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SEARCH FOR Z.(3900)* - wz*

PHYSICAL REVIEW D 92, 032009 (2015)

The decay Z.(3900)* — wz™ is searched for using data samples collected with the BESIII detector
operating at the BEPCII storage ring at center-of-mass energies /s = 4.23 and 4.26 GeV. No significant
signal for the Z,(3900) is found, and upper limits at the 90% confidence level on the Born cross section
for the process e*e™ — Z.(3900)*zF — wa'z~ are determined to be 0.26 and 0.18 pb at /s = 4.23 and

4.26 GeV, respectively.

DOI: 10.1103/PhysRevD.92.032009

I. INTRODUCTION

Recently, in the study of eTe™ — J/watzn~, a distinct
charged structure, named the Z,(3900)*, was observed
in the J/wr* spectrum by BESIII [1] and Belle [2]. Its
existence was confirmed shortly thereafter with CLEO-c
data [3]. The existence of the neutral partner in the decay
Z.(3900)° — J/wz" has also been reported in CLEO-c
data [3] and by BESII [4]. The Z.(3900) is a good
candidate for an exotic state beyond simple quark models,
since it contains a c¢ pair and is also electrically charged.
Noting that the Z.(3900) has a mass very close to the D*D
threshold (3875 MeV), BESIIl analyzed the process
ete” — 75(DD*)7, and a clear structure in the (DD*)¥
mass spectrum is seen, called the Z.(3885). The measured
mass and width are (3883.9 & 1.5 4+4.2) MeV/c? and
(24.8 £ 3.3 £ 11.0) MeV, respectively, and quantum num-
bers J¥ = 17 are favored [5]. Assuming the Z.(3885) —

DD* and the Z,(3900) — J/yr signals are from the same

source, the ratio of partial widths %m

mined to be 6.2 £ 1.1 £2.7.

The observation of the Z.(3900) has stimulated many
theoretical studies of its nature. Possible interpretations are
tetraquark [6], hadro-charmonium [7], D*D molecule [8]
and threshold effects [9-11]. Lattice QCD studies provide
theoretical support for the existence of X(3872) [12] but
not for the Z.(3900) [13-17]. However, those studies were
carried out on small volumes with unphysically heavy up
and down quarks. It is also worth noting that no resonant
structure in J /w7 is observed in B® — J/wx*z~ by LHCb
[18],in B® — J/wK~n" by Belle [19] orinyp — J/wn"n
by COMPASS [20].

The decay properties of a state can provide useful
information on its internal structure. There are three
important decay modes for charmoniumlike states: (i)
“fall-apart” decays to open charm mesons; (ii) cascades
to hidden charm mesons; and (iii) decays to light hadrons

is deter-

PACS numbers: 14.40.Rt, 13.25.Jx, 13.66.Bc, 14.40.Pq

via intermediate gluons. In addition, as shown in
Refs. [9,10], an enhancement near the DD* threshold
can be produced via the rescattering of hidden or open
charm final states. Decays of the Z,.(3900) to light hadrons
can play a unique role in distinguishing a resonance from
threshold effects, because the decay mode with c¢ anni-
hilation involves neither hidden nor open charm final states.
However, theory estimates of annihilation widths to light
hadrons are only an order of magnitude due to uncertainties
of wave function effects and QCD corrections [21,22].
A sizable Z,.(3900) decay width to light hadrons might be
expected in analogy to 7, or y,; into hadronic final states.

Among a large number of hadronic final states that are
available for a I6(J¥) = 17(1") resonance decay, wr is
one of the typical decay modes which are not suppressed by
any known selection rule. In this paper, we report a search
for Z.(3900)* — wzn™ based on e ' e~ annihilation samples
taken at center-of-mass (c.m.) energies /s = 4.23 and
4.26 GeV around the peak of Y(4260). The data samples
were collected with the BESIII [23] detector operating at
the BEPCII storage ring. The integrated luminosity of these
data samples are measured by analyzing the large-angle
Bhabha scattering events with an uncertainty of 1.0% [24]
and are equal to 1092 and 826 pb~!, for /s = 4.23 and
4.26 GeV, respectively.

I1. BESIII EXPERIMENT AND
MONTE CARLO SIMULATION

The BESIII detector, described in detail in Ref. [23],
has a geometrical acceptance of 93% of 4z. A small-cell
helium-based main drift chamber (MDC) provides a
charged particle momentum resolution of 0.5% at
1 GeV/c in a 1 T magnetic field, and supplies energy-
loss (dE/dx) measurements with a resolution of 6% for
minimum-ionizing pions. The electromagnetic calorimeter
(EMC) measures photon energies with a resolution of
2.5% (5%) at 1.0 GeV in the barrel (end caps). Particle

aAlso at State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China.

°Also at Ankara University,06100 Tandogan, Ankara, Turkey.
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identification (PID) is provided by a time-of-flight (TOF)
system with a time resolution of 80 ps (110 ps) for the
barrel (end caps). The muon system, located in the iron flux
return yoke of the magnet, provides 2 cm position reso-
lution and detects muon tracks with momenta greater
than 0.5 GeV/c.

The GEANT4-based [25] Monte Carlo (MC) simulation
software package includes the geometric description
of the BESIII detector and a simulation of the detector
response. It is used to optimize event selection criteria,
estimate backgrounds and evaluate the detection efficiency.
We generate signal MC samples of ete™ —
Z.(3900)*zF — wz 'z~ uniformly in phase space, where
the @ decays to 7z~ z°. The decays of w — 2tz 2" are
generated with the OMEGA_DALITZ model in EVTGEN
[26,27]. Initial state radiation is simulated with KKMC
[28,29], where the Born cross section of ete™ —
Z.(3900)*zF is assumed to follow a Y(4260) Breit-
Wigner (BW) line shape with resonance parameters taken
from the Particle Data Group (PDG) [30], which are listed
as X(4260). Final state radiation effects associated with
charged particles are handled with PHOTOS [28]. For studies
of possible backgrounds, inclusive ¥ (4260) MC samples
with luminosity equivalent to the experimental data at
/s =4.23 and /s = 4.26 GeV are generated, where the
main known decay channels are generated using EVTGEN
[26,27] with branching fractions taken from the PDG [30].
The remaining events associated with charmonium decays
are generated with LUNDCHARM [31], while continuum
hadronic events are generated with PYTHIA [32]. QED
processes such as Bhabha scattering, dimuon and digamma
events are generated with KKkMcC [28,29].

III. DATA ANALYSIS AND BACKGROUND STUDY

Tracks of charged particles in BESIII are reconstructed
from MDC hits. We select tracks with their point of closest
approach within £10 cm of the interaction point in the
beam direction and within 1 cm in the plane perpendicular
to the beam. Information from the TOF and dE/dx
measurements are combined to form PID confidence levels
for the # and K hypotheses; each track is assigned to the
particle type with the highest confidence level.

Photon candidates are reconstructed by clustering EMC
crystal energies. The efficiency and energy resolution are
improved by including energy deposits in nearby TOF
counters. The minimum energy is required to be 25 MeV
for barrel showers (| cos8| < 0.80) and 50 MeV for end-
cap showers (0.86 < |cos 8| < 0.92). To exclude showers
from charged particles, the angle between the shower and
the extrapolated charged tracks at the EMC must be greater
than 5°. A requirement on the EMC cluster timing with
respect to the event start time is applied to suppress
electronic noise and energy deposits unrelated to the event.

The 7° candidates are formed from pairs of photons that
can be kinematically fitted to the known 7z° mass. The y?
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FIG. 1. The ztz~z° invariant mass distribution of the combi-
nation closest to the @, for the selected ete™ —» Tz 7t 7°
candidates for the data sample at /s = 4.23 GeV.

from this fit with one degree of freedom is required to be
less than 25.

Events with exactly four charged tracks identified as pions
with zero net charge and at least one 7° candidate are
selected. A five-constraint kinematic fit is performed to the
hypothesis of eTe™ — n" 2zt 7~ 7° (constraints are the 4-
momentum of the initial et e~ system and the 7° mass), and
X3¢ < 40is required. If more than one #° is found in an event
there, the combination with the smallest )(%c is retained.

Figure 1 shows the z* 7z~ 7" invariant mass distribution of
the 7772~ 7 combination with invariant mass closest to the
mass of o for the selected candidate e*e™ — 2z~ 2t 7~ 7"
events at /s = 4.23 GeV, where prominent 7, @ and ¢
signals are observed. Z.(3900) — 5 is forbidden by spin-
parity conservation. We focus on the wz® invariant mass
distribution for further study.

Candidates of w are selected with the mass window
IM(7F 77 7°) osest — M| < 0.03 GeV/c?, where m,, is the
nominal mass of the @ taken from the PDG [30]. Figure 2

25

20

) i

0
3.4 3.6 3.8 4 4.2
M(or) (GeV/c?)

Entries /(0.02 GeV/c?)

FIG. 2 (color online). Distribution of M(wz*) for the data
sample at /s = 4.23 GeV. The dots with error bars are events
within the @ signal region. The shaded histogram shows events
selected from the @ sidebands, and the solid histogram shows
inclusive MC events, which are dominated by continuum events.
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shows the M(wz*) distribution for the candidate events
of ete” - wrtn at /s =423 GeV. No sign of
a peak near 3.9 GeV/c?> is apparent. The shaded
histogram in Fig. 2 shows the distribution of the non-o
background for the events in @ sideband regions
0.06 < |M(zt 77 7°) osest — M| < 0.09 GeV/c?).

By studying inclusive MC samples with luminosity
equivalent to the data at /s = 4.23 and 4.26 GeV, the
background is found to be dominantly from the continuum
process ete” — wnzx~. The solid histogram in Fig. 2
shows the wz® invariant mass distribution for events
selected from the inclusive MC sample.

IV. FITTING RESULTS

We use a one-dimensional, unbinned, extended maxi-
mum likelihood fit to the wz™* invariant mass distribution
to obtain the yield of Z.(3900)* — wz* events. The
signal probability density function is parametrized by
an S-wave Breit-Wigner function convolved with a
Gaussian resolution function and weighted with the
detection efficiency:

P-4
(M? — M§)* + Mgl

<G(M;a) ® ) xeM), (1)

where G(M;o) is a Gaussian function representing
the mass resolution. The mass resolution of the
Z.(3900)* is 1.240.1 MeV/c? at both /s =4.23
and 4.26 GeV, according to MC simulation. p - g is the
S-wave phase space factor, where p is the Z.(3900)*
momentum in the ete” c.m. frame and ¢ is the w
momentum in the Z.(3900)* c.m. frame. M is the
invariant mass of wz™, and M, and I" are the mass and
width of the Z,(3900)*, which are fixed to the results
in Ref. [1]. ¢(M) is the efficiency curve as a function
of the wrn® invariant mass, obtained from signal MC
simulation.

The background shape is described by an ARGUS
function M+\/1 — (M/myg)? - exp(c(1 — (M/myg)?)), where
c is left free in the fit and m is f1xed to the threshold of
s —m, [33].

Figure 3(a) shows the fit result for the data sample at
\/s =4.23 GeV. The fit yields 14 = 11 events for the
Z.(3900)* signal. Compared to the fit without the
Z.(3900)* signal, the change in InL with A(DOF) = 1
is 0.74, corresponding to a statistical significance of 1.26.
Using the Bayesian method [[30], Sec. 38.4.1], the upper
limit for the Z.(3900)* signal is set to 33.5 events at the
90% confidence level (C.L.), where only the statistical
uncertainty is considered.

The fit result for the data sample at /s = 4.26 GeV is
shown in Fig. 3(b). The fit yields 2.2 4= 8.1 events for the
Z.(3900)* with a statistical significance of 0.1c. The upper
limit is 18.8 events at the 90% C.L.
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FIG. 3 (color online). Results of the unbinned maximum
likelihood fit of the wz* mass spectrum of e*e™ — watz™ at
(a) /s =4.23 GeV and (b) /s =4.26 GeV. Dots with error
bars are the data. The solid curve is the result of the fit described
in the text. The dotted curve is the Z,(3900)* signal. The dashed
curve is the background.

V. CROSS SECTION UPPER LIMITS AND
SYSTEMATIC UNCERTAINTY

The upper limit on the Born cross section at the
90% C.L. is calculated as

olete™ = Z.(3900)*77, Z.(3900)* - wzn™)
NUL

" Lin(148) dme(1=0)B, By @)

where N is the upper limit on the signal events; Lj,, is the
integrated luminosity; € is the selection efficiency obtained
from signal MC simulation, which are 18.5 + 0.2% and
18.6 +£0.2% at /s = 4.23 and 4.26 GeV, respectively;
is the systematic uncertainty of the efficiency described in
the next paragraph; ﬁ is the vacuum polarization factor
obtained by using calculations from Ref. [34], and equal to
1.06 for both energies; (1 + &) is the radiative correction
factor, equal to 0.844 for /s = 4.23 GeV and 0.848 for

/s = 4.26 GeV obtained using Refs. [28,29] by assuming
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the line shape of Born cross section o(ete” —
Z.(3900)*z7F) to be a BW function with the parameters
of the Y (4260) taken from PDG [30]; and B, and B are
the branching fractions of the decay w — n"z~z" and
7% — yy [30], respectively. A conservative estimate of the
upper limit of the Born cross section is determined by
lowering the efficiency by one standard deviation of the
systematic uncertainty.

The systematic uncertainty of the cross section meas-
urement from Eq. (2) is summarized in Table I. The
luminosity is measured using Bhabha events with an
uncertainty of 1.0% [24]. The uncertainty in tracking
efficiency for pions is 1.0% per track [5], i.e. 4.0% for
the track selection in this analysis. The uncertainty in PID
efficiency for pions is 1.0% per track [5]. The uncertainty in
the photon reconstruction efficiency is less than 1% per
photon [35]. The uncertainty in the z° reconstruction
efficiency is 2.0% [36]. The uncertainty of the kinematic
fit is estimated by correcting the helix parameters of the
charged tracks. The detailed procedure to extract the
correction factors can be found in Ref. [37]. The track
parameters in MC samples are corrected by these factors,
and the difference in efficiencies of 0.8% with and without
the correction is taken as the systematic uncertainty
associated with the kinematic fit. A MC sample generated
with Z.(3900)* - wz* in both the S wave and the D
wave, assuming a D /S waves amplitude ratio of 0.1, results
in a 3% change in detection efficiency. This difference is
taken as the systematic uncertainty associated with the
MC production model. The branching ratio value for
® — ntn 7" comes from the PDG [30], and its error is
0.8%. In the nominal fit, the radiative correction factor
and the detection efficiency are determined under the
assumption that the production of ete™ — Z.(3900)*zF
follows the Y(4260) line shape. Using the line shape of
o(ete™ = Z.(3900)°7°) measured in Ref. [4] as an alter-
native assumption, e(1 + ) is increased by 6% for /s =
423 GeV and 7% for /s =4.26 GeV. The change in
€(1 + 8) is taken as a systematic uncertainty. The uncer-
tainty of the vacuum polarization factor is taken from

TABLE I. Summary of the relative systematic uncertainties of
the cross section measurement (in %).

Source Vs =423 GeV /s =4.26 GeV
Luminosity 1.0 1.0
Tracking 4.0 4.0

PID 4.0 4.0
Photon reconstruction 2.0 2.0

7° reconstruction 2.0 2.0
Kinematic fit 0.8 0.8
Decay model 3 3
Radiative correction 6 7

Br(w — ztza°) 0.8 0.8

Total 9.4 10.1
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TABLEII.  Results of upper limits on the Z,.(3900) signal yield
with various fit procedures.

Source Vs =423 GeV /s =4.26 GeV
Fit range 31.5 18.5
Background shape 38.0 16.1
Z.(3900) mass and width 22.6 12.2
Mass resolution 33.5 18.8
Efficiency curve 333 18.8

Ref. [34], and is negligible compared with other uncer-
tainties. Assuming that all sources of systematic uncertain-
ties are independent, the total errors are given by the
quadratic sums.

To estimate the systematic uncertainties due to the fit
procedure, we fit under different scenarios, and the upper
limits obtained at the 90% C.L. for the Z.(3900)* signal
yield are summarized in Table II. The effect on the
signal yield from the fit range is obtained by varying the
fit range by +0.1 GeV/c?. The effect due to the choice of
the background shape is estimated by changing the back-
ground shape from the ARGUS function to a second
order polynomial (where the parameters of the polynomial
are allowed to vary and the fit range is limited to
[3.4,4.08] GeV/c?). The effect due to the resonance
parameters of the Z,(3900)* is estimated by varying the
resonance parameters according to the results in Ref. [5].
The effect due to the mass resolution is estimated by
increasing the resolution by 10% according to the com-
parison between the data and MC. The effect due to the
mass-dependent efficiency curve is estimated by changing
the efficiency curve to a constant function. We take the
largest number of Z.(3900)* events in the different
scenarios as a conservative estimate of the upper limit:
Ni¥o = 38.0, Ny, = 18.8. The resulting upper limits of
the Born cross sections at /s = 4.23 and 4.26 GeV are
determined to be 0.26 and 0.18 pb at the 90% C.L.,
respectively.

VI. SUMMARY AND DISCUSSION

In summary, based on data samples of 1092 pb~! at /s =
4.23 GeV and 826 pb~! at /s = 4.26 GeV collected with
the BESIII detector operating at the BEPCII storage ring, a
search is performed for the decay Z.(3900)* — wz™ in
ete” > wntn~. No Z.(3900)* signal is observed. The
corresponding upper limits on the Born cross section are
set to be 0.26 and 0.18 pb at /s = 4.23 and 4.26 GeV,
respectively. If we assume that the Z.(3900)* observed
in ete” > J/yatn [1] and Z.(3885) in efe™ —
(DD*)*z¥F [5] are the same particle, the decay width of
Z.(3900)* — wz® is estimated to be smaller than 0.2% of
the Z.(3900) total width. As wr is a typical light hadron
decay mode of a 19(JP) = 1*(1") resonance, the non-
observation of Z.(3900)* — wz® may indicate that the
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annihilation of ¢¢ in Z.(3900)* is suppressed.
Complementary to the searches for Z.(3900) production
[18-20], exploring new Z.(3900) decay modes may provide
a significant input to clarify its dynamical origin.
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