tr = qF
∂ĉ

∂EG

(EG)F
T ,

respectively.
Note that in (8) the strain energy density for the constrained

material is taken to be that of the unconstrained material with the
same material symmetry; moreover in (9) q denotes a Lagrange
multiplier.
Finally we recall that in finite elasticity the first Piola-Kirchhoff

stress S and the second Piola-Kirchhoff stress T̃ are given in terms
of the Cauchy stress T by the following relations

(10) S = (detF)TF−T

(11) T̃ = (detF)F−1TF−T ,

respectively.
In order to linearize equations (8), (9), (10), (11) about the zero

strain state according to LFTE, we require ‖H‖ → 0 and we adopt
a procedure of linearization in which the linearization of the deriva-
tive of Ŵ parallels that of the derivative of ĉ. Moreover, according
to a linear theory, we use the following expansions

(12) detF ∼= 1 + trH

(13) (detF)−1 ∼= 1− trH
3



(14) F−1 ∼= I−H

(15) F−T ∼= I−HT

(16) EG
∼= O+

1

2

(

H+HT
)

(17) ĉ(EG) ∼=
1

2

∂ĉ

∂EG

(O) ·
(

H+HT
)

(18)
∂Ŵ

∂EG

(EG) ∼=
1

2

∂2Ŵ

∂EG∂EG

(O)
(

H+HT
)

(19)
∂ĉ

∂EG

(EG) ∼=
∂ĉ

∂EG

(O) +
1

2

∂2ĉ

∂EG∂EG

(O)
(

H+HT
)

.

In the previous formulas O is the zero tensor, while the sym-
bol · denotes scalar product. Expansion (17) takes into account
the condition ĉ(O) = 0 provided by (6), while expansion (18) has
been obtained under the hypothesis of zero residual stress, that is
∂Ŵ

∂EG

(O) = O.

The final expressions for the three stress tensors appropriate for
LFTE are

(20)

T ∼=
1

2

∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣

c̃

(

H+HT
)

+ q

{

∂ĉ

∂EG

(O)+H
∂ĉ

∂EG

(O)+

+
∂ĉ

∂EG

(O)HT +
1

2

∂2ĉ

∂EG∂EG

(O)
(

H+HT
)

}

(21)

S ∼=
1

2

∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣

c̃

(

H+HT
)

+ q

{

(1 + trH)
∂ĉ

∂EG

(O)+

+H
∂ĉ

∂EG

(O) +
1

2

∂2ĉ

∂EG∂EG

(O)
(

H+HT
)

}

(22)

T̃ ∼=
1

2

∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣

c̃

(

H+HT
)

+ q

{

(1 + trH)
∂ĉ

∂EG

(O)+

+
1

2

∂2ĉ

∂EG∂EG

(O)
(

H+HT
)

}
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(see [2], formulas (3.22), (3.23), and [10], formula (34)).

In (20), (21), (22) the subscript c̃ denotes evaluation on the lin-
earized constraint equation

(23) c̃(E) = 0,

where

(24) E =
1

2

(

H+HT
)

is the infinitesimal strain tensor and

(25) c̃ (E) =
∂ĉ

∂EG

(O) · E

is the linear constraint function.
Note that in LFTE the three stress tensors differ by terms that

are first order in H (the determinate stress is the same, but the
reaction stress is different), while in classical linear theory of elas-
ticity the three stress tensors coincide, both for unconstrained and
constrained materials.

3. Linear constitutive equations for constrained materials

reinforced by two families of fibres according to LFTE

In this section we apply the results exposed in Section 1 to con-
strained materials which are reinforced by two orthogonal families
of fibres. Then the material symmetry appropriate for such bodies
is the orthotropic symmetry.
According to LFTE, our procedure of linearization starts from

the constitutive equations which describe the behaviour of finite
hyperelastic orthotropic materials; we refer to the costitutive equa-
tions given by Spencer in [4], Section 6.5, and [5], Section 3.3.

Let B be a finite elastic body reinforced by two families of fibres,
whose directions in the reference configuration are defined by two
unit vectors a and b; if the two families of fibres are orthogonal
in the reference configuration, the material is orthotropic in this
configuration.
For a finite hyperelastic body the strain energy densityW=Ŵ(EG)

is a function of the polynomial invariants of the strain appropriate
for the material symmetry; denoting by l(EG) the complete list of
the invariants of EG, we have

(26) Ŵ (EG) = ω̂ (l(EG)) .
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Then for a finite hyperelastic body with orthotropic symmetry W

can be expressed as a function of the following list of seven invari-
ants

(27) l(EG) = {I1, I2, I3, I4, I5, I6, I7} ,

where

(28)

I1 = I · EG

I2 = I · E2
G

I3 = I · E3
G

I4 = a · EGa

I5 = a · E2
Ga

I6 = b · EGb

I7 = b · E2
Gb

(see [5], Section 3.3).
If B is a hyperelastic orthotropic body subject to a constraint

(6), also the constraint function ĉ (EG) is expressed as a function
of the list (27) of the polynomial invariants (28), that is

(29) ĉ (EG) = ξ̂ (l(EG)) .

We consider now a linear hyperelastic body reinforced by two
orthogonal families of fibres subject to a constraint expressed by
(23), according to LFTE. Our aim is to derive for such a body the
explicit expressions for the three stress tensors by applying formulas
(20), (21), (22).

Since (26), (27), (28) hold, the fourth-order tensor
∂2Ŵ

∂EG∂EG

(O)

appearing in (20), (21), (22) can be written in terms of the seven
polynomial invariants of the strain as follows

(30)

∂2Ŵ

∂EG∂EG

(O)=
7

∑

p=1

7
∑

q=1

∂2ω̂

∂Ip∂Iq
(l(O))

∂Ip

∂EG

(O)⊗
∂Iq

∂EG

(O)+

+
7

∑

p=1

∂ω̂

∂Ip
(l(O))

∂2Ip

∂EG∂EG

(O),

where the symbol ⊗ denotes tensor product.
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The first derivatives and the second derivatives of the seven in-
variants appearing in (30) are given by

(31)

∂I1

∂EG

= I

∂I2

∂EG

= 2EG

∂I3

∂EG

= 3EG

∂I4

∂EG

= a⊗ a

∂I5

∂EG

= a⊗ (EGa) + (EGa)⊗ a

∂I6

∂EG

= b⊗ b

∂I7

∂EG

= b⊗ (EGb) + (EGb)⊗ b

and

(32)

∂2Ip

∂(EG)ij∂(EG)kl
= 0 (p = 1, 4, 6)

∂2I2

∂(EG)ij∂(EG)kl
= δikδjl + δilδjk

∂2I3

∂(EG)ij∂(EG)kl
=

3

2
{δik(EG)jl + δlj(EG)ki+

+δkj(EG)il + δli(EG)kj}

∂2I5

∂(EG)ij∂(EG)kl
=

1

2
(aialδjk + aiakδjl+

+ajalδik + ajakδli)

∂2I7

∂(EG)ij∂(EG)kl
=

1

2
(biblδjk + bibkδjl+

+bjblδik + bjbkδli) ,
7



respectively.
Substitution of (31), (32) into (30) provides for the components

of the tensor
∂2Ŵ

∂EG∂EG

(O) the following expression

(33)

∂2Ŵ

∂(EG)ij∂(EG)kl
(O) = α11δijδkl + α44aiajakal+

+α66bibjbkbl + α41 (δijakal + aiajδkl)+

+α61 (δijbkbl + bibjδkl) + α64 (bibjakal + aiajbkbl)+

+α2 (δikδjl + δilδjk) +
1

2
α5 (aialδjk + aiakδjl +

+ajalδik + ajakδli) +
1

2
α7 (biblδjk + bibkδjl +

+bjblδik + bjbkδli) .

The coefficients α11, α44, α66, α41, α61, α64 are defined as follows

(34) αpq =
∂2ω̂

∂Ip∂Iq
(l(O)) (p, q = 1, 4, 6),

while the coefficients α2, α5, α7 are given by

(35) αp =
∂ω̂

∂Ip
(l(O)) (p = 2, 5, 7).

Note that the coefficients α11 and α2 correspond to the Lamé
moduli λ and µ, respectively. In order to obtain the final expres-
sions (20), (21), (22) for T, S, T̃, respectively, the constraint (6)
must be specified. Then we can calculate (33) on the linear con-
straint equation (23); moreover by (20), (21), (22) we can obtain
the reaction parts of the three stress tensors.
In the next section we apply the previous results to hyperelas-

tic fibre-reinforced materials subject to particular constraints, as
inextensibility in both fibre directions and incompressibility.
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4. Examples

In this section the general constitutive equations for T, S, T̃

obtained in Section 3 for fibre-reinforced materials are specified for
inextensible in both fibre directions materials, for incompressible
materials and finally for materials which are both incompressible
and inextensible in the two fibre directions.

(i) Fibre-reinforced materials inextensible in both fibre directions

In this case the body is subject to two constraints. The finite
constraint equations are

(36)
ĉ1(EG) = (a⊗ a) · EG = 0

ĉ2(EG) = (b⊗ b) · EG = 0,

while the corresponding linear constraint equations are

(37)
c̃1(EG) = (a⊗ a) · E = 0

c̃2(EG) = (b⊗ b) · E = 0.

Note that the constraint equations (36) provide

(38)

∂ĉ1

∂(EG)ij
(O) = aiaj

∂ĉ2

∂(EG)ij
(O) = bibj

∂2ĉ1

∂(EG)ij∂(EG)kl
(O) = 0

∂2ĉ2

∂(EG)ij∂(EG)kl
(O) = 0.

Then formulas (20), (21), (22) for the three stress tensors can be

easily modified when two constraints occur: the term
∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣

c̃

becomes now
∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣ c̃1
c̃2

, while the reaction stresses are

written in terms of two Lagrange multipliers q1 and q2, so that

the terms
∂ĉ

∂EG

(O) and
∂2ĉ

∂EG∂EG

(O) are now substituted by (38).
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By substituting (33), (36), (37), (38) into (20), (21), (22) we
obtain for the three stress tensors the following expressions

(39)
T = Td + q1

{

a⊗ a+H(a⊗ a) + (a⊗ a)HT
}

+

+q2
{

b⊗ b+H(b⊗ b) + (b⊗ b)HT
}

(40)
S = Td + q1 {a⊗ a+H(a⊗ a) + (trH)a⊗ a}+

+q2 {b⊗ b+H(b⊗ b) + (trH)b⊗ b}

(41)
T̃ = Td + q1 {a⊗ a+ (trH)a⊗ a}+

+q2 {b⊗ b+ (trH)b⊗ b} ,

where the determinate stress Td is given by

(42)

Td = (trH)(α11I+ α41a⊗ a+ α61b⊗ b)+

+α2(H+HT ) +
1

2
α5

{

H(a⊗ a) +HT (a⊗ a)+

+(a⊗ a)H+ (a⊗ a)HT
}

+

+
1

2
α7

{

H(b⊗ b) +HT (b⊗ b) + (b⊗ b)H+

+(b⊗ b)HT
}

.

(ii) Fibre-reinforced incompressible materials

For incompressible materials equations (6), (23) become

(43) det(2EG + I)− 1 = 0

and

(44) trE = 0,

respectively.
Equation (43) provides

(45)

∂ĉ

∂(EG)ij
(O) = δij

∂2ĉ

∂(EG)ij∂(EG)kl
(O) = −2δikδjl − 2δilδjk + 4δijδkl.
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By substituting (33), (43), (44), (45) into (20), (21), (22) we
obtain

(46) T = Td − pI

(47) S = Td − p(I−HT )

(48) T̃ = Td − p(I−H−HT ),

where p denotes the hydrostatic pressure and Td is given by

(49)

Td =
1

2
α41

(

Ha · a+HTa · a
)

I+

+
1

2
α61

(

Hb · b+HTb · b
)

I+

+
1

2
α44

(

Ha · a+HTa · a
)

a⊗ a+

+
1

2
α66

(

Hb · b+HTb · b
)

b⊗ b+

+
1

2
α64

{(

Ha · a+HTa · a
)

b⊗ b+

+
(

Hb · b+HTb · b
)

a⊗ a
}

+

+α2

(

H+HT
)

+
1

2
α5 {H(a⊗ a) +

+HT (a⊗ a) + (a⊗ a)H+ (a⊗ a)HT
}

+

+
1

2
α7

{

H(b⊗ b) +HT (b⊗ b) +

+ (b⊗ b)H+ (b⊗ b)HT
}

.

(iii) Fibre-reinforced incompressible materials inextensible in both

fibre directions

In this case equations (36), (43) hold, so that the linear constraint
equations are given by (37), (44).
We can now impose the linear constraint of incompressibility (44)

on (39), (42), or equivalently we can impose (37) on (46), (49).
We obtain

(50)
T = Td − pI+ q1

{

a⊗ a+H(a⊗ a) + (a⊗ a)HT
}

+

+q2
{

b⊗ b+H(b⊗ b) + (b⊗ b)HT
}

,
11



where

(51)

Td = α2

(

H+HT
)

+
1

2
α5

{

H(a⊗ a) +HT (a⊗ a)+

+(a⊗ a)H+ (a⊗ a)HT
}

+
1

2
α7 {H(b⊗ b)+

+HT (b⊗ b) + (b⊗ b)H+ (b⊗ b)HT
}

.

Moreover the constitutive equations for the two Piola-Kirchhoff
stresses are

(52)
S = Td − p(I−HT ) + q1(I+H)a⊗ a+

+q2(I+H)b⊗ b

(53) T̃ = Td − p(I−H−HT ) + q1a⊗ a+ q2b⊗ b,

where Td is given by (51).

5.Comparison between LFTE and CLTE

In this section we compare the constitutive equations obtained
in Section 4 for LFTE with the corresponding equations usually
adopted in the classical approach.
In particular we refer to equations provided by Spencer in [4],

Section 6.8, and [5], Section 2.2, where the classical linear constitu-
tive equations for constrained materials reinforced by two families
of fibres are extensively discussed.
Comparison shows that the constitutive equations used in CLTE

are not accurate to first order in the strain; similar results hold for
other material symmetries and other constraints (see [1], [2], [3],
[10], [11]).

(i) Fibre-reinforced materials inextensible in both fibre directions

We compare our formulas (39), (42) with the corresponding ex-
pressions, denoted by “cl”, given by Spencer in [5], formulas (39),
(40).
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Comparison shows that Td = T
(cl)
d while Tr 6= T

(cl)
r ; referring to

(39) we have

(54)
Tr = T

(cl)
r + q1

{

H(a⊗ a) + (a⊗ a)HT
}

+

+q2
{

H(b⊗ b) + (b⊗ b)HT
}

.

Moreover CLTE requires T(cl) = S(cl) = T̃(cl), so that (40), (41),
(54) provide

(55)

Sd = S
(cl)
d

T̃d = T̃
(cl)
d

Sr = S
(cl)
r + q1 {H(a⊗ a) + (trH)a⊗ a}+

+q2 {H(b⊗ b) + (trH)b⊗ b}

T̃r = T̃
(cl)
r + q1(trH)a⊗ a+ q2(trH)b⊗ b.

Therefore the three stress tensors used in CLTE are not correct.

(ii) Fibre-reinforced incompressible materials

We now compare (46), (49) with the corresponding expressions

given by Spencer in [5], pp. 12-13. We see that Tr = T
(cl)
r , while

Td 6= T
(cl)
d ; referring to (49) we have

(56)

Td = T
(cl)
d +

1

2
α41(Ha · a+HTa · a)I+

+
1

2
α61(Hb · b+HTb · b)I.

Moreover (47), (48), (56) provide

(57)

Sd = S
(cl)
d +

1

2
α41(Ha · a+HTa · a)I+

+
1

2
α61(Hb · b+HTb · b)I

T̃d = T̃
(cl)
d +

1

2
α41(Ha · a+HTa · a)I+

+
1

2
α61(Hb · b+HTb · b)I

Sr = S
(cl)
r + pHT

T̃r = T̃
(cl)
r + p(H+HT ).

13



Also in this case the three stress tensors T(cl), S(cl), T̃(cl) are not
correct.

(iii) Fibre-reinforced incompressible materials inextensible in both

fibre directions

We compare formulas (50), (51) with the constitutive equations
provided by Spencer in [5], formulas (41), (42).
The determinate part of T(cl) profided by CLTE is correct

(Td = T
(cl)
d ), while the reaction part is not correct; in fact referring

to (50) we can see that

(58)
Tr = T

(cl)
r + q1

{

H(a⊗ a) + (a⊗ a)HT
}

+

+q2
{

H(b⊗ b) + (b⊗ b)HT
}

.

Moreover (52), (53), (58) provide

(59)

Sd = S
(cl)
d

T̃d = T̃
(cl)
d

Sr = S
(cl)
r + pHT + q1H(a⊗ a) + q2H(b⊗ b)

T̃r = T̃
(cl)
r + p(H+HT ).

As in case (i) only the determinate part of the three stress tensors
used in CLTE is correct.

6. Conclusions

This paper represents a natural carrying on of [1], [2], [6], [7], [8],
[9], [10], [11], since the linearized finite theory of elasticity is here
applied to constrained materials with orthotropic symmetry.
In this paper by using the linearized finite theory of elasticity we

obtain the constitutive equations for constrained hyperelastic ma-
terials reinforced by two orthogonal families of fibres. In particular
we derive stress-strain relations for materials subject to the con-
straint of inextensibility in both fibre directions and for materials
subject to the constraint of incompressibility.
The constitutive equations obtained in this paper significantly

differ from those of the classical linear elasticity. The same occurs
for other material symmetries and other constraints, since only the

14



linearized finite theory of elasticity exhibits the accuracy required
by a linear model.
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