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Abstract 

 

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, 

independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution 

and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of 

waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) 

associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci 

newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 

WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. 

The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory 

elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, 

and insulin resistance as processes affecting fat distribution, providing insight into potential 

pathophysiological mechanisms. 

 

 

Depot-specific accumulation of fat, particularly in the central abdomen, confers an elevated risk of 

metabolic and cardiovascular diseases and mortality1. An easily accessible measure of body fat distribution 

is waist-to-hip ratio (WHR), a comparison of waist and hip circumferences. A larger WHR indicates more 

intra-abdominal fat deposition and is associated with higher risk for type 2 diabetes (T2D) and 

cardiovascular disease2,3. Conversely, a smaller WHR indicates greater gluteal fat accumulation and is 

associated with lower risk for T2D, hypertension, dyslipidemia, and mortality4-6. Our previous genome-

wide association study (GWAS) meta-analyses have identified loci for WHR after adjusting for body mass 

index (WHRadjBMI)7,8. These loci are enriched for association with other metabolic traits7,8 and show that 

different fat distribution patterns can have distinct genetic components9,10. 

To further elucidate the genetic architecture of fat distribution and to increase our understanding of 

molecular connections with cardiometabolic traits, we performed a meta-analysis of WHRadjBMI 

associations in 142,762 individuals with GWAS data and 81,697 individuals genotyped with the 

Metabochip11, all from the Genetic Investigation of ANthropometric Traits (GIANT) Consortium. Given the 

marked sexual dimorphism previously observed among established WHRadjBMI loci7,8, we performed 

analyses in men and women separately, the results of which were subsequently combined. To more fully 

characterize the genetic determinants of specific aspects of body fat distribution, we performed secondary 

GWAS meta-analyses for five additional traits: unadjusted WHR, BMI-adjusted and unadjusted waist 



(WCadjBMI and WC) and hip circumferences (HIPadjBMI and HIP). We evaluated the associated loci to 

understand their contributions to variation in fat distribution and adipose tissue biology, and their 

molecular links to cardiometabolic traits. 

RESULTS 

New loci associated with WHRadjBMI 

We performed meta-analyses of GWAS of WHRadjBMI in up to 142,762 individuals of European ancestry 

from 57 new or previously described GWAS7, and separately in up to an additional 67,326 European 

ancestry individuals from 44 Metabochip studies (Extended Data Fig. 1; Supplementary Tables 1-3). The 

combination of these two meta-analyses included up to 2,542,447 autosomal SNPs in up to 210,088 

European ancestry individuals. We defined new loci based on genome-wide significant association (P<5 × 

10−8 after genomic control correction at both the study-specific and meta-analytic levels) and distance 

(>500 kb) from previously established loci7,8. 

We identified 49 loci for WHRadjBMI, 33 of which were new and 16 previously described7,8. Of these, a 

European ancestry sex-combined analysis identified 39 loci, 24 of which were new (Table 1, Supplementary 

Table 4, and Supplementary Figs. 1-3)7,8. European ancestry sex-specific analyses identified nine additional 

loci, eight of which were new and significant in women but not in men (all Pmen>0.05; Table 1, 

Supplementary Fig. 4). The addition of 14,371 individuals of non-European ancestry genotyped on 

Metabochip identified one additional locus in women (rs1534696, near SNX10, Pwomen=2.1×10−8, 

Pmen=0.26, Table 1, Supplementary Tables 1-3), with no evidence of heterogeneity across ancestries 

(Phet=0.86, Supplementary Note). 

Genetic architecture of WHRadjBMI 

To evaluate sexual dimorphism, we compared sex-specific effect size estimates of the 49 WHRadjBMI lead 

SNPs. The effect estimates were significantly different (Pdifference<0.05/49=0.001) at 20 SNPs, 19 of which 

showed larger effects in women (Table 1, Extended Data Fig. 2a), similar to previous findings7,8. The only 

SNP that showed a larger effect in men mapped near GDF5 (rs224333, βmen=0.036 and P=9.0×10−12, 

βwomen=0.009 and P=0.074, Pdifference= 6.4 × 10−5), a locus previously associated with height 

(rs6060369, r2=0.96 and rs143384, r2=0.96, 1000 Genomes Project CEU), though without significant 

differences between sexes12,13. Consistent with the larger number of loci identified in women, variance 

component analyses demonstrated a significantly larger heritability (h2) of WHRadjBMI in women than 

men in the Framingham Heart (h2women=0.46, h2men=0.19, Pdifference=0.0037) and TwinGene studies 

(h2women=0.56, h2men=0.32, Pdifference=0.001, Supplementary Table 5, Extended Data Fig. 2b). 

To identify multiple association signals within observed loci, we performed approximate conditional 

analyses of the sex-combined and sex-specific summary statistics using GCTA14 (Supplementary Note). 

Multiple signals (P<5×10−8) were identified at nine loci (Extended Data Table 1). Fitting SNPs jointly 

identified different lead SNPs in the sex-specific and sex-combined analyses. For example, the MAP3K1-

ANKRD55 locus showed near-independent (linkage disequilibrium (LD) r2<0.06) SNPs 54 kb apart that were 

significant only in women (rs3936510) or only in men (rs459193, Extended Data Table 1, Supplementary 

Table 4). Other signals are more complex. The TBX15-WARS2 locus showed different but correlated lead 

SNPs in men and women near WARS2 (r2=0.43), an independent signal near TBX15, and a distant 

independent signal near SPAG17 (Fig. 1). At the HOXC gene cluster, conditional analyses identified These 



results suggest that association signals mapping to the same locus might act on different underlying genes 

and may not be relevant to the same sex.  

We assessed the aggregate effects of the primary association signals at the 49 WHRadjBMI loci by 

calculating sex-combined and sex-specific risk based on genotypes of the lead SNPs. In a linear regression 

model, the risk scores were associated with WHRadjBMI, with a stronger effect in women than in men 

(overall effect per allele β=0.001, P=6.7×10−4, women β=0.002, P=1.0×10−11, men β=7.0×10−4, P=0.02, 

Extended Data Fig. 3, Supplementary Note). The 49 SNPs explained 1.4% of the variance in WHRadjBMI 

overall, and more in women (2.4%) than in men (0.8%) (Supplementary Table 6). Compared to the 16 

previously reported loci7,8, the new loci almost doubled the explained variance in women and tripled that 

in men. We further estimated that the sex-combined variance explained by all HapMap SNPs15 (h2G) is 

12.1% (SE=2.9%). 

At 17 loci with high-density coverage on the Metabochip11, we used association summary statistics to 

define credible sets of SNPs with a high probability of containing a likely functional variant. The 99% 

credible sets at seven loci spanned <20 kb, and at HOXC13 included only a single noncoding SNP 

(Supplementary Table 7, Supplementary Fig. 5). Imputation up to higher density reference panels will 

provide greater coverage and may have more potential to localize functional variants. 

WHRadjBMI variants and other traits 

Given the epidemiological correlations between central obesity and other anthropometric and 

cardiometabolic measures and diseases, we evaluated lead WHRadjBMI variants in association data from 

GWAS consortia for 22 traits. Seventeen of the 49 variants were associated (P<5×10−8) with at least one of 

the traits: high-density lipoprotein cholesterol (HDL-C; n=7 SNPs), triglycerides (TG; n=5), low-density 

lipoprotein cholesterol (LDL-C; n=2), adiponectin adjusted for BMI (n=3), fasting insulin adjusted for BMI 

(n=2), T2D (n=1), and height (n=7) (Supplementary Tables 8-9). WHRadjBMI SNPs also showed enrichment 

for directional consistency among nominally significant (P<0.05) associations with these traits and also with 

fasting and 2-hour glucose, diastolic and systolic blood pressure (DBP, SBP), BMI and coronary artery 

disease (CAD) (Pbinomial<0.05/23=0.0022, Extended Data Table 2); these results were generally supported 

by meta-regression analysis of the regression coefficient-estimates (Supplementary Table 10). Furthermore, 

our WHRadjBMI loci overlap with associations reported in the NHGRI GWAS Catalog (Table 2, 

Supplementary Table 11)16, the strongest of which is the locus near LEKR1, which is associated 

(P=2.0×10−35) with birthweight17. Unsupervised hierarchical clustering of the corresponding matrix of 

association Z-scores showed three major clusters characterized by patterns of anthropometric and 

metabolic traits (Extended Data Fig. 4). These data extend knowledge about genetic links between 

WHRadjBMI and insulin resistance-related traits; whether this reflects underlying causal relations between 

WHRadjBMI and these traits, or pleiotropic loci, cannot be inferred from our data. 

Potential functional WHRadjBMI variants 

We next examined variants in LD with the WHRadjBMI lead SNPs (r2>0.7) for predicted effects on protein 

sequence, copy number, and cis-regulatory effects on expression (Table 2, Supplementary Tables 12-15, 

Supplementary Note). At 11 of the new loci, lead WHRadjBMI SNPs were in LD with cis-expression 

quantitative trait loci (eQTLs) for transcripts in subcutaneous adipose tissue, omental adipose tissue, liver, 

or blood cell types (Table 2, Supplementary Table 15). No additional sex-specific eQTLs were identified, 

perhaps reflecting limited power (Supplementary Table 16). 



At the 11 WHRadjBMI loci harboring eQTLs, we compared the location of the candidate variants to regions 

of open chromatin (DNase I hypersensitivity and formaldehyde-assisted isolation of regulatory elements 

[FAIRE]) and histone modification enrichment (H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K9ac) in 

adipose, liver, skeletal muscle, bone, brain, blood, and pancreatic islet tissues or cell lines (Supplementary 

Table 17). At seven of these 11 loci, at least one variant was located in a putative regulatory element in two 

or more datasets from the same tissue as the eQTL, suggesting that these elements may influence 

transcriptional activity (Supplementary Table 18). For example, at LEKR1, five variants in LD with the 

WHRadjBMI lead SNP are located in a 1.1 kb region with evidence of enhancer activity (H3K4me1 and 

H3K27ac) in adipose tissue (Extended Data Fig. 5a). 

We also examined whether any variants overlapped with open chromatin or histone modifications from 

only one of the tested tissues, possibly reflecting tissue-specific regulatory elements (Supplementary Table 

18). For example, five variants in a 2.2 kb region, located 77 kb upstream from a CALCRL transcription start 

site, overlapped with peaks in at least five datasets in endothelial cells (Extended Data Fig. 5b), suggesting 

that one or more of these variants may influence transcriptional activity. CALCRL, which is expressed in 

endothelial cells, is required for lipid absorption in the small intestine, and influences body weight in 

mice18. Other variants located in tissue-specific regulatory elements were detected at NMU for endothelial 

cells, at KLF13 and MEIS1 for liver, and at GORAB and MSC for bone (Supplementary Table 18). 

Biological mechanisms 

To identify potential functional connections between genes mapping to the 49 WHRadjBMI loci, we used 

three approaches (Supplementary Note). A survey of literature using GRAIL19 identified 15 genes with 

nominal significance (P<0.05) for potential functional connectivity (Table 2, Supplementary Table 19). The 

predefined gene set relationships across loci identified using MAGENTA20 highlighted signaling pathways 

involving vascular endothelial growth factor (VEGF), phosphatase and tensin (PTEN) homolog, the insulin 

receptor, and peroxisome proliferator-activated receptors (Supplementary Table 20). VEGF signaling plays a 

central, complex role in angiogenesis, insulin resistance, and obesity21, and PTEN signaling promotes 

insulin resistance22. Analyses using DEPICT23 facilitated prioritization of genes at associated loci, analyses 

of tissue specificity, and enrichment of reconstituted gene sets through integration of association results 

with expression data, protein-protein interactions, phenotypic data from gene knockout studies in mice, 

and predefined gene sets. DEPICT identified at least one prioritized gene (false discovery rate (FDR)<5%) at 

nine loci (Table 2, Supplementary Table 21) and identified 234 reconstituted gene sets (161 after pruning of 

overlapping gene sets) enriched for genes at WHRadjBMI loci. Among these we highlight biologically 

plausible gene sets suggesting roles in body fat regulation (including adiponectin signaling, insulin 

sensitivity, and regulation of glucose levels), skeletal growth, transcriptional regulation, and development 

(Fig. 2, Supplementary Table 22). We also note gene sets that are specific for abundance or development of 

metabolically active tissues including adipose, heart, liver, and muscle. Specific genes at the loci were 

significantly enriched (FDR<5%) for expression in adipocyte-related tissues, including abdominal 

subcutaneous fat (Fig. 2, Supplementary Table 23). Together, these analyses identified processes related to 

insulin and adipose biology and highlight mesenchymal tissues, especially adipose tissue, as important to 

WHRadjBMI. We also tested variants at the 49 WHRadjBMI loci for overlap with elements from 60 selected 

regulatory datasets from the ENCODE24 and Epigenomic RoadMap25 data and found evidence of 

enrichment in 12 datasets (P<0.05/60=8.3×10−4, Extended Data Table 3). The strongest enrichments were 

detected for datasets typically attributed to enhancer activity (H3K4me1 and H3K27ac) in adipose, muscle, 

endothelial cells, and bone, suggesting that variants may regulate transcription in these tissues. These 



analyses point to mechanisms linking WHRadjBMI loci to regulation of gene expression in tissues highly 

relevant for adipocyte metabolism and insulin resistance. 

 

We also reviewed functions of candidate genes located near new and previously established WHRadjBMI 

loci7,8, identifying genes involved in adipogenesis, angiogenesis, and transcriptional regulation (Table 2, 

literature review in the Supplementary Note). Adipogenesis candidate genes include CEBPA, PPARG, BMP2, 

HOXC/miR196, SPRY1, TBX15, and PEMT. Of these, CEBPA and PPARG are essential for white adipose tissue 

differentiation26, BMP2 induces differentiation of mesenchymal stem cells toward adipogenesis or 

osteogenesis27, and HOXC8 is a repressor of brown adipogenesis in mice that is regulated by miR-196a28, 

also located within the HOXC region (Fig. 1). Angiogenesis genes may influence expansion and loss of 

adipose tissue29; they include VEGFA, VEGFB, RSPO3, STAB1, WARS2, PLXND1, MEIS1, FGF2, SMAD6, and 

CALCRL. VEGFB is involved in endothelial targeting of lipids to peripheral tissues30, and PLXND1 limits 

blood vessel branching, antagonizes VEGF, and affects adipose inflammation31,32. Transcriptional 

regulators at WHRadjBMI loci include CEBPA, PPARG, MSC, SMAD6, HOXA, HOXC, ZBTB7B, JUND, KLF13, 

MEIS1, RFX7, NKX2-6, and HMGA1. Other candidate genes include NMU, FGFR4, and HMGA1, for which 

mice deficient for the corresponding genes exhibit obesity, glucose intolerance, and/or insulin 

resistance33-35. 

Five additional central obesity traits 

To determine whether the WHRadjBMI variants exert their effects primarily through WC or HIP and to 

identify loci that are not reported for WHRadjBMI, BMI, or height36,37, we performed association analyses 

for five additional traits: WCadjBMI, HIPadjBMI, WHR, WC, and HIP. Based on phenotypic data alone, WC 

and HIP are highly correlated with BMI (r=0.59-0.92), and WHR is highly correlated with WHRadjBMI 

(r=0.82-0.95), while WCadjBMI and HIPadjBMI are moderately correlated with height (r=0.24-0.63, 

Supplementary Table 24). In contrast to WHRadjBMI, which has almost no genetic correlation (see 

Methods) with height (rG<0.04, Extended Data Fig. 2c), WCadjBMI (rG=0.42) and HIPadjBMI (rG=0.82) have 

moderate genetic correlations with height. These data suggest that some, but not all, WCadjBMI and 

HIPadjBMI loci would be associated with height. 

Across all meta-analyses, we identified an additional 19 loci associated with one of the five traits 

(P<5×10−8), nine of which showed significantly larger effects (Pdifference<0.05/19=0.003) in one sex than 

in the other (Table 3, Supplementary Figs. 1-4, Supplementary Table 25). Three of four new loci with larger 

effects in women were associated with HIPadjBMI and three of five new loci with larger effects in men 

were associated with WCadjBMI. Most of the 19 loci showed some evidence of association with 

WHRadjBMI in sex-combined or sex-specific analyses, but four loci showed no association (P>0.01) with 

WHRadjBMI, BMI, or height (Supplementary Tables 8, 26). 

We next asked whether the genes and pathways influencing these five traits are shared with WHRadjBMI 

or are distinct. Candidate genes were identified based on association with other traits, eQTLs, GRAIL, and 

literature review (Extended Data Table 4, Supplementary Tables 8, 11-13, 15-16, 19). Candidate variants 

identified based on LD (r2>0.7) included coding variants in NTAN1 and HMGXB4, and six loci showed 

significant eQTLs in subcutaneous adipose tissue. Based on the literature, several candidate genes are 

involved in adipogenesis and insulin resistance. For example, delayed induction of preadipocyte 

transcription factor ZNF423 in fibroblasts results in delayed adipogenesis38, and NLRP3 is part of 

inflammasome and pro-inflammatory T-cell populations in adipose tissue that contribute to inflammation 



and insulin resistance39. GRAIL analyses identified connections that partially overlap with those identified 

for WHRadjBMI (Supplementary Table 19). Taken together, the additional loci appear to function in 

processes similar to the WHRadjBMI loci. The identification of loci that are more strongly associated with 

WCadjBMI or HIPadjBMI than the other anthropometric traits suggests that the additional traits 

characterize aspects of central obesity and fat distribution that are not captured by WHRadjBMI or BMI 

alone. 

DISCUSSION 

These meta-analyses of GWAS and Metabochip data in up to 224,459 individuals identified additional loci 

associated with waist and hip circumference measures and help elucidate the role of common genetic 

variation in body fat distribution that is distinct from BMI and height. Our results emphasize the strong 

sexual dimorphism in the genetic regulation of fat distribution traits, a characteristic not observed for 

overall obesity as assessed by BMI36. Differences in body fat distribution between the sexes emerge in 

childhood, become more apparent during puberty40, and change with menopause, generally attributed to 

the influence of sex hormones41,42. At loci with stronger effects in one sex than the other, these 

hormones may interact with transcription factors to regulate gene activity. 

Annotation of the loci emphasized the role for mesenchymally-derived tissues, especially adipose tissue, in 

fat distribution and central obesity. The development and regulation of adipose tissue deposition is closely 

associated with angiogenesis29, a process highlighted by candidate genes at several WHRadjBMI loci. These 

tissues are implicated in insulin resistance, consistent with the enrichment of shared GWAS signals with 

lipids, T2D, and glycemic traits. The identification of skeletal growth processes suggests that the underlying 

genes affect early development and/or differentiation of adipocytes from mesenchymal stem cells. In 

contrast, BMI has a significant neuronal component, involving processes such as appetite regulation36. Our 

results provide a foundation for future biological research in the regulation of body fat distribution and its 

connections with cardiometabolic traits, and offer potential target mechanisms for interventions in the 

risks associated with abdominal fat accumulation. 

METHODS 

Study overview 

Our study included 224,459 individuals of European, East Asian, South Asian, and African American 

ancestry. The European ancestry arm included 142,762 individuals from 57 cohorts genotyped with 

genome-wide SNP arrays and 67,326 individuals from 44 cohorts genotyped with the Metabochip11 

(Extended Data Fig. 1, Supplementary Table 1). The non-European ancestry arm comprised ~1,700 

individuals from one cohort of East Asian ancestry, ~3,400 individuals from one cohort of South Asian 

ancestry, and ~9,200 individuals from six cohorts of African American ancestry, all genotyped with the 

Metabochip. There was no overlap between individuals genotyped with genome-wide SNP arrays and 

Metabochip. For each study, local institutional committees approved study protocols and confirmed that 

informed consent was obtained. 

Traits 

Our primary trait was WHRadjBMI, the ratio of waist and hip circumferences adjusted for age, age2, study-

specific covariates if necessary, and BMI. For each cohort, residuals were calculated for men and women 

separately and then transformed by the inverse standard normal function. Cohorts with related men and 



women provided inverse standard normal transformed sex-combined residuals. For each cohort, the same 

transformations were applied to other traits: (i) WHR without adjustment for BMI (WHR); (ii) waist 

circumference with (WCadjBMI) and without (WC) adjustment for BMI; and (iii) hip circumference with 

(HIPadjBMI) and without (HIP) adjustment for BMI. 

European ancestry meta-analysis for genome-wide SNP array data 

Sample and SNP quality control (QC) were undertaken within each cohort (Supplementary Table 3)44. The 

GWAS scaffold in each cohort was imputed up to CEU haplotypes from HapMap resulting in ~2.5 million 

SNPs. Each directly typed and imputed SNP passing QC was tested for association with each trait under an 

additive model in a linear regression framework (Supplementary Table 3). 

SNP positions are reported based on NCBI Build 36. For each cohort, sex-specific association summary 

statistics were corrected for residual population structure using the genomic control inflation factor45 

(median λGC=1.01, range=0.99 – 1.08). SNPs were removed prior to meta-analysis if they had a minor allele 

count ≤ 3, deviation from Hardy-Weinberg equilibrium exact P<10−6, directly genotyped SNP call rate<95%, 

or low imputation quality (below 0.3 for MACH, 0.4 for IMPUTE, and 0.8 for PLINK). Association summary 

statistics for each trait were combined via inverse-variance weighted fixed-effects meta-analysis and 

corrected for a second round of genomic control to account for structure between cohorts (Extended Data 

Fig. 1, Supplementary Fig. 1). 

European ancestry meta-analysis for Metabochip data 

Sample and SNP QC analyses were undertaken in each cohort (Supplementary Table 3). Each SNP passing 

QC was tested for association with each trait under an additive model using linear regression. The 

Metabochip array11 is enriched, by design, for loci associated with anthropometric and cardiometabolic 

traits, thus, we based our correction on 4,425 SNPs selected for inclusion based on associations with QT-

interval that were not expected to be associated with anthropometric traits (>500 kb from variants on 

Metabochip46 for these traits). These study-specific inflation factors had a median λGC=1.01(range 0.93–

1.11), with only one study exceeding 1.10. After removing SNPs for QC as described in the previous section, 

association summary statistics were combined via inverse-variance weighted fixed-effects meta-analysis 

and corrected for a second round of genomic control on the basis of QT-interval SNPs to account for 

structure between cohorts. 

European ancestry meta-analyses 

Association summary statistics from the two parts of the European ancestry arm were combined via 

inverse-variance weighted fixed-effects meta-analysis using METAL47 with no further genomic control 

correction. Results were reported for SNPs with a sex-combined sample size≥50,000. The meta-analyses 

were repeated for men and women separately for each trait. Analyses were corrected for population 

structure within each sex. The meta-analysis of WHRadjBMI in men included up to 93,480 individuals, and 

in women up to 116,742 individuals. 

Meta-analyses of studies of all ancestries 

Sample and SNP QC, tests of association, genomic control correction (median λGC=1.01, range=0.90–1.17, 

with only one study exceeding 1.10), and meta-analyses were performed as described above. Association 

summary statistics from the European and non-European ancestry meta-analyses were combined via 

inverse-variance weighted fixed-effects meta-analysis without further genomic control correction. 



Heterogeneity 

For each lead SNP, we tested for sex differences based on the sex-specific beta estimates and standard 

errors, while accounting for potential correlation between estimates as previously used in Randall et al10. 

Similarly, we tested for potential differences in effects between European and non-European samples, 

comparing the effects from GWAS+Metabochip data for Europeans and Metabochip data for non-

Europeans, and we tested for differences between population-based studies and samples ascertained on 

diabetes status, and cardiovascular disease, or both. In assessing effects of ascertainment overall, we 

compared effects in seven subsets of our study sample using population-based studies (i.e., those not 

ascertained on any phenotype) as the referent population: 1) all studies ascertained on any phenotype, 2) 

T2D cases, 3) T2D controls, 4) T2D cases+controls, 5) CAD cases, 6) CAD controls, and 7) CAD 

cases+controls. We evaluated significance for heterogeneity tests within each comparison using a 

Bonferroni-corrected p-value of 0.05/49=0.05/49=1.02×10−3 as well as an FDR threshold48 of <5% 

(Supplementary Table 28). Between-study heterogeneity in all meta-analyses was assessed using I2 

statistics49. 

Heritability and genetic and phenotypic correlations of waist traits 

We calculated the heritability and genetic correlations of several central obesity traits using variance 

component models50,51 in the Framingham Heart Study (FHS) and TWINGENE study. In this approach, the 

phenotypic variance is decomposed into additive genetic, non-additive genetic, and environmental sources 

of variation (including model error), and for sets of traits, the covariances between traits. We report narrow 

sense heritability (h2), the ratio of the additive genetic variance to the total phenotypic variance. Sex-

specific inverse normal trait residuals, adjusted for age (and cohort in FHS), were used to estimate 

heritability separately in men and women, using variance components analysis in SOLARv.4.2.752 (FHS) or 

M×1.70353 (TWINGENE). Additionally, the sex-specific residuals were used to conduct bivariate 

quantitative variance component genetic analyses that calculate genetic and environmental correlations 

between traits. The genetic correlations obtained are estimates of the additive effects of shared genes, and 

a genetic correlation significantly different from zero suggests a direct influence of the same genes on more 

than one trait. Similarly, significant environmental correlations suggest shared environmental effects. 

We estimated sex-stratified correlations between all waist traits, as well as BMI, height, and weight in 

TWINGENE, FHS, KORA, and EGCUT. In TWINGENE and FHS, age-adjusted Pearson correlations were used; 

in EGCUT and KORA, correlations were adjusted for age and age2. 

European ancestry approximate conditional analyses 

To evaluate the evidence for multiple association signals within identified loci, we performed approximate 

conditional analyses of sex-combined, women-specific, and men-specific data as implemented in the GCTA 

software14,54. This approach makes use of association summary statistics from the combined European 

ancestry meta-analysis and a reference dataset of individual-level genotype data to estimate LD between 

variants and hence also the approximate correlation between allelic effect estimates in a joint association 

model. 

To evaluate robustness of the GCTA results, we performed analyses using two reference datasets: 

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) consisting of 949 individuals from 

Uppsala County, Sweden with both GWAS and Metabochip genotype data; and Atherosclerosis Risk in 

Communities (ARIC) consisting of 6,654 individuals of European descent from four communities in the USA 



with GWAS data. Both GWAS datasets were imputed using data from Phase II of the International HapMap 

Project55. Results shown use the PIVUS reference dataset because Metabochip genotypes are available 

(see a comparison in the Supplementary Note). Assuming that the LD correlations between SNPs more than 

10 Mb away are zero, and using each reference dataset in turn, we performed a genome-wide stepwise 

selection procedure to select associated SNPs one-by-one at a P value<5×10−8. For each locus at which 

multiple association signals were observed in the sex-combined, women-, and/or men-specific data, the 

SNPs selected by GCTA as independently associated with WHRadjBMI in any of the three meta-analyses are 

reported, with the SNP identified in the sex-combined analysis taken by default when proxies are identified 

in the women- and/or men-specific analyses. For SNPs not selected by a particular joint conditional 

analysis, but identified by either of the other two analyses, summary statistics were calculated for 

association analysis of the SNP conditioned on the GCTA-selected SNP(s). 

Genetic risk score 

We calculated a genetic risk score for each individual in the population-based KORA study (1,670 men and 

1,750 women) using the 49 identified variants, weighted by the allelic effect from the European ancestry 

meta-analyses of WHRadjBMI. Sex-combined scores were computed on the basis of the sex-combined 

meta-analysis. Sex-stratified scores were calculated on the basis of men- and women-specific meta-

analyses, where SNPs not achieving nominal significance in the respective sex (P≥0.05) were excluded. For 

each individual, the sex-combined and sex-stratified risk scores were rounded to the nearest integer for 

plotting. Risk scores were then tested for association with WHRadjBMI using linear regression. 

Explained variance 

We calculated the variance explained by a single SNP as: 

2∙MAF∙(1−MAF)∙β2Var(Y) 

 

where MAF is the minor allele frequency, β is the SNP effect estimate computed by meta-analysis, and 

Var(Y) is the variance of the phenotype Y as it went into the study-specific association testing. To derive the 

total variance explained by a set of independent SNPs, we computed the sum of single-SNP explained 

variances under the assumption of independent contributions. 

To estimate the polygenic variance explained by all HapMap SNPs, we used the all-SNP estimation approach 

implemented in GCTA and analysed individuals in the ARIC and TwinGene cohorts, including the first 20 

principal components as fixed covariates. After removing one of each pair of individuals with estimated 

genetic relatedness>0.025, 11,898 unrelated individuals with WHRadjBMI were available. 

Fine-mapping analyses 

We considered each identified locus, defined as 500 kb upstream and downstream of the lead SNP, and 

computed 95% credible intervals using a Bayesian approach. On the basis of association summary statistics 

from the European ancestry, non-European ancestry, or all ancestries sex-combined meta-analyses, we 

calculated an approximate Bayes’ factor56 in favor of association, given by: 

 BFj=1−Rj−−−−−√exp(−Rjβ2j2σ2j) 



 

where βj is the allelic effect of the jth SNP, with corresponding standard error σj, and Rj=0.04/(σ2j+0.04), 

which incorporates a N(0,0.22) prior for βj. This prior gives high probability to small effect sizes, and only 

small probability to large effect sizes. We then calculated the posterior probability that the jth SNP is causal 

by: 

φj=BFjΣkBFk 

 

where the summation in the denominator is over all SNPs passing QC across the locus. We compared the 

meta-analysis results and credible sets of SNPs likely to contain the causal variant as described57. Assuming 

a single causal variant at each locus, a 95% credible set of variants was then constructed by: (i) ranking all 

SNPs according to their Bayes’ factor; and (ii) combining ranked SNPs until their cumulative posterior 

probability exceeded 0.95. For each locus, we calculated the number of SNPs contained within the 95% 

credible sets, and the length of the genomic interval covered by these SNPs. 

Comparison of loci across traits 

To determine whether the identified loci were also associated with any of 22 cardio-metabolic traits, we 

obtained association data from meta-analysis consortia DIAGRAM (T2D)58, CARDIoGRAM-C4D (CAD)59, 

ICBP (SBP, DBP)60, GIANT (BMI, height)36,37, GLGC (HDL, LDL, and TG)61, MAGIC (fasting glucose, fasting 

insulin, fasting insulin adjusted for BMI, and two-hour glucose)62-64, ADIPOGen (BMI-adjusted 

adiponectin)65, CKDgen (urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate 

(eGFR), and overall CKD)66,67, ReproGen (age at menarche, age at menopause)68,69, and GEFOS (bone 

mineral density)70; others provided association data for IgA nephropathy71 (also Kiryluk K, Choi M, Lifton 

RP, Gharavi AG, unpublished data) and for endometriosis (stage B cases only)72. Proxies (r2>0.80 in CEU) 

were used when an index SNP was unavailable. 

We also searched the National Human Genome Research Institute (NHGRI) GWAS Catalog for previous SNP-

trait associations near our lead SNPs73. We supplemented the catalog with additional genome-wide 

significant SNP-trait associations from the literature13,70,74-80. We used PLINK to identify SNPs within 500 

kb of lead SNPs using 1000 Genomes Project Pilot I genotype data and LD (r2) values from CEU81,82; for 

rs7759742, HapMap release 22 CEU data81,83 were used. All SNPs within the specified regions were 

compared with the NHGRI GWAS Catalog16. 

Enrichment of concordant cross-trait associations and effects 

To evaluate whether the alleles associated with increased WHRadjBMI at the 49 identified SNPs convey 

effects for any of the 22 cardiometabolic traits, we conducted meta-regression analyses of the beta-

estimates on these metabolic outcomes from other consortia with the beta-estimates for WHRadjBMI in 

our data65. 

Based on the association data across traits, we generated a matrix of Z-scores by dividing the association 

betas for each of the 49 WHRadjBMI SNPs for each of 22 traits by their respective standard errors. The 

traits did not include WHRadjBMI or nephropathy in Chinese subjects, but did include HIPadjBMI and 

WCadjBMI. Each Z-score was made positive if the original trait-increasing allele also increased the look-up 

trait and negative if not. Missing associations with were assigned a value of zero. We performed 

unsupervised hierarchical clustering of the Z score matrix in R using the default settings of the “heatplot” 



function from the made4 library (version 1.20.0), agglomerating clusters using average linkage and Pearson 

correlation metric distance. The rows and columns of matrix values were each automatically scaled to 

range from 3 to −3. Confidence in the hierarchical clustering was assessed by bootstrap analysis (10,000 

resamplings) using the R package “pvclust”84. 

Identification of candidate functional variants. The 1000 Genomes CEU pilot data were queried for SNPs 

within 500 kb and in LD (r2>0.7, an arbitrary threshold) with any index SNP. All identified variants were 

then annotated based on RefSeq transcripts using Annovar to identify potential nonsynonymous variants 

near identified association signals. The distance between each variant and the nearest transcription start 

site were calculated using gene annotations from GENCODE (v.12). 

 To investigate whether SNPs in LD with index SNPs are also in LD with common copy number variants 

(CNVs), we extracted waist trait association results for a list of SNP proxies that are in high LD (r2>0.8, CEU) 

with CNVs in European populations as described previously7. Altogether 6,200 CNV-tagging SNPs were 

used, which are estimated collectively to capture>40% of CNVs>1 kb in size. 

Expression quantitative trait loci (eQTLs). We examined our lead SNPs in eQTL datasets from several 

sources (Supplementary Note) for cis effects significant at P<10−5. We then checked if the trait-associated 

SNP also had the strongest association with the expression level of its corresponding transcript. If not, we 

identified a nearby SNP that had a stronger association with expression (peak transcript SNP) of that 

transcript. To check whether effects of the peak transcript SNP and waist trait-associated SNP overlapped, 

we conducted conditional analyses to estimate associations between the waist-associated SNP and 

transcript level when the peak transcript-associated SNP was also included in the model, and vice versa. If 

the association for the expression-associated SNP was not significant (P>0.05) when conditioned on the 

waist-associated SNP, we concluded that the waist-associated SNP is likely to explain a substantial 

proportion of the variance in gene transcript levels in the region. For SNPs that passed these criteria in 

either women or men eQTL datasets from deCODE, we investigated sex heterogeneity in gene transcript 

levels for whole blood (312 men, 435 women) and subcutaneous adipose tissue (252 men, 351 women) 

based on the sex-specific beta estimates and standard errors, while accounting for potential correlation 

between the sex-specific associations8. 

Epigenomic regulatory element overlap with individual variants. We examined overlap of regulatory 

elements with the 68 trait-associated variants and variants in LD with them (r2>0.7, 1000 Genomes Phase 1 

version 2 EUR85), totaling 1,547 variants. We obtained regulatory element data sets from the ENCODE 

Consortium24 and Roadmap Epigenomics Project25 corresponding to eight tissues selected based on a 

current understanding of WHRadjBMI pathways. The 226 regulatory element datasets included 

experimentally identified regions of open chromatin (DNase-seq, FAIRE-seq), histone modification 

(H3K4me1, H3K27ac, H3K4me3, H3K9ac, and H3K4me2), and transcription factor binding (Supplementary 

Table 17). When available, we downloaded data processed during the ENCODE Integrative Analysis24. We 

processed Roadmap Epigenomics sequencing data with multiple biological replicates using MACS286 and 

the same Irreproducible Discovery Rate pipeline used in the ENCODE Integrative Analysis. Roadmap 

Epigenomics data with only a single replicate was processed using MACS2 alone. 

Global enrichment of WHRadjBMI-associated loci in epigenomic datasets. We performed permutation-

based tests in a subset of 60 open chromatin (DNase-seq) and histone modification (H3K27ac, H3K4me1, 

H3K4me3, H3K9ac) datasets to identify global enrichment of the WHRadjBMI-associated loci. We matched 

the index SNP at each locus with 500 variants having no evidence of association (P>0.5, ~1.2 million total 

variants) with a similar distance to the nearest gene (±11,655 bp), number of variants in LD (±8 variants), 



and minor allele frequency. Using these pools, we created 10,000 sets of control variants for each of the 49 

loci and identified variants in LD (r2>0.7) and within 1 Mb. For each SNP set, we calculated the number of 

loci with at least one variant located in a regulatory region under the assumption that one regulatory 

variant is responsible for each association signal. We initially calculated an enrichment P value by finding 

the proportion of control sets for which as many or more loci overlap a regulatory element than the set of 

associated loci. For increased P value accuracy, we estimated the P value assuming a sum of binomial 

distributions to represent the number of index SNPs or their LD proxies that overlap a regulatory dataset 

compared to the 500 matched control sets. 

GRAIL. Gene Relationships Among Implicated Loci (GRAIL)19 is a text-mining algorithm that evaluates the 

degree of relatedness among genes within trait regions. Using PubMed abstracts, a subset of genes 

enriched for relatedness and a set of keywords that suggest putative pathways are identified. To avoid 

potential bias from papers investigating candidate genes stimulated by GWAS, we restricted our search to 

abstracts published prior to 2006. We tested for enrichment of connectivity in the independent SNPs that 

were significant in our study at P<10−5. 

MAGENTA. To investigate if pathways including predefined sets of genes were enriched in the lower part of 

the gene P value distribution for WHRadjBMI, we performed a pathway analysis using Magenta 2.420 and 

SNPs present in both the Metabochip and GWAS meta-analyses. SNPs were assigned to a gene if within 110 

kb upstream or 40 kb downstream of the transcript’s boundaries. The most significant SNP P value within 

this interval was adjusted for putative confounders (gene size, number of SNPs in a gene, LD pattern) using 

stepwise linear regression, creating a gene association score. If the same SNP was assigned to multiple 

genes, only the gene with the lowest gene score was kept. The HLA region was removed from further 

analyses due to its high LD structure and gene density. Each gene was then assigned pathway terms using 

Gene Ontology (GO), PANTHER, Ingenuity and Kyoto Encyclopedia of Genes and Genomes (KEGG)87-90. 

Finally, the genes were ranked based on their gene association score, and a modified gene-set enrichment 

analysis (GSEA) using MAGENTA was performed. This analysis tested for enrichment of gene association 

score ranks above a given rank cutoff (including 5% of all genes) in a gene-set belonging to a predefined 

pathway term, compared to multiple, equally sized gene-sets that were randomly sampled from all genes in 

the genome. 10,000-1,000,000 gene-set permutations were performed. 

Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT). This method is described in 

detail elsewhere23,36. Briefly, DEPICT uses gene expression data derived from a panel of 77,840 expression 

arrays91, 5,984 molecular pathways (based on 169,810 high-confidence experimentally-derived protein-

protein interactions92), 2,473 phenotypic gene sets (based on 211,882 gene-phenotype pairs from the 

Mouse Genetics Initiative93), 737 Reactome pathways94, 184 KEGG pathways95, and 5,083 GO terms19. 

DEPICT uses the expression data to reconstitute the protein-protein interaction gene sets, mouse 

phenotype gene sets, Reactome pathway gene sets, KEGG pathway gene sets, and GO term gene sets. To 

avoid biasing the identification of genes and pathways covered by SNPs on the Metabochip, analyses were 

restricted to GWAS cohort data and included 226 WHRadjBMI SNPs in 78 non-overlapping loci with sex-

combined P<10−5. We used DEPICT to map genes to associated WHRadjBMI loci, which then allowed us to 

(1) systematically identify the most likely causal gene(s) in a given associated region, (2) identify 

reconstituted gene sets that were enriched in genes from associated regions, and (3) identify tissue and cell 

type annotations in which genes from associated regions were highly expressed. Associated regions were 

defined by all genes residing within LD (r2>0.5) distance of the WHRadjBMI-associated index SNPs. 

Overlapping regions were merged, and SNPs that mapped near to or within the HLA region were excluded. 

The 93 WHRadjBMI SNPs with P<10−5 (clumping thresholds: HapMap release 27 CEU r2=0.01, 500 kb) 



resulted in 78 non-overlapping regions. GWAS+Metabochip index SNPs were annotated with DEPICT-

prioritized genes if the DEPICT (GWAS-only) SNP was located within 500 kb. To mark related gene sets, we 

first quantified significant gene sets’ pairwise overlap using a non-probabilistic version of the reconstituted 

gene sets and the Jaccard index measure. Groups of gene sets with mutual Jaccard indices >0.25 were 

subsequently referred to as meta gene sets and named by the most significant gene set in the group 

(Supplementary Table 18 and Fig. 2a). In Figures 2a-b, gene sets with similarities between 0.1-0.25 were 

connected by an edge that was scaled according to degree of similarity. The Cytoscape tool was used to 

construct parts of Figure 296. In Figure 2c, we show the significance of all cell type annotations and 

annotations that were categorized as “Tissues” at the outermost level of the Medical Subject Heading 

ontology. 
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0 

2.6E

-08 

208,02

5 

0.00

9 

7.4E

-02 

115,80

3 0.036 
9.00

E-12  

92,35

6 
6.4E-

05  

rs609058

3 20 EYA2  A 

0.4

8 

0.02

2 
6.2E

-11  

209,43

5 

0.02

9 

2.8E

-10 

116,38

2 0.015 

2.37E

-03 

93,18

7 

3.2E-

02 
 

Novel loci achieving genome-wide significance in all-ancestry meta-analyses  
 

rs153469

6 7 SNX10  C 

0.4

3 

0.01

1 

1.3E

-03 

212,50

1 

0.02

7 
2.1E

-08  

118,18

7 

−0.00

6 

2.64E

-01 

92,24

3 

2.1E-

06 
 

Previously reported loci achieving genome-wide significance in European-ancestry meta-

analyses  
 

rs264529

4 1 

TBX15-

WARS2  T 

0.5

8 

0.03

1 
1.7E

-19  

209,80

8 

0.03

5 

1.5E

-14 

116,59

6 0.027 

1.46E

-07 

93,34

6 

2.0E-

01 

rs714515 1 

DNM3-

PIGC  G 

0.4

3 

0.02

7 
4.4E

-15  

203,40

1 

0.02

9 

1.8E

-10 

113,93

9 0.025 

8.54E

-07 

89,59

6 

5.1E-

01 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T1/#TFN2
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Sex-combined Women Men 

Sex 

diff.P
b
 

 

SNP 

Ch

r Locus 

EA
a
 

EA

F β P  N  β P  N  β P  N  

 rs282044

3 1 LYPLAL1  T 

0.7

2 

0.03

5 

5.3E

-21 

209,97

5 

0.06

2 
5.7E

-35  

116,67

2 0.002 

6.91E

-01 

93,43

7 
2.6E-

17  

rs101952

52 2 

GRB14-

COBLL1  T 

0.5

9 

0.02

7 

5.9E

-15 

209,39

5 

0.05

2 
4.7E

-30  

116,32

9 

−0.00

3 

5.33E

-01 

93,19

9 
2.4E-

17  

rs178193

28 3 PPARG  G 

0.4

3 

0.02

1 

2.4E

-09 

208,80

9 

0.03

5 
4.6E

-14  

116,07

2 0.005 

3.26E

-01 

92,87

1 
5.1E-

06  

rs227682

4 3 PBRM1
c
  C 

0.4

3 

0.02

4 
3.2E

-11  

208,90

1 

0.02

8 

3.7E

-09 

116,12

8 0.020 

1.35E

-04 

92,90

7 

2.0E-

01 

rs237176

7 3 

ADAMTS

9  G 

0.7

2 

0.03

6 

1.6E

-20 

194,50

6 

0.05

6 
1.2E

-26  

108,62

4 0.012 

3.49E

-02 

86,01

6 
3.6E-

09  

rs104524

1 5 

TNFAIP8-

HSD17B4  C 

0.7

1 

0.01

9 

4.4E

-07 

209,71

0 

0.03

5 
6.6E

-12  

116,56

0 

−0.00

1 

9.29E

-01 

93,28

4 
8.3E-

07  

rs770550

2 5 CPEB4  A 

0.3

3 

0.02

7 
4.7E

-14  

209,82

7 

0.02

7 

1.9E

-08 

116,60

9 0.027 

2.30E

-07 

93,35

2 

1.0E+0

0 

rs129441

0 6 LY86  C 

0.6

3 

0.03

1 
2.0E

-18  

209,83

0 

0.03

7 

1.6E

-15 

116,62

4 0.025 

1.37E

-06 

93,34

0 

6.3E-

02 

rs135898

0 6 VEGFA  T 

0.4

7 

0.03

9 

3.1E

-27 

206,86

2 

0.06

0 
3.7E

-34  

115,04

7 0.015 

4.02E

-03 

91,94

9 
3.7E-

11  

rs193680

5 6 RSPO3  T 

0.5

1 

0.04

3 
3.6E

-35  

209,85

9 

0.05

2 

3.7E

-30 

116,60

2 0.031 

3.08E

-10 

93,39

2 
1.0E-

03  

rs102453

53 7 NFE2L3  A 

0.2

0 

0.03

5 
8.4E

-16  

210,00

8 

0.04

1 

7.9E

-13 

116,70

4 0.027 

1.43E

-05 

93,43

8 

7.2E-

02 

rs108427

07 12 

ITPR2-

SSPN  T 

0.2

3 

0.03

2 
4.4E

-16  

210,02

3 

0.04

1 

6.1E

-15 

116,70

4 0.022 

1.44E

-04 

93,45

3 

1.1E-

02 

rs144351

2 12 HOXC13  A 

0.2

4 

0.02

8 

6.9E

-13 

209,98

0 

0.04

0 
1.1E

-14  

116,68

8 0.013 

2.77E

-02 

93,42

5 
1.6E-

04  

rs229423

9 22 ZNRF3  A 

0.5

9 

0.02

5 
7.2E

-13  

209,45

4 

0.02

8 

6.9E

-10 

116,41

4 0.024 

2.31E

-06 

93,17

3 

5.0E-

01 

P values and β coefficients for the association with WHRadjBMI in the meta-analyses of combined 

GWAS and Metabochip studies. The smallest P value for each SNP is shown in bold. 

a
The effect allele is the WHRadjBMI-increasing allele in the sex-combined analysis. 

b
Test for sex difference; values significant at the table-wise Bonferroni threshold of 0.05/49=1.02× 

10
−3

 are marked in bold. 
c
Locus previously named NISCH-STAB1. Additional analyses that showed no significant evidence 

of heterogeneity between studies or due to ascertainment are provided in Supplementary Tables 27 

and 28 (Supplementary Note). Chr, chromosome; EA, effect allele; EAF, effect allele frequency. 
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Fig 1 

Regional SNP association plots illustrating the complex genetic architecture at two WHRadjBMI loci 

Sex-combined meta-analysis SNP associations in European individuals were plotted with −log10 P values 

(left y-axis) and estimated local recombination rate in blue (right y-axis). Three index SNPs near HOXC6-

HOXC13 (a–c) and four near TBX15-WARS2-SPAG17 (d–g) were identified through approximate conditional 

analyses of sex-combined or sex-specific associations (values shown as Pconditional <5×10−8, see 

Methods). The signals are distinguished by both color and shape, and linkage disequilibrium (r2) of nearby 

SNPs is shown by color intensity gradient. 

 

  



Table 2 

Candidate genes at new WHRadjBMI loci 

SNP Locus 

Expression 

QTL 

(P<10
−5

)
a
 

GRAIL 

(P<0.05)
b
 

DEPICT 

(FDR<0.05)
c
 Literature

d
 

Other GWAS 

signals
e
 

rs905938 DCST2  ZBTB7B (PB, 

Blood) 

- - - - 

rs10919388 GORAB  - - - - - 

rs1385167 MEIS1  - - - MEIS1  - 

rs1569135 CALCRL  - TFPI  - CALCRL  - 

rs10804591 PLXND1  - - - PLXND1  - 

rs17451107 LEKR1  TIPARP (S,O), 

LEKR1 (S) 

- - - Birthweight: 

CCNL1, LEKR1 

rs3805389 NMU  - - - NMU  - 

rs9991328 FAM13A  FAM13A (S) - FAM13A  - FI: FAM13A 

rs303084 SPATA5-

FGF2  

- FGF2  - FGF2, 

NUDT6, 

SPRY1  

- 

rs9687846 MAP3K1  - MAP3K1  - MAP3K1  FI, TG: 

ANKRD55, 

MAP3K1 

rs6556301 FGFR4  - MXD3  - FGFR4  Height 

rs7759742 BTNL2  HLA-DRA (S), 

KLHL31 (S) 

- (not analyzed) - - 

rs1776897 HMGA1  - - (not analyzed) HMGA1  Height: 

HMGA1, 

C6orf106, LBH 

rs1534696 SNX10  SNX10 (S), 

CBX3 (S) 

- - SNX10  - 

rs7801581 HOXA11  - HOXA11  HOXA11  HOXA11  - 

rs7830933 NKX2-6  STC1 (S) - - NKX2-6, 

STC1  

- 

rs12679556 MSC  - EYA1  RP11-

1102P16.1  

MSC, EYA1  - 

rs10991437 ABCA1  - - - ABCA1  - 

rs7917772 SFXN2  - - - SFXN2  Height 

rs11231693 MACROD1-

VEGFB  

- VEGFB  MACROD1  MACROD1, 

VEGFB  

- 

rs4765219 CCDC92  CCDC92 (S, 

O, L), ZNF664 

(S, O) 

FAM101A  - - Adiponectin, FI, 

HDL, TG: 

CCDC92, 

ZNF664 

rs8042543 KLF13  - KLF13  - KLF13  - 

rs8030605 RFX7  -  - - - 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T2/#TFN4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T2/#TFN5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T2/#TFN6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T2/#TFN7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T2/#TFN8


SNP Locus 

Expression 

QTL 

(P<10
−5

)
a
 

GRAIL 

(P<0.05)
b
 

DEPICT 

(FDR<0.05)
c
 Literature

d
 

Other GWAS 

signals
e
 

rs1440372 SMAD6  SMAD6 

(Blood) 

SMAD6  SMAD6  SMAD6  Height 

rs2925979 CMIP  CMIP (S) - - CMIP, 

PLCG2  

Adiponectin, FI, 

HDL: CMIP 

rs4646404 PEMT  - - PEMT  PEMT  - 

rs8066985 KCNJ2  - - - KCNJ2  - 

rs12454712 BCL2  - - - BCL2  - 

rs12608504 JUND  KIAA1683 

(PB, O), JUND 

(LCL) 

JUND  - JUND  - 

rs4081724 CEBPA  - CEBPA  - CEBPA, 

CEBPG  

- 

rs979012 BMP2  - BMP2  BMP2  BMP2  Height: BMP2 

rs224333 GDF5  CEP250 (S, 

O), UQCC 

(Blood, S, O, 

L, LCL) 

GDF5  GDF5  GDF5  Height: GDF5, 

UQCC 

rs6090583 EYA2  - EYA2  EYA2  EYA2  - 

Candidate genes based on secondary analyses or literature review. Details are provided in 

Supplementary Tables 8-9, 11-13, 15, 19, 21 and the Supplementary Note. The only 

nonsynonymous variant in high LD with an index SNP was GDF5 S276A. No copy number 

variants were identified. 

a
Gene transcript levels associated with the SNP in the indicated tissue(s): PB, peripheral blood 

mononuclear cells; S, subcutaneous adipose; O, omental adipose; L, liver; lcl, lymphoblastoid cell 

line. 
b
Genes in pathways identified as enriched by GRAIL analysis 

c
Significant pathway genes derived by DEPICT using GWAS-only results. 

d
Most plausible candidate genes based on literature review. 

e
Traits associated at P<5 × 10

−8
 in GWAS or the GWAS catalog using the index SNP or a proxy, 

and the genes(s) named. FI, fasting insulin adjusted for BMI; HDL, high-density lipoprotein 

cholesterol; tg, triglycerides. 
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Fig.2 

 

Gene set enrichment and tissue expression of genes at WHRadjBMI-associated loci (GWAS-only 

P<10−5) 

 

 
 

 

 

 

 

 

a, Reconstituted gene sets found to be significantly enriched by DEPICT (FDR<5%) are 

represented as nodes, with pairwise overlap denoted by the width of connecting lines and empirical 

enrichment P value indicated by color intensity (darker is more significant). b, The ‘Decreased 

Liver Weight’ meta-node, which consisted of 12 overlapping gene sets, including adiponectin 

signaling and insulin sensitivity. c, Based on expression patterns in 37,427 human microarray 

samples, annotations found to be significantly enriched by DEPICT are shown, grouped by type and 

significance. 

  



Table 3 

New loci achieving genome-wide evidence of association (P<5×10
−8

) with additional waist and 

hip circumference traits 

      
 

      
Sex-combined Women Men 

Sex 

diff. 
 

SNP Trait 
Ch

r 
Locus 

E

A
a
 

EA

F 
β  P  N  β  P  N  β  P  N  P 

b
  

Loci achieving genome-wide significance in European-ancestry 

meta-analyses  
      

rs109250

60 

WCadjB

MI  1 

OR2W5

-NLRP3  T 

0.0

3 

0.01

7 

2.2

E-

05 

140,5

15 

0.00

2 

6.8

E-

01 

85,18

6 

0.04

5 

9.1

E-

13  

55,52

2 

1.7

E-

08  

rs109299

25 HIP  2 SOX11  C 

0.5

5 

0.02

0 

4.5

E-

08  

207,6

48 

0.02

1 

9.0

E-

06 

115,4

28 

0.01

8 

3.2

E-

04 

92,49

9 

6.1

E-

01 

rs212496

9 

WCadjB

MI  2 ITGB6  C 

0.4

2 

0.02

0 

7.1

E-

09  

231,2

84 

0.01

6 

3.5

E-

04 

127,4

37 

0.02

5 

2.3

E-

07 

104,0

39 

1.4

E-

01 

rs174724

26 

WCadjB

MI  5 CCNJL  T 

0.9

2 

0.01

4 

3.1

E-

02 

217,5

64 

−0.0

14 

1.0

E-

01 

119,8

04 

0.05

2 

4.3

E-

08  

97,95

4 

3.9

E-

08  

rs773923

2 

HIPadjB

MI  6 

KLHL3

1  A 

0.0

7 

0.03

7 

5.4

E-

05 

131,8

77 

0.06

3 

1.0

E-

08  

80,47

5 

−0.0

04 

7.5

E-

01 

51,58

9 

2.9

E-

05  

rs132415

38 

HIPadjB

MI  7 KLF14  C 

0.4

8 

0.01

7 

1.6

E-

06 

210,9

35 

0.03

3 

9.9

E-

14  

117,2

10 

−0.0

03 

5.0

E-

01 

93,91

1 

2.0

E-

09  

rs704410

6 

HIPadjB

MI  9 C5  C 

0.2

4 

0.02

3 

4.1

E-

05 

143,4

12 

0.03

9 

5.7

E-

09  

86,73

3 

−0.0

03 

6.9

E-

01 

56,86

5 

1.3

E-

05  

rs116079

76 HIP  11 MYEOV  C 

0.7

0 

0.02

2 

4.2

E-

08  

212,8

15 

0.01

9 

1.9

E-

04 

118,3

91 

0.02

4 

7.7

E-

06 

94,70

1 

4.4

E-

01 

rs178420

3 

WCadjB

MI  11 

KIAA17

31  A 

0.0

1 

0.03

1 

1.3

E-

08 

63,89

2 

0.00

0 

9.9

E-

01 

35,53

9 

0.07

5 

1.0

E-

19  

28,35

3 

1.2

E-

01 

rs139446

1 WHR  11 CNTN5  C 

0.2

5 

0.01

7 

4.7

E-

04 

144,3

49 

0.03

5 

3.6

E-

08  

87,44

1 

−0.0

11 

1.6

E-

01 

57,09

4 

1.1

E-

06  

rs319564 WHR  13 GPC6  C 

0.4

5 

0.01

4 

3.4

E-

05 

212,1

37 

0.00

3 

5.3

E-

01 

117,9

70 

0.02

7 

1.6

E-

08  

94,35

0 

6.0

E-

05  

rs204793

7 

WCadjB

MI  16 ZNF423  C 

0.5

0 

0.01

9 
4.7

E-

231,0

09 

0.02

2 

5.5

E-

127,2

88 

0.01

4 

3.6

E-

103,9

14 

2.0

E-

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/table/T3/#TFN9
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Sex-combined Women Men 

Sex 

diff. 
 

SNP Trait 
Ch

r 
Locus 

E

A
a
 

EA

F 
β  P  N  β  P  N  β  P  N  P 

b
  

08  07 03 01 

rs203408

8 

HIPadjB

MI  17 VPS53  T 

0.5

3 

0.02

1 

4.8

E-

09 

210,7

37 

0.02

8 

9.6

E-

10  

117,1

42 

0.01

4 

6.5

E-

03 

93,78

1 

2.5

E-

02 

rs105359

3 

HIPadjB

MI  22 

HMGX

B4  T 

0.6

5 

0.02

1 

3.9

E-

08 

202,0

70 

0.02

9 

1.8

E-

09  

114,3

47 

0.01

1 

5.1

E-

02 

87,90

8 

6.2

E-

03 
 

Loci achieving genome-wide significance in all-ancestry meta-

analyses  
       

rs166478

9 

WCadjB

MI  5 ARL15  C 

0.4

1 

0.01

4 

2.6

E-

05 

244,1

10 

0.00

5 

2.8

E-

01 

133,0

52 

0.02

6 

3.6

E-

08  

109,0

25 

4.4

E-

04  

rs722585 

HIPadjB

MI  6 GMDS  G 

0.6

8 

0.01

5 

2.1

E-

04 

205,8

15 

−0.0

01 

8.8

E-

01 

113,9

65 

0.03

2 

9.2

E-

09  

89,83

1 

4.3

E-

06  

rs1144 

WCadjB

MI  7 SRPK2  C 

0.3

4 

0.01

9 

3.1

E-

08  

239,3

42 

0.02

0 

1.2

E-

05 

131,3

98 

0.01

8 

4.1

E-

04 

105,9

11 

7.8

E-

01 

rs239889

3 WHR  9 

PTPDC

1  A 

0.7

1 

0.02

0 

4.0

E-

08  

226,5

72 

0.01

9 

5.1

E-

05 

124,5

77 

0.01

9 

2.7

E-

04 

99,96

8 

9.5

E-

01 

rs498515

5
c
 HIP  16 

PDXDC

1  A 

0.6

6 

0.01

8 

4.5

E-

07 

227,2

96 

0.01

1 

1.6

E-

02 

125,0

48 

0.02

9 

9.7

E-

09  

100,3

13 

6.3

E-

03 

P values and β coefficients for the association with the trait indicated in the meta-analysis of 

combined GWAS and Metabochip studies. The smallest P value for each SNP is shown in bold. 

a
The effect allele is the trait-increasing allele in the sex-combined analysis. 

b
Test for sex difference; values significant at the table-wise Bonferroni threshold of 

0.05/19=2.63×10
−3

 are marked in bold. 
c
P=7.3×10

−6
 with height in Okada et al.

43
 (index SNP rs1136001; r

2
=0.79, distance=2,515 bp). Chr, 

chromosome; EA, effect allele; EAF, effect allele frequency. 
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