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Abstract. In this paper we focus on proof methods and theorem proving for normal conditional logics, by describing nested
sequent calculi as well as a theorem prover for them. We first present some nested sequent calculi, recently introduced, for the
basic conditional logic CK and some of its significant extensions with axioms ID, MP and CEM. We also describe a calculus
for the flat fragment of the conditional logic CK+CSO+ID, which corresponds to Kraus, Lehmann and Magidor’s cumulative
logic C. The calculi are internal, cut-free and analytic. Next, we describe NESCOND, a Prolog implementation of these calculi in
the style of leanTAP. We finally present an experimental comparison between our theorem prover NESCOND and other known
theorem provers for conditional logics. Our tests show that the performances of NESCOND are promising and in all cases better,
with the only exception of systems including CEM, than those ones of the other provers. The program NESCOND, as well as all
the Prolog source files, are available at http://www.di.unito.it/∼pozzato/nescond/.
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1. Introduction

Conditional logics are extensions of classical logic by
a conditional operator ⇒. They can be seen as a gen-
eralization of (multi)modal logics, where the modality
⇒ is indexed by a formula of the same language. Con-
ditional logics have a long history [27, 28]. They have
been introduced in order to formalize a kind of hypo-
thetical reasoning, where a conditional formula A ⇒ B

is used to formalize a sentence like “if A were the case
then B” that cannot be captured by classical logic with
material implication. One original motivation was to
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sible inheritance with exceptions”, progetti di ricerca di Ateneo
anno 2014, Call 01 “Excellent Young PI”, Torino call2014 L1 111,
Università di Torino and Compagnia di San Paolo.

∗Corresponding author: Gian Luca Pozzato, Dipartimento di
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10149 Torino, Italy. Tel. +39 011 670 6848; Fax: +39 011 75 16 03;
E-mail: gianluca.pozzato@unito.it.

formalize counterfactual sentences, i.e. conditionals of
the form “if A were the case then B would be the case”,
where A is false [16].

Over the years, conditional logics have been studied
in various fields of artificial intelligence and knowledge
representation. Just to mention a few, they have been
used:

– to reason about prototypical properties and defea-
sible inheritance [11]: the understanding of a
conditional A ⇒ B is “the As have typically the
property B” or “normally, the As are Bs”. In the
conditional logic introduced in [11] one can con-
sistently express, for instance, that birds typically
fly, whereas penguins are birds that do not fly, as
follows:

∀x(Bird (x) ⇒ Fly(x))
∀x(Penguin(x) → Bird (x))
∀x(Penguin(x) → ¬Fly(x))

1724-8035/15/$35.00 © 2015 – IOS Press and the authors. All rights reserved
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It is easy to observe that the knowledge base
obtained from the one above by replacing the
conditional operator ⇒ with the classical implica-
tion →, that is to say by replacing ∀x(Bird (x) ⇒
Fly(x)) with ∀x(Bird (x) → Fly(x)), is consistent
only if there are no penguins;

– to provide an axiomatic foundation of non-
monotonic reasoning [8, 26]: in this context, a
conditional A ⇒ B is read as “in normal circum-
stances, if A then B”. More in detail, in [26] the
authors propose an axiomatization of the proper-
ties of a nonmonotonic consequence relation: their
system comprises nonmonotonic assertions of the
form A |∼ B, interpreted as “B is a plausible con-
clusion ofA”. It turns out that all forms of inference
studied in [26] are particular cases of well-known
conditional axioms [10] (in this respect the lan-
guage of [26] is just a fragment of conditional
logics);

– to model database update [18, 22] and belief
change and revision [17] in [22] the author presents
a conditional logic, more precisely a variant of
the logic VCU introduced in [27], to formal-
ize knowledge-update as defined by Katsuno and
Mendelzon in [25]; in [18] the authors show a tight
correspondence between AGM revision systems
[14] and a specific conditional logic, called BCR.
The connection between revision/update and con-
ditional logics can be intuitively explained in terms
of the so-called Ramsey Test (RT): A ⇒ B “holds”
in a knowledge base K if and only if B “holds” in
the knowledge base K revised/updated with A;

– to reason about access control policies [15]: in this
context, the statement A says B, intuitively mean-
ing that a user/program A asserts B to hold in the
system, can be naturally expressed by a conditional
A ⇒ B. In [15] it is shown that constructive con-
ditional logics can also be used to reason about
transfer of authority from one principal to another,
in particular, the fact that a principal A speaks for
another principal B, can be defined as B ⇒ A;

– to model hypothetical queries in deductive
databases and logic programming [13]: the logic
CK+ID is the basis of the logic programming
language CondLP, in which one can express
hypothetical goals of the form1 Load Gun ⇒
(Shoot ⇒ Dead ), and the idea is that the hypo-
thetical goal succeeds if Dead succeeds in the state
“revised” first by Load Gun and then by Shoot ;

1 1The example is inspired by the classic Yale’s Shooting problem.

– to formalize causal inference and reasoning about
action execution in diagnosis [16, 29] and plan-
ning [33, 20]: in this context, a conditional formula
A ⇒ B is interpreted as “A causes B”;

– to formalize epistemic change in a multi-agent set-
ting and in some kind of epistemic “games” [3, 7]:
here, each conditional operator expresses the “con-
ditional beliefs” of an agent.

All conditional logics enjoy a possible world seman-
tics, with the intuition that a conditional formula A ⇒
B is true in a world w if B is true in the set of worlds that
are most similar to/closest to/as normal as w given the
formula A. Since there are different ways of formal-
izing “the set of worlds similar/closest/...” to a given
world, there are expectedly rather different semantics
for conditional logics, from the most general selection
function semantics to the stronger sphere semantics.

In this work, we focus our attention on the more gen-
eral selection function semantics: models are equipped
by an accessibility relation (called selection function)
for each formula of the language, with the restriction
that logically equivalent formulas have the same acces-
sibility relation. Here a conditional formula A ⇒ B is
true in a world w if B is true in all the worlds selected
by the accessibility relation/selection function for w

and A. We consider the basic normal conditional logic
CK and its extensions with ID, MP and CEM, as well
as the cumulative logic C introduced in [26] which
corresponds to the flat fragment (i.e., without nested
conditionals) of the conditional logic CK+CSO+ID.
The logic CK is the basic system of conditional logics
based on the selection function semantics: it plays the
same role of the system K in modal logics. Extensions
of CK are obtained by assuming suitable properties on
the selection function. The axiom

MP (A ⇒ B) → (A → B)

captures a conditional modus ponens, stating a relation
between the material implication and the conditional
one. Systems allowing MP are those whose models are
such that if a formula A holds in a world w, then w is
always closest to w itself given A. The axiom

ID A ⇒ A

captures the idea that the result of supposing A is always
successful. In systems allowing ID, it is imposed that,
given a formulaA,Aholds in all the worlds more similar
to w given A. The axiom

CEM (A ⇒ B) ∨ (A ⇒ ¬B)
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is the conditional excluded middle. Models of sys-
tems allowing CEM are those whose selection function
selects at most one world given a formula A. The axiom

CSO ((A ⇒ B) ∧ (B ⇒ A)) → ((A ⇒ C) → (B ⇒ C))

captures a kind of conditional independence of the
antecedent of a conditional formula. In models of sys-
tems allowing CSO, if both A ⇒ B and B ⇒ A hold
in a world w, the worlds closest to w are the same
given both A and B. As mentioned before, the frag-
ment of the logic CK+CSO+ID not allowing nested
conditionals corresponds to the logic C introduced in
[26] by Kraus, Lehmann and Magidor (KLM) in order
to formalize the basic properties of nonmonotonic rea-
soning. Their work, that has been early recognized as a
landmark, led to a classification of nonmonotonic con-
sequence relations, determining a hierarchy of stronger
and stronger systems. The so called KLM properties
have been widely accepted as the “conservative core”
of default reasoning. The role of KLM logics is similar
to the role of AGM postulates in Belief Revision [14]:
they give a set of postulates for default reasoning that
any concrete reasoning mechanism should satisfy. As
an example, in the conditional logic CK+CSO+ID, if
we know that normally Italian people love soccer, and
that Italian people loving soccer usually watch soccer
matches on television, we can infer that typical Italian
people watch soccer matches on television, that is to
say the following formula is valid:

(Italian ⇒ SoccerLover) ∧
(Italian ∧ SoccerLover ⇒ WatchSoccerOnTV )

→ (Italian ⇒ WatchSoccerOnTV ).

Despite their relevance, from the point of view of
proof-theory and automated deduction, conditional log-
ics have not achieved a state of the art comparable
with, say, the one of modal logics, where there are
well-established calculi, whose proof-theoretical and
computational properties are well-understood, and effi-
cient theorem provers have been implemented.

In this work we first describe nested sequent calculi
NS for propositional conditional logics, recently intro-
duced in [1, 2]. Nested sequent calculi [9, 12, 21, 24]
are a natural generalization of ordinary sequent calculi
where sequents are allowed to occur within sequents. A
nested sequent always corresponds to a formula of the
language, so that we can think of the rules as operat-
ing “inside a formula”, combining subformulas rather
than just combining outer occurrences of formulas as in
ordinary sequent calculi. Since the calculi stay within

the language, they can be classified as “internal”, as
opposed to “external” calculi which make use of addi-
tional ingredients (e.g. labels and relations among them)
to encode the semantics into the syntax.

The calculi NS are rather natural and all rules have a
fixed number of premises. Moreover, they can be used
to obtain a decision procedure for the respective log-
ics by imposing some restrictions preventing redundant
applications of rules. In all cases, we get a PSpace upper
bound, a bound that for CK and its extensions with ID
and MP is optimal (but not for CK+CEM that is known
to be coNP). For flat CK+CSO+ID = cumulative logic
C we also get a PSpace bound, we are not aware of a
better upper bound for this logic.

Furthermore, we introduce an implementation of NS
calculi in Prolog. The program, called NESCOND, is
inspired by the methodology introduced by the sys-
tem leanTAP [5], even if it does not fit its style in a
strict sense. The basic idea is that each axiom or rule of
the nested sequent calculi is implemented by a Prolog
clause of the program. The resulting code is therefore
simple and compact: the implementation of NESCOND
for CK consists of only 6 predicates, 24 clauses and 34
lines of code.

We finally provide extensive experimental results
by comparing NESCOND with CondLean [30] and
GOALDUCK [31], to the best of our knowledge
the only existing provers for conditional logics, as
well as with CoLoSS [23], a generic-purpose theo-
rem prover for coalgebraic modal logics which can
handle also basic conditional logics. Concerning the
logic CK+CSO+ID, we have also compared the perfor-
mances of NESCOND with KLMLean [19], a theorem
prover for the cumulative logic C.

Performances of NESCOND are promising, in all
cases superior to those of the other provers, with the
exception of systems supporting CEM. We can con-
clude that nested sequent calculi are not only a useful
proof theoretical tool, but they can be the basis of effi-
cient theorem proving for conditional logics.

This paper is an extended and revised version of the
work in [32], where we have proposed a preliminary
presentation of NESCOND, not including the descrip-
tion of the systems with CEM and for the cumulative
logic C, and reporting only basic experimental results.

2. Normal conditional logics

We consider a propositional conditional language L
over a set ATM of propositional variables. Formulas of
L are built as usual: ⊥, 	 and the propositional variables
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in ATM are atomic formulas; if A and B are formulas,
then ¬A and A ⊗ B are compound formulas, where
⊗ ∈ {∧, ∨, →, ⇒}. Atomic formulas and compound
formulas are formulas of L.

We adopt the selection function semantics. We con-
sider a non-empty set of possible worlds W. Intuitively,
the selection function f selects, for a world w and a
formula A, the set of worlds of W which are closest
to w given the information A. A conditional formula
A ⇒ B holds in a world w if the formula B holds in all
the worlds selected by f for w and A.

Definition 1. [Selection function semantics] A model
is a triple M = 〈W, f, [ ]〉 where:

– W is a non-empty set of worlds;
– f : W × 2W �−→ 2W is the selection function;
– [ ] is the evaluation function, which assigns to an

atomic formula P ∈ ATM the set of worlds where
P is true, and is extended to compound formulas
as follows:

* [	] = W;
* [⊥] = ∅;
* [¬A] = W − [A];
* [A ∧ B] = [A] ∩ [B];
* [A ∨ B] = [A] ∪ [B];
* [A → B] = [B] ∪ (W − [A]);
* [A ⇒ B] = {w ∈ W|f (w, [A]) ⊆ [B]}

A formula F ∈ L is valid in a model M = 〈W, f, [ ]〉,
and we write M |= F , if [F ] = W. A formula F ∈ L
is valid, and we write |= F , if it is valid in every model,
that is to say M |= F for every M.

We have defined f taking [A] rather than A

(i.e. f (w, [A]) rather than f (w, A)) as an argu-
ment; this is equivalent to define f on formulas, i.e.
f (w, A) but imposing that if [A] = [A

′
] in the model,

then f (w, A) = f (w, A
′
). This condition is called

normality.
The semantics above characterizes the basic condi-

tional system, called CK, where no specific properties
of the selection function are assumed. An axiomatiza-
tion of CK is given by (� denotes provability in the
axiom system):

– any axiomatization of the classical propositional
calculus (prop)

– If � A and � A → B, then � B (Modus Ponens)
– If � A ↔ B then � (A ⇒ C) ↔ (B ⇒ C)

(RCEA)
– If � (A1 ∧ · · · ∧ An) → B then � (C ⇒ A1 ∧

· · · ∧ C ⇒ An) → (C ⇒ B) (RCK)

Moreover, we consider the standard extensions of the
basic system CK shown in Fig. 1.

3. Nested sequent calculi NS for conditional
logics

In this section we recall nested sequent calculi NS
introduced in [1]. S is an abbreviation for CK{+X}, and
X ∈ {CEM, ID, MP, ID+MP, CEM+ID}.

The specificity of nested sequent calculi is to allow
inferences that apply within sequents. A nested sequent
� is defined inductively as follows:

– a formula of L is a nested sequent;
– if A is a formula and � is a nested sequent, then

[A : �] is a nested sequent;
– a finite multiset of nested sequents is a nested

sequent.

A nested sequent can be displayed as

A1, . . . , Am, [B1 : �1], . . . , [Bn : �n],

where n, m ≥ 0, A1, . . . , Am, B1, . . . , Bn are formulas
and �1, . . . , �n are nested sequents.

A nested sequent can be directly interpreted as a
formula, just replace “,” by ∨ and “:” by ⇒. More
explicitly, the interpretation of a nested sequent

A1, . . . , Am, [B1 : �1], . . . , [Bn : �n]

is inductively defined by the formula

F(�) = A1 ∨ . . . ∨ Am ∨ (B1 ⇒ F(�1)) ∨ . . . ∨ (Bn ⇒ F(�n)).

In order to introduce the rules of the calculus, we
need the notion of context. Intuitively a context denotes
a “hole”, a unique empty position, within a sequent that
can be filled by a nested sequent. We use the symbol
( ) to denote the empty context. A context is defined
inductively as follows:

– �( ) = �, ( ) is a context;
– if �( ) is a context, then �( ) = �, [A : �( )] is a

context,

where � is a nested sequent and A is a formula. Finally,
we define the result of filling “the hole” of a context by
a sequent. Let �( ) be a context and � be a sequent,
then the sequent obtained by filling the context by �,
denoted by �(�) is defined as follows:
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Fig. 1. Some standard extensions of CK.

Fig. 2. The nested sequent calculi NS.

Fig. 3. A derivation of the axiom ID in NCK+ID. Thanks to the
modularity of the NS calculi, the same derivation can also be obtained
in NCK+ID+MP , in NCK+CEM+ID, and in NCKLM .

Fig. 4. A derivation of the axiom MP in NCK+MP and
NCK+ID+MP.

– if �( ) = �, ( ), then �(�) = �, �;
– if �( ) = �, [A : �( )] then �(�) = �, [A :

�(�)].

Figure 2 shows nested sequent calculi NS.

Fig. 5. A derivation of the axiom CEM in NCK+CEM and
NCK+CEM+ID.

As usual, we say that a nested sequent � is deriv-
able in NS if it admits a derivation. A derivation is a
tree whose nodes are nested sequents. A branch is a
sequence of nodes �1, �2, . . . , �n, . . . such that each
node �i is obtained from its immediate successor �i−1
by applying backward a rule of NS, having �i−1 as the
conclusion and �i as one of its premises. A branch is
closed if one of its nodes is an instance of axioms (AX),
(AX	), (AX⊥), otherwise it is open. We say that a tree
is closed if all its branches are closed. A nested sequent
� has a derivation in NS if there is a closed tree having
� as the root.
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Fig. 6. A derivation of (A ⇒ (D ⇒ B ∧ C)) → (A ⇒ (D ⇒ B)) in NCK provided by the theorem prover NESCOND.

Fig. 7. A derivation of the axiom CSO. Notice that the sequent ¬(A ⇒ B), ¬(B ⇒ A), ¬(A ⇒ C), [A : A] occurs twice as a premise of the
application of the rule (CSO) in the derivation �1; therefore, in order to increase readability, we only show it once. This is the reason why the
application of (CSO) in �1 has two premises (and not three). The same for ¬(A ⇒ B), ¬(B ⇒ A), ¬(A ⇒ C), [B : B], occurring twice in �2.

In Figs. 3, 4 and 5 we show derivations in the calculi
NS of the axioms (ID), (MP), and (CEM), respec-
tively. Figure 6 shows a derivation of the CK valid

formula (A ⇒ (D ⇒ B ∧ C)) → (A ⇒ (D ⇒ B))
found by the theorem prover NESCOND described in
Section 4.
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Fig. 8. Nested sequent calculi NS: conditional logics and adopted
rules.

We have also provided a nested sequent calculus for
the flat fragment, i.e. without nested conditionals, of
CK+CSO+ID, corresponding to Kraus, Lehmann and
Magidor’s cumulative logic C [26]. The rules of the
calculus, called NCKLM , are those ones of NCK+ID
(restricted to the flat fragment) where the rule (⇒−)
is replaced by the rule (CSO). In Fig. 7 we show a
derivation in NCKLM of the (CSO) axiom.

Figure 8 summarizes the rules of each nested sequent
calculus of NS. Axioms (AX), (AX	), and (AX⊥), as
well as rules for propositional connectives, belong to
all the systems.

Nested sequent calculi NS are sound and complete
with respect to the semantics for the respective logics,
a proof can be found in Section 3 in [2].

Theorem 1. The nested sequent calculi NS are sound
and complete for the respective logics, i.e. a formula F

of L is valid in CK{+X} if and only if it is derivable in
NCK{+X}.

3.1. Termination and complexity of NS

As usual, in order to obtain a decision procedure
for the conditional logics under consideration, we have
to control the application of the rules (⇒−), (CSO),
(MP ), (CEM ), and (ID) that otherwise may be applied
infinitely often in a backward proof search, since
their principal formula is copied into the respective
premise(s). In detail, we have the following results,
whose proofs can be found in [2].

Proposition 1. The calculi NS with the following
restrictions on the application of the rules:

– (⇒−) can be applied only once to each formula
¬(A ⇒ B) with a context [C : �] in each branch;

– (ID) can be applied only once to each context [A :
�] in each branch;

– (MP ) can be applied only once to each formula
¬(A ⇒ B) in each branch.

– in the system CK+CSO+ID, the rule (CSO) can
be applied only once to each formula ¬(A ⇒ B)
with a context [C : �] in each branch

are sound, complete and terminating.
For systems with (CEM ), we need a more compli-

cated mechanism. Intuitively, the rule is applied only to
sequents containing only atomic formulas and negated
conditionals to which (⇒−) has been applied as much
as possible. We need the following definitions.

Definition 2. Given a nested sequent

� = A1, . . . , An, [B1 : �1], . . . , [Bm : �m]

and a formula F , we define F ∈∗ � if either F = Ai

for some i ∈ {1, 2, . . . , n} or F ∈∗ �j for some j ∈
{1, 2, . . . , m}.

Definition 3. (CEM-reduced sequent) Given a
nested sequent � = A1, . . . , An, [B1 : �1], . . . , [Bm :
�m] occurring in a derivation �, we say that � is CEM-
reduced if the following conditions hold:

– for each formula F such that F ∈∗ �, either F is a
literal, i.e. F = P or F = ¬P , where P ∈ ATM ,
or F is a negated conditional ¬(C ⇒ D);

– for each negated conditional ¬(C ⇒ D) ∈∗ � and
for each (sub)context [C′ : �] occurring in �, if
C, ¬C′ and C′, ¬C are derivable, then the rule
(⇒−) has been applied to ¬(C ⇒ D) by using
[C′ : �] in �.

Definition 4. Given two sequents � = A1, . . . , An,

[B1 : �1], . . . , [Bm : �m] and �, we define � ⊆∗ � if
(i) Ai ∈ �, for each i = 1, 2, . . . , n and (ii) there is [Bi :
�i] ∈ � such that �i ⊆∗ �i, for each i = 1, 2, . . . , m.

For instance, given � = C, C, [D : E, E, F ], [D :
E, F ], [G : [H : K, K]] and � = C, [D :
E, E, F, H], [G : [H : K, M]], it holds that � ⊆∗ �.

In [2] it is shown that:

Proposition 2. The calculi NS for systems with CEM
with the following restrictions on the application of the
rule (CEM) to �([A : �], [B : �]):

(i) �([A : �], [B : �]) is CEM-reduced
(ii) not � ⊆∗ �.

are sound, complete and terminating.
The terminating calculi can be used to provide a

PSPACE decision procedure for their respective log-
ics [2]. As mentioned in the Introduction, this bound is
optimal for logics not including CEM.
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4. Design of NESCOND

In this section we present a Prolog implementa-
tion of the nested sequent calculi NS. The program,
called NESCOND (NESted sequent calculi for CON-
Ditional logics), is inspired by the “lean” methodology
of leanTAP [5]. The basic idea is that the Prolog pro-
gram comprises a set of clauses, each one of which
implements a sequent rule or axiom of NS. The proof
search is provided for free by the mere depth-first search
mechanism of Prolog, without any additional ad hoc
mechanism.

NESCOND represents a nested sequent with a Prolog
list of the form:

[F 1, F 2, ..., F m,
[[A 1,Gamma 1],AppliedCond 1], ...,
[[A n,Gamma n],AppliedCond n]] ]

where F i and A i are formulas of L whereas
Gamma i are Prolog lists representing nested sequents.
Elements of the form

[[A,Gamma],AppliedCond]]

are pairs where [A,Gamma] represents a con-
text [A : �], while AppliedCond is a Prolog list
[A 1=>B 1,A 2=>B 2,...,A k=>B k] used in
order to implement the restriction on the application
of the rule (⇒−) to ensure termination, by keeping
track of the negated conditionals to which the rule (⇒−)
has been already applied by using [A,Gamma] in the
current branch.

Symbols 	 and ⊥ are represented by constantstrue
and false, respectively, and connectives ¬, ∧, ∨, →,
and ⇒ are represented by !, ˆ, v, ->, and =>.

As an example, the Prolog list

[p, q, !(p => q), [[p, [q v !p,
[[p,[p => r]],[]], !r]],[p => q]],
[[q, [p, !p]],[]]]

represents the nested sequent

P, Q, ¬(P ⇒ Q), [P : Q ∨ ¬P, [P : P ⇒ R], ¬R], [Q : P, ¬P].

Furthermore, the list[p => q] in the leftmost con-
text is used to represent the fact that, in a backward
proof search, the rule (⇒−) has already been applied to
¬(P ⇒ Q) by using [P : Q ∨ ¬P, [P : P ⇒ R], ¬R].

4.1. Auxiliary predicates

In order to manipulate formulas “inside” a sequent,
NESCOND makes use of the three following auxiliary
predicates:

– deepMember(+Formulas,+NS) succeeds if
and only if there is a nested sequent occurring in
NS containing formulas of Formulas, that is to
say either (i) the nested sequent NS contains for-
mulas in the list Formulas or (ii) there exists a
[[A,Delta],AppliedConditionals] in
NS such that deepMember (Formulas,
Delta) succeeds.

– deepSelect(+Formulas,+NS,-NewNS)
operates exactly as deepMember, however it
removes the formulas of the list Formulas by
replacing them with a placeholder hole; the
output term NewNSmatches the resulting sequent.

– fillTheHole(+NewNS,+Formulas,
-ResultingNS) replaceshole inNewNSwith
the formulas in the list Formulas. Result-
ingNS is the output term matching the result.

4.2. NESCOND for CK

The calculi NS are implemented by the predicate

prove(+NS,-ProofTree).

This predicate succeeds if and only if the nested
sequent represented by the list NS is derivable. When it
succeeds, the output term ProofTree matches with
a representation of the derivation found by the prover.
For instance, in order to prove that the formula (A ⇒
(B ∧ C)) → (A ⇒ B) is valid in CK, one queries
NESCOND with the goal: prove([(a => b ˆ
c) -> (a => b)],ProofTree). Each clause
of prove implements an axiom or rule of NS.
To search for a derivation of a nested sequent �,
NESCOND proceeds as follows. First of all, if � is
an axiom, the goal will succeed immediately by using
one of the following clauses for the axioms:

prove(NS,tree(ax)):-deepMember([F,!F],NS),!.
prove(NS,tree(axt)):-deepMember([top],NS),!.
prove(NS,tree(axb)):-deepMember([!bot],NS),!.

implementing (AX), (AX	) and (AX⊥), respectively.
It is worth noticing that NESCOND applies Lemma
3.6 in [2], asserting that, given any formula F and any
context �( ), the sequent �(F, ¬F ) is derivable in NS.
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Therefore, the above Prolog clause can be applied to any
formula F , generalizing axiom (AX) which is restricted
to atomic formulas only.

If � is not an instance of the axioms, then the first
applicable rule will be chosen, e.g. if a nested sequent
in � contains a formula A v B, then the clause imple-
menting the (∨+) rule will be chosen, and NESCOND
will be recursively invoked on the unique premise of
(∨+). NESCOND proceeds in a similar way for the
other rules. The ordering of the clauses is such that the
application of the branching rules is postponed as much
as possible.

As an example, the clause implementing (⇒−) is as
follows:

1. prove(NS,tree(condn,A,B,Sub1,Sub2,Sub3)):-
2. deepSelect([!(A => B),

[[C,Delta],AppliedConditionals]],
NS,NewNS),

3. \+member(!(A => B),AppliedConditionals),
4. prove([A,!C],Sub2),
5. prove([C,!A],Sub3),!,
6. fillTheHole(NewNS,[!(A => B),

[[C,[!B|Delta]],
[!(A => B)|AppliedConditionals]]],

DefNS),
7. prove(DefNS,Sub1).

In line 2, the auxiliary predicate deepSelect is
invoked in order to find both a negated conditional
¬(A ⇒ B) and a context [C : �] in the sequent (even
in a nested subsequent). In this case, such formulas
are replaced by the placeholder hole. Line 3 imple-
ments the restriction on the application of (⇒−) in
order to guarantee termination: the rule is applied only
if ¬(A ⇒ B) does not belong to the list Applied-
Conditionals of the selected context. In lines 4,
5 and 7, NESCOND is recursively invoked on the
three premises of the rule. In line 7, NESCOND is
invoked on the premise in which the context [C : �] is
replaced by [C : �, ¬B]. To this aim, in line 6 the auxil-
iary predicatefillTheHole(+NS,+Formulas,-
ResultingNS) is invoked to replace the hole
introduced by deepSelect, with the negated con-
ditional ¬(A ⇒ B), which is copied into the premise,
and the context [C : �, ¬B], whose list of Applied-
Conditionals is updated by adding the formula
¬(A ⇒ B) itself, in order to prevent further, useless
applications in the current branch.

As mentioned, the last argument of the predicate
prove is an output term corresponding to a func-
tor tree storing information about the derivation
found by the prover, that will be used by the graph-
ical interface to display a closed tree of a valid

sequent. For axioms, this functor just recalls the name
of the axioms themselves, namely it is tree(ax)
for (AX ), tree(axt) for (AX 	) and tree(axb)
for (AX ⊥). In the example of (⇒−), the term is
tree(condn,A,B,Sub1,Sub2,Sub3), where:

– the constant condn is used to store the name
of the applied rule, in this case (⇒−) (condi-
tional+negative);

– A and B represent the principal formula to which
the rule is applied, here representing the negated
conditional ¬(A ⇒ B);

– Sub1, Sub2 and Sub3 are the sub-trees of the
three premises of the rule, returned by the recursive
invocations of prove.

Similarly for the other rules. It is worth noticing that,
since the rules of the calculi are invertibile (see Lemma
3.9 and the discussion following it in [2]), we can use cut
! in line 5 to avoid the creation of a useless backtracking
point.

The implementation of the calculi for extensions of
CK with axioms ID and MP are similar to the one of
CK. The main differences are described in the following
sections.

4.3. NESCOND for extensions with ID

In these systems, contexts are triples [Context,
AppliedConditionals, AllowID]. The third
element AllowID is a flag used in order to imple-
ment the restriction on the application of the rule
(ID), namely the rule is applied to a context only if
AllowID=true, as follows:

prove(NS,tree(id,A,SubTree)):-
deepSelect([[

[A,Delta],AppliedConditionals,true]]],
NS,NewNS),!,

fillTheHole(NewNS,[[[A,[!A|Delta]],
AppliedConditionals,false]]],DefNS),

prove(DefNS,SubTree).

When (ID) is applied to

[Context,AppliedConditionals,true],

then the predicate prove is invoked on the unique
premise of the rule represented by the list DefNS, and
the flag is set to false in order to avoid multiple
applications in a backward proof search.
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4.4. NESCOND for extensions with MP

The restriction on the application of the rule (MP ) is
implemented by equipping the predicate prove by a
third argument, a Prolog list called AppliedMP, keep-
ing track of the negated conditionals to which the rule
has already been applied in the current branch. The
clause of prove implementing (MP ) is:

1. prove(NS,AppliedMP,tree(mp,A,B,Sub1,
Sub2)):-

2. deepSelect([!(A => B)],NS,NewNS),
3. \+member(A => B,AppliedMP),!,
4. fillTheHole(NewNS,[A,!(A => B)],NS1),
5. fillTheHole(NewNS,[!B,!(A => B)],NS2),
6. prove(NS1,[A => B|AppliedMP],Sub1),
7. prove(NS2,[A => B|AppliedMP],Sub2).

The rule is applicable to a formula ¬(A ⇒ B) only
if [A => B] does not belong to AppliedMP (line
3). When (MP ) is applied, then A => B is added to
AppliedMP in the recursive calls of prove on the
premises of the rule (lines 6 and 7).

4.5. NESCOND for extensions with CEM

The implementation of NESCOND for systems
allowing the axiom CEM is quite different from the
other ones. In particular, these systems implement the
much more complicated mechanism needed to ensure
termination described in Proposition 2.

Condition (i) in Proposition 2 is guaranteed by the
fact that the clause implementing (CEM ) is the last one
in the Prolog program: this ensures that the other rules
are applied as much as possible, then the rule (CEM )
is applied only to CEM-reduced sequents. The clause
implementing the rule (CEM ) is as follows:

1. prove(NS,tree(cem,A,B,Sub1,Sub2,Sub3)):-
2. deepSelect([[[A,Delta],ApplCond1],

[[B,Sigma],ApplCond2]],NS,NewNS),
3. notSequentIncluded(Delta,Sigma),
4. prove([A,!B],Sub2),
5. prove([B,!A],Sub3),
6. append(Delta,Sigma,ResDelta),
7. fillTheHole(NewNS,

[[[A,ResDelta],ApplCond1],
[[B,Sigma],ApplCond2]],DefNS),

8. prove(DefNS,Sub1).

In line 3 the following predicate notSequentIn-
cluded is invoked:

1. notSequentIncluded(Delta,Sigma):-
2. partitionNS(Delta,Formulas,Contexts),!,

3. ((member(F,Formulas),\+member(F,Sigma),!)
4. ;
5. (extractSubContexts(Sigma,List),
6. member([[A,Gamma],_],Contexts),
7. notSeqList(A,Gamma,List))).

This predicate ensures condition (ii) in Proposition
2, namely that not � ⊆∗ �. In line 2 the list representing
� is partitioned into formulas F1, . . . , Fn and contexts
[A1 : �1], . . . , [Am : �m]. Two alternatives are taken
into account by the disjunction in line 4:

– in line 3, the theorem prover checks whether there
is a formula F ∈ � such that F /∈ �. If this is the
case, then � /⊆ ∗� and the predicate succeeds;

– otherwise, the predicate tries to find a context [A :
�] ∈ � such that, for all contexts [Bi : �i] ∈ �,
we have that � /⊆ ∗�i: this is again enough to
conclude that � /⊆ ∗�, and the predicate notSe-
quentIncluded(Delta,Sigma) succeeds.
More in detail, an auxiliary predicate extract-
SubContexts(Sigma,List) first builds the
list List of contexts [Bi : �i] ∈ � (line 5);
then, in line 6 a context [A : �] ∈ � is selected
by invoking the standard member predicate.
Last, another auxiliary predicate notSeqList is
invoked to check whether [A : �] is not included
in [Bi : �i] ∈ �, by recursively invoking not-
SequentIncluded in order to check whether
� /⊆ ∗�i.

If the predicate notSequentIncluded
(Delta, Sigma) succeeds, i.e. � /⊆ ∗�, then
(CEM) is applicable, and the predicate prove is
recursively invoked on its three premises (lines 4, 5,
and 8).

4.6. NESCOND for NCKLM

The implementation of the calculus for the flat
fragment of CK+CSO+ID, corresponding to Kraus,
Lehmann and Magidor’s cumulative logic Cdiffers
from the one for CK+ID in three main respects:

1. the rule (⇒−) is replaced by (CSO). This does
not make use of the predicate deepSelect to
“look inside” a sequent to find the principal for-
mulas ¬(A ⇒ B) and [C : �]: since the calculus
only deals with the flat fragment of the logic
under consideration, the shown principal formu-
las are directly selected from the current sequent
by easy membership tests (standard Prolog pred-
icates member and select), without searching
inside other contexts;
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2. contexts are pairs

[Context, AllowID]

rather than triples

[Context, AppliedConditionals,
AllowID],

since the control of the application of the (CSO)
rule is more complicated and then delegated to
a further argument of the prove predicate, see
point 3 here below;

3. the predicate prove has three arguments:

prove(+NS,+AppliedCSO,-ProofTree).

where AppliedCSO is a list of pairs

[!(A=>B),[C: Delta]]

used in order to control the backward applica-
tion of the (CSO) rule and representing the fact
that (CSO) has been already applied to a context
[C : �] in the current branch by using the negated
conditional ¬(A ⇒ B) as a principal formula.

The clause of prove implementing (CSO) is as
follows:
1. prove(NS,AppliedCSO,

tree(cso,A,B,Sub1,Sub2,Sub3)):-
2. member(!(A => B),NS),
3. select([[C,Delta],AllowID],NS,NewNS),
4. \+member(!B,Delta),
5. \+excludeCSO(!(A => B),[C,Delta],

AppliedCSO),!,
6. prove([[[C,[A]],true]|NewNS],

[[!(A => B),[C,Delta]]|AppliedCSO],Sub1),
7. prove([[[A,[C]],true]|NewNS],

[[!(A => B),[C,Delta]]|AppliedCSO],
Sub2),

8. prove([[[C,[(!B)|Delta]],AllowID]|NewNS],
[[!(A => B),[C,Delta]]|AppliedCSO],

Sub3).

In line 2 the predicate member checks whether a
negated conditional ¬(A ⇒ B) belongs to the current
nested sequent; if this is the case, in line 3 the select
predicate is invoked to select and remove a context [C :
�] for building the premise containing [C : �, ¬B] on
which prove is recursively invoked in line 8. Similarly
to the implementation of the rule (⇒−) in the other sys-
tems, in lines 6 and 7 theprove predicate is recursively
invoked on the other two premises �, ¬(A ⇒ B), [C :
A] and �, ¬(A ⇒ B), [A : C], respectively.

In line 4 the predicate \+member(!B,Delta) is
invoked in order to check whether the application of
(CSO) is useful, by avoiding the situation in which the
predicateprove is further invoked in line 8 on the same

sequent, namely when ¬B already belongs to �, there-
fore one of the premise of (CSO) is �, ¬(A ⇒ B), [C :
�, ¬B, ¬B], the same as �, ¬(A ⇒ B), [C : �, ¬B]
since contraction is admissible (see Lemma 3.11 in
[2]). In line 5, the auxiliary predicate excludeCSO is
invoked in order to check whether the rule (CSO) can
be applied to [C : �] by using ¬(A ⇒ B) as a prin-
cipal formula. This predicate succeeds if (CSO) has
been already applied in the current branch to a context
[C : �1], such that �1 ⊆ �, by using the same condi-
tional ¬(A ⇒ B), in other words if there is a pair [!(A
=> B), [C,Delta1]] in the list AppliedCSO).
In the implementation of the rule (⇒−) in CK+ID,
this mechanism is implemented by means of the list
AppliedConditionals belonging to each con-
text: indeed, as mentioned before, when (⇒−) is
applied to a sequent containing ¬(A ⇒ B), [C : �],
then the prove predicate is recursively invoked on
a premise containing ¬(A ⇒ B), [C : �, ¬B], whose
context is such that ¬(A ⇒ B) is added to its list of
AppliedConditionals. This is no longer applica-
ble in systems containing the (CSO) rule, because all its
three premises include a context, and two contexts are
“new” ones, not coming from the context to which the
rule is applied. Consider an application of (CSO) to a
sequent �, ¬(A ⇒ B), [C : �], then the premises con-
tain [C : A] (line 6), [A : C] (line 7) and [C : �, ¬B]
(line 8), respectively. Notice that [C : A] and [A : C] are
“new”, they do not include [C : �]. The list of negated
conditionals already used in order to apply (CSO) to
[C : A] should be empty: however, a further (backward)
application of (CSO) to [C : A] introduces a “new”
context [C : A] in one of the premises, leading to a
non-terminating proof search.

This is why we need a more complicated machin-
ery, making use of a further auxiliary predicate
excludeCSO as well as of a third argument
AppliedCSO in the prove predicate. It is worth
noticing that the pair 〈¬(A ⇒ B), [C : �]〉 is added
to the list AppliedCSO in lines 6, 7 and 8, imple-
menting the restriction on the application of (CSO) of
Proposition 1.

NESCOND is available at the web addresshttp://
www.di.unito.it/∼pozzato/nescond/. It
also comprises a graphical user interface correspond-
ing to a web application. In detail, the user can query
the theorem prover by means of a php web page, typ-
ing in a suitable text box the sequent whose validity is
under consideration. The php application asks the SWI
Prolog engine (http://www.swi-prolog.org)
to check whether such a sequent is valid by invoking

http://www.di.unito.it/~pozzato/nescond/
http://www.swi-prolog.org
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the predicate prove described above. If the sequent is
valid, the application builds a pdf file containing a proof
tree for the sequent. Some pictures of NESCOND are
presented in Figs. 15 and 16.

5. Performance of NESCOND

The performances of NESCOND are promising. We
have tested it by running SICStus Prolog 4.0.2 on an
Apple MacBook Pro, 2.7 GHz Intel Core i7, 8GB RAM
machine2, by comparing its performances with all the
other theorem provers for conditional logics known in
the literature.

5.1. NESCOND vs CondLean vs GOALDUCK

We have compared the performances of NESCOND
with the ones of two other provers for condi-
tional logics: CondLean 3.2, implementing labelled
sequent calculi [30], and the goal-directed procedure
GOALDUCK [31].

5.1.1. Randomly generated sequents
We have tested the three provers over a set of 6000

randomly generated sequents, obtaining the results
shown in Fig. 9. Obviously, in order to obtain a rel-
evant result, we have run the same set of 6000 sequents
on all the three theorem provers.

We have first considered sequents whose formulas
are built from 15 different atomic variables and have a
high level of nesting (10), obtaining results in Fig. 9(a):
NESCOND is not able to answer only in 0,05% of cases
(1 sequent over 2000) within 10 seconds, whereas both
GOALDUCK and CondLean are not able to conclude
anything in more than 3% of cases (60 tests over 2000).
If the time limit is extended to 2 minutes, we have
obtained the results in Fig. 9(b): NESCOND answers
in 100% of cases, whereas its two competitors have still
at least the 1,30% of timeouts.

We have then considered sequents with a lower
level of nesting (3) and whose formulas contain only
3 different atomic variables, obtaining the results in
Fig. 9(c). The difference is surprisingly much more sig-
nificant: with a time limit of 10 seconds, NESCOND
is not able to answer only in 9,05% of cases, whereas

2It is worth noticing that the experimental results presented
in this section have been obtained by running SICStus Pro-
log, whereas, as mentioned at the end of Section 4, the Prolog
engine which is the core of the web application available at
http://www.di.unito.it/∼pozzato/nescond/ is implemented in SWI
Prolog.

both CondLean and GOALDUCK are not able to con-
clude in 16,55% and in 51,15% of cases, respectively.
This phenomena can be explained by the fact that
NESCOND is faster than the other provers to find 355
not valid sequents (against 17 of CondLean and 34 of
GOALDUCK) within the fixed time limit.

5.1.2. Valid sequents
We have tested NESCOND and its two competi-

tors over sets of valid sequents. In absence of a set of
acknowledged benchmarks for conditional logics, we
have considered known significant structures of valid
sequents in CK and all the considered extensions. Con-
cerning CK, we have considered 88 valid formulas
obtained by translating K valid formulas, obtained by
replacing �A with 	 ⇒ A, and �A with ¬(	 ⇒ ¬A).
These formulas have been provided by Heuerding and
used to test the theorem prover ModLeanTAP [4] by
Beckert and Goré.

The experimental results are shown in Fig. 10. The
performances of NESCOND are encouraging also in
this kind of tests. Considering CK, NESCOND is not
able to give an answer in less than 10 seconds only
in 5 cases over 88, against the 8 of CondLean and the
12 of GOALDUCK; the number of timeouts drops to
4 if we extend the time limit to 1 minute, whereas this
extension has no effect on the competitors (still 8 and 12
timeouts). We have similar results also for extensions
of CK as shown in Fig. 11 here we have not included
GOALDUCK since the most formulas adopted do not
belong to the fragments admitting goal-directed proofs
[31].
These results show that the performances of
NESCOND are encouraging, probably better than
the ones of the other existing provers for conditional
logics, and this also holds for extensions of CK.
For systems not allowing CEM, NESCOND gives
an answer in 95% of the tests (all of them are valid
formulas) in less than 1ms. The performances worsen
in systems with CEM because of the overhead of the
termination mechanism.

5.2. NESCOND vs CoLoSS

We have also compared the performances of
NESCOND with the ones of CoLoSS, the Coalgebraic
Logic Satisfiability Solver, a generic-purpose theorem
prover for modal logics introduced in [23]. CoLoSS
is an Haskell implementation of a uniform polynomial
space algorithm to decide satisfiability for modal logics
that are amenable to coalgebraic semantics, including

http://www.di.unito.it/~pozzato/nescond/
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conditional logics. Also in this case, we distinguish
tests over randomly generated formulas and tests over
significant examples.

5.2.1. Randomly generated sequents
We have tested both NESCOND and CoLoSS over

200 randomly generated CK formulas, corresponding
to sequents with only one formula, obtaining the results
presented in Fig. 12. For CoLoSS, we have considered
an “Optimized” version, using dynamic programming
plus a restriction to connected pairs. CoLoSS kills tasks
requiring more than 2 minutes. It is easy to observe that
the performances of NESCOND are better than the ones
of the competitor: it gives an answer for all generated
formulas within 5 seconds, whereas CoLoSS in 5 sec-
onds is able to conclude only in 66% of the examples.
Furthermore, in some cases (about 5%), CoLoSS either
crashes with a stack space overflow exception or reaches
the 2 minutes time limit.

5.2.2. Valid sequents
We have tested both NESCOND and CoLoSS over

the set of formulas available at CoLoSS web site
(http://www.informatik.uni-bremen.de/cofi/CoLoSS/),
used by the authors to witness the performances of
their prover. In all the available examples, NESCOND
answers in less than 1ms, whereas CoLoSS needs 776
ms on average to conclude its computation (in two
examples, CoLoSS requires more than 2 seconds).

5.3. NESCOND for NCKLM vs KLMLean for
cumulative logic C

Last, we have compared the performances of the
implementation of NESCOND for NCKLM with those

of KLMLean 2.0, a SICStus Prolog implementation of
a tableau calculus for C introduced in [19] and available
at http://www.di.unito.it/∼pozzato/klmlean%202.0/.
Again, the performances of NESCOND seem to be
significantly better than those ones of its opponent; as
in the other cases, we distinguish tests over randomly
generated formulas and tests over significant examples.

5.3.1. Randomly generated sequents
We have tested both NESCOND and KLMLean over

4000 randomly generated CK+ID+CSO sequents, cor-
responding to sets of formulas of C. We have considered
different combinations of the following parameters:
number of different propositional variables, number
of conditional formulas (positive and negative), and
fixed time limit. Experimental results are presented in
Fig. 13. In tables (a) and (b) we have tested the two
provers over formulas with 8 conditionals: they both
need at least 5 seconds to obtain a number of timeouts
under 90%; NESCOND is not able to answer in 59% of
cases, whereas KLMLean needs more time in the 87%
of cases. Tables (c) and (d) show the performances
over formulas containing 25 conditionals: in this case,
we can observe that the performances of NESCOND
are significantly better: by extending the time limit
to 30 seconds, NESCOND is not able to answer only
in 19% of cases, whereas KLMLean has still 88%
of timeouts.

5.3.2. Valid sequents
We have tested both NESCOND and KLMLean over

a set of valid and significant formulas (Fig. 14). Also in
this case, NESCOND if faster than KLMLean: after 5
seconds NESCOND is able to answer in more than 70%
of cases, whereas KLMLean is able to answer only in
50% of cases.

Fig. 9. NESCOND vs CondLean vs GOALDUCK over a set of 6000 random sequents.

http://www.informatik.uni-bremen.de/cofi/CoLoSS/
http://www.di.unito.it/~pozzato/klmlean%202.0/
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Fig. 10. NESCOND vs CondLean: timeouts over 88 valid formulas for CK.

Fig. 11. NESCOND vs CondLean: timeouts over valid formulas for extensions of CK.

Fig. 12. Percentage of answers by NESCOND and CoLoSS over 200 random formulas. Notice that in CoLoSS formulas which take more than
2 minutes are killed.

Fig. 13. Percentage of answers by NESCOND and KLMLean over 4000 random formulas.

Fig. 14. Percentage of answers by NESCOND and KLMLean over valid formulas.
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Fig. 15. The home page of NESCOND http://www.di.unito.it/∼pozzato/nescond/

Fig. 16. The pdf file generated by NESCOND for a valid sequent.

6. Conclusions and future issues

We have recalled nested sequent calculi NS for the
basic normal conditional logic CK and some extensions
of it with combinations of ID, MP, and CEM, namely all
combinations except CK+MP+CEM(+ID). The calculi
are analytic and they can be used to obtain a decision

procedure, in some cases of optimal complexity. We
have also recalled a nested sequent calculus, called
NCKLM , for the cumulative logic C, corresponding to
the flat fragment of CK+CSO+ID for which no internal
calculus seem to be known so far.

Moreover, we have presented NESCOND
(http://www.di.unito.it/∼pozzato/nescond/), a theorem

http://www.di.unito.it/~pozzato/nescond/
http://www.di.unito.it/~pozzato/nescond/
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prover implementing nested sequent calculi NS. We
have compared NESCOND to other theorem provers
for conditional logics. Statistics obtained so far show
that NESCOND performs reasonably well and in all
cases (except for logics including CEM) it outperforms
the other theorem provers. We can conclude that
nested sequent calculi do not only provide elegant and
natural calculi for conditional logics, but they are also
well-suited for developing efficient theorem provers
for them.

In [6] the authors provide a sound and complete
embedding of some conditional logics into classical
higher-order logic (HOL), allowing to exploit avail-
able HOL reasoners for automated theorem proving in
conditional logics. Intuitively, the embedding is based
on the natural correspondence between the selection
function semantics and HOL. The basic system CK
and extensions with ID, MP, and CEM are consid-
ered, whereas CSO is not taken into account. The
results of some experiments, obtained by running dif-
ferent HOL reasoners over few examples, are also
provided.

The authors of [6] introduce a methodology to obtain
theorem provers for conditional logics, rather than a
“concrete” prover ready to be queried by the users: they
do not even compare their solution to existing provers
CondLean and GOALDUCK; experimental results for
systems combining different conditional axioms are not
provided; last, the implemented reasoner is not avail-
able and cannot be accessed neither for download nor
by means of a web application. As the same authors
point out, their objective is to show that the proposed
theoretical embedding of conditional logics into HOL
can have practical benefits, however HOL is, in general,
undecidable, and termination/complexity results for the
implemented prototype exploiting HOL reasoners are
not mentioned.

In future research we aim to extend NS and
NESCOND to other systems of conditional logics. To
this regard, we strongly conjecture that adding a rule for
the axiom (CS) (A ∧ B) → (A ⇒ B) will be enough
to cover the whole cube of the extensions generated by
axioms (ID), (MP), (CEM) and (CS).
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