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Università di Torino, via Giuria 5, IT-10125 Torino (Italy)

4
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Abstract

Structural and energetic properties of the grossular-katoite solid solution are studied with a full

ab initio quantum chemical approach. An all-electron basis set and the hybrid B3LYP functional

are used. Calculations are performed within the primitive cell of cubic garnets. The hydrogarnet

substitution, SiO
4

$ H
4

O
4

, yields 136 symmetry-independent configurations ranging from triclinic

to cubic symmetry. All of them have been structurally optimized, the relaxed geometries being

characterized by pseudo-cubic conventional cells. At the present level of approximation, the most

stable configurations constitute by far the largest contributions to the system properties. Consid-

ering only the most stable configurations, average geometrical features of the actual solid solution

are closely approximated. The excess volume displays a highly non ideal behavior that is favorably

compared with carefully analyzed and selected experimental data. The excess enthalpy deviates

from the regular model; it draws an asymmetric function of composition with two minima that

can be associated to structures or compositions observed in nature. Geometrical variations and

distribution of the tetrahedra are analyzed. Calculations provide independent support to the use

of a split-atom model for the experimental refinement of these compounds. The asymmetry of the

enthalpy of mixing can be associated with two distinct distribution patterns of the tetrahedra. A

certain asymmetry is recognized also between hydrogen interactions that develop from the inser-

tion of Si in fully-hydrated katoite and of H in grossular. Hydrogen interactions in Si-free katoite

are found to be weak as suggested by dramatic changes in the H environment associated with the

introduction of SiO
4

tetrahedra.

Keywords: hydrogarnet, hydrogrossular, grossular, hibschite, katoite, solid solution, ab initio, Crystal

⇤ valentina.lacivita@upmc.fr
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I. INTRODUCTION

Silicate garnets are nominally anhydrous minerals (NAMs) with stoichiometry X
3

Y
2

(SiO
4

)
3

,

which, nonetheless, have been found to commonly contain hydrous components. Garnets

characterized by a hydrous component fall under the general heading of hydrogarnets. They

are crystalline solid solutions of general formula X
3

Y
2

(SiO
4

)
3�x

(H
4

O
4

)
x

, whose composition

varies through an isomorphous series from x = 0 to x = 3.

The main mechanism for hydrogen incorporation in silicate structures is through hydrog-

arnet substitution: Si4+ $ 4H+. That is, protons are arranged in connection with four

oxygen anions surrounding tetrahedral Si-free vacancies. The replacement of H for Si atoms

was originally observed by Cohen-Addad et al. (1963) via nuclear magnetic resonance and

neutron di↵raction experiments on the fully hydrated synthetic sample Ca
3

Al
2

(HO)
12

. Af-

terwards, numerous experimental studies on other hydrogarnets have confirmed this process

(Aines and Rossman 1984, Cohen-Addad et al. 1967, Foreman Jr. 1968, Lager et al. 1989).

The incorporation of hydrous components into NAMs significantly a↵ects their physical

and chemical properties, thus modifying their technological applicability. Examples are

the hydrolitic weakening of silicate materials for glass technologies (Griggs 1967), and the

dielectric loss increase of ceramic substrates used as electronic packaging materials (Shannon

et al. 1992). Changes in elasticity are also relevant to the properties of the Earth’s mantle

where they can hold relatively large amounts of “water” (Knittle et al. 1992, Mackwell et al.

1985, O’Neill et al. 1993).

Apparently, the hydration capability of garnets is directly related to the Ca content in the

dodecahedral sites (X). Indeed, natural occurrences show ugrandites, Ca
3

(Al,Fe,Cr)
2

(SiO
4

)
3

,

featuring “water” contents up to about 20 wt% (Passaglia and Rinaldi 1984), while pyral-

spites, (Mg,Fe,Mn)
3

Al
2

(SiO
4

)
3

, stand between 0.01 and 0.25 wt% (Aines and Rossman 1984).

The analysis of synthetic samples confirms such di↵erences (Ackermann et al. 1983, Cohen-

Addad et al. 1963, Geiger et al. 1991). The key to interpretation was given by Sacerdoti

and Passaglia (1985) while analyzing the structural response of grossular, Ca
3

Al
2

(SiO
4

)
3

, to

hydrogarnet substitution: a progressive shortening of the octahedral-dodecahedral shared

edge and a corresponding lengthening of the octahedral unshared edge was observed. This

suggested a potential for substantial hydration only in those garnets whose anhydrous form

displays a shared octahedral edge longer than the unshared one. By comparison between
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structures of various silicate garnet end-members previously characterized (Novak and Gibbs

1971), they concluded that calcic garnets, i.e., garnets with ionic radius r(X) > 1 Å, are the

only ones that comply with such a requirement. Lager et al. (1989) later corroborated Sac-

erdoti and Passaglia’s analysis with the results of distance-least-squares simulations on the

e↵ect of the hydrogarnet substitution on grossular, andradite and pyrope structures. They

reasoned on a presumable e↵ect of repulsion below some lower limit distance between the

oxygens involved in the shared edge: the minimum O-O distance would be approached fur-

ther along the shared edge of the anhydrous structure, and this may explain the high-water

content of Ca-bearing garnets relative to other garnets. In addition, a remark is made to the

fact that the eight-coordinated site widens as a consequence of the hydrogarnet substitution.

According to Zabinski (1966), this e↵ect should be energetically promoted by an X cation

as large as Ca2+, but rather hindered by smaller X cations, e.g., Mg2+ in pyrope.

A calcic hydrogarnet which occurs frequently in the literature is hydrogrossular,

Ca
3

Al
2

(SiO
4

)
3�x

(H
4

O
4

)
x

, whose first reports date back to the early 1900s. In 1906, Cornu

introduced the name hibschite for a new silicate mineral found at Marienberg, Bohemia,

which, more than 30 years later, turned out to be hydrogrossular of ideal composition

Ca
3

Al
2

(SiO
4

)
2

H
4

O
4

(Belyankin and Petrov 1941). The same conclusion was drawn by Pabst

(1937) with regard to plazolite, a mineral named by Foshag (1920) in the aftermath of its

first occurrence at Crestmore, California. In fact, hibschite and plazolite coincide, as was

demonstrated by Pabst himself shortly after (1942). Today, the name plazolite has been

abandoned; the o�cial nomenclature adopts the name hibschite for identifying terms of

the hydrogrossular series with 0 < x  1.5. Hydrogrossular with 1.5 < x  3 is called

katoite, by the name assigned to the first natural sample of water-rich member of the series,

Ca
3

Al
2

(SiO
4

)(H
4

O
4

)
2

, found in Pietramassa, Italy (Passaglia and Rinaldi 1984). Figure 1

reports a graphical representation of the structure of hydrogrossular as a function of the

substitutional fraction x of H for Si atoms.

Crystal chemistry and physical properties of hydrogrossular have been widely investi-

gated due to important scientific and technological implications. As a typical product of

cement hydration, katoite is of special concern to cement and concrete research for mate-

rials engineering. Fully-hydrated katoite, Ca
3

Al
2

(H
4

O
4

)
3

, is a recognized constituent of set

Portland cement, and its composition often includes Si in mature cement pastes (Taylor and

Newbury 1984). It is known that silica from various sources in cement can react with cal-
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cium and alumina ionic species to precipitate calcium aluminosilicate hydrates (Jappy and

Glasser 1991). These are thermodynamically stable phases (Ackermann et al. 1983, Atkins

et al. 1992, Bennett et al. 1992, Dilnesa et al. 2014) a↵ecting rheology, solubility and global

endurance of the material. For example, Flint and Wells (1941) found that siliceous katoite

displays far greater resistance to the attack by sulfate solutions than the Si-free isomorphous

form. This is relevant not only for civil construction purposes, but also in view of the em-

ployment of cement-based materials for the immobilization and containment of toxic wastes,

such as radioactive waste repositories (Atkins and Glasser 1992). Hydrogrossular is a poten-

tial host phase for various toxic metals and metalloids, like Cr(VI). Evidence for chromate

substitution in katoite, i.e., substitution of hydroxyl H
4

O4�
4

tetrahedra by chromate CrO2�
4

tetrahedra, has been provided (Hillier et al. 2007).

In Earth science, hydrogrossular is regarded as a likely “water” carrier in eclogite regions

of the upper mantle. Spectroscopic studies performed on hibschite, up to 25 GPa pressure,

indicate that it is stable throughout the whole pressure range of the upper mantle (Knit-

tle et al. 1992). Katoite, instead, undergoes phase transitions under increasing pressure.

Single-crystal X-ray di↵raction (XRD) experiments by Lager et al. (2002) suggested a pos-

sible phase transition from Ia3̄d to I 4̄3d symmetry, at about 5 GPa. A recent theoretical

investigation by Erba et al. (2015) supported the thermodynamical instability of the Ia3̄d

phase above 5 GPa, but found the I 4̄3d phase to be stable only above 15 GPa; in the 5-15

GPa range both phases were described as unstable. O’Neill et al. (1993) investigated the

elastic properties of natural hibschite hydrated to 42% and observed a compressibility about

40% higher than that of anhydrous grossular. An explanation was proposed, relying on the

larger volume of the H
4

O4�
4

tetrahedron compared with the smaller, more rigid SiO4�
4

tetra-

hedron. By comparing isothermal densities calculated at 300 K for two chemically equivalent

assemblages, one containing hibschite and the containing other grossular plus H
2

O as sep-

arated phases, they found the former to be denser (and therefore thermodynamically more

stable) within the pressure range of the Earth’s upper mantle.

Natural occurrences of hydrogrossular, along with laboratory syntheses carried out at

high temperatures (>420 K) and pressures, suggest the existence of a continuous solid solu-

tion between the two end-members: grossular (x=0) and Si-free katoite (x=3). Numerous

phases, scattered throughout the compositional range, were synthesized via hydrothermal

treatment (Cheng et al. 1990, Cohen-Addad et al. 1967, Flint et al. 1941, Geiger et al. 2012,
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Lager et al. 1989). However, Jappy and Glasser (1991) showed that the mutual solubility

of the end-members changes significantly at lower temperatures and pressures. Investigat-

ing stability and solubility of solid solutions synthesized in the katoite range of composi-

tion at 370 K and 10�4 GPa pressure, they found a miscibility gap between compositions

Ca
3

Al
2

(SiO
4

)
0.42

(H
4

O
4

)
2.58

and Ca
3

Al
2

(SiO
4

)
0.76

(H
4

O
4

)
2.24

, and a maximum Si content at-

tainable of Ca
3

Al
2

(SiO
4

)
0.99

(H
4

O
4

)
2.01

. Results consistent with the existence of a miscibility

gap occurred also in later works (Bennett et al. 1992, Dilnesa et al. 2014, Kyritsis et al.

2009). This indicates that hydrogrossular is a non-ideal solid solution.

In the present study, structural and energetic properties of the hydrogrossular series are

investigated with ab initio simulations. The composition range from 0% to 100% grossu-

lar is explored, with reference to the 12 tetrahedral sites available for substitution in the

end-member primitive cell. This allows for explicitly considering compositions x = 0, 0.25,

0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3. Each intermediate term is represented

by a number of independent atomic configurations that have been e�ciently selected via

symmetry-adapted Monte-Carlo (SA-MC) sampling, as recently proposed by Mustapha et al.

(2013) and D’Arco et al. (2013). For all configurations, minimum energy structures have

been calculated at the B3LYP level of theory, using all-electron Gaussian-type basis sets.

Both SA-MC and geometry optimizations have been performed with the quantum-chemistry

software package for periodic calculations Crystal14 (Dovesi et al. 2014a,b). The same

computational setup has already been successfully applied for studying structural, energetic,

spectroscopic, elastic and optical properties of the end-members grossular and Si-free ka-

toite (Erba et al. 2014a,b, 2015, Mahmoud et al. 2014, Orlando et al. 2006, Pascale et al.

2004), and of the grossular-andradite joint (De La Pierre et al. 2013, Lacivita et al. 2013,

2014). The results presented in the following provide new outlook on the relationship be-

tween excess mixing enthalpy and volume of the hydrogrossular solid solution. This is im-

portant information to accomplish production of more densely packed and pressure-resistant

concretes. In the same vein, one can infer valuable clues about what compositions would

be most favored under the pressure of the Earth’s mantle. Finally, some of the outcomes

could also be interesting to other minerals showing hydrogarnet-type substitutions, such as

crystalline zircon ZrSiO
4

(Balan et al. 2013, Botis et al. 2013).
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II. THEORETICAL METHOD

A. Structural Model for Solid Solutions

Garnet end-members have a cubic structure of space group G ⌘ Ia3d, with |G| = 48

symmetry operators. Reference is here made to the primitive unit cell of grossular (Gro),

which contains 80 atoms and counts 4 formula units. The structure displays dodecahedral

(Ca), octahedral (Al) and tetrahedral (Si) crystallographic sites. There are 12 tetrahedral

sites available for hydrogarnet substitution, Si4+ $ 4H+. Solid solutions are obtained by

progressively replacing Si cations with 4 protons at a time. When the number of Si cations,

n, is reduced to zero, the Si-free katoite (Kat) end-member is obtained. Apart from the

end-members Gro (n=12) and Kat (n=0), eleven intermediate compositions are explicitly

considered: n = 1. . . 11.

For each intermediate composition, 12!/[n!(12� n)!] substitutional atomic configurations

can be defined, which sum up to 4096 over the whole range of compositions. This number

can be significantly reduced following the symmetry analysis recently proposed by Mustapha

et al. (2013). Configurations are naturally partitioned into symmetry-independent classes

(SICs), according to the operators retained after substitution. Given Hn

l

the subgroup

of symmetry associated to the l-th class of composition n, the number of configurations

belonging to that SIC is

Mn

l

= |G|/|Hn

l

| . (1)

Since all configurations of a given class are equivalent to each other, the number of calcu-

lations to be actually performed reduces to only one per SIC. Mn

l

can then be interpreted

as the multiplicity of class l. The macroscopic properties of the solid solution are calculated

as Boltzmann averages over all SICs, where every class weighs in proportion to its own

multiplicity Mn

l

. For example, the average volume is defined as

V̄ (n) =
X

l

Pn

l

V n

l

, (2)

where the sum runs over the SICs of composition n and

Pn

l

=

Mn

l

exp

✓
��En

l

k
B

T

◆

P
l

Mn

l

exp

✓
��En

l

k
B

T

◆ (3)
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is the probability of finding the l-th SIC at temperature T . �En

l

= En

l

� En

min

is the

di↵erence between its energy En

l

, and the energy of the most stable configuration with the

same chemical composition, En

min

.

For the present system, a total number of 136 SICs is expected on the basis of Polya’s

theorem (Polya and Read 1987). These SICs are distributed over the composition range as

outlined in Table I. Depending on the number n of Si atoms in the primitive cell, fractional

composition x = 3(1 � n/12), number of SICs N
SIC

, total number of atomic configurations

N
Conf

and minimum multiplicity M
min

(corresponding to the maximum symmetry) of the

respective classes are reported. At each composition, canonical representatives for the var-

ious SICs have been selected via uniform at random SA-MC sampling, as recently devised

by D’Arco et al. (2013) and implemented in the Crystal14 code (Dovesi et al. 2014a,b).

The basics of the SA-MC method are provided as supplementary information, along with a

brief outline of the practical procedure adopted to build the classes of configurations. We

address the reader to (D’Arco et al. 2013) for a comprehensive theoretical treatment, and

to (Dovesi et al. 2014b) for details about the mentioned computational options.

A general concern about simulations of disordered crystalline materials and solid solutions

is related to the size of the adopted structural model. Is it large enough? If large supercells

(multiples of the primitive one) seem preferable for comparison with real systems, one has to

take into account practical feasibility aspects. The larger the supercell, the more numerous

the SICs, so as the number of calculations to be performed rapidly becomes prohibitive. It is

necessary to find the right balance between accuracy and computational costs, by analyzing

carefully every situation. For example, when dealing with dilute defects, large (to some

extent) supercells must be used in order to reduce the interactions between them. This

is not a problem because the presence of a single defect in the cell corresponds to only

one symmetry-independent configuration to be structurally optimized. Furthermore, for

su�ciently low concentrations, calculations can be performed by freezing in some geometrical

variables. In the case of concentrated solutions, as the ones studied in this work, no simple

choice exists. The size of the unit cell must be large enough to allow access to di↵erent

intermediate compositions and to account for eventual atomic clustering. In addition, one

must bear in mind that the impact of the theoretical approximation might be property-

dependent. As regards the average geometrical properties here calculated, we will show in

the next section that a close comparison with experiments on the actual solid solution is
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achieved. This makes us confident on the accuracy of our results and, consequently, on the

appropriateness of the model system chosen for the present work.

B. Computational Details

All calculations have been performed with the Crystal14 program (Dovesi et al.

2014a,b). Minimum energy structures of all SICs were calculated at the B3LYP level

of theory (Becke 1993), using all-electron atom-centered Gaussian-type basis sets. Oxygen,

hydrogen, silicon, aluminum and calcium atoms were described by (8s)-(411sp)-(1d), (31s)-

(1p), (8s)-(6311sp)-(1d), (8s)-(611sp)-(1d) and (8s)-(6511sp)-(21d) contractions of primitive

functions, respectively.

In Crystal14, density functional exchange-correlation contributions are evaluated by

numerical integration over the cell volume: radial and angular points of the atomic grid

are generated through Gauss-Legendre and Lebedev quadrature schemes. For the present

calculations, an accurate predefined pruned grid was employed, corresponding to 99 radial

and 1454 angular points. Hartree-Fock exchange contributions to the hybrid functional were

calculated for atomic functions within a maximum distance of 59 direct lattice vectors ~g from

the origin. The reciprocal space was sampled according to a sub-lattice with shrinking factor

3, which corresponds to a number of ~k-points in the irreducible first Brillouin zone between

4 and 14, depending on the symmetry of the configuration. The convergence threshold on

the self-consistent-field energy was set to 10�9 hartree.

As regards geometry optimizations, Crystal14 calculates analytical energy gradients

with respect to both atomic coordinates and unit-cell parameters (Civalleri et al. 2001, Doll

2001, Doll et al. 2001). A quasi-Newton optimization scheme is adopted in combination

with the Broyden-Fletcher-Goldfarb-Shanno algorithm (Broyden 1970a,b, Fletcher 1970,

Goldfarb 1970, Shanno 1970) for Hessian updating. Convergence is checked on the root

mean square of both gradient components and nuclear displacements, the corresponding

tolerances being 0.0003 a.u. and 0.0012 a.u., respectively.
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III. RESULTS AND DISCUSSION

A. Lattice

As recalled before, the end-members of the hydrogrossular series belong to the cubic

space group Ia3d. From a microscopic point of view, fractional occupancies of the tetrahe-

dral sites at the intermediate compositions imply necessarily certain lowering of the local

symmetry. Despite this, all 136 atomic configurations maintain a pseudo-cubic metric after

geometry relaxation. Optimized structural parameters of all configurations can be found in

the supplementary material. Here, for clarity sake, we explicitly discuss the case n=6, that

corresponds to the situation where half of the tetrahedral sites is occupied by Si4+ and the

other half by 4H+. This is the most illustrative composition as it provides the widest spec-

trum of symmetry-independent atomic distributions for the given number of substitutional

sites. Table II reports lattice parameters a, b, c and angles ↵, �, � for the representatives

of the SICs proper of this composition. The SICs are listed in order of increasing energy,

which varies by 51 mHa between l = 1 to l = 32. Multiplicities M and lattice types (as

deduced from the residual symmetry H) of the various SICs are indicated. We notice that

only one SIC out of 32 maintains the cubic symmetry of the aristotype (except for the

inversion center). That is class l = 32, with M = 2. Many SICs are triclinic, i.e., with

multiplicity M = 48 (l = 4, 7, 10, 11, 13, 16, 17, 18, 19, 21, 25, 26, 30). According to Eq. (1),

this means they are asymmetric, the unique operator in H being the identity. Other SICs

belong to monoclinic (l = 5, 9, 12, 14, 15, 22, 23, 24, 28), orthorhombic (l = 1, 6, 8), tetrago-

nal (l = 2, 3, 27, 29) and trigonal (l = 20, 31) crystal systems, with respective multiplicities

M = 12 or 24, M = 12, M = 6 or 12 and M = 8.

Despite the di↵erences in symmetry, all SICs are rather close to the cubic metric: cell

edges di↵er from each other by 0.203 Å at most, and the angles depart from 90� by less

than 1.3�. For statistical purposes, we may refer to the percentage di↵erence � with respect

to the cubic average ā = (a+ b+ c) /3, or to the right angle. The average with sign,

�̄, indicates that a is slightly biased towards elongation, while c tends to shorten. Apart

from that, it is noteworthy that the absolute average di↵erence, |�|, is maintained well

below 1%, and not even the largest absolute percentage deviations, max |�|, come to exceed

such a threshold (but for �, where a slightly larger deviation of 1.43% is found). These
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findings are consistent with the picture arising from experimental studies, according to which

hydrogrossular essentially retains the cubic structure of the end-members (Basso et al. 1983,

Cheng et al. 1990, Cohen-Addad et al. 1967, 1963, Ferro et al. 2003, Flint et al. 1941, Jappy

and Glasser 1991, Lager et al. 1989, Pabst 1937, 1942, Passaglia and Rinaldi 1984, Sacerdoti

and Passaglia 1985).

B. Excess Quantities

In the thermodynamics of solid solutions, an excess property is the di↵erence between

its actual value and the value expected for an ideal system, i.e., a system whose properties

vary linearly with the composition. We will refer to this definition when speaking of excess

functions (or functions of mixing) in what follows.

Excess enthalpies, �H, and volumes, �V , of the 136 configurations optimized along the

Gro-Kat binary are shown in Figures 2 and 3, respectively. Each composition n goes with

its complementary, 12� n, as regards number, multiplicity and symmetry of the respective

SICs (see Table I). However, the properties calculated at compositions n and 12 � n may

be quite di↵erent, as we shall discuss below.

1. Enthalpy

In Figure 2, �H represents the free energy of mixing at 0 K. This is found to be negative

for all the SICs throughout the compositional range. At compositions from n = 2 to n = 10,

an energy range [min�H(n)�max�H(n)] spreads between the most stable and the least

stable SICs. The width of the range is quite large (⇡ 30 mHa on average), oscillating within

a maximum of 51 mHa at n = 6, and a minimum of 11 mHa at n = 10. Apart from n = 3,

configurations at the extremes of the energy range always display some symmetry (M < 48).

This is in line with a conjectured symmetry-energy relationship suggesting that the critical

points of the potential energy surface should correspond to symmetric structures (Pauling

1929, Pickard and Needs 2011, Wales 1998).

For most of the compositions here explored, the minimum enthalpy configuration is far

more stable than the other SICs with the same composition: the Boltzmann distribution

would leave the ground state only at temperatures above 700 K. The only exceptions, in
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this respect, are n = 2 and n = 7, where the di↵erence between min�H and the next SIC

is just 0.05 mHa (indistinguishable in Figure 2) and 0.8 mHa, respectively.

Function min�H(n) is very asymmetric: it rapidly decreases upon substitution of 1 to

4 tetrahedral sites in Kat and then, as the silicon content increases further, it goes back to

zero (Gro) less sharply. The global minimum is found at n = 4. In addition, a discontinuity

is encountered between n = 7 and n = 8 that makes n = 8 a local minimum. The presence of

two minima indicates that min�H(n) is not always concave upward but rather reverses its

curvature between these two points. This means that solid solutions in the range 4 < n < 8

exhibit a higher enthalpy than a mixture of two separate phases with respective compositions

n = 4 and n = 8. Outside this range, solid solutions are thermodynamically favored by the

excess enthalpy. In particular, it turns out that min�H(n) assists the insertion of silicon

into Kat more than that of hydrogen into Gro.

Finally, we note that the global minimum at n = 4 corresponds to a solid solution

with stoichiometry Ca
3

Al
2

(SiO
4

)(H
4

O
4

)
2

, that is the ideal formula assigned to the katoite

mineral (Passaglia and Rinaldi 1984). Moreover, this is just about the upper limit observed

by Jappy and Glasser (1991) for the substitution of Si into Kat at low temperature (95�

C) and under ambient pressure. As regards n = 8, instead, the ideal composition of the

hibschite mineral is matched, namely Ca
3

Al
2

(SiO
4

)
2

H
4

O
4

(Belyankin and Petrov 1941, Pabst

1937).

2. Volume

The excess volume, �V , of the optimized SICs is represented in Figure 3. It is noteworthy

that the most stable SICs at the various compositions correspond to high �V values, if not

directly to max�V . In particular, the largest positive excess volume occurs at n = 4, being

associated with the global minimum of the enthalpy of mixing. In contrast, the least stable

SICs show excess volumes among the most negative ones.

At ambient temperature, �V̄ (n) describes a somehow sinusoidal pattern: it is negative

for 0 < n < 3, it becomes positive at n = 3, and negative again at about n = 8 up to

n = 12. Positive �V values occur precisely between the two minima of the excess enthalpy,

located at n = 4 and n = 8, namely where the concavity of the function min�H(n) turns

downwards. In physical terms, this trend means that the volume of mixing decreases for
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dilute solutions of either Gro into Kat or Kat into Gro, and conversely increases for solid

solutions of intermediate compositions (4  n < 8). As a consequence, in this intermediate

range, the solubility is expected to reduce with increasing pressure.

Figure 4 (upper panel) shows the variation of the average volume V̄ along the Gro-Kat

binary. The relevant information available in the literature is rich but quite heterogeneous.

For the sake of comparison, we have selected a set of experimental data as consistent as

possible. Solid solutions with significant amounts of impurities - mostly Fe3+, or with a

sum of the stoichiometric fractions of Si and 1

4

H very di↵erent from 3, have been excluded.

These include the synthetic terms 2-10, 13, 14 and 15-19 from the work of Flint et al. (1941).

Synthetic samples by Jappy and Glasser (1991) with x  2 were discarded as well, relying

on the authors’ distrust for contamination by CaO-SiO
2

-H
2

O gel phase. We also omitted

”jade” samples (Frankel 1959, Tilley 1957) given the questionable reliability of their chemical

analyses (Zabinski 1966).

As regards the end-members (empty squares), we considered the average of the volumes

measured by Cohen-Addad et al. (1963) and Lager et al. (1987a, 2002, 2005) for Kat; by Flint

et al. (1941), Novak and Gibbs (1971), Lager et al. (1987b), Olijnyk et al. (1991), and Rode-

horst et al. (2002) for Gro. Note that the linear sum of these volumes (solid red line) is

perfectly parallel to the ideal trend obtained from our calculations (solid black line). Be-

sides, a slight overestimation of the experimental data (about 2.5%) meets expectations on

the performance of the B3LYP functional (Paier et al. 2007).

Natural katoite is rather rare. Passaglia and Rinaldi (1984) resolved a cubic structure of

space group Ia3̄d and cell parameter a = 12.358 Å (empty triangle), while later refinements

by Sacerdoti and Passaglia (1985) yielded a = 12.379 Å (full inverted triangle). Ferro et al.

(2003) described a new sample with cubic cell parameter a = 12.286 Å (full pentagon). We

notice that both natural katoite samples display stoichiometry close to Ca
3

Al
2

SiO
4

(H
4

O
4

)
2

,

which corresponds to the global minimum of the excess enthalpy here estimated at n = 4.

This evidence further supports the thermodynamic stability of this composition. Figure 4

also reports volume values of some synthetic katoite samples: i) empty circles represent the

hydrothermal members number 1 and 12 from Flint et al. (1941); ii) asterisks are samples by

Jappy and Glasser (1991); iii) empty rhombi are taken from Pöllmann (2012). By inspection

of the lower panel of Figure 4, it turns out that most of the above mentioned katoite samples

display a negative excess volume. The only exceptions are the synthetic specimens from
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Pöllmann (2012), plus two other synthetic samples (Flint et al. 1941, Jappy and Glasser

1991) of composition very close to the pure Si-free compound.

The three data points around n = 7 correspond to di↵erent experiments carried out

on hibschite from Crestmore. Powder XRD analyses by Pabst (1937) provided a cubic

structure with lattice constant a = 12.16 Å (solid rhombus). Afterwards, hibschite was

subjected to single-crystal XRD by Basso et al. (1983), who obtained a lattice constant

a = 12.174 Å (solid triangle). The authors relied on the chemical formula calculated from

the structure refinement, namely Ca
3

Al
2

(SiO
4

)
1.53

(H
4

O
4

)
1.47

, despite their own microprobe

analysis revealing a distinctly higher Si content: Ca
2.98

Mg
0.05

Fe
0.02

Al
1.93

(SiO
4

)
1.77

(H
4

O
4

)
1.23

.

Indeed, in view of the remarkable agreement with the composition previously obtained by

Pabst (1942), Ca
3.01

Al
2.11

(SiO
4

)
1.82

(H
4

O
4

)
1.10

, we assumed their microprobe analysis as the

most representative. This choice is in line with the outcome of an independent electron

microprobe analysis performed by O’Neill et al. (1993), which provided chemical com-

position Ca
2.84

Mg
0.04

Fe
0.03

Al
1.87

(SiO
4

)
1.72

(H
4

O
4

)
1.28

. The corresponding lattice parameter,

a = 12.183 Å (solid square), was measured via single-crystal XRD. It is noteworthy that all

the experiments performed on hibschite from Crestmore provide a positive excess volume

�V̄ .

Members in the range 8  n  12 were synthesized by Cohen-Addad et al. (1967) (cross),

by Lager et al. (1989) (plus), and by Cheng et al. (1990) (solid circles). The empty rhombus

belongs to the set of synthetic hydrogrossular samples reported by Pöllmann (2012). All

these points occur below the solid red line joining the two end-members. In particular, Cheng

et al. (1990) carried out a thorough XRD and XPS (X-ray photoelectron spectroscopy)

investigation in order to define a quantitative relation between unit cell dimension and

composition 0  x  1. They found it to be nonlinear, with a negative volume of mixing

describing an asymmetric pattern.

Let us focus now on the lower panel of Figure 4. We notice that the collection of experi-

mental excess volumes suggests a sinusoidal trend of the function �V̄ , which is qualitatively

very similar to that described by our calculated data. Indeed, �V̄ is generally negative for

Kat-rich solid solutions (n up to 4� 5), it is positive at intermediate compositions (n ⇡ 7),

and finally returns negative for Gro-rich solid solutions (8  n < 12). The agreement be-

tween experimental and calculated data is satisfactory, apart from the latter su↵ering from

a slight underestimation of the amplitude of the negative �V̄ values. On the hibschite side,
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the intersection with the zero axis occurs around n = 8 in both series. On the katoite side,

instead, the present calculations seem somehow to anticipate (at n = 3) the sign reversal of

�V̄ with respect to the experiments (about n = 4 � 5). Nevertheless, it is also true that

the measurements on katoite are rather dispersed in comparison with those on hibschite. At

intermediate compositions (4 < n < 8) we cannot compare precisely, because the available

experimental data are scarce, and because those on hibschite from Crestmore are located

right at the discontinuity of the calculated functions �V̄ (n) and �H̄(n). We may just re-

mark that samples reported by Pöllmann (2012) with positive excess volume lie very close

to the corresponding calculated points.

C. Octahedra

Figure 5 shows the variation of the octahedral-dodecahedral shared, S, and unshared, U ,

edges with composition. The shared edge S is represented in the upper panel. We notice

that the three oxygen pairs are well distinguished, being always S(OH-OH) < S(O-OH) <

S(O-O). All three distances are shortened with the increase of the number n of Si atoms

in the primitive cell. Apart from the end-members Gro and Kat, hetero-pairs O-OH are

present along the entire compositional range. In contrast, the distribution of homo-pairs,

OH-OH and O-O, is very asymmetrical: compositions with n < 5 are characterized by the

exclusive presence of OH-OH pairs, while those with n > 7 display only pairs of type O-O.

This may be related to the corresponding asymmetry of the excess enthalpy (Figure 2),

so that the simultaneous presence of OH-OH, O-OH and O-O shared edges, occurring just

between n = 5 and n = 7, may be related to the concavity change of the excess enthalpy

in the same range of compositions. By plotting the weighted average S̄ with increasing n,

we get an upward linear (within the stripe width) trend that would indicate the elongation

of the shared edge with the increase of Si atoms. In fact, despite the shortening of S for

each oxygen pair type, the progressive increase in weight of the O-O pair determines the

increase of S̄. This result is in perfect agreement with the average structure view provided

by experimental determinations (red asterisks).

As regards the unshared edge U (lower panel), the lengths associated to pairs OH-OH,

O-OH and O-O are much closer to each other. All of them slightly decrease with increasing

n, with a variation of just 0.12 Å over the whole composition range. In this case, the average
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function Ū is consistent with the individual trends: it provides a linear (within the stripe

width) shortening of the unshared edge with an increasing number of Si atoms. Again, the

predicted average behavior conforms to the experiments (red asterisks).

To recap, average S̄ and Ū octahedral edge lengths are consistent with a macroscopic

picture according to which the shared octahedral edge decreases in length while the unshared

edge increases. They intersect at about n = 10 (vertical dashed line in Figure 5), that is

very close to the crossing between the experimental curves (Lager et al. 1989).

D. Tetrahedra Distribution and Structural Response to Hydrogarnet Substitution

From the discussion addressed above (Section III B), one may deduce that, within the

present model, the Gro-Kat solid solution at low temperature can essentially be represented

by the most stable configurations at the various compositions. Therefore, unless otherwise

stated, the following structure analysis will refer to configurations of minimal enthalpy (red

points in Figure 2). In order to rationalize the e↵ects of the hydrogarnet substitution, we

will exploit the typical polyhedral interpretation of the garnet structure (Novak and Gibbs

1971). That is, hydrogrossular consists of a three-dimensional network of alternating, corner-

sharing SiO
4

(or H
4

O
4

) tetrahedra and AlO
6

octahedra, in which triangular dodecahedral

cavities accomodate Ca2+ cations.

1. Oxygens and Hydroxyls

Figure 6 shows �-O distances between the barycenter � of the tetrahedra and the O atoms

at their vertices, as a function of the composition. It turns out that both kinds of tetrahedra

are rather insensitive to variations in composition, more so for the SiO
4

tetrahedra, where

the presence of a central Si atom freezes the oxygens via covalent interactions. Protonated

H
4

O
4

tetrahedra lack such an internal constraint and thus display a wider dispersion of the

�-O distances. To get a quantitative estimation of the tetrahedral distortion at intermediate

compositions, we applied the iterative least-squares technique proposed by Dollase (1974),

and obtained maximum deformations of 4.5% for SiO
4

compared to Gro, and 5.2% for

H
4

O
4

compared to Kat. These deformation rates are rather low, which indicates both the

tetrahedral sites to be fairly close to the respective “ideal” limit structures.
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According to our calculations, the oxygens of the solid solution are unambiguously split

into Gro-like and Kat-like tetrahedral sites, whatever the composition. This picture is

consistent with experimental refinements by Armbruster and Lager (1989) and by Lager

et al. (1989), who successfully adopted the split-atom model to account for oxygen positional

disorder in katoite and hibschite samples, i.e., oxygen sets on two di↵erent sites depending

upon whether the tetrahedron is occupied by Si or protonated. They worked out, in this

way, anomalously short O-H(D) bond distances (0.65-0.74 Å) previously reported (Lager

et al. 1987a, 1989, Sacerdoti and Passaglia 1985), as artifacts due to the use of standard

ordered refinement models yielding a single average oxygen position rather than the two real

ones.

In fact, by considering a weighted mean of the calculated �-O values for SiO
4

and H
4

O
4

tetrahedra, a linear function of composition is obtained (gray stripe in Figure 6), which

decreases from 1.979 Å at n = 0 (Kat), to 1.662 Å at n = 12 (Gro). This coincides with the

average picture provided by XRD experiments (red asterisks).

2. Hydrogen interactions

Let us now analyze what happens to the hydrogen atoms. We are interested in in-

vestigating the possible existence and/or development of hydrogen interactions along the

compositional series. In the absence of vibrational data on which to rely for evaluating pres-

ence and strength of possible H-bonds, we must refer to geometric criteria. As a guideline

on the structural systematics of hydrogen bonding in inorganic compounds, we used the

accurate compilations provided by Ceccarelli et al. (1981) and by Nyfeler and Armbruster

(1998). Based on these works, one can deduce that the average O-H distance generally

settles around 0.969 Å, the H· · ·O bond lengths range within 1.75-1.82 Å and the average

O-H· · ·O angle is about 167�. Given the broad structural variety of crystalline solids, these

values can not be considered as real cuto↵s, but rather as references for hydrogen interac-

tions of significant strength: the further away from this model geometry, the weaker (if any)

the interaction.

We may start considering the H
4

O
4

tetrahedron in Kat (n = 0). The optimized structure

obtained in the present work compares well with experimental determinations. A distance

�-O of 1.979 Å is calculated, which is quite similar to both neutron and X-ray di↵raction
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measurements, i.e., 1.950 Å and 1.962 Å, respectively (Lager et al. 1987a). Hydrogens are

located slightly outside the tetrahedron, the angle �-O-H being 36�. Our computed O-H

bond length, i.e., 0.961 Å, is in line with previous calculations (Pascale et al. 2004) as

well as with targeted structure refinements corrected for thermal motion e↵ects, i.e., 0.95

Å (Lager et al. 2005). According to Lager et al. (2005) a bifurcated H-bond is formed with

the oxygens located at the opposite vertices of the face, with the H atom lying approximately

on the bisector plane. They collected time-of-flight neutron powder data on Ca
3

Al
2

(D
4

O
4

)
3

,

measuring two intra-tetrahedral D· · ·O distances, D1· · ·O3 = 2.551 Å and D1· · ·O3’ = 2.499

Å (notation as in Figure 7), and respective angles O1-D1· · ·O3 = 133.5� and O1-D1· · ·O3’

= 139.6�. In addition, they identified an inter-tetrahedral H-bond, D3· · ·O1’, as large as

2.606 Å, with an angle O3-D3· · ·O1’ equal to 111.1�.1 A clear divergence from the geometric

H-bond requirements here adopted (Ceccarelli et al. 1981, Nyfeler and Armbruster 1998) is

observed, which implies at least the classification into rather weak interactions. That said,

our calculations define pretty much the same picture: i) the intra-tetrahedral parameters

are H1· · ·O3 = 2.564 Å, H1· · ·O3’ = 2.513 Å, O1-H1· · ·O3 = 133.2� and O1-H1· · ·O3’ =

138.8�; ii) the inter-tetrahedral parameters are H3· · ·O1’ = 2.610 Å and O3-H3· · ·O1’ =

109�. These values are reported in Table III and compared with selected distances and

angles of minimum energy SICs calculated at di↵erent compositions n.

When a silicon atom is introduced in the unit cell (n = 1), one H
4

O
4

tetrahedron is

replaced for SiO
4

. This causes a drastic change in the geometry of the hydrogen interactions

in the neighborhood. We focus on the first star of neighbors, i.e., four H
4

O
4

tetrahedra on

which the perturbation is evenly distributed as each of them interacts with one oxygen of the

SiO
4

unit. Figure 7 shows the detail of the local rearrangement. H3 flips toward O1’ with a

dramatic enlargement of the angle �-O3-H3 (65.5�). The simultaneous gain in directionality

of the inter-tetrahedral interaction (O3-H3· · ·O1’ = 148.7�) implies a strengthening of the

latter, that is deduced from the increment of the O3-H3 bond length (0.969 Å) and from

the corresponding decrease of the H3· · ·O1’ distance (2.077 Å). Meanwhile, the repulsion

exerted by H3 on the other three hydrogens of the H
4

O
4

tetrahedron fades, so that they

can come closer to its center �. H1 is particularly concerned: the angle �-O1-H1 tightens to

24.21�, and the intra-tetrahedral interaction with O3 intensifies (H1· · ·O3 = 2.335 Å, O1-

1 We recall that, in cubic Si-free katoite, oxygen atoms, as well as hydrogen atoms, are all equivalent. The

proposed labeling is a convenient way to discuss geometrical relations.
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H1· · ·O3’ = 148.0�) at the expense of the one with O3’ (H1· · ·O3’ = 2.593 Å, O1-H1· · ·O3’

= 134.4�). This suggests that the position of the H atoms is controlled by the electrostatic

interactions between them, rather than by hydrogen interactions, and thus emphasizes the

weakness of the latter.

In the opposite situation, that is when all tetrahedra but one are occupied by Si (n = 11),

we obtain a fairly di↵erent arrangement of the hydrogen atoms (see Table III). This time,

a single H
4

O
4

tetrahedron is surrounded by four SiO
4

tetrahedra. Each hydrogen of H
4

O
4

interacts with one SiO
4

tetrahedron at a distance H3· · ·O1’ of 2.191 Å, forming angles

O3-H3· · ·O1’ = 127.1� and �-O3-H3 = 45.52�. By comparison with n = 1, we can infer

that hydrogen interactions in this case are generally not as strong. A certain asymmetry

emerges, which may be somehow reflected by the excess enthalpy represented in Figure 2:

�H is about -18 mHa at n = 1 and about -7 mHa at n = 11. Besides, we should not

expect otherwise given that the ratio of hydrogen donor-to-acceptor is necessarily di↵erent

in the two cases. At n = 1 there are four H
4

O
4

tetrahedra (donors) strongly engaged in

as many hydrogen interactions with one SiO
4

(acceptor). The latter acts as an attractive

pole for the nearest hydrogen atoms, thus unbalancing the layout of the surroundings. At

n = 11 it remains a single H
4

O
4

tetrahedron (donor). Its hydrogens participate one-by-one

in interactions with four neighboring SiO
4

tetrahedra (acceptors) that are evenly spaced out.

The result is an isotropic “strain” of the donor with respect to the reference Kat.

At intermediate compositions, hydrogen interactions are far more complicated to ratio-

nalize. The parameters reported in Table III for n = 4, 6 suggest stronger interactions than

in Kat, but their input to the stability of the system is blurred by new rising contributions.

At n = 6, for instance, the most stable and the least stable SICs exhibit hydrogen interac-

tions of comparable strength, the di↵erence being rather in their number. One would expect

that the higher the number of interactions, the more stable the structure. In fact, we find

the opposite situation: in the least stable SIC, which has cubic symmetry, each tetrahedron

H
4

O
4

(SiO
4

) interacts with four neighbors SiO
4

(H
4

O
4

); in the most stable SIC, instead,

the inter-tetrahedral hydrogen interactions are halved. Indeed, we may conclude that the

necessity to invoke “H-bonds” to understand the energetics of the system is not so obvious.

It is to be recalled that such partitioning of the energy is nothing but the result of a rational

process of interpretation, which can be useful to account for some properties but, still, is far

from being fully comprehensive.
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3. Tetrahedra Distribution

Figure 8 shows the distribution of the H
4

O
4

and SiO
4

tetrahedra in the pseudo-cubic cell

of minimum energy configurations at di↵erent compositions n (the number of Si atoms refers

to the primitive cell). Two distinct patterns of distribution can be recognized: one for n  7

and another one for n � 7 (SICs with n  3 and n � 11 are not shown in the figure as they

are poorly illustrative). On the katoite side (n < 7), the SiO
4

tetrahedra are progressively

arranged in planes (1 0 1), until a structure of alternate “layers” of Gro and Kat is finally

obtained at n = 6. Hence, a tendency emerges towards some sort of separation between the

two phases, which accounts for the positive excess volumes calculated at 4  n  6 (Figures

3 and 4). Note that the plane of growth of the SiO
4

layers coincides with the mirror planes

for the pseudomerohedral twins inducing ferroelastic lattice strain in majorite (Heinemann

et al. 1997). We may also remark that force-field calculations by Becker et al. (2000) and by

Becker and Pollok (2002) provided a similar tendency to cation ordering in alternating layers

for 1:1 compositions of barite-celestite and grossular-andradite solid solutions, respectively.

On the hibschite side (n > 7), a mixed distribution of SiO
4

and H
4

O
4

tetrahedra appears to

be thermodynamically favored, which nicely correlates with the negative excess volumes of

Figures 3 and 4. These two tetrahedra distribution patterns meet at n = 7, that is right at

the discontinuity encountered on both the calculated enthalpy and volume of mixing (Figures

2 and 3). As previously discussed, composition n = 7 features a small energy di↵erence

(about 0.8 mHa) between min�H and the next SIC. Figure 8 shows the corresponding

structures: the most stable at the bottom and the less stable at the top. The most stable

configuration displays a tetrahedra arrangement consistent with the hibschite pattern, while

the second is consistent with the katoite pattern. Plots of �H(n) (solid lines), represent

the two series of configurations with di↵erent colors. Each color corresponds to a continuity

region of the excess enthalpy function. This suggests that �H(n) is given by a superposition

of two di↵erent curves with minima at n = 4 and n = 8, respectively, that intersect at n = 7.

The presence of two patterns of distribution of the tetrahedra related with two di↵erent

�H(n) curves indicates that there are di↵erent specific interactions causing a negative excess

enthalpy. A theoretical approach commonly applied to identify e↵ective interactions is the

so-called “J-formalism”, also known as the cluster expansion (CE) method (Sanchez et al.

1984, Sanchez 1993). It consists in parameterizing the total excess property as a sum over
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many-body interactions between exchangeable components at specific distances within the

lattice. In the above mentioned work by Becker and Pollok (2002), the authors used a CE of

pairwise cation interactions to fit the energies of mixing calculated for grossular-andradite

solid solutions. Such a procedure allowed to establish a direct connection between the

largest negative fitting parameter and the ordering of Al and Fe3+ in alternate layers. The

similarity with the ordered configuration of the tetrahedra SiO
4

and H
4

O
4

at composition

n = 6, suggests a parallel with the left branch of the �H(n) function represented in Figure

8. However, this is just a partial clue, the more so that, to account for the non-regularity

of the present system, extension of the CE to at least three-body interactions is required

(Vinograd et al. 2010). Therefore, applying the J-formalism to the Gro-Kat solid solution

would be an interesting follow-up to this study.

Let us now have an insight on the tetrahedra distribution of the enthalpy local minimum

at n = 8, which corresponds to stoichiometry Ca
3

Al
2

(SiO
4

)
2

(H
4

O
4

). Figure 9 shows a perfect

correspondence with the experimental structure of henritermierite (Armbruster et al. 2001),

that is another mineral of the hydrogarnet group having formula Ca
3

Mn
2

(SiO
4

)
2

(H
4

O
4

).

Even the hydrogen positions in henritermierite resemble the arrangement provided by our

calculation. Due to the Jahn-Teller distortion of octahedral Mn3+, henritermierite has

a tetragonal lattice (space group I4
1

/acd), with cell parameters a = 12.489 and c =

11.909 Å and a ratio a/c = 1.049. An Al-dominant analogue of average composition

Ca
3

(Al
0.96

Mn3+

0.68

Fe3+
0.37

)(SiO
4

)
2

(H
4

O
4

)
0.99

, named holstamite, has also been reported with

a slightly lower ratio: a/c = 1.034, being a = 12.337 and c = 11.930 Å (Halenius et al.

2005). Holstamite belongs to a solid solution between henritermierite and a hypothetical

tetragonal end-member Ca
3

Al
2

(SiO
4

)
2

H
4

O
4

, which, given the absence of Mn3+, should be

associated to the smallest a/c ratio along the series. In fact, the most stable configuration

calculated at n = 8 does correspond to such a hypothetical end-member: it has the exact

stoichiometry, a tetragonal symmetry and a pseudo-cubic unit cell with ratio a/c = 1.023.

IV. IMPLICATIONS

An ab initio quantum-mechanical approach has been adopted to analyze structure and

energetics aspects of the grossular-katoite solid solution. Calculations have been performed

within the primitive cell of cubic garnets, using all-electron Gaussian basis sets and the
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B3LYP hybrid functional. The results obtained at the present level of approximation can

be summarized as follows: i) all the 136 SICs obtained by hydrogarnet substitution feature

pseudo-cubic conventional cells after full geometry relaxation; ii) at low temperatures (ap-

proximately below 700 K), the properties of the system pertain essentially to the ground

state; iii) the excess enthalpy describes an asymmetric function, with two minima that can be

associated to natural minerals of stoichiometry Ca
3

Al
2

SiO
4

(H
4

O
4

)
2

and Ca
3

Al
2

(SiO
4

)
2

H
4

O
4

,

respectively; iv) the asymmetry of the enthalpy of mixing can be related to two di↵erent

distribution patterns of the tetrahedra H
4

O
4

and SiO
4

, which intersect around composition

Ca
3

Al
2

(SiO
4

)
1.75

(H
4

O
4

)
1.25

(n = 7); v) for lower amounts of grossular, the SiO
4

tetrahedra

tend to cluster in (1 0 1) planes and, consequently, the excess volume becomes positive

within the range 1  x  1.5; vi) the oxygens are unambiguously split into grossular-like

and katoite-like tetrahedral sites, whatever the composition; vii) hydrogen interactions in

fully-hydrated katoite are found to be weak as suggested by dramatic changes in the H en-

vironment associated with the introduction of SiO
4

tetrahedra; viii) hydrogen interactions

developed around one SiO
4

in katoite are stronger than those around one H
4

O
4

in grossu-

lar, which reflects the asymmetry of the excess enthalpy between compositions n = 1 and

n = 11.

Implications of this work can be envisaged at di↵erent levels. The immediate fallout is

represented by the complement of knowledge and by the interpretive support that theoretical

data provide to the experimental evidence. The atomistic approach of the simulation allowed

us to deepen the structural analysis of hydrogrossular, establishing interesting correlations

with the enthalpy of the solid solution. In fact, we have shown that the hydrogarnet substi-

tution is driven by a strong enthalpy gain. All compositions are possible on the basis of the

calculated excess enthalpy, meaning that the reported miscibility gap between compositions

Ca
3

Al
2

(SiO
4

)
0.42

(H
4

O
4

)
2.58

and Ca
3

Al
2

(SiO
4

)
0.76

(H
4

O
4

)
2.24

can be filled by varying temper-

ature and pressure conditions. On a practical level, the relationship between stability and

excess volume of hydrogrossular can serve the purpose of controlling the rheology of cement

pastes and producing dense concrete structures. Also, the positive excess volumes calculated

for 1  x  1.5 indicate that solid solutions with these compositions are destabilized un-

der high pressures, which is a fundamental information for characterizing composition and

properties of the Earth’s mantle. The next step would be performing frequency calculations

on the optimized structures in order to access entropic contributions to the thermodynamics
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of the system.

Besides that, the present work may also have a strong methodology impact in the field

of the theoretical study of solid solutions (and disordered crystals). In this regard, we have

shown the SA-MC sampling of the configurational space as a valuable route to tackle these

kinds of systems via first-principle simulations, and thus get accurate estimates of their av-

erage structure and energetic properties. We can expect that the same holds true for other

properties (e.g., spectroscopic, dielectric, magnetic), but care must be taken when dealing

with tensor quantities because Boltzmann averages are not straightforward. Further work

is required in order to define an appropriate method for processing the calculated data in

such cases. Finally, there are some issues that still remain open, for example understand-

ing the relationship between symmetry and stability of the classes of configurations. We

have found that minima and maxima of the calculated enthalpy of mixing correspond to

symmetric configurations. If proven in general, this connection would be of great help in

exploring configurational spaces, as it would bridge directly towards minima and maxima of

the potential energy surface. The advantages, in terms of computational e�ciency, would be

proportional to the size of the system: the larger the unit cell, the lower the ratio between

symmetric and asymmetric classes of configurations.
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FIG. 1. (color online) Graphical representation of a portion of the structure of hydrogrossular

Ca
3

Al
2

(SiO
4

)
3�x

(OH)
4x

, as a function of the substitutional fraction x of H for Si atoms: pure

grossular, Ca
3

Al
2

(SiO
4

)
3

, on the left; pure silicon-free katoite, Ca
3

Al
2

(OH)
12

, on the right. Octa-

hedral, AlO
6

, and tetrahedral, SiO
4

for grossular and O
4

H
4

for katoite, subunits are highlighted

with light blue and red dashed lines, respectively. Oxygens in red, silicons in green, aluminums in

yellow, hydrogens in blue. Calcium atoms are not shown.
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FIG. 2. (color online) Excess enthalpy �H as a function of composition n, which stands for the

number of Si atoms in the unit cell. Red and pink points are SICs with minimum and maximum

excess enthalpy, respectively; blue points are the SICs with �H closest to the minimum; black

points are SICs with intermediate excess enthalpy. Di↵erent symbols represent di↵erent SIC multi-

plicities M: full square 1; half full circle 2; half full diamond 3; full up triangle 6; full down triangle

8; full diamond 12; full pentagon 16; circle with full quarter 24; small full circle 48.
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FIG. 3. (color online) Excess volume �V as a function of composition n, which stands for the

number of Si atoms in the unit cell. Di↵erent colors distinguish the SICs on the basis of the

corresponding excess enthalpy, according to the scheme defined in Figure 2. The solid curve is

an eye-guide approximating the average function �V̄ (n) at 300 K. Di↵erent symbols represent

di↵erent SIC multiplicities M (see caption to Figure 2 for details).
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FIG. 4. (color online) Boltzmann average volume V̄ (upper panel) and excess volume �V̄ (lower

panel) as functions of the composition n. Full black circles are calculated values at 300 K. Red

symbols are experimental data by Pabst (1937), solid rhombus; Flint et al. (1941), empty circles;

Cohen-Addad et al. (1967, 1963), cross; Basso et al. (1983), full triangle; Passaglia and Rinaldi

(1984), empty triangle; Sacerdoti and Passaglia (1985), full inverted triangle; Lager et al. (1989),

plus; Cheng et al. (1990), solid circles; Jappy and Glasser (1991), asterisks; O’Neill et al. (1993),

solid square; Ferro et al. (2003), solid pentagon; and Pöllmann (2012), empty rhombi. Empty

squares are the end-members obtained as averages of various experiments (Cheng et al. 1990,

Cohen-Addad et al. 1963, Flint et al. 1941, Lager et al. 1987a, 2005, 1987b, Novak and Gibbs 1971,

Rodehorst et al. 2002). Solid straight lines in the upper panel connect the end-members.
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FIG. 5. (color online) Octahedral shared, S, and unshared, U , edge length (Å) as a function of

composition n. Full symbols represent average values for oxygen pairs O-O, O-OH and OH-OH.

Gray stripes include weighted means over the three oxygen pairs contributing to S and U at the

various compositions. The vertical line indicates the composition at which the intersection between

the two gray stripes occurs. Red asterisks are experimental data from Lager et al. (1987a), n = 0;

Sacerdoti and Passaglia (1985), n = 2.56; Ferro et al. (2003), n = 4.48; Basso et al. (1983),

n = 7.08; and Novak and Gibbs (1971), n = 12.
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FIG. 6. (color online) Tetrahedral �-O distance (between the barycenter � and the oxygens at

the vertices) as a function of composition n, that is the number of Si atoms in the primitive

cell. Full circles and squares are average �-O values for SiO
4

and H
4

O
4

tetrahedra, respectively.

Error-bars range from the minimum to the maximum �-O distance in each tetrahedron. The gray

stripe represents average �-O distances weighted over the SiO
4

and the H
4

O
4

tetrahedra at each

composition. Red asterisks are experimental data from Lager et al. (1987a), n = 0; Sacerdoti and

Passaglia (1985), n = 2.56; Ferro et al. (2003), n = 4.48; Basso et al. (1983), n = 7.08; and Novak

and Gibbs (1971), n = 12.
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FIG. 7. Structure drawing of adjacent H
4

O
4

and SiO
4

tetrahedra with bridging CaO
8

dodecahedron

at composition n = 1, where n is the number of silicon atoms in the primitive cell. Hydrogen

interactions with lengths < 2.5 Å are shown as dashed lines. Atomic labeling notation as in

(Novak and Gibbs 1971) and in (Lager et al. 2005). In (Lager et al. 2005) H is replaced by D.
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FIG. 8. (color online) Distribution of SiO
4

(blue) and H
4

O
4

(gray) tetrahedra in the pseudo-cubic cell of minimum energy SICs. The number

n of Si atoms refers to the primitive cell. At n = 7, two stable SICs with very similar energy are illustrated: the most stable SIC at the

bottom, the next one at the top. Two distribution trends are visible, one for n  7 and one for n � 7, in which a structural continuity

between the SICs is recognized. Plots of �H(n) (solid lines) feature the two series of SICs in di↵erent colors: each color corresponds to

a continuity region. �H(n) is likely a superposition of two curves with minima at n = 4 and n = 8, intersecting at n = 7 (discontinuity

point). Dashed portions of these curves are drawn as an eye guide.
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FIG. 9. (color online) The tetrahedra distribution of the minimum enthalpy configuration at

composition n = 8 (left) is compared to that of henritermierite, Ca
3

Mn
2

(SiO
4

)
2

(H
4

O
4

) (right).

SiO
4

tetrahedra in blue; H
4

O
4

tetrahedra in gray. Yellow and brown spheres represent octahedral

cations. Note the agreement between calculated and experimental orientation of the O-H groups.
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TABLES
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TABLE I. Distribution of the SICs obtained by substitution of the tetrahedral sites in the garnet

primitive cell. For di↵erent numbers n of Si atoms, fractional composition x = 3(1 � n/12),

number of SICs N
SIC

, total number of atomic configurations N
Conf

and minimum multiplicity

M
min

(corresponding to the maximum symmetry) of the respective classes are reported.

n x N
SIC

N
Conf

M
min

0 3.00 1 1 1

1 2.75 1 12 12

2 2.50 5 66 6

3 2.25 7 220 12

4 2.00 18 495 3

5 1.75 20 792 12

6 1.50 32 924 2

7 1.25 20 792 12

8 1.00 18 495 3

9 0.75 7 220 12

10 0.50 5 66 6

11 0.25 1 12 12

12 0.00 1 1 1

136 4096
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TABLE II. Lattice parameters a, b, c (Å) and angles ↵, �, � (degrees) of the SICs at composition

n = 6, where n is the number of Si in the primitive cell. The classes are listed in order of increasing

energy, the total variation being 51 mHa. Multiplicities M and lattice types (Lat.), as deduced

from the analysis of the residual symmetry group, are also reported: Cub = cubic, Tet = tetragonal,

Trg = trigonal, Ort = orthorhombic, Mon = monoclinic, Trc = triclinic. Lattice types might not

refer to the conventional definition. Percentage indices of the overall deviation from the ideal cubic

structure are given at the bottom (see text for definitions).

l M a b c ↵ � � Lat.

1 12 12.324 12.349 12.349 90.00 91.29 90.00 Ort

2 12 12.381 12.294 12.294 90.00 90.00 90.00 Tet

3 6 12.319 12.319 12.320 90.00 90.00 90.00 Tet

4 48 12.358 12.303 12.303 90.61 90.57 90.32 Trc

5 24 12.360 12.360 12.208 89.67 90.33 90.01 Mon

6 12 12.354 12.348 12.214 90.00 90.00 90.00 Ort

7 48 12.339 12.276 12.295 90.46 90.03 89.79 Trc

8 12 12.363 12.321 12.222 90.00 90.00 90.00 Ort

9 24 12.332 12.332 12.204 90.07 89.93 90.05 Mon

10 48 12.322 12.273 12.317 89.51 89.71 90.69 Trc

11 48 12.322 12.310 12.285 89.78 89.29 90.04 Trc

12 24 12.365 12.264 12.264 90.08 90.33 89.67 Mon

13 48 12.324 12.296 12.273 89.71 89.98 90.46 Trc

14 24 12.269 12.312 12.312 89.50 90.70 89.30 Mon

15 12 12.374 12.298 12.171 90.00 90.48 90.00 Mon

16 48 12.334 12.243 12.294 89.96 90.00 90.79 Trc

17 48 12.315 12.314 12.227 90.19 90.29 90.30 Trc

18 48 12.316 12.318 12.234 89.70 89.97 90.11 Trc

19 48 12.313 12.238 12.302 89.92 90.37 90.12 Trc

20 8 12.299 12.299 12.299 89.56 89.56 89.56 Trg

21 48 12.307 12.295 12.256 89.48 90.35 89.90 Trc

22 24 12.324 12.260 12.279 89.66 90.00 90.00 Mon

23 24 12.341 12.242 12.242 89.63 90.03 89.97 Mon

24 24 12.287 12.287 12.227 90.09 89.91 90.30 Mon

25 48 12.315 12.286 12.205 89.78 90.41 89.81 Trc

26 48 12.292 12.304 12.204 89.96 90.30 90.43 Trc

27 12 12.240 12.240 12.287 90.00 90.00 90.00 Tet

28 24 12.286 12.286 12.254 90.03 89.97 90.30 Mon

29 12 12.293 12.225 12.225 90.00 90.00 90.00 Tet

30 48 12.287 12.234 12.216 90.16 90.19 90.13 Trc

31 8 12.243 12.243 12.243 90.39 90.39 90.39 Trg

32 2 12.191 12.191 12.191 90.00 90.00 90.00 Cub

|�̄| 0.27 0.18 0.28 0.22 0.27 0.22

�̄ 0.24 0.00 -0.24 -0.07 0.15 0.08

max |�| 0.76 0.41 0.90 0.68 1.43 0.88
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TABLE III. Selected distances (Å) and angles (degrees) involving the hydrogen atom at di↵erent

compositions n. Minimum energy SICs are considered. Notation as in Figure 7.

n 0 1 4 6 11

O1-H1 0.961 0.961 0.961 0.962 0.963

O3-H3 - 0.969 0.965 0.964 0.963

H1· · ·O3 2.513 2.335 2.547 2.472 2.412

H1· · ·O3’ 2.564 2.593 2.553 2.590 2.677

H3· · ·O1’ 2.610 2.077 2.172 2.164 2.191

O1-H1· · ·O3 138.8 148.0 147.0 137.7 142.6

O1-H1· · ·O3’ 133.2 134.4 133.4 141.5 117.1

O3-H3· · ·O1’ 109.0 148.7 132.0 135.9 127.1

�-O1-H1 36.26 24.21 27.88 28.55 45.52

�-O3-H3 - 65.46 52.17 53.93 45.52
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