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Abstract: Background
DNA-methylation profiles are responsive to environmental stimuli and metabolic shifts.
This makes DNA-methylation a potential biomarker of environmental-related and
lifestyle-driven diseases of adulthood. Therefore we investigated if white blood cells'
(WBCs) DNA-methylation profiles are associated with myocardial infarction (MI)
occurrence.
Whole genome DNA-methylation was investigated by microarray analysis in 292 MI
cases and 292 matched controls from the large prospective Italian EPIC cohort
(EPICOR study). Significant signals (FDR adjusted P<0.05) were replicated by mass
spectrometry in 317 MI cases and 262 controls from the Dutch EPIC cohort (EPIC-NL).
LINE-1 methylation profiles were also evaluated in both groups.
Results
A differentially methylated region (DMR) within the ZBTB12 gene body and LINE-1
hypomethylation were identified in EPICOR MI cases, and replicated in the EPIC-NL
sample (ZBTB12-DMR meta-analysis, effect-size±se=-0.016±0.003, 95%CI=-0.021;-
0.011, P=7.54x10-10; LINE-1 methylation meta-analysis, effect-size±se=-0.161±0.040,
95%CI=-0.239;-0.082, P=6.01x10-5).
Moreover, cases with shorter time to disease had more pronounced ZBTB12-DMR
hypomethylation (meta-analysis, Men: effect-size±se=-0.0059±0.0017,
PTREND=5.0x10-4, Women: effect-size ±se=-0.0053±0.0019, PTREND=6.5x10-3)
and LINE-1 hypomethylation (meta-analysis, Men: effect-size ±se=-0.0010±0.0003,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



PTREND=1.6x10-3, Women: effect-size ±se=-0.0008±0.0004, PTREND=0.026) than
MI cases with longer time-to-disease.
In the EPIC-NL replication panel, DNA-methylation profiles improved case-control
discrimination and reclassification when compared with traditional MI risk factors only
(Net Reclassification Improvement (95%CI) between 0.23 (0.02-0.43), P=0.034, and
0.89 (0.64-1.14), P <1x10-5).
Conclusions
Our data suggest that specific methylation profiles can be detected in WBCs, in a
preclinical condition, several years before the occurrence of MI, providing an
independent signature of cardiovascular risk. We showed that prediction accuracy can
be improved when DNA-methylation is taken into account together with traditional MI
risk factors, although further confirmation on a larger sample is warranted. Our findings
support the potential use of DNA-methylation patterns in peripheral blood white cells as
promising early biomarkers of MI.
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Reviewer #3: Indeed, also the estimation of MI risk needs to be limited to the EPIC-NL
validation sample. Due to the winner's curse the large effect size in the discovery
sample is not surprising and likely inflated. This is confirmed by the actual estimates as
reported.

Authors’ Response
We agree with the reviewer that MI risk estimate should not be considered for the
EPICOR panel, being it the discovery panel. As such, we removed MI risk estimates
from the main paper and limited MI risk estimate to the EPIC-NL replica panel.
However, the analysis of the EPICOR panel provides a complementary piece of
information when taken together with that of the EPIC-NL panel. In fact, even if the risk
estimate should not be considered as such, this progressively modeled analysis can
nevertheless provide information on the dependence/independence of DNA
methylation from the TRFs. This can be seen in the analysis of both the EPIC-NL
panel, and the EPICOR panel, as a complementary evidence, and it is also a
confirmation of the fact that additional TRFs (other than those used in the discovery
analysis on EPICOR) actually do not affect estimates also in the EPICOR discovery
panel.
To meet the reviewer’s request, and to save the additional piece of information that is
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corresponding paragraphs in the main text and additional files.
The following paragraphs have been edited:

- Main Text, Results section, “DNA methylation and MI risk”: page 9, line 14 - page 10,
line 6 of the revised R3 paper

- Main Text, Methods section, “DNA methylation and MI risk”: page 19, lines 1-12 of the
revised R3 paper

- Additional file 2, “DNA methylation and MI risk”: page 11, lines 7 – 25 of the revised
R3 paper

- Additional file 1: table S3A is now referred to EPIC-NL; table S3B is now referred to
EPICOR.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



1 

Gene-specific DNA-methylation profiles and LINE-1 hypomethylation are associated with 

myocardial infarction risk 

Simonetta Guarrera†,1,2, Giovanni Fiorito†,1,2, N Charlotte Onland-Moret3, Alessia Russo1,2, Claudia 

Agnoli4, Alessandra Allione1,2, Cornelia Di Gaetano1,2, Amalia Mattiello5, Fulvio Ricceri6, Paolo 

Chiodini7, Silvia Polidoro1, Graziella Frasca8, Monique WM Verschuren3,9, Jolanda MA Boer9, Licia 

Iacoviello10, Yvonne T van der Schouw3, RosarioTumino8, Paolo Vineis1,11, Vittorio Krogh4, 

Salvatore Panico5, Carlotta Sacerdote6, Giuseppe Matullo1,2,*. 

 

1Human Genetics Foundation (HuGeF) – Torino, Turin, Italy; 

2Medical Sciences Department, University of Turin, Turin, Italy; 

3Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands; 

4Epidemiology and Prevention Unit, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy; 

5Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy; 

6Cancer Epidemiology, CPO-Piemonte, Turin, Italy; 

7Department of Public Health, Second University, Naples, Italy; 

8Cancer Registry and Histopathology Unit, “Civile – M.P. Arezzo” Hospital, ASP 7, Ragusa, Italy; 

9Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the 

Environment, Bilthoven, The Netherlands; 

10Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, 

Pozzilli (IS), Italy; 

11Epidemiology and Public Health, Imperial College London, London, UK. 

 

†Equal contributors 

*Corresponding author: Prof. Giuseppe Matullo, Human Genetics Foundation, Via Nizza 52, I-10126 

Torino, Italy. E-mail giuseppe.matullo@unito.it, Fax +39 011 2365601, Phone +39 011 6705601 

 

 

 

Manuscript Click here to download Manuscript CLEP-D-15-00016-DNA-
methylation and MI risk - R3.docx

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:giuseppe.matullo@unito.it
http://www.editorialmanager.com/clep/download.aspx?id=6441&guid=e85c3f69-b3ce-4a96-81fe-377db47d5dea&scheme=1
http://www.editorialmanager.com/clep/download.aspx?id=6441&guid=e85c3f69-b3ce-4a96-81fe-377db47d5dea&scheme=1
http://www.editorialmanager.com/clep/viewRCResults.aspx?pdf=1&docID=85&rev=3&fileID=6441&msid={50EF86A6-752A-464C-8D82-1A0053220E5E}


2 

Authors’ email addresses 

Simonetta Guarrera simonetta.guarrera@hugef.org 

Giovanni Fiorito giovanni.fiorito@hugef.org 

N Charlotte Onland-Moret N.C.Onland@umcutrecht.nl 

Alessia Russo alessia.russo@hugef.org 

Claudia Agnoli Claudia.Agnoli@istitutotumori.mi.it 

Alessandra Allione alessandra.allione@hugef.org 

Cornelia Di Gaetano cornelia.digaetano@unito.it 

Amalia Mattiello amattiel@unina.it 

Fulvio Ricceri fulvio.ricceri@gmail.com 

Paolo Chiodini paolo.chiodini@unina2.it 

Silvia Polidoro silvia.polidoro@hugef.org 

Graziella Frasca frasca.regtumragusa@tiscali.it 

Monique WM Verschuren monique.verschuren@rivm.nl 

Jolanda MA Boer jolanda.boer@rivm.nl 

Licia Iacoviello licia.iacoviello@moli-sani.org 

Yvonne T van der Schouw Y.T.vanderSchouw@umcutrecht.nl 

RosarioTumino rtumino@tin.it 

Paolo Vineis p.vineis@imperial.ac.uk 

Vittorio Krogh Vittorio.Krogh@istitutotumori.mi.it 

Salvatore Panico spanico@unina.it 

Carlotta Sacerdote carlotta.sacerdote@cpo.it 

Giuseppe Matullo giuseppe.matullo@unito.it 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:simonetta.guarrera@hugef.org
mailto:giovanni.fiorito@hugef.org
mailto:N.C.Onland@umcutrecht.nl
mailto:alessia.russo@hugef.org
mailto:Claudia.Agnoli@istitutotumori.mi.it
mailto:alessandra.allione@hugef.org
mailto:cornelia.digaetano@unito.it
mailto:amattiel@unina.it
mailto:fulvio.ricceri@gmail.com
mailto:paolo.chiodini@unina2.it
mailto:silvia.polidoro@hugef.org
mailto:frasca.regtumragusa@tiscali.it
mailto:monique.verschuren@rivm.nl
mailto:jolanda.boer@rivm.nl
mailto:licia.iacoviello@moli-sani.org
mailto:Y.T.vanderSchouw@umcutrecht.nl
mailto:rtumino@tin.it
mailto:p.vineis@imperial.ac.uk
mailto:Vittorio.Krogh@istitutotumori.mi.it
mailto:spanico@unina.it
mailto:carlotta.sacerdote@cpo.it
mailto:giuseppe.matullo@unito.it


3 

ABSTRACT 

 

Background 

DNA-methylation profiles are responsive to environmental stimuli and metabolic shifts. This makes 

DNA-methylation a potential biomarker of environmental-related and lifestyle-driven diseases of 

adulthood. Therefore we investigated if white blood cells’ (WBCs) DNA-methylation profiles are 

associated with myocardial infarction (MI) occurrence. 

Whole genome DNA-methylation was investigated by microarray analysis in 292 MI cases and 292 

matched controls from the large prospective Italian EPIC cohort (EPICOR study). Significant signals 

(FDR adjusted P<0.05) were replicated by mass spectrometry in 317 MI cases and 262 controls from 

the Dutch EPIC cohort (EPIC-NL). LINE-1 methylation profiles were also evaluated in both groups. 

Results 

A differentially methylated region (DMR) within the ZBTB12 gene body and LINE-1 

hypomethylation were identified in EPICOR MI cases, and replicated in the EPIC-NL sample 

(ZBTB12-DMR meta-analysis, effect-size±se=-0.016±0.003, 95%CI=-0.021;-0.011, P=7.54x10-10; 

LINE-1 methylation meta-analysis, effect-size±se=-0.161±0.040, 95%CI=-0.239;-0.082, P=6.01x10-5). 

Moreover, cases with shorter time to disease had more pronounced ZBTB12-DMR hypomethylation 

(meta-analysis, Men: effect-size±se=-0.0059±0.0017, PTREND=5.0x10-4, Women: effect-size ±se=-

0.0053±0.0019, PTREND=6.5x10-3) and LINE-1 hypomethylation (meta-analysis, Men: effect-size 

±se=-0.0010±0.0003, PTREND=1.6x10-3, Women: effect-size ±se=-0.0008±0.0004, PTREND=0.026) than 

MI cases with longer time-to-disease. 

In the EPIC-NL replication panel, DNA-methylation profiles improved case-control discrimination 

and reclassification when compared with traditional MI risk factors only (Net Reclassification 

Improvement (95%CI) between 0.23 (0.02-0.43), P=0.034, and 0.89 (0.64-1.14), P <1x10-5). 

Conclusions 

Our data suggest that specific methylation profiles can be detected in WBCs, in a preclinical condition, 

several years before the occurrence of MI, providing an independent signature of cardiovascular risk. 

We showed that prediction accuracy can be improved when DNA-methylation is taken into account 
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together with traditional MI risk factors, although further confirmation on a larger sample is warranted. 

Our findings support the potential use of DNA-methylation patterns in peripheral blood white cells as 

promising early biomarkers of MI. 

 

 

Keywords: DNA-methylation; myocardial infarction; early biomarkers; association study; risk 

prediction; risk stratification 
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Background 

Cardiovascular diseases (CVDs) are a leading cause of mortality, morbidity and hospitalization in the 

adult population in western countries, and a major challenge for developing countries that follow a 

westernized-lifestyle. Great attention has been given so far to lifestyle related CVDs risk factors, such 

as unhealthy diet, smoking habits, lack of physical activity, whose deleterious effects may be 

prevented through major lifestyle changes or medical treatments. Apart from monogenic disorders 

associated with cardiovascular risk (e.g., hypertrophic cardiomyopathy, familial 

hypercholesterolemia), there is a strong evidence that a family history of cardiovascular disease and 

stroke enhances individual CVD risks in relatives as compared with general population, that points 

out the importance of genetic factors in the etiology of CVDs. 

Recent genome wide association studies (GWASs) reported several potential genetic risk factors for 

CVDs or intermediate disease phenotypes such as type 2 diabetes, obesity and overweight [1], 

hypertension [2], altered lipid profiles [3], underlying the importance of the genetic component. 

However, the contribution of common genetic variants to non-monogenic CVDs is likely to act in 

combination with environmental factors or via epistatic (gene-gene or gene-environment) interactions. 

As gene-environment interactions are thought to be mediated by epigenetic modifications of the 

genome, epigenetic regulation can be rewarded as the boundary between the inherited genomic asset 

and the environment, potentially playing a major role in disease onset and severity [4]: epigenetic 

changes are in fact dynamic, can be modified both during the early in utero development stages and 

across lifetime by environmental factors as well as diseases, and may be reversible reflecting 

environmental changes [5, 6]. DNA-methylation at CpG dinucleotides is an epigenetic mechanism 

mainly involved in gene expression regulation. DNA-methylation patterns across the genome are not 

uniform: genetic regions spanning genes locations have variable DNA-methylation profiles which are 

linked to regulatory functions (e.g. gene promoters methylation/demethylation regulates gene 

expression), and structural functions in shaping local chromatin structures [7, 8]; instead, intergenic 

regions are usually heavily methylated, since about 45% of the mammalian genome consists of 

transposable and viral elements that are silenced by methylation [9]. Methylation levels of the 

repetitive long interspersed nuclear element-1 (LINE-1) are generally considered as a proxy for global 
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DNA methylation, as LINE-1 elements are widely distributed in the genome and usually heavily 

methylated in the majority of normal tissues. LINE-1 hypomethylation has previously been associated 

with ischemic heart disease and stroke [10], and with altered levels of LDL and HDL [11]. 

Altered DNA-methylation profiles have been linked to oxidative stress [12], atherosclerosis [13], 

ageing [14, 15] and a variety of human diseases ranging from neurological and autoimmune disorders 

to cancer [16-18]. In addition to individual constitutive DNA-methylation profiles, that could per se 

be associated with cardiovascular outcomes [19], subtle and progressive DNA-methylation alterations 

mediated by lifestyle and environmental exposures may in fact lead to dysregulation of several 

metabolic pathways during lifetime, and ultimately to cardiovascular damage and disease [20]. 

However, the few reports linking cardiovascular outcomes to DNA-methylation measured in blood 

cells or vascular tissue [21-23] did not provide conclusive evidences of DNA-methylation 

involvement in cardiovascular disease. 

Apart from few reports of single CpG associations with a disease or a phenotype, it is usually the 

cumulative methylation profile of neighboring CpG sites to be more likely associated to a potential 

functional effect of the methylation status, and the search for differentially methylated regions 

(DMRs) able to differentiate groups of subjects with different phenotypes or outcomes of interest is a 

common approach. Along this line, we conducted an epigenome-wide association study (EWAS) to 

identify DMRs and LINE-1 methylation profiles associated to myocardial infarction (MI) risk in the 

cardiovascular section (EPICOR) of the Italian cohort of the European Prospective Investigation into 

Cancer and Nutrition (EPIC) study, and replicated statistically significant findings in an independent 

case-control study nested in the Dutch EPIC cohort (EPIC-NL) with comparable biological samples 

and information. 

Furthermore, we tested whether MI risk prediction accuracy can be improved when DNA-methylation 

profiles, measured at baseline in a pre-clinical condition, are taken into account together with 

traditional MI risk factors. 
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Results 

Descriptive statistics of the sample are reported in Table 1. Statistically significant differences 

between cases and controls were found in smoking habits, body mass index (BMI) and/or waist-to-hip 

ratio (WHR), serum lipid profile, and blood pressure, in both the discovery (EPICOR) and the 

replication (EPIC-NL) studies (Table1). 

After raw methylation data quality controls (QCs), and removal of cross-hybridizing and Single 

Nucleotide Polymorphisms-containing probes, 425,498 CpGs were included into the following 

analyses. 

 

Case-control differential methylation 

In the EPICOR sample, 25,376 regions with correlated methylation levels were identified with the A-

clustering algorithm [24], and subsequently tested for differential methylation between cases and 

controls (see Methods section): the top-ranking 6 differentially methylated regions are reported in 

Table S1 (Additional file 1). However, only the first region reached statistical significance (FDR Q-

value<0.05), i.e. a 15-CpGs cluster within the gene body (exon1) of the “zinc finger and BTB domain 

containing 12” gene (ZBTB12, Gene ID: 221527), that was hypomethylated in cases as compared to 

controls (effect-size±se=-0.019±0.004, 95%CI -0.03;-0.01, P-value=1.94x10-7, Q-value=0.005). To 

check for sex-specific effects of the ZBTB12-DMR, we stratified EPICOR subjects by sex, and found 

the 15-CpGs cluster still significantly hypomethylated in male cases (effect-size±se=-0.023±0.005, 

95%CI -0.03;-0.01, P-value=1.06x10-6) but not in females (effect-size±se=-0.006±0.006, 95%CI -

0.02;0.005, P-value=0.29). Details on single CpGs are reported in Table S2A (Additional file 1). 

The genomic inflation factor for the overall EPICOR sample was lambda=1.023 (men, lambda=1.043; 

women, lambda=1.017, Q-Q plots in Supplementary Figures S1-S3). 

LINE-1 differential methylation was also tested in the EPICOR overall sample by logistic regression 

analysis: MI cases had statistically significant LINE-1 hypomethylation as compared to controls 

(effect-size±se=-0.511±0.147, 95%CI -0.80;-0.22, P-value=5.00x10-4). At a sex-stratified analysis, 

LINE-1 hypomethylation was still statistically significant in men (effect-size±se=-0.520±0.179, 
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95%CI -0.87;-0.17, P-value=0.004) but not in women (effect-size±se=-0.496±0.319, 95%CI -1.12;-

0.13, P-value=0.12). 

Additionally, for ZBTB12-DMR we found a significant sex-methylation interaction (P-value=0.01), 

whilst for LINE-1 we found no evidence of interaction. 

Results were replicated on the EPIC-NL panel, where the methylation profile of the same ZBTB12-

DMR identified in the discovery phase proved consistent with that of the EPICOR discovery sample, 

with a cluster of 22 contiguous CpGs significantly hypomethylated in Dutch MI cases as compared to 

controls (effect-size±se=-0.013±0.004, 95%CI -0.02;-0.005 P-value=5.82x10-4). Details on ZBTB12-

DMR single CpGs for the EPIC-NL study are reported in Table S2B (Additional file 1). 

At a sex stratified analysis, ZBTB12-DMR was hypomethylated both in EPIC-NL men (effect-

size±se=-0.014±0.007, 95%CI -0.03;-0.001, P-value=0.034) and women (effect-size±se=-

0.012±0.004, 95%CI -0.02;-0.004, P-value=0.006), with effect sizes more comparable between men 

and women than in the EPICOR sample. 

In the EPIC-NL panel, LINE-1 mean methylation levels were lower than those of EPICOR, with an 

average methylation of about 0.8 in EPICOR subjects (men, mean±sd=0.844±0.007; women, 

mean±sd=0.843±0.007) and about 0.6 in EPIC-NL subjects (men, mean±sd=0.624±0.029; women, 

mean±sd=0.613±0.023). As seen in the EPICOR panel, we found LINE-1 hypomethylation also in 

Dutch cases as compared to controls, although with a milder effect (effect-size±se=-0.132±0.042, 

95%CI -0.21;-0.05, P-value=0.001). The sex stratified LINE-1 analysis showed in EPIC-NL men an 

effect-size similar to that found in EPICOR (effect-size±se=-0.40±0.085, 95%CI -0.57;-0.23, P-

value=2.22x10-6), while in EPIC-NL women the effect was much lower and statistically non-

significant (effect-size±se=-0.016±0.046, 95%CI -0.11;0.07, P-value=0.73). 

In the Dutch panel we found no evidence of sex-methylation interaction for ZBTB12-DMR, while we 

found a statistically significant interaction for LINE-1. 

The observation of sex-methylation interactions in both the discovery and replica panels, and further 

considerations addressed in the discussion section, suggested to consider men and women separately 

in all the subsequent analyses. 
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To achieve an overall estimate of the effects of ZBTB12-DMR and LINE-1 methylation across the 2 

subjects panels, we performed a meta-analysis of the EPICOR and EPIC-NL studies. 

The estimated ZBTB12-DMR effect was effect-size±se=-0.016±0.003 in the overall sample 

(P=7.54x10-10, 95%CI=-0.021;-0.011, Cochran’s Q=0.005, d.f.=1, PHET=0.83), effect-size±se=-

0.020±0.004 in men (P=1.82x10-7, 95%CI=-0.027;-0.012, Cochran’s Q=0.007, d.f.=1, PHET =0.79), 

and effect-size±se=-0.010±0.003 in women (P=0.005, 95%CI=-0.017;-0.003, Cochran’s Q=0.004, 

d.f.=1, PHET =0.84). 

The estimated LINE-1 effect was effect-size±se=-0.161±0.040 in the overall sample (P=6.01x10-5, 

95%CI=-0.239;-0.082, Cochran’s Q=0.85, d.f.=1, PHET =0.35), effect-size±se=-0.422±0.076 in men 

(P=3.42x10-8, 95%CI=-0.572;-0.272, Cochran’s Q=0.06, d.f.=1, PHET =0.81), and effect-size±se=-

0.025±0.046 in women (P=0.576, 95%CI=-0.115;0.064, Cochran’s Q=0.70, d.f.=1, PHET =0.40). 

 

DNA-methylation and MI risk 

The MI risk associated to ZBTB12-DMR and LINE-1 hypomethylation was estimated in the EPIC-NL 

replica panel: Recursively Partitioned Mixture Model (RPMM) classes and LINE-1 class (as defined 

in the methods section) were tested for association with MI under different models, from unadjusted 

to fully adjusted. 

When comparing the ZBTB12-DMR lowest methylation class (RPMM3) with the highest methylation 

class (RPMM0), we found MI risk to be significantly associated with hypomethylation in the EPIC-

NL women (fully adjusted, OR=2.75, 95%CI 1.39–5.45, P=0.004), whilst in EPIC-NL men the 

association was statistically non-significant (fully adjusted, OR=2.60, 95%CI 0.79–8.56, P=0.116), 

although direction and effect size were similar. 

We also found a higher MI risk associated with LINE-1 lower methylation class in EPIC-NL men 

(fully adjusted, OR=1.95, 95%CI 1.02-3.71, P=0.043, ref. group above the median). No difference 

was found in EPIC-NL women (fully adjusted, OR=1.05, 95%CI 0.65–1.67, P=0.850) (Additional file 

1, Table S3A). 

The same analysis was performed on the EPICOR discovery sample: even though in this case the ORs 

cannot be considered as indicative of a true estimate of risk being EPICOR subjects the discovery 
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panel, the analysis was nevertheless done to assess whether the progressive inclusion in the model of 

additional variables, namely traditional risk factors (TRFs), could modify the estimate of risk or, on 

the contrary, if DNA methylation may independently contribute to MI risk. No significant evidence of 

inflation/deflation of the DNA-methylation-related MI risk estimate was found nor for the EPIC-NL 

panel nor for the EPICOR panel when progressively adding traditional risk factors (TRFs) as 

covariates in the model (Additional file 1: Tables S3A and B). 

 

Discrimination, reclassification, and calibration on EPIC-NL samples 

We assumed 2 models, including respectively: (1) TRFs only; (2) TRFs plus the ZBTB12-based 

RPMM classes and LINE-1 methylation class. According to the Net Reclassification Improvement 

(NRI) and Integrated Discrimination Improvement (IDI) indices (Table 2), a statistically significant 

improvement in prediction performance was achieved when adding the DNA-methylation profiles to 

the set of baseline predictors (i.e., TRFs), both for EPIC-NL males and females groups. Furthermore, 

we found an improvement in discrimination (Table 2, DeLong's test) comparing the area under 

Receiver Operating Curves (AUC) of the 2 models (Table 2 and Figure 1), although it was not 

statistically significant. 

The calibration plots confirmed the goodness of fit of both the TRFs only and TRFs+Methylation 

models (Figure 2, Hosmer-Lemeshow test), with a better performance of the second one. 

 

DNA-methylation and Time to Disease (TTD) 

The trend test on EPICOR and EPIC-NL subjects, stratified by study and by sex, highlighted a more 

pronounced ZBTB12-DMR hypomethylation in cases with shorter time to disease (EPICOR and 

EPIC-NL meta-analysis, Men: PTREND=0.0005, Women PTREND=0.0065, Table 3). Similarly, LINE-1 

was hypomethylated in cases with shorter time to disease (meta-analysis, Men: PTREND=0.0016, 

Women PTREND=0.026, Table 3). 
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At a post-hoc power analysis, our study was well powered (86% and 82% for males and females 

groups, respectively) to identify DMRs with effect sizes equal to half of the standard deviation, 

considering alpha equal to the False Discovery Rate (FDR) threshold of significance (Q=0.05). 

 

Discussion 

In this study we investigated whether WBCs DNA-methylation profiles may be associated with 

myocardial infarction risk. We examined clusters of adjacent CpG sites with correlated methylation 

levels under the assumption that they could be more reliable indicators of the underlying biological 

function than the single CpG methylation measurement. As we found evidences of sex-methylation 

interactions in both the analyzed panels, in our study the analyses were stratified by sex, in order to 

account for sex-related differences in DNA methylation profiles of genomic regions, of which 

“genomic imprinting” is a well-known example, and to account for sex specific cardiovascular risks. 

For coronary heart disease, sex differences in incidence, disease manifestations, and mortality are well 

recognized [25], and men and women seem not to share the same cardiovascular risk factors [26-29]. 

Moreover, patterns of sex-specific methylation have been reported in literature, and there is a general 

consensus on the occurrence of sex-biased autosomal DNA methylation in specific genes and regions, 

although with contrasting results [30-32]. Sex-associated differential DNA methylation in autosomal 

loci has been reported in genes associated to traits/diseases with different incidence rates according to 

sex [33], as well as in hormone-related genes, suggesting a differential regulation, potentially exerted 

via methylation [31]. Differential DNA-methylation may account for the differences in metabolic 

profiles of men and women, possibly leading to the different incidence, prevalence, symptoms, ages at 

onset and severity of cardiovascular diseases reported in literature. 

In the EPICOR discovery panel, we identified a 15-CpGs cluster within the ZBTB12 gene that was 

significantly differentially methylated in Italian MI cases and controls, and that was also significantly 

hypomethylated in MI cases in the independent Dutch panel. Moreover, ZBTB12-DMR showed a 

trend towards more pronounced hypomethylation in subjects with a short TTD both in the Italian and 

in the Dutch sample. 
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ZBTB12-DMR spans a ~250bp region in ZBTB12 exon 1: although the role of gene-body methylation 

in transcriptional regulation is not fully understood, yet there are evidences of a role of the first exon’s 

DNA-methylation in transcriptional silencing and, putatively, in alternative splicing [34]. All of our 

samples belong to the EPIC cohort, for which no biospecimen suitable for transcriptome analyses is 

available to address the relationship between ZBTB12 methylation and gene expression levels. To 

cope with this issue, we explored ZBTB12 DNA-methylation/gene-expression relationship in 

cryopreserved peripheral blood mononuclear cells from ~80 healthy young subjects belonging to 

another ongoing study, for which we already measured methylation and gene-expression levels: in our 

data, ZBTB12 mRNA abundance was below the background level (as assessed by Illumina 

HumanHT12 gene-expression BeadChip), while ZBTB12 methylation levels were comparable to that 

of EPICOR and EPIC-NL controls (data not shown). No relationship was found also with the gene-

expression levels of the nearby genes (data not shown). Data mining in freely available resources (e.g. 

BioGPS, AceView, ProteinAtlas, Genome Atlas) confirmed the generalized low ZBTB12 mRNA level 

in tissues and cell types, although ZBTB12 protein is detectable in many tissues, including 

cardiovascular tissues. Although no clear function is described for ZBTB12, this protein is probably 

involved in transcriptional regulation, like other members of the ZBTB family of methyl-CpG binding 

proteins (MBPs). This is also supported by its mainly nuclear localization. MBPs bind to methylated 

DNA and recruit chromatin remodeling co-repressor complexes, resulting in compaction of chromatin 

into its transcriptionally inactive state [35]. Specifically, members of the ZBTB family function as 

mediators of epigenetically controlled gene silencing by recognizing symmetrically methylated CpG 

sites and sequence specific non methylated sites [8, 35]. 

According to the Human Protein Reference Database [36], ZBTB12 (HPRD ID: 15691) directly 

interacts with Harvey Rat Sarcoma Viral Oncogene Homolog (HRAS) and RAP1 GTPase Activating 

Protein1 (RAP1GAP). RAP1GAP down-regulates the activity of Ras -associated protein 1 (RAP1), a 

small GTPase involved in several aspects of cell adhesion, including angiogenesis [37]. HRAS, a 

member of the RAS oncogene family, is a key transducer in several growth-signaling events that may 

trigger cardiovascular complications such as angiogenesis and vascular permeability [38], and may be 

involved in inflammatory proliferative arterial diseases, including atherosclerosis and restenosis after 
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angioplasty [39]. The RAS-MEK-ERK cascade has been described as implicated in cardiac 

hypertrophy and heart failure, and ERK signal transduction pathways were associated with cardiac 

hypertrophy [40]. 

In addition to gene/region specific DNA-methylation, we investigated the cumulative DNA-

methylation profile of LINE-1 repetitive sequences and found LINE-1 hypomethylation in MI cases, 

statistically significant in men in both panels, but not in women. LINE-1 hypomethylation was 

associated to cardiovascular-related traits in previous studies [10, 11], and it is associated to MI and 

shorter TTD in the present study. DNA hypomethylation is regarded as a cause of genomic instability, 

and as a matter of fact LINE-1 hypomethylation was found in several conditions, including cancer 

[41], autoimmune diseases [42] and cardiovascular diseases [10]. Specifically, global 

hypomethylation of genomic DNA and gene-specific methylation profiles have been associated to 

conditions already known to predispose to cardiovascular diseases, such as cellular ageing [43], 

atherosclerotic plaques [44], menopausal state and osteoporosis [45]. On the other hand, LINE-1 

hypomethylation could simply be a marker of increased white blood cells proliferation due to 

inflammatory or immunological responses which are known to be active during cardiovascular 

pathogenic processes [10]. In vitro experiments on mouse embryonic stem cells showed that folate 

deficiency affected the homeostasis of folate-mediated one-carbon metabolism, leading to reduced 

LINE-1 methylation [46]. In a targeted analysis, we recently demonstrated on a subset of the EPICOR 

cohort (206 MI cases and 206 matched controls), an inverse relationship between B-vitamins intake 

and DNA-methylation of genes belonging to One Carbon Metabolism and Homocysteine pathways 

[20]. These previous observations, together with our current finding of LINE-1 hypomethylation in 

cases compared to healthy controls, suggest a link between DNA-methylation patterns and CVD risk 

conferred by low folate and B-vitamins intake, that is worthy of further investigation. 

 

Overall, this study analyzed 609 cases and 554 controls, and was sufficiently powered to detect effects 

of the magnitude we found. The discovery and the replica panels share homogeneous features: both 

belong to the European EPIC cohort, subjects were all enrolled in the nineties, and biosamples were 

collected and stored at enrollment according to shared standard protocols [47]. Nevertheless, a 
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limitation of the study is that while EPICOR cases and controls were matched by age, sex, center and 

season of recruitment, this could not be achieved for the EPIC-NL sample, since a DNA sample 

suitable for methylation analysis was not available for all the subjects enrolled in the Dutch EPIC 

cohort. 

Another limitation is that the assessment of the methylation levels was done with different methods 

for the two panels. However, our approach that considered the regional methylation profile as a whole 

instead of single CpGs may contribute to overcome the bias due to measure errors at single CpGs 

level, as highlighted by the correlation between the methylation measures of 16 control samples 

assayed with both BeadChip and MassArray Assay (Additional file 2: Supplementary Methods). 

Moreover, although the CpGs positions assayed with the 2 methods are not exactly the same due to 

technical constrains (Additional file 2: Supplementary Methods, and Figure S4), still the analysis of 

methylation data collected with each one of the two different techniques highlighted a cluster of CpGs 

with correlated methylation levels within exon1 of ZBTB12, hypomethylated in MI cases vs controls. 

This complies with our study design assumption that the methylation status of multiple CpGs with 

correlated methylation could better describe the cumulative methylation status of the underlying 

region, and that this could be potentially related to the underlying biological function, if any. The 

same goes for LINE-1 methylation, which is defined as the cumulative DNA-methylation status of the 

several CpGs located in LINE-1 sequences across the genome. Also in this case, different portions of 

LINE-1 sequence were investigated with the 2 techniques, i.e. CpGs scattered across the whole LINE-

1 sequence were analyzed on the BeadChip, whereas CpGs within base pairs 335–767 of the LINE-1 

promoter (Gen-Bank accession number X58075.1) were analyzed by MassArray according to Wang 

et al. [48] (Figure S4). 

Despite slight differences between EPICOR and EPIC-NL panels in LINE-1 average methylation 

levels, arguably due to the use of different methods and different assayed CpGs, our results 

highlighted the same effect trend in both the EPIC sub-cohorts. 

When included in the same multivariate models, the estimated risks associated to ZBTB12-DMR and 

LINE-1 methylation profiles were not attenuated by the adjustment for known risk factors (Additional 

file 1: Table S3A and B), suggesting that they independently contribute to MI risk estimate. 
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Moreover, we observed that discrimination between MI cases and controls and prediction accuracy 

both improved when DNA-methylation was taken into account together with traditional risk factors, 

suggesting the DNA-methylation could be an independent predictor of MI risk, although further 

confirmation on a larger sample is warranted. 

Our results highlight the possibility to identify MI-related methylation marks on DNA from blood 

samples drawn in a preclinical condition, for some subjects many years before the MI. Unfortunately, 

due to the initial EPIC study design that envisaged only one blood sampling at enrollment time, it was 

not possible to monitor individual DNA-methylation level changes at different time points. Further 

replication in additional cohorts with prospective design and biospecimens sampled at multiple points 

along time is warranted to elucidate DNA-methylation changes across time, from ‘healthy’ status to 

MI. This will allow a better estimation of the ZBTB12-DMR and LINE1 de-methylation rates 

associated with increased MI risk, in the view of a personalized risk assessment that will take into 

account TRFs and MI risk biomarkers, such as DNA-methylation profiles. 

 

Conclusions 

To the best of our knowledge, this is the first paper reporting an association between MI risk and 

DNA-methylation profiles identified from epigenome-wide data in prospectively collected subjects 

with well-recorded clinical endpoints, and replicated in an independent sample form the same large 

European prospective cohort. 

Taken together, the reported results suggest the possible role of DNA-methylation patterns in 

peripheral blood white cells as promising early MI biomarkers to be potentially used, together with 

TRFs, for individual MI risk assessment. 

 

Methods 

Study population 

For the discovery phase, 292 MI cases and 292 matched healthy controls were recruited among those 

enrolled in the EPICOR study [49], a case-cohort study nested within the EPIC-Italy prospective 

cohort (~50.000 participants) [50]. All EPICOR cases developed MI after recruitment (average time 
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to diagnosis 6.90 years). Cases were identified at cohort follow-up from hospital discharge databases, 

and were then matched with healthy controls from the same cohort without evidence of MI at follow-

up. Matching parameters were age at recruitment (±1.5 years), sex, center and season of recruitment. 

Results from the discovery phase were replicated in an independent sample of 317 Dutch subjects 

from the prospective EPIC-NL cohort [51] who developed MI during follow-up (average time to 

diagnosis 5.64 years) and 262 unmatched healthy controls from the same cohort. Details on 

anthropometrics, lifestyle, biochemical measurements, and MI definition are provided in Additional 

file 2: Supplementary Methods. 

 

Ethical considerations 

Our study complies with the Declaration of Helsinki principles, and conforms to ethical requirements. 

All volunteers signed an informed consent form at enrollment in the respective studies. The EPIC 

study protocol was approved by Ethics Committees of the International Agency for Research on 

Cancer (Lyon, France), as well as by local Ethical Committees of the participant centers. The 

EPICOR study was approved by the Ethical Committee of the Human Genetics Foundation (Turin, 

Italy). For the Dutch EPIC samples, approval was obtained by the Institutional Review Board of the 

University Medical Center Utrecht (Utrecht, the Netherlands) and the Medical Ethical Committee of 

TNO Nutrition and Food Research (Zeist, the Netherlands). 

 

DNA-methylation measurement 

DNA-methylation was measured in DNA from WBCs collected at subject enrollment into EPIC and 

stored in liquid nitrogen [47]. The Infinium HumanMethylation450 BeadChip (Illumina Inc., San 

Diego, CA) and the MALDI-TOF mass spectrometry methylation assay (Sequenom Inc., S. Diego, 

CA, USA) were used for the discovery phase and the replication phase, respectively. Laboratory 

methods for DNA-methylation levels measurement, are detailed in Additional file 2: Supplementary 

Methods. 

 

Whole-genome methylation data quality control (QC) and normalization procedures 
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DNA-methylation levels were measured as Beta-values, ranging from 0 to 1. We excluded from the 

analyses: i) single Beta-values with detection p-value≥0.01; ii) CpG loci with detection p-value≥0.01 

in more than 20% of the assayed samples; iii) probes containing SNPs with MAF≥0.05 in the CEPH 

(Utah residents with ancestry from northern and western Europe, CEU) population; iv) samples with a 

global call rate ≤95%. 

From the 435,457 CpGs that passed QCs (~95% of BeadChip content), we further removed 9,959 

CpGs whose methylation signal was detected by cross-hybridizing and SNPs-containing probes [52]. 

A total of 292 matched case-control pairs and 425,498 CpG sites were used in the following analyses. 

Background normalization was performed on raw methylation data according to Marabita et al. [53]. 

 

Statistical analyses 

Statistical analyses were conducted using the open source R v3.0.1 package [54]. 

Analyses were performed stratifying by sex, in order to account for the occurrence of sex-specific 

DNA-methylation, and for the different cardiovascular risk profiles between men and women (see 

Discussion). Descriptive statistics of sample characteristics, anthropometrics, lipid profiles, 

hypertension, and lifestyle habits (smoke, alcohol consumption) was performed. 

 

Case-control DMRs analysis 

We analyzed the EPICOR methylation data (discovery phase, 425,498 CpGs) with the A-clustering 

algorithm [24] to identify clusters of 2 or more neighboring CpGs with correlated methylation levels. 

The association between each one of the identified methylation clusters and case-control status was 

tested by Generalized Estimating Equations (GEE) [55] to identify DMRs between MI cases and 

controls. We adjusted the analyses for matching variables (age at recruitment, center, season of 

recruitment, sex in the overall analyses), estimated WBC composition (for the EPICOR panel only), 

and for the major cardiovascular risk factors [56] i.e. smoking status, BMI, blood pressure, physical 

activity (for the EPICOR panel only). EPICOR sample analyses were additionally adjusted for 

‘control probes’ Principal Components, while EPIC-NL analyses did not require batch correction (see 

Additional file 2, Removal of technical biases). 
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As fasting glucose measurement was missing for >20% of the EPICOR and EPIC-NL samples, 

glucose level was excluded from the adjustment covariates. Lipid levels were missing for 48 EPICOR 

subjects: lipid levels were omitted as covariates too, after verification that inclusion or exclusion of 

this parameter did not substantially affected the results (Additional File 2: Supplementary Methods). 

Due to the small number of subjects with incident diabetes identified at follow-up (n=9), diabetes was 

not included in the covariate list. 

DMRs with FDR Q-value<0.05 were considered statistically significant and investigated in the EPIC-

NL sample with the same statistical approach. The Q statistic [57] was used to assess heterogeneity 

between the two sample panels: provided no heterogeneity was found, an inverse variance weighted 

fixed effect meta-analysis, was additionally carried out to achieve an overall estimate of the two 

studies. 

 

Case-control LINE-1 methylation analyses 

To analyze LINE-1 methylation levels from BeadChip data we first identified all the BeadChip’s 

CpGs lying in LINE-1 sequences according to the UCSC Genome Browser database. The cumulative 

DNA-methylation level of LINE-1 sequences was computed, for each subject, as the average 

methylation level across the 12,762 CpGs, out of the >450K assayed on the BeadChip, that were 

annotated in LINE-1 sequences. Case-control differences were assayed by logistic regression, with 

methylation levels as a continuous variable, and the same adjustment used for the case-control DMRs 

discovery and replication analyses. For replication purposes, the same analysis was performed on the 

EPIC-NL samples using LINE-1 methylation data from MassARRAY analysis (Additional file 2: 

Supplementary Methods). A LINE-1 methylation meta-analysis of the two studies was also done as 

described above. 

 

DNA methylation and MI risk 

EPICOR and EPIC-NL subjects, stratified by sex and by study, were clustered with a RPMM 

algorithm [58] into 4 classes according to their ZBTB12-DMR methylation profile, irrespective of 

case-control status. Each subject was also allocated to a LINE-1 methylation class (above/below the 
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median). The association between MI and DNA-methylation (as RPMM class, or LINE-1 methylation 

profile) was evaluated on the EPIC-NL panel by logistic regression analysis, stratifying by sex. 

Moreover, to test the dependence/independence of the DNA-methylation effects from the traditional 

risk factors, we compared the ORs associated to each RPMM class and to LINE-1 methylation status 

under three logistic regression models, progressively including additional covariates at each step. To 

this purpose, the same analysis was done on the EPICOR discovery panel as well, under the caveat 

that the estimated ORs in this case should not be considered as a risk estimate, being assessed in the 

discovery panel and, as such, putatively inflated. Briefly, Model 1 included the matching variables 

only, Model 2 included the whole set of covariates used for the case-control DMRs discovery and 

replication analyses, and Model 3 was fully adjusted with the comprehensive set of variables as 

available in the 2 studies. Further methodological details are provided in Additional file 2: 

Supplementary Methods. 

 

Discrimination, reclassification, and calibration 

We tested for the improvement in the performance of MI risk prediction when including DMRs and 

LINE-1 profiles identified in the EPICOR dataset (discovery phase) by running discrimination and 

reclassification analyses on the independent EPIC-NL dataset. Two models were compared: the first 

one included only TRFs that were significantly associated to MI in our study or reported in the 

literature to be associated to MI (Figure 1, legend); the second one comprised TRFs as model 1 plus 

ZBTB12-RPMM classes and LINE-1 methylation class. 

For discrimination, we compared the AUC of the two models by the DeLong test [59]. For 

reclassification, we computed the NRI and IDI indices [60]. The goodness-of-fit was evaluated by the 

Hosmer-Lemeshow (HL) test [61] in order to assess the proper calibration of the model. 

 

DNA-methylation and TTD 

Being EPICOR and EPIC-NL prospective cohorts with incident MI cases identified during cohort 

follow-up, we investigated the relationship between methylation and TTD, i.e. the time lapse between 

blood collection and the MI event. EPICOR and EPIC-NL cases, stratified by study and by sex, were 
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divided in tertiles according to TTD. Control groups were used as reference. The occurrence of a 

linear trend between DNA-methylation levels and TTD, as ordinal categorical variable, was tested by 

GEE (details in Additional file 2). 
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Abbreviations 

WBCs: white blood cells 

MI: myocardial infarction 

DMR: differentially methylated region 

CVD: cardiovascular disease 

LINE-1: long interspersed nuclear element-1 

EWAS: epigenome-wide association study 

EPIC: European Prospective Investigation into Cancer and Nutrition 

BMI: body mass index 

WHR: waist-to-hip ratio 

QC: quality control 

FDR: false discovery rate 

TRFs: traditional risk factors 

NRI index: net reclassification improvement index 

IDI index: integrated discrimination improvement index 

AUC: area under receiver operating curve 

RPMM: recursively partitioned mixture model 

TTD: time to disease 

MBPs: methyl-CpG binding proteins 

GEE: generalized estimating equations 

Beta-value: estimate of methylation level at each CpG 
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Figure Legends 

 

Figure 1. Receiver Operating Curves (ROC), EPIC-NL validation sample 

Model1 (TRFs, dotted line) includes age, sex, center of recruitment, smoking habits, BMI, WHR, 

lipid levels, blood pressure, menopausal status in women. 

Model2 (TRFs+Meth., solid line), as Model1 plus ZBTB12-RPMM classes, LINE-1 methylation 

profile. 

Panel A: EPIC-NL Men; B: EPIC-NL Women. Statistics in Table 2. 

 

Figure 2. Calibration Plots, EPIC-NL validation sample 

Goodness of Fit, Model1 (TRFs, triangles) vs Model2 (TRFs+Meth., dots). 

Hosmer-Lemeshow test: Men: PTRF=0.118, PTRF+M=0.414; Women: PTRF=0.636, PTRF+M=0.724 

Panel A: EPIC-NL Men; B: EPIC-NL Women. Statistics in Table 2. 

 

Supplementary Figures Legends 

Figure S1: Quantile-Quantile plot, EPICOR overall subjects 

 

Figure S2: Quantile-Quantile plot, EPICOR men 

 

Figure S3: Quantile-Quantile plot, EPICOR women 

 

Figure S4: Locations of ZBTB12 and LINE-1 CpG sites investigated by Sequenom MassARRAY 

CpGs (in red) investigated within ZBTB12-DMR, LINE-1, and flanking primers (upper case: 

complementary to DNA; lower case: T7-promoter sequence and 10mer tag). 

CpG sites that could not be tested individually due to MassArray technology constrains, but had to be 

tested jointly with neighboring CpGs as a single unit, are underlined: the methylation level is the 

cumulative value of all the sites within the CpG unit. 
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TABLE 1. EPICOR and EPIC-NL sample descriptive 

  EPICOR MEN    EPICOR WOMEN    EPIC-NL MEN   EPIC-NL WOMEN    

  

CASES 

(N=188) 

CONTROLS 

(N=188) 

  

 CASES 

(N=104) 

CONTROLS 

(N=104) 

  

 CASES 

(N=116) 

CONTROLS 

(N=83) 

  

CASES 

(N=201) 

CONTROLS 

(N=179) 

  

 

 

N (%) N (%) 

 

 

N (%) N (%) 

 

 

N (%) N (%) 

 

N (%) N (%) 
  

 

Centre                            

Varese 42 (22.34) 42 (22.34)    67 (65.69) 67 (65.69)    
             

Ragusa 19 (10.11) 19 (10.11)    3 (2.94) 3 (2.94)    
             

Turin 127 (67.55) 127 (67.55)    23 (22.55) 23 (22.55)    
             

Naples -- --    11 (10.78) 11 (10.78)    
             

Utrecht               -- --   149 (74.13) 140 (78.21)    

Bilthoven               116 (100) 83 (100)   52 (25.87) 39 (21.79)    
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Smoking status 

      

 

    

 

 

            
 

Never 33 (17.55) 50 (26.60)    53 (50.96) 73 (70.19)    19 (16.38) 18 (21.69)   60 (29.85) 85 (47.49)    

Former 70 (37.23) 87 (46.28) 

 

* 11 (10.58) 13 (12.50) 

 

* 34 (29.31) 32 (38.55)   48 (23.88) 48 (26.81)   * 

Current 85 (45.21) 51 (27.13)    40 (38.46) 18 (17.31)    62 (53.45) 33 (39.76)   89 (44.28) 45 (25.14)    

NA         1 (0.86)   4 (1.99) 1 (0.56)   

Menopausal Status 
      

 
      

 
            

 

Pre-menopause        27 (25.96) 26 (25.00)          43 (21.39) 42 (23.46)    

Post-menopause        77 (74.04) 78 (75.00)          158 (78.61) 137 (76.54)    

  Mean±SD Mean±SD    Mean±SD Mean±SD    Mean±SD Mean±SD   Mean±SD Mean±SD   

Age at recruitment (years) 50.98±6.93 50.92±7.01    55.01±7.40 55.01±7.51    51.51±7.68 51.11±8.30   58.56±8.74 59.30±8.12    

Avg. Follow -up (years) 12.98±2.29 13.26±2.06     12.24±1.97 12.66±1.16    13.07±5.21 15.25±2.31†  

 

11.61±4.92 14.27±2.62† 

 

 

Avg. TTD (years) 7.14±3.88  --    6.54±3.57 --    5.44±3.22 -- 

 

5.76±3.06 --    
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BMI (kg/m2) 27.05±2.96 26.35±3.12† 

 

 26.95±4.69 25.93±5.11    27.12±3.30 27.08±3.15   26.47±4.24 26.05±4.17    

WHR 0.94±0.06 0.93±0.06† 

 

 0.83±0.06 0.79±0.06† 

 

 0.95±0.08 0.94±0.08   0.82±0.07 0.80±0.07†   

Total Cholesterol (mmol/L) 6.10±1.12 5.86±1.22    6.42±1.23 6.36±1.16    6.24±0.95 5.79±0.97† 

 

5.51±0.98 5.27±0.98† 

 

 

LDL Cholesterol (mmol/L) 3.94±1.00 3.60±1.01† 

 

 4.07±1.15 3.97±1.01    3.60±0.94 3.34±0.92   3.44±0.82 3.19±0.77† 

 

 

HDL Cholesterol (mmol/L) 1.30±0.29 1.48±0.37†   1.55±0.39 1.76±0.41† 

 

 1.11±0.28 1.12±0.28   1.16±0.33 1.27±0.36† 

 

 

Triglycerides (mmol/L) 1.89±0.99 1.71±1.04    1.74±1.43 1.38±0.57†   2.28±1.27 2.28±1.46   1.77±0.98 1.54±0.91†   

SBP (mmHg) 137.47±16.56 135.04±19.03    144.36±9.77 136.76±10.08† 

 

 134.43±17.61 128.51±14.93†  138.50±22.23 133.59±20.76† 

 

 

DBP (mmHg) 85.38±8.96 84.97±10.80    86.08±22.13 84.97±19.02    84.96±10.71 80.60±10.19† 

 

81.99±11.20 79.22±11.18† 

 

 

Alcohol (gr/day) 23.46±20.26 24.98±20.90    6.29±10.78 8.76±15.43    19.42±21.89 18.41±22.27   7.55±11.24 8.44±12.21    

 

*Chi-Squared test P<0.05 

†T-Test P<0.05 

LDL = Low Density Lipoprotein; HDL = High Density Lipoprotein; SBP = Systolic Blood Pressure; DBP = Diastolic Blood Pressure; TTD: time to disease.  
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TABLE 2. Discrimination and reclassification indices, EPIC-NL validation sample 

 

 

 

 

 

 

 

 

 

  
AUCTRF (95%CI) AUCTRF+M (95%CI) DeLong's test P NRI (95%CI) PNRI IDI (95%CI) PIDI 

EPIC-NL MEN 0.66 (0.58-0.74) 0.70 (0.63-0.78) 0.147 0.47 (0.19-0.76) 0.001 0.04 (0.01-0.08) 0.004 

EPIC-NL 

WOMEN 0.66 (0.61-0.72) 0.69 (0.63-0.74) 0.095 0.23 (0.02-0.43) 0.034 0.03 (0.01-0.05) 0.001 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



38 

Table 3. DNA-methylation and time-to-disease (TTD) 

 

  ZBTB12  
 

   LINE-1  
  

 

TTD Class* Range‡ 
Effect-

size 

95%CI se PTREND Cochran’s Q  

Effect-

size

95%CI se PTREND Cochran’s Q 

EPICOR MEN 
 

          

TTD class1 8.89-14.66            

TTD class2 5.23-8.88 -0.0054 -0.0090;-0.0018 0.0018 0.0036   -0.0009 -0.0016;-0.0003 0.0003 0.0044  

TTD class3 0.26-5.20 

 

          

EPIC-NL MEN            

TTD class1 6.97-12.31 

 

          

TTD class2 3.53-6.86 -0.0093 -0.0182;-0.0005 0.0045 0.0389   -0.0035 -0.0070;0.00003 0.0018 0.0537  

TTD class3 0.23-3.52 

 

          

Meta-analysis -0.0059 -0.0093;-0.0027 0.0017 0.0005 0.65†  -0.0010 -0.0017;-0.0004 0.0003 0.0016 2.03† 

EPICOR WOMEN 
 

          

TTD class1 8.16-14.02            

TTD class2 4.40-8.06 -0.0056 -0.0106;-0.0007 0.0025 0.0250   -0.0008 -0.0017;0.00004 0.0004 0.0636  

TTD class3 0.33-4.30 

 

          

EPIC-NL WOMEN            
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TTD class1 7.35-12.30 

 

          

TTD class2 4.40-7.21 -0.0047 -0.0106;0.0011 0.0030 0.1147   -0.0011 -0.0032;0.0010 0.0011 0.2970  

TTD class3 0.04-4.38 

 

          

Meta-analysis -0.0053 -0.0091;-0.0015 0.0019 0.0065 0.05†  -0.0008 -0.0016;-0.0001 0.0004 0.0263 0.07† 

 

*Healthy controls (TTD class 0) were used as reference group. Cases were divided in tertiles (TTD classes 1 to 3) 

‡Minimum and maximum TTD (i.e. time-lapse in years from enrollment to occurrence of MI) for each class 

†d.f.=1, P=ns 
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