Observation of the $\boldsymbol{\psi}\left(1^{3} D_{2}\right)$ State in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \gamma \chi_{c 1}$ at BESIII

M. Ablikim, ${ }^{1}$ M. N. Achasov, ${ }^{9, a}$ X. C. Ai, ${ }^{1}$ O. Albayrak, ${ }^{5}$ M. Albrecht, ${ }^{4}$ D. J. Ambrose, ${ }^{44}$ A. Amoroso, ${ }^{48,48 c}$ F. F. An, ${ }^{1}$ Q. An, ${ }^{45}$ J. Z. Bai, ${ }^{1}$ R. Baldini Ferroli, ${ }^{20 a}$ Y. Ban, ${ }^{31}$ D. W. Bennett, ${ }^{19}$ J. V. Bennett, ${ }^{5}$ M. Bertani, ${ }^{20 a}$ D. Bettoni, ${ }^{21 a}$ J. M. Bian, ${ }^{43}$ F. Bianchi, ${ }^{48,48 \mathrm{c}}$ E. Boger, ${ }^{23, \mathrm{~h}}$ O. Bondarenko, ${ }^{25}$ I. Boyko, ${ }^{23}$ R. A. Briere, ${ }^{5}$ H. Cai, ${ }^{50}$ X. Cai, ${ }^{1}$ O. Cakir, ${ }^{40 \mathrm{ab}}$ A. Calcaterra, ${ }^{20 \mathrm{a}}$ G. F. Cao, ${ }^{1}$ S. A. Cetin,${ }^{40 b}$ J. F. Chang, ${ }^{1}$ G. Chelkov, ${ }^{23, c}$ G. Chen, ${ }^{1}$ H. S. Chen, ${ }^{1}$ H. Y. Chen, ${ }^{2}$ J. C. Chen, ${ }^{1}$ M. L. Chen, ${ }^{1}$ S. J. Chen, ${ }^{29}$ X. Chen, ${ }^{1}$ X. R. Chen, ${ }^{26}$ Y. B. Chen, ${ }^{1}$ H. P. Cheng, ${ }^{17}$ X. K. Chu, ${ }^{31}$ G. Cibinetto, ${ }^{21 a}$ D. Cronin-Hennessy, ${ }^{43}$
H. L. Dai, ${ }^{1}$ J. P. Dai, ${ }^{34}$ A. Dbeyssi, ${ }^{14}$ D. Dedovich, ${ }^{23}$ Z. Y. Deng, ${ }^{1}$ A. Denig, ${ }^{22}$ I. Denysenko, ${ }^{23}$ M. Destefanis, ${ }^{48,48 c}$ F. De Mori, ${ }^{48 a, 48 c}$ Y. Ding, ${ }^{27}$ C. Dong, ${ }^{30}$ J. Dong, ${ }^{1}$ L. Y. Dong, ${ }^{1}$ M. Y. Dong, ${ }^{1}$ S. X. Du, ${ }^{52}$ P. F. Duan, ${ }^{1}$ J. Z. Fan, ${ }^{39}$ J. Fang, ${ }^{1}$ S. S. Fang, ${ }^{1}$ X. Fang, ${ }^{45}$ Y. Fang, ${ }^{1}$ L. Fava, ${ }^{48 b, 48 \mathrm{c}}$ F. Feldbauer, ${ }^{22}$ G. Felici, ${ }^{20 a}$ C. Q. Feng, ${ }^{45}$ E. Fioravanti, ${ }^{21 a}$ M. Fritsch,,${ }^{14,22}$ C. D. Fu, ${ }^{1}$ Q. Gao, ${ }^{1}$ Y. Gao, ${ }^{39}$ Z. Gao, ${ }^{45}$ I. Garzia, ${ }^{21 a}$ C. Geng, ${ }^{45}$ K. Goetzen,,${ }^{10}$ W. X. Gong, ${ }^{1}$ W. Gradl ${ }^{22}$ M. Greco,,${ }^{48,48 \mathrm{c}}$ M. H. Gu, ${ }^{1}$ Y. T. Gu, ${ }^{12}$ Y. H. Guan, ${ }^{1}$ A. Q. Guo, ${ }^{1}$ L. B. Guo, ${ }^{28}$ Y. Guo, ${ }^{1}$ Y. P. Guo, ${ }^{22}$ Z. Haddadi, ${ }^{25}$ A. Hafner, ${ }^{22}$ S. Han, ${ }^{50}$ Y. L. Han, ${ }^{1}$ X. Q. Hao, ${ }^{15}$ F. A. Harris, ${ }^{42}$ K. L. He, ${ }^{1}$ Z. Y. He, ${ }^{30}$ T. Held, ${ }^{4}$ Y. K. Heng, ${ }^{1}$ Z. L. Hou, ${ }^{1}$ C. Hu, ${ }^{28}$ H. M. Hu, ${ }^{1}$ J. F. Hu, ${ }^{48 a, 48 c}$ T. Hu, ${ }^{1}$ Y. Hu, ${ }^{1}$ G. M. Huang, ${ }^{6}$ G. S. Huang, ${ }^{45}$ H. P. Huang, ${ }^{50}$ J. S. Huang, ${ }^{15}$ X. T. Huang, ${ }^{33}$ Y. Huang, ${ }^{29}$ T. Hussain, ${ }^{47}$ Q. Ji, ${ }^{1}$ Q. P. Ji, ${ }^{30}$ X. B. Ji, ${ }^{1}$ X. L. Ji, ${ }^{1}$ L. L. Jiang, ${ }^{1}$ L. W. Jiang, ${ }^{50}$ X. S. Jiang, ${ }^{1}$ J. B. Jiao, ${ }^{33}$ Z. Jiao, ${ }^{17}$ D. P. Jin, ${ }^{1}$ S. Jin, ${ }^{1}$ T. Johansson, ${ }^{49}$ A. Julin, ${ }^{43}$ N. Kalantar-Nayestanaki, ${ }^{25}$ X. L. Kang, ${ }^{1}$ X. S. Kang, ${ }^{30}$ M. Kavatsyuk, ${ }^{25}$ B. C. Ke, ${ }^{5}$ R. Kliemt, ${ }^{14}$ B. Kloss, ${ }^{22}$ O. B. Kolcu, ${ }^{40 b, d}$ B. Kopf, ${ }^{4}$ M. Kornicer, ${ }^{42}$ W. Kuehn, ${ }^{24}$ A. Kupsc, ${ }^{49}$ W. Lai, ${ }^{1}$ J. S. Lange, ${ }^{24}$ M. Lara, ${ }^{19}$ P. Larin, ${ }^{14}$ C. Leng, ${ }^{48 \mathrm{c}}$ C. H. Li, ${ }^{1}$ Cheng Li, ${ }^{45}$ D. M. Li, ${ }^{52}$ F. Li, ${ }^{1}$ G. Li, ${ }^{1}$ H. B. Li, ${ }^{1}$ J. C. Li, ${ }^{1}{ }^{1}$ Jin Li, ${ }^{32}$ K. Li, ${ }^{13}$ K. Li, ${ }^{33}$ Lei Li, ${ }^{3}$ P. R. Li, ${ }^{4}$ T. Li, ${ }^{33}$ W.D. Li, ${ }^{1}$ W. G. Li, ${ }^{1}$ X. L. Li, ${ }^{33}$ X. M. Li, ${ }^{12}$ X. N. Li, ${ }^{1}$ X. Q. Li, ${ }^{30}$ Z. B. Li ${ }^{38}{ }^{38}$ H. Liang,${ }^{45}$ Y. F. Liang, ${ }^{36}$ Y. T. Liang, ${ }^{24}$ G. R. Liao, ${ }^{11}$ D. X. Lin, ${ }^{14}$ B. J. Liu, ${ }^{1}$ C. X. Liu, ${ }^{1}$ F. H. Liu, ${ }^{35}$ Fang Liu, ${ }^{1}$ Feng Liu, ${ }^{6}$ H. B. Liu, ${ }^{12}$ H. H. Liu, ${ }^{16}$ H. H. Liu, ${ }^{1}$ H. M. Liu, ${ }^{1}$ J. Liu, ${ }^{1}$ J. P. Liu, ${ }^{50}$ J. Y. Liu, ${ }^{1}$ K. Liu, ${ }^{39}$ K. Y. Liu, ${ }^{27}$ L. D. Liu, ${ }^{31}$ P. L. Liu, ${ }^{1}$ Q. Liu, ${ }^{41}$ S. B. Liu, ${ }^{45}$ X. Liu, ${ }^{26}$ X. X. Liu, ${ }^{41}$ Y.B. Liu, ${ }^{30}$ Z. A. Liu, ${ }^{1}$ Zhiqiang Liu, ${ }^{1}$ Zhiqing Liu, ${ }^{22,{ }^{*}}$ H. Loehner, ${ }^{25}$ X. C. Lou, ${ }^{1, e}$ H. J. Lu, ${ }^{17}$ J. G. Lu, ${ }^{1}$ R. Q. Lu, ${ }^{18}$ Y. Lu, ${ }^{1}$ Y. P. Lu, ${ }^{1}$ C. L. Luo, ${ }^{28}$ M. X. Luo, ${ }^{51}$ T. Luo, ${ }^{42}$ X. L. Luo, ${ }^{1}$ M. Lv, ${ }^{1}$ X. R. Lyu, ${ }^{41}$ F. C. Ma, ${ }^{27}$ H. L. Ma, ${ }^{1}$ L. L. Ma, ${ }^{33}$ Q. M. Ma, ${ }^{1}$ S. Ma, ${ }^{1}$ T. Ma, ${ }^{1}$ X. N. Ma, ${ }^{30}$ X. Y. Ma, ${ }^{1}$ F.E. Maas, ${ }^{14}$ M. Maggiora,,${ }^{48 a, 48 c}$ Q. A. Malik, ${ }^{47}$ Y. J. Mao, ${ }^{31}$ Z. P. Mao, ${ }^{1}$ S. Marcello, ${ }^{48 a, 48 \mathrm{c}}$ J. G. Messchendorp, ${ }^{25}$ J. Min, ${ }^{1}$ T. J. Min, ${ }^{1}$ R. E. Mitchell, ${ }^{19}$ X. H. Mo, ${ }^{1}$ Y. J. Mo, ${ }^{6}$ C. Morales Morales, ${ }^{14}$ K. Moriya, ${ }^{19}$ N. Yu. Muchnoi, ${ }^{9,4}$ H. Muramatsu, ${ }^{43}$ Y. Nefedov, ${ }^{23}$ F. Nerling, ${ }^{14}$ I. B. Nikolaev, ${ }^{9, a}$ Z. Ning, ${ }^{1}$ S. Nisar, ${ }^{8}$ S. L. Niu, ${ }^{1}$ X. Y. Niu, ${ }^{1}$ S. L. Olsen, ${ }^{32}$ Q. Ouyang, ${ }^{1}$ S. Pacetti, ${ }^{20 b}$ P. Patteri, ${ }^{20 a}$ M. Pelizaeus, ${ }^{4}$ H. P. Peng, ${ }^{45}$ K. Peters, ${ }^{10}$ J. Pettersson, ${ }^{49}$ J. L. Ping, ${ }^{28}$ R. G. Ping, ${ }^{1}$ R. Poling, ${ }^{43}$ Y. N. Pu, ${ }^{18}$ M. Qi, ${ }^{29}$ S. Qian, ${ }^{1}$ C. F. Qiao, ${ }^{41}$ L. Q. Qin, ${ }^{33}$ N. Qin, ${ }^{50}$ X. S. Qin, ${ }^{1}$ Y. Qin, ${ }^{31}$ Z. H. Qin, ${ }^{1}$ J. F. Qiu, ${ }^{1}$ K. H. Rashid, ${ }^{47}$ C. F. Redmer, ${ }^{22}$ H. L. Ren, ${ }^{18}$ M. Ripka, ${ }^{22}$ G. Rong, ${ }^{1}$ X. D. Ruan, ${ }^{12}$ V. Santoro, ${ }^{21 a}$ A. Sarantsev, ${ }^{23, f}$ M. Savrie, ${ }^{21 b}$ K. Schoenning, ${ }^{49}$ S. Schumann, ${ }^{22}$ W. Shan, ${ }^{31}$ M. Shao, ${ }^{45}$ C. P. Shen, ${ }^{2}$ P. X. Shen, ${ }^{30}$ X. Y. Shen, ${ }^{1}$ H. Y. Sheng, ${ }^{1}$ W. M. Song, ${ }^{1}$ X. Y. Song, ${ }^{1}$ S. Sosio, ${ }^{48 a, 48 c}$ S. Spataro, ${ }^{48,48 c}$ G. X. Sun, ${ }^{1}$ J. F. Sun, ${ }^{15}$ S. S. Sun, ${ }^{1}$ Y. J. Sun,${ }^{45}$ Y. Z. Sun, ${ }^{1}$ Z. J. Sun, ${ }^{1}$ Z. T. Sun, ${ }^{19}$ C. J. Tang, ${ }^{36}$ X. Tang, ${ }^{1}$ I. Tapan, ${ }^{40 \mathrm{c}}$ E. H. Thorndike, ${ }^{44}$ M. Tiemens, ${ }^{25}$ D. Toth, ${ }^{43}$ M. Ullrich, ${ }^{24}$ I. Uman, ${ }^{400}$ G. S. Varner, ${ }^{42}$ B. Wang, ${ }^{30}$ B. L. Wang, ${ }^{41}$ D. Wang, ${ }^{31}$ D. Y. Wang, ${ }^{31}$ K. Wang, ${ }^{1}$ L. L. Wang, ${ }^{1}$ L. S. Wang, ${ }^{1}$ M. Wang, ${ }^{33}$ P. Wang, ${ }^{1}$ P. L. Wang, ${ }^{1}$ Q. J. Wang, ${ }^{1}$ S. G. Wang, ${ }^{31}$ W. Wang, ${ }^{1}$ X. F. Wang, ${ }^{39}$ Y. D. Wang, ${ }^{20 a}$ Y. F. Wang, ${ }^{1}$ Y. Q. Wang, ${ }^{22}$ Z. Wang, ${ }^{1}$ Z. G. Wang, ${ }^{1}$ Z. H. Wang, ${ }^{45}$ Z. Y. Wang, ${ }^{1}$ T. Weber, ${ }^{22}$ D. H. Wei, ${ }^{11}$ J. B. Wei, ${ }^{31}$ P. Weidenkaff, ${ }^{22}$ S. P. Wen, ${ }^{1}$ U. Wiedner, ${ }^{4}$ M. Wolke, ${ }^{49}$ L. H. Wu, ${ }^{1}$ Z. Wu, ${ }^{1}$ L. G. Xia, ${ }^{39}$ Y. Xia, ${ }^{18}$ D. Xiao, ${ }^{1}$ Z. J. Xiao, ${ }^{28}$ Y. G. Xie, ${ }^{1}$ Q. L. Xiu, ${ }^{1}$ G.F. Xu, ${ }^{1}$ L. Xu, ${ }^{1}$ Q. J. Xu, ${ }^{13}$ Q. N. Xu, ${ }^{41}$ X. P. Xu ${ }^{37}$ L. Yan, ${ }^{45}$ W. B. Yan, ${ }^{45}$ W. C. Yan,${ }^{45}$ Y. H. Yan, ${ }^{18}$ H. X. Yang, ${ }^{1}$ L. Yang, ${ }^{50}$ Y. Yang, ${ }^{6}$ Y. X. Yang, ${ }^{11}$ H. Ye, ${ }^{1}$ M. Ye, ${ }^{1}$ M. H. Ye, ${ }^{7}$ J. H. Yin, ${ }^{1}$ B. X. Yu, ${ }^{1}$ C. X. Yu, ${ }^{30}$ H. W. Yu, ${ }^{31}$ J. S. Yu, ${ }^{26}$ C. Z. Yuan, ${ }^{1}$ W. L. Yuan, ${ }^{29}$ Y. Yuan, ${ }^{1}$ A. Yuncu, ${ }^{40 b, g}$ A. A. Zafar, ${ }^{47}$ A. Zallo, ${ }^{20 a}$ Y. Zeng, ${ }^{18}$ B. X. Zhang, ${ }^{1}$ B. Y. Zhang, ${ }^{1}$ C. Zhang, ${ }^{29}$ C. C. Zhang, ${ }^{1}$ D. H. Zhang, ${ }^{1}$ H. H. Zhang, ${ }^{38}$ H. Y. Zhang, ${ }^{1}$ J. J. Zhang, ${ }^{1}$ J. L. Zhang, ${ }^{1}$ J. Q. Zhang, ${ }^{1}$ J. W. Zhang, ${ }^{1}$ J. Y. Zhang, ${ }^{1}$ J. Z. Zhang, ${ }^{1}$ K. Zhang, ${ }^{1}$ L. Zhang, ${ }^{1}$ S. H. Zhang, ${ }^{1}$ X. Y. Zhang, ${ }^{33}$ Y. Zhang, ${ }^{1}$ Y. H. Zhang, ${ }^{1}$ Y. T. Zhang, ${ }^{45}$ Z. H. Zhang, ${ }^{6}$ Z. P. Zhang, ${ }^{45}$ Z. Y. Zhang, ${ }^{50}$ G. Zhao, ${ }^{1}$ J. W. Zhao, ${ }^{1}$
J. Y. Zhao, ${ }^{1}$ J. Z. Zhao, ${ }^{1}$ Lei Zhao, ${ }^{45}$ Ling Zhao, ${ }^{1}$ M. G. Zhao, ${ }^{30}$ Q. Zhao, ${ }^{1}$ Q. W. Zhao, ${ }^{1}$ S. J. Zhao, ${ }^{52}$ T. C. Zhao, ${ }^{1}$ Y. B. Zhao, ${ }^{1}$ Z. G. Zhao, ${ }^{45}$ A. Zhemchugov, ${ }^{23, h}$ B. Zheng, ${ }^{46}$ J. P. Zheng, ${ }^{1}$ W. J. Zheng, ${ }^{33}$ Y. H. Zheng, ${ }^{41}$ B. Zhong, ${ }^{28}$ L. Zhou, ${ }^{1}$ Li Zhou, ${ }^{30}$ X. Zhou, ${ }^{50}$ X. K. Zhou, ${ }^{45}$ X. R. Zhou, ${ }^{45}$ X. Y. Zhou, ${ }^{1}$ K. Zhu, ${ }^{1}$ K. J. Zhu, ${ }^{1}$ S. Zhu, ${ }^{1}$ X. L. Zhu, ${ }^{39}$ Y. C. Zhu, ${ }^{45}$ Y. S. Zhu, ${ }^{1}$ Z. A. Zhu, ${ }^{1}$ J. Zhuang, ${ }^{1}$ L. Zotti, ${ }^{48 a, 48 c}$ B. S. Zou, ${ }^{1}$ and J. H. Zou ${ }^{1}$
(BESIII Collaboration)

${ }^{1}$ Institute of High Energy Physics, Beijing 100049, People's Republic of China
${ }^{2}$ Beihang University, Beijing 100191, People's Republic of China
${ }^{3}$ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
${ }^{4}$ Bochum Ruhr-University, D-44780 Bochum, Germany
${ }^{5}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{6}$ Central China Normal University, Wuhan 430079, People's Republic of China
${ }^{7}$ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China
${ }^{8}$ COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
${ }^{9}$ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
${ }^{10}$ GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
${ }^{11}$ Guangxi Normal University, Guilin 541004, People's Republic of China
${ }^{12}$ GuangXi University, Nanning 530004, People's Republic of China
${ }^{13}$ Hangzhou Normal University, Hangzhou 310036, People's Republic of China
${ }^{14}$ Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
${ }^{15}$ Henan Normal University, Xinxiang 453007, People's Republic of China
${ }^{16}$ Henan University of Science and Technology, Luoyang 471003, People's Republic of China
${ }^{17}$ Huangshan College, Huangshan 245000, People's Republic of China
${ }^{18}$ Hunan University, Changsha 410082, People's Republic of China
${ }^{19}$ Indiana University, Bloomington, Indiana 47405, USA
${ }^{20 a}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{20 \mathrm{~b}}$ INFN and University of Perugia, I-06100 Perugia, Italy
${ }^{21 a}$ INFN Sezione di Ferrara, I-44122 Ferrara, Italy
${ }^{21 \mathrm{~b}}$ University of Ferrara, I-44122 Ferrara, Italy
${ }^{22}$ Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
${ }^{23}$ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
${ }^{24}$ Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
${ }^{25}$ KVI-CART, University of Groningen, NL-9747 AA Groningen, Netherlands
${ }^{26}$ Lanzhou University, Lanzhou 730000, People's Republic of China
${ }^{27}$ Liaoning University, Shenyang 110036, People's Republic of China
${ }^{28}$ Nanjing Normal University, Nanjing 210023, People's Republic of China
${ }^{29}$ Nanjing University, Nanjing 210093, People's Republic of China
${ }^{30}$ Nankai University, Tianjin 300071, People's Republic of China
${ }^{31}$ Peking University, Beijing 100871, People's Republic of China
${ }^{32}$ Seoul National University, Seoul, 151-747 Korea
${ }^{33}$ Shandong University, Jinan 250100, People's Republic of China
${ }^{34}$ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
${ }^{35}$ Shanxi University, Taiyuan 030006, People's Republic of China
${ }^{36}$ Sichuan University, Chengdu 610064, People's Republic of China
${ }^{37}$ Soochow University, Suzhou 215006, People's Republic of China
${ }^{38}$ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
${ }^{39}$ Tsinghua University, Beijing 100084, People's Republic of China
${ }^{40 \mathrm{a}}$ Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey
${ }^{40 \mathrm{~b}}$ Dogus University, 34722 Istanbul, Turkey
${ }^{40 \mathrm{c}}$ Uludag University, 16059 Bursa, Turkey
${ }^{41}$ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
${ }^{42}$ University of Hawaii, Honolulu, Hawaii 96822, USA
${ }^{43}$ University of Minnesota, Minneapolis, Minnesota 55455, USA
${ }^{44}$ University of Rochester, Rochester, New York 14627, USA
${ }^{45}$ University of Science and Technology of China, Hefei 230026, People's Republic of China
${ }^{46}$ University of South China, Hengyang 421001, People's Republic of China
${ }^{47}$ University of the Punjab, Lahore-54590, Pakistan
${ }^{48 a}$ University of Turin, I-10125 Turin, Italy
${ }^{48 \mathrm{~b}}$ University of Eastern Piedmont, I-15121 Alessandria, Italy
${ }^{48 \mathrm{c}}$ INFN, I-10125 Turin, Italy
${ }^{49}$ Uppsala University, Box 516, SE-75120 Uppsala, Sweden
${ }^{50}$ Wuhan University, Wuhan 430072, People's Republic of China
${ }^{51}$ Zhejiang University, Hangzhou 310027, People's Republic of China
${ }^{52}$ Zhengzhou University, Zhengzhou 450001, People's Republic of China
(Received 26 March 2015; revised manuscript received 13 May 2015; published 1 July 2015)

Abstract

We report the observation of the $X(3823)$ state in the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823) \rightarrow \pi^{+} \pi^{-} \gamma \chi_{c 1}$ with a statistical significance of 6.2σ, in data samples at center-of-mass energies $\sqrt{s}=4.230,4.260,4.360$, 4.420 , and 4.600 GeV collected with the BESIII detector at the BEPCII electron positron collider. The measured mass of the $X(3823)$ state is $(3821.7 \pm 1.3 \pm 0.7) \mathrm{MeV} / c^{2}$, where the first error is statistical and the second systematic, and the width is less than 16 MeV at the 90% confidence level. The products of the Born cross sections for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)$ and the branching ratio $\mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 1, c 2}\right]$ are also measured. These measurements are in good agreement with the assignment of the $X(3823)$ state as the $\psi\left(1^{3} D_{2}\right)$ charmonium state.

DOI: 10.1103/PhysRevLett.115.011803
PACS numbers: $13.20 . \mathrm{Gd}, 13.25 . \mathrm{Gv}, 14.40 . \mathrm{Pq}$

Since its discovery, charmonium-meson particles which contain a charm and an anticharm quark-has been an excellent tool for probing quantum chromodynamics (QCD), the fundamental theory that describes the strong interactions between quarks and gluons, in the nonperturbative (low-energy, long-distance effects) regime, and remains of high interest both experimentally and theoretically. All of the charmonium states with masses that are below the open-charm threshold have been firmly established [1,2]; open-charm refers to mesons containing a charm quark (antiquark) and either an up or down antiquark (quark), such as D or \bar{D}. However, the observation of the spectrum that is above the open-charm threshold remains unsettled. During the past decade, many new charmoniumlike states have been discovered, such as the $X(3872)$ [3], the $Y(4260)$ [4,5] and the $Z_{c}(3900)$ [5-7]. These states provide strong evidence for the existence of exotic hadron states [8]. Although charged charmoniumlike states like the Z_{c} (3900) provide convincing evidence for the existence of multiquark states [9], it is more difficult to distinguish neutral candidate exotic states from conventional charmonium. Moreover, the study of transitions between charmonium(like) states, such as the $Y(4260) \rightarrow \gamma X(3872)$ [10], is an important approach to probe their nature, and the connections between them. Thus, a more complete understanding of charmonium(like) spectroscopies and their relations is necessary and timely.

The lightest charmonium state above the $D \bar{D}$ threshold is the $\psi(3770)$ [2], which is currently identified as the $1^{3} D_{1}$ state [1], the $J=1$ member of the D-wave spin-triplet charmonium states. Until now there have been no definitive observations of its two D-wave spin-triplet partner states, i.e., the $1^{3} D_{2}$ and $1^{3} D_{3}$ states. Phenomenological models predict that the $1^{3} D_{2}$ charmonium state has large decay widths to $\gamma \chi_{c 1}$ and $\gamma \chi_{c 2}$ [11]. In 1994, the E705 Collaboration reported a candidate for the $1^{3} D_{2}$ state with a mass of $3836 \pm 13 \mathrm{MeV} / c^{2}$ and a statistical significance of 2.8σ [12]. Recently, the Belle Collaboration reported evidence for a narrow resonance $X(3823) \rightarrow \gamma \chi_{c 1}$ in B meson decays with 3.8σ significance and mass 3823.1 ± 1.8 (stat) ± 0.7 (syst) MeV / c^{2}, and suggested that this is a good candidate for the $1^{3} D_{2}$ charmonium state [13]. In the following, we denote the $1^{3} D_{2}$ state as ψ_{2} and the $\psi(3686)[\psi(2 S)]$ state as ψ^{\prime}.

In this Letter, we report a search for the production of the ψ_{2} state via the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X$, using $4.67 \mathrm{fb}^{-1}$ data collected with the BESIII detector operating at the BEPCII storage ring [14] at center of mass (c.m.) energies that range from $\sqrt{s}=4.19$ to 4.60 GeV [15]. The ψ_{2} candidates are reconstructed in their $\gamma \chi_{c 1}$ and $\gamma \chi_{c 2}$ decay modes, with $\chi_{c 1, c 2} \rightarrow \gamma J / \psi$ and $J / \psi \rightarrow \ell^{+} \ell^{-}(\ell=e$ or $\mu)$. A geant4based [16] Monte Carlo (MC) simulation software package is used to optimize event selection criteria, determine the detection efficiency, and estimate the backgrounds. For the signal process, we generate $40000 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)$ events at each c.m. energy indicated above, using an EVTGEN [17] phase space model, with $X(3823) \rightarrow \gamma \chi_{c 1, c 2}$. The initial state radiation (ISR) is simulated with ккмс [18], where the Born cross section of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)$ between 4.1 and 4.6 GeV is assumed to follow the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$ line shape [19]. The maximum ISR photon energy is set to correspond to the $4.1 \mathrm{GeV} / c^{2}$ production threshold of the $\pi^{+} \pi^{-} X(3823)$ system. The final state radiation is handled with Рнотоs [20].

Events with four charged tracks with zero net charge are selected as described in Ref. [6]. Showers identified as photon candidates must satisfy the fiducial and shower quality as well as timing requirements as described in Ref. [21]. At least two good photon candidates in each event are required. To improve the momentum and energy resolution and to reduce the background, the event is subjected to a four-constraint (4C) kinematic fit to the hypothesis $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma \gamma \ell^{+} \ell^{-}$, that constrains the total four-momentum of the detected particles to the initial fourmomentum of the colliding beams. The χ^{2} of the kinematic fit is required to be less than 80 (with an efficiency of about 95% for signal events). For multiphoton events, the two photons returning the smallest χ^{2} from the 4C fit are assigned to be the radiative photons.

To reject radiative Bhabha and radiative dimuon ($\gamma e^{+} e^{-}$ and $\gamma \mu^{+} \mu^{-}$) backgrounds associated with photon conversion, the cosine of the opening angle of the pion-pair candidates is required to be less than 0.98 . This restriction removes almost all Bhabha and dimuon background events, with an efficiency loss that is less than 1% for signal events. The background from $e^{+} e^{-} \rightarrow \eta J / \psi$ with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ or $\gamma \pi^{+} \pi^{-}$is effectively rejected by the invariant mass requirement $M\left(\gamma \gamma \pi^{+} \pi^{-}\right)>0.57 \mathrm{GeV} / c^{2}$. MC simulation shows that this requirement removes less than 1% of the signal
events. In order to remove possible backgrounds from $e^{+} e^{-} \rightarrow \gamma_{\mathrm{ISR}} \psi^{\prime} \rightarrow \gamma_{\mathrm{ISR}} \pi^{+} \pi^{-} J / \psi$, accompanied with a fake photon or a second ISR photon, $e^{+} e^{-} \rightarrow \eta \psi^{\prime}$ with $\eta \rightarrow \gamma \gamma$, and $e^{+} e^{-} \rightarrow \gamma \gamma \psi^{\prime}$, the invariant mass of $\pi^{+} \pi^{-} J / \psi$ is required to satisfy $\left|M\left(\pi^{+} \pi^{-} J / \psi\right)-m\left(\psi^{\prime}\right)\right|>6 \mathrm{MeV} / c^{2}$ [22]. The signal efficiency for the ψ^{\prime} mass window veto is 85% at $\sqrt{s}=4.420 \mathrm{GeV}$ and $\geq 99 \%$ at other energies.

After imposing the above requirements, there are clear J / ψ peaks in the $M\left(\ell^{+} \ell^{-}\right)$invariant mass distributions for the data. The J / ψ mass window is defined as $3.08<M\left(\ell^{+} \ell^{-}\right)<3.13 \mathrm{GeV} / c^{2}$. The mass resolution is determined to be $9 \mathrm{MeV} / c^{2}$ by MC simulation. In order to evaluate non- J / ψ backgrounds, we define J / ψ mass sidebands as $3.01<M\left(\ell^{+} \ell^{-}\right)<3.06 \mathrm{GeV} / c^{2}$ or $3.15<M\left(\ell^{+} \ell^{-}\right)<3.20 \mathrm{GeV} / c^{2}$, which are twice as wide as the signal region. The combination of the higher energy photon $\left(\gamma_{H}\right)$ with the J / ψ candidate is used to reconstruct $\chi_{c 1, c 2}$ signals, while the lower one is assumed to originate from the $X(3823)$ decay. We define the invariant mass range $3.490<M\left(\gamma_{H} J / \psi\right)<$ $3.530 \mathrm{GeV} / c^{2}$ as the $\chi_{c 1}$ signal region, and $3.536<$ $M\left(\gamma_{H} J / \psi\right)<3.576 \mathrm{GeV} / c^{2}$ as the $\chi_{c 2}$ signal region $\left[M\left(\gamma_{H} J / \psi\right)=M\left(\gamma_{H} \ell^{+} \ell^{-}\right)-M\left(\ell^{+} \ell^{-}\right)+m(J / \psi)\right]$.

To investigate the possible existence of resonances that may decay to $\gamma \chi_{c 1, c 2}$, we examine two-dimensional scatter plots of $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$versus $M\left(\gamma_{H} J / \psi\right)$. Here, $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)=\sqrt{\left(P_{e^{+} e^{-}}-P_{\pi^{+}}-P_{\pi^{-}}\right)^{2}}$ is the recoil mass of the $\pi^{+} \pi^{-}$pair, where $P_{e^{+} e^{-}}$and $P_{\pi^{ \pm}}$are the 4-momenta of the initial $e^{+} e^{-}$system and the $\pi^{ \pm}$, respectively. For this, we use the $\pi^{+} \pi^{-}$momenta before the 4 C fit correction because of the good resolution for low momentum pion tracks, as observed from MC simulation. Figure 1 shows $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$versus $M\left(\gamma_{H} J / \psi\right)$ for data at different energies, where $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma \chi_{c 1, c 2}$ signals are evident in almost all data sets. In addition, event accumulations near $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right) \simeq 3.82 \mathrm{GeV} / c^{2}$ are evident in the $\chi_{c 1}$ signal regions of the $\sqrt{s}=4.36$ and 4.42 GeV data sets. A scatter plot of all the data sets combined is shown in Fig. 1(f), where there is a distinct cluster of events near $3.82 \mathrm{GeV} / c^{2}$ [denoted hereafter as the $X(3823)$ state] in the $\chi_{c 1}$ signal region.

The remaining backgrounds mainly come from $e^{+} e^{-} \rightarrow\left(\eta^{\prime} / \gamma \omega\right) J / \psi$, with $\left(\eta^{\prime} / \omega\right) \rightarrow \gamma \gamma \pi^{+} \pi^{-}$or $\gamma \pi^{+} \pi^{-}$, and $\pi^{+} \pi^{-} \pi^{+} \pi^{-}\left(\pi^{0} / \gamma \gamma\right)$. The $e^{+} e^{-} \rightarrow\left(\eta^{\prime} / \gamma \omega\right) J / \psi$ backgrounds can be measured and simulated using the same data sets. The $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\left(\pi^{0} / \gamma \gamma\right)$ mode can be evaluated with the J / ψ mass sideband data. All these backgrounds are found to be small, and they produce flat contributions to the $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$mass distribution. There also might be $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$ events with $\psi^{\prime} \rightarrow \eta J / \psi$ and $\pi^{0} \pi^{0} J / \psi$, but such kind of events would not affect the ψ^{\prime} mass in the $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$distribution.

An unbinned maximum likelihood fit to the $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$distribution is performed to extract the $X(3823)$ signal parameters. The signal shapes are

FIG. 1 (color online). Scatter plots of $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$vs $M\left(\gamma_{H} J / \psi\right)$ at (a) $\sqrt{s}=4.230$, (b) 4.260 , (c) 4.360 , (d) 4.420, and (e) 4.600 GeV . The sum of all the data sets is shown in (f). In each plot, the vertical dashed red lines represent $\chi_{c 1}$ (left two lines) and $\chi_{c 2}$ (right two lines) signal regions, and the horizontal lines represent the ψ^{\prime} mass range (bottom two lines) and 3.82 GeV (top line), respectively.
represented by MC-simulated ψ^{\prime} and $X(3823)$ (with input mass of $3.823 \mathrm{GeV} / c^{2}$ and a zero width) histograms, convolved with Gaussian functions with mean and width parameters left free in the fit to account for the mass and resolution difference between data and MC simulation, respectively. The background is parameterized as a linear function, as indicated by the J / ψ mass sideband data. The ψ^{\prime} signal is used to calibrate the absolute mass scale and the resolution difference between data and simulation, which is expected to be similar for the $X(3823)$ state and ψ^{\prime}. A simultaneous fit with a common $X(3823)$ mass is applied to the data sets with independent signal yields at $\sqrt{s}=4.230$, $4.260,4.360,4.420$, and 4.600 GeV (data sets with small luminosities are merged to nearby data sets with larger luminosities), for the $\gamma \chi_{c 1}$ and $\gamma \chi_{c 2}$ modes, respectively.

Figure 2 shows the fit results, which return $M[X(3823)]=$ $M[X(3823)]_{\text {input }}+\mu_{X(3823)}-\mu_{\psi^{\prime}}=3821.7 \pm 1.3 \mathrm{MeV} / c^{2}$ for the $\gamma \chi_{c 1}$ mode, where $M[X(3823)]_{\text {input }}$ is the input $X(3823)$ mass in MC simulation, $\mu_{X(3823)}=1.9 \pm$ $1.3 \mathrm{MeV} / c^{2}$ and $\mu_{\mu^{\prime}}=3.2 \pm 0.6 \mathrm{MeV} / c^{2}$ are the mass shift values for $X(3823)$ and ψ^{\prime} histograms from the fit. The fit yields $19 \pm 5 X(3823)$ signal events in the $\gamma \chi_{c 1}$ mode. The statistical significance of the $X(3823)$ signal in the $\gamma \chi_{c 1}$ mode is estimated to be 6.2σ by comparing the difference between the log-likelihood value [$\Delta(\ln \mathcal{L})=27.5]$ with or without the $X(3823)$ signal in the fit, and taking the change of the number of degrees of freedom $(\Delta \mathrm{ndf}=6)$ into account, and its value is found to be larger than 5.9σ with various systematic checks. For the $\gamma \chi_{c 2}$ mode, we do not observe an $X(3823)$ signal and provide

FIG. 2 (color online). Simultaneous fit to the $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$ distribution of $\gamma \chi_{c 1}$ events (left) and $\gamma \chi_{c 2}$ events (right), respectively. Dots with error bars are data, red solid curves are total fit, dashed blue curves are background, and the green shaded histograms are J / ψ mass sideband events.
an upper limit on its production rate (Table I). The limited statistics preclude a measurement of the intrinsic width of $X(3823)$ state. From a fit using a Breit-Wigner function (with a width parameter that is allowed to float) convolved with Gaussian resolution, we determine $\Gamma[X(3823)]<$ 16 MeV at the 90% confidence level (C.L.) (including systematic errors).

The $X(3823)$ is a candidate for the ψ_{2} charmonium state with $J^{\mathrm{PC}}=2^{--}$[13]. In the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}$ process, the $\pi^{+} \pi^{-}$system is very likely to be dominated by an S wave. Thus, a D wave between the $\pi^{+} \pi^{-}$system and ψ_{2} is expected, with an angular distribution of $1+\cos ^{2} \theta$ for ψ_{2} in the $e^{+} e^{-}$c.m. frame. Figure 3(a) shows the angular distribution $(\cos \theta)$ of $X(3823)$ signal events selected by requiring $\quad 3.82<M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)<3.83 \mathrm{GeV} / c^{2}$. The inset shows the corresponding $M\left(\pi^{+} \pi^{-}\right)$invariant mass distribution per $20 \mathrm{MeV} / c^{2}$ bin. A Kolmogorov [23] test to the angular distribution gives the Kolmogorov statistic $D_{14 \text {,obs }}^{D}=0.217$ for the D-wave hypothesis and $D_{14, \mathrm{obs}}^{S}=0.182$ for the S-wave hypotheses. Because of limited statistics, both hypotheses can be accepted ($D_{14, \mathrm{obs}}^{D}, D_{14, \mathrm{obs}}^{S}<D_{14,0.1}=0.314$) at the 90% C.L.

The product of the Born-order cross section and the branching ratio of $X(3823) \rightarrow \gamma \chi_{c 1, c 2}$ is calculated using $\sigma^{B}\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)\right] \mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 1, c 2}\right]=$ $N_{c 1, c 2}^{\mathrm{obs}} /\left[\mathcal{L}_{\text {int }}(1+\delta)\left(1 /|1-\Pi|^{2}\right) \epsilon \mathcal{B}_{c 1, c 2}\right]$, where $N_{c 1, c 2}^{\mathrm{obs}}$ is the number of $X(3823) \rightarrow \gamma \chi_{c 1, c 2}$ signal events obtained
from a fit to the $M_{\text {recoil }}\left(\pi^{+} \pi^{-}\right)$distribution, $\mathcal{L}_{\text {int }}$ is the integrated luminosity, ϵ is the detection efficiency, $\mathcal{B}_{c 1, c 2}$ is the branching fraction of $\chi_{c 1, c 2} \rightarrow \gamma J / \psi \rightarrow \gamma \ell^{+} \ell^{-}$, and $(1+\delta)$ is the radiative correction factor, which depends on the line shape of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)$. Since we observe large cross sections at $\sqrt{s}=4.360$ and 4.420 GeV , we assume the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)$ cross section follows that of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$ over the full energy range of interest and use the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$ line shape from published results [19] as input in the calculation of the efficiency and radiative correction factor. The vacuum polarization factor $\left(1 /|1-\Pi|^{2}\right)$ is calculated from QED with 0.5% uncertainty [24]. The results of these measurements for the data sets with large luminosities at $\sqrt{s}=4.230$, $4.260,4.360,4.420$, and 4.600 GeV are listed in Table I. Since at each single energy the $X(3823)$ signal is not very significant, upper limits for production cross sections at the 90% C.L. based on the Bayesian method are given [systematic effects are included by convolving the $X(3823)$ signal events yield (n yield) dependent likelihood curves with a Gaussian with mean value zero and standard deviation $n^{\text {yield }} \sigma_{\text {sys }}$, where $\sigma_{\text {sys }}$ is the systematic uncertainty of the efficiencies]. The corresponding production ratio of $\mathcal{R}_{\psi^{\prime}}=\left\{\sigma^{B}\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)\right] \mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 1}\right]\right\} /$ $\left\{\sigma^{B}\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime}\right] \mathcal{B}\left[\psi^{\prime} \rightarrow \gamma \chi_{c 1}\right]\right\}$ is also calculated at $\sqrt{s}=4.360$ and 4.420 GeV .

We fit the energy-dependent cross sections of $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} X(3823)$ with the $Y(4360)$ shape or the $\psi(4415)$ shape with their resonance parameters fixed to the Particle Data Group (PDG) values [2]. Figure 3(b) shows the fit results, which give $D_{5, \mathrm{obs}}^{\mathrm{H} 1}=0.151$ for the $Y(4360)$ hypothesis $(\mathrm{H} 1)$ and $D_{5, \mathrm{obs}}^{\mathrm{H} 2}=0.169$ for the $\psi(4415)$ hypothesis (H2), based on the Kolmogorov test. Thus, we accept both the $Y(4360)$ and the $\psi(4415)$ hypotheses $\left(D_{5, \mathrm{obs}}^{\mathrm{H1}}\right.$, $\left.D_{5, \mathrm{obs}}^{\mathrm{H} 2}<D_{5,0.1}=0.509\right)$ at the 90% C.L.

The systematic uncertainties in the $X(3823)$ mass measurement include those from the absolute mass scale, resolution, the parameterization of the $X(3823)$ signal, and the background shape. Since we use the ψ^{\prime} signal to calibrate the fit, we conservatively take the uncertainty

TABLE I. Number of observed events ($N^{\text {obs }}$), integrated luminosities (\mathcal{L}) [15], detection efficiency (ϵ) for the $X(3823) \rightarrow \gamma \chi_{c 1}$ mode, radiative correction factor $(1+\delta)$, vacuum polarization factor $\left(1 /|1-\Pi|^{2}\right)$, measured Born cross section $\sigma^{B}\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)\right]$ times $\mathcal{B}_{1}\left[X(3823) \rightarrow \gamma \chi_{c 1}\right]\left(\sigma_{X}^{B} \mathcal{B}_{1}\right)$ and $\mathcal{B}_{2}\left[X(3823) \rightarrow \gamma \chi_{c 2}\right]\left(\sigma_{X}^{B} \mathcal{B}_{2}\right)$, and measured Born cross section $\sigma^{B}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi^{\prime}\right)\left(\sigma_{\psi^{\prime}}^{B}\right)$ at different energies. Other data sets with lower luminosity are not listed. The numbers in the brackets correspond to the upper limit measurements at the 90% C.L. The relative ratio $\mathcal{R}_{\psi^{\prime}}=\left\{\sigma^{B}\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)\right] \mathcal{B}\left(X(3823) \rightarrow \gamma \chi_{c 1}\right)\right\} /\left\{\sigma^{B}\left[e^{+} e^{-} \rightarrow\right.\right.$ $\left.\left.\pi^{+} \pi^{-} \psi^{\prime}\right] \mathcal{B}\left(\psi^{\prime} \rightarrow \gamma \chi_{c 1}\right)\right\}$ is also calculated. The first errors are statistical, and the second systematic.

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}\left(\mathrm{pb}^{-1}\right)$	N^{obs}	ϵ	$1+\delta$	$1 /\|1-\Pi\|^{2}$	$\sigma_{X}^{B} \cdot \mathcal{B}_{1}(\mathrm{pb})$	$\sigma_{X}^{B} \cdot \mathcal{B}_{2}(\mathrm{pb})$	$\sigma_{\psi^{\prime}}^{B}(\mathrm{pb})$	$\mathcal{R}_{\psi^{\prime}}$
4.230	1092	$0.7_{-0.7}^{+1.4}(<3.8)$	0.168	0.755	1.056	$0.12_{-0.12}^{+0.24} \pm 0.02(<0.64)$	\ldots	$34.1 \pm 8.1 \pm 4.7$	\ldots
4.260	826	$1.1_{-1.2}^{+1.8}(<4.6)$	0.178	0.751	1.054	$0.23_{-0.24}^{+0.38} \pm 0.04(<0.98)$	\cdots	$25.9 \pm 8.1 \pm 3.6$	\ldots
4.360	540	$3.9_{-1.7}^{+2.3}(<8.2)$	0.196	0.795	1.051	$1.10_{-0.64}^{+0.47} \pm 0.15(<2.27)$	(<1.92)	$58.6 \pm 14.2 \pm 8.1$	$0.20_{-0.10}^{+0.13}$
4.420	1074	$7.5_{-2.8}^{+3.6}(<13.4)$	0.145	0.967	1.053	$1.23_{-0.59}^{+0.59} \pm 0.17(<2.19)$	(<0.54)	$33.4 \pm 7.8 \pm 4.6$	$0.39_{-0.17}^{+0.21}$
4.600	567	$1.9_{-1.1}^{+1.8}(<5.4)$	0.157	1.075	1.055	$0.47_{-0.27}^{+0.44} \pm 0.07(<1.32)$	\cdots	$10.4_{-4.7}^{+6.4} \pm 1.5$	\cdots

FIG. 3 (color online). (a) The $X(3823)$ scattering angle distribution for $X(3823)$ signal events, the inset shows the corresponding $M\left(\pi^{+} \pi^{-}\right)$invariant mass distribution per $20 \mathrm{MeV} / c^{2} \mathrm{bin}$; and (b) fit to the energy-dependent cross section of $\sigma^{B}\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)\right] \mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 1}\right]$ with the $Y(4360)$ (red solid curve) and the $\psi(4415)$ (blue dashed curve) line shapes. Dots with error bars are data. The red solid (blue dashed) histogram in (a) is MC simulation with a D wave (S wave).
of $0.6 \mathrm{MeV} / c^{2}$ in the calibration procedure as the systematic uncertainty due to the mass scale. The resolution difference between the data and MC simulation is also estimated by the ψ^{\prime} signal. Varying the resolution parameter by $\pm 1 \sigma$, the mass difference in the fit is $0.2 \mathrm{MeV} / c^{2}$, which is taken as the systematic uncertainty from resolution. In the $X(3823)$ mass fit, a MC-simulated histogram with the width of $X(3823)$ state set to zero is used to parameterize the signal shape. We replace this histogram with a simulated $X(3823)$ resonance with a width of 1.7 MeV [13] and repeat the fit; the change in the mass for this fit, $0.2 \mathrm{MeV} / c^{2}$, is taken as the systematic uncertainty due to the signal parameterization. Likewise, changes measured with a background shape from MC-simulated $\left(\eta^{\prime} / \gamma \omega\right) J / \psi$ events or a second-order polynomial indicate a systematic uncertainty associated with the background shape of $0.2 \mathrm{MeV} / c^{2}$ in mass. Assuming that all the sources are independent, the total systematic uncertainty is calculated by adding the individual uncertainties in quadrature, resulting in $0.7 \mathrm{MeV} / c^{2}$ for the $X(3823)$ mass measurement. For the $X(3823)$ width, we measure the upper limits with the above systematic checks, and report the most conservative one.

The systematic uncertainties in the cross section measurement mainly come from efficiencies, signal parameterization, background shape, decay model, radiative correction, and luminosity measurement. The luminosity is measured using Bhabha events, with an uncertainty of 1.0%. The uncertainty in the tracking efficiency for high momentum leptons is 1.0% per track. Pions have momenta that range from 0.1 to $0.6 \mathrm{GeV} / c$, and the momentumweighted uncertainty is 1.0% per track. In this analysis, the radiative transition photons have energies from 0.3 to 0.5 GeV . Studies with a sample of $J / \psi \rightarrow \rho \pi$ events show that the uncertainty in the reconstruction efficiency for photons in this energy range is less than 1.0%.

The same sources of signal parameterization and background shape as discussed in the systematic uncertainty of
$X(3823)$ mass measurement would contribute 4.0% and 8.8% differences in $X(3823)$ signal events yields, which are taken as systematic uncertainties in the cross section measurement. Since the $X(3823)$ is a candidate for the ψ_{2} charmonium state, we try to model the $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} X(3823)$ process with a D wave in the MC simulation. The efficiency difference between the D-wave model and three-body phase space is 3.8%, which is quoted as the systematic uncertainty for the decay model. The $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} X(3823)$ line shape affects the radiative correction factor and detection efficiency. The radiator function is calculated from QED with 0.5% precision [25]. As discussed above, both $Y(4360)$ line shapes $[19,26]$ and the $\psi(4415)$ line shape describe the cross section of $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} X(3823)$ reasonably well. We take the difference for $(1+\delta) \epsilon$ between $Y(4360)$ line shapes and the $\psi(4415)$ line shape as its systematic uncertainty, which is 6.5%.

Since the event topology in this analysis is quite similar to $e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$ [10], we use the same systematic uncertainties for the kinematic fit (1.5%) and the J / ψ mass window (1.6\%). The uncertainties on the branching ratios for $\chi_{c 1, c 2} \rightarrow \gamma J / \psi(3.6 \%)$ and $J / \psi \rightarrow \ell^{+} \ell^{-}(0.6 \%)$ are taken from the PDG [2]. The uncertainty from MC statistics is 0.3%. The efficiencies for other selection criteria, the trigger simulation [27], the event-start-time determination, and the final-state-radiation simulation are very high ($>99 \%$), and their systematic uncertainties are estimated to be less than 1%.

Assuming that all the systematic uncertainty sources are independent, we add all of them in quadrature. The total systematic uncertainty in the cross section measurements is estimated to be 13.8%.

In summary, we observe a narrow resonance, $X(3823)$, through the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X(3823)$ with a statistical significance of 6.2σ. The measured mass of the $X(3823)$ state is $(3821.7 \pm 1.3 \pm 0.7) \mathrm{MeV} / c^{2}$, where the first error is statistical and the second systematic, and the width is less than 16 MeV at the 90% C.L. Our measurement agrees well with the values found by the Belle Collaboration [13]. The production cross sections of $\sigma^{B}\left[e^{+} e^{-} \rightarrow\right.$ $\left.\pi^{+} \pi^{-} X(3823)\right] \mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 1}, \gamma \chi_{c 2}\right]$ are also measured at $\sqrt{s}=4.230,4.260,4.360,4.420$, and 4.600 GeV .

The $X(3823)$ resonance is a good candidate for the $\psi\left(1^{3} D_{2}\right)$ charmonium state. According to potential models [1], the D-wave charmonium states are expected to be within a mass range of 3.82 to 3.85 GeV . Among these, the $1^{1} D_{2} \rightarrow \gamma \chi_{c 1}$ transition is forbidden due to C-parity conservation, and the amplitude for $1^{3} D_{3} \rightarrow \gamma \chi_{c 1}$ is expected to be small [28]. The mass of $\psi\left(1^{3} D_{2}\right)$ is in the $3.810-3.840 \mathrm{GeV} / c^{2}$ range that is expected for several phenomenological calculations [29]. In this case, the mass of $\psi\left(1^{3} D_{2}\right)$ is above the $D \bar{D}$ threshold but below the $D \bar{D}^{*}$ threshold. Since $\psi\left(1^{3} D_{2}\right) \rightarrow D \bar{D}$ violates parity, the $\psi\left(1^{3} D_{2}\right)$ state is expected to be narrow, in agreement with our observation, and $\psi\left(1^{3} D_{2}\right) \rightarrow \gamma \chi_{c 1}$ is expected to
be a dominant decay mode $[29,30]$. From our cross section measurement, the ratio $\left(\mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 2}\right] /\right.$ $\left.\mathcal{B}\left[X(3823) \rightarrow \gamma \chi_{c 1}\right]\right)<0.42$ (where systematic uncertainties cancel) at the 90% C.L. is obtained, which also agrees with expectations for the $\psi\left(1^{3} D_{2}\right)$ state [30].

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts No. 11125525, No. 11235011, No. 11322544, No. 11335008, No. 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint LargeScale Scientific Facility Funds of the NSFC and CAS under Contracts No. 11179007, No. U1232201, No. U1332201; CAS under Contracts No. KJCX2-YW-N29, No. KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. Collaborative Research Center CRC-1044; Seventh Framework Programme of the European Union under Marie Curie International Incoming Fellowship Grant Agreement No. 627240; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U.S. Department of Energy under Contracts No. DE-FG0204ER41291, No. DE-FG02-05ER41374, No. DE-FG0294ER40823, No. DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.
*Corresponding author. zqliu@ihep.ac.cn
${ }^{\text {a }}$ Also at the Novosibirsk State University, Novosibirsk 630090, Russia.
${ }^{\text {b }}$ Also at Ankara University, 06100 Tandogan, Ankara, Turkey.
${ }^{\text {c }}$ Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia and at the Functional Electronics Laboratory, Tomsk State University, Tomsk 634050, Russia.
${ }^{\text {d }}$ Present address: Istanbul Arel University, 34295 Istanbul, Turkey.
${ }^{\mathrm{e}}$ Also at University of Texas at Dallas, Richardson, Texas 75083, USA.
${ }^{\text {f }}$ Also at the NRC "Kurchatov Institute," PNPI, 188300 Gatchina, Russia.
${ }^{\mathrm{g}}$ Also at Bogazici University, 34342 Istanbul, Turkey.
${ }^{\text {h }}$ Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia.
[1] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 17, 3090 (1978); 21, 203 (1980).
[2] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
[3] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).
[5] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013).
[6] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 110, 252001 (2013).
[7] T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Phys. Lett. B 727, 366 (2013).
[8] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[9] E. Swanson, Physics 6, 69 (2013).
[10] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 112, 092001 (2014).
[11] E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. Lett. 89,162002 (2002); P. Cho and M. B. Wise, Phys. Rev. D 51, 3352 (1995).
[12] L. Antoniazzi et al. (The E705 Collaboration), Phys. Rev. D 50, 4258 (1994).
[13] V. Bhardwaj et al. (Belle Collaboration), Phys. Rev. Lett. 111, 032001 (2013).
[14] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 614, 345 (2010).
[15] M. Ablikim et al. (BESIII Collaboration), arXiv:1503.03408.
[16] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250 (2003).
[17] D. J. Lange, Nucl. Instrum. Methods A 462, 152 (2001).
[18] S. Jadach, B. F. L. Ward, and Z. Was, Comput. Phys. Commun. 130, 260 (2000); Phys. Rev. D 63, 113009 (2001).
[19] X. L. Wang et al. (Belle Collaboration), Phys. Rev. D 91, 112007 (2015).
[20] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).
[21] M. Ablikim et al. (BESIII Collaboratioin), Phys. Rev. D 86, 071101(R) (2012).
[22] In this Letter, $\quad M\left(\pi^{+} \pi^{-} J / \psi\right)=M\left(\pi^{+} \pi^{-} \ell^{+} \ell^{-}\right)-$ $M\left(\ell^{+} \ell^{-}\right)+m(J / \psi)$ is used to partly cancel the mass resolution of the lepton pair. Here $m(J / \psi)$ and $m\left(\psi^{\prime}\right)$ are the nominal masses of J / ψ and ψ^{\prime} [2].
[23] A. Kolmogorov, G. Inst. Ital. Attuari. 4, 83 (1933).
[24] F. Jegerlehner, Z. Phys. C 32, 195 (1986).
[25] E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41, 733 (1985) [Sov. J. Nucl. Phys. 41, 466 (1985)].
[26] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 89, 111103(R) (2014).
[27] N. Berger, K. Zhu, Z.-A. Liu, D.-P. Jin, H. Xu, W.-X. Gong, K. Wang, and G.-F. Cao, Chin. Phys. C 34, 1779 (2010).
[28] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2005).
[29] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985); W. Kwong, J. Rosner, and C. Quigg, Annu. Rev. Nucl. Part Phys. 37, 343 (1987); D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67, 014027 (2003); E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 69, 094019 (2004); M. Blank and A. Krassnigg, Phys. Rev. D 84, 096014 (2011).
[30] C. F. Qiao, F. Yuan, and K. T. Chao, Phys. Rev. D 55, 4001 (1997).

