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Deadlock and lock freedom in the linear π-calculus

Luca Padovani
Dipartimento di Informatica, Università di Torino, Italy
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Abstract
We study two refinements of the linear π-calculus that ensure
deadlock freedom (the absence of stable states with pending linear
communications) and lock freedom (the eventual completion of
pending linear communications). The main feature of both type
systems is a new form of channel polymorphism that affects their
accuracy in a significant way: they are the first of their kind that can
deal with recursive processes connected by cyclic networks.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure;
F.1.2 [Computation by Abstract Devices]: Modes of Computation—
Parallelism and concurrency

Keywords linear π-calculus, deadlock, types, polymorphism

1. Introduction
The linear π-calculus [27] is a resource-aware model of commu-
nicating processes that distinguishes between unlimited and linear
channels. While unlimited channels can be used without restric-
tions, linear channels are meant to be used for exactly one commu-
nication. This intrinsic limitation is rewarded by several benefits,
including specialized behavioral equivalences for reasoning about
communication optimizations, the efficient implementation of lin-
ear channels, and the fact that communications on linear channels
enjoy desirable properties such as determinism and confluence. The
value of these benefits is amplified given that a significant fraction
of channels in several actual systems happen to be linear.

From an operational standpoint, the linear π-calculus only guar-
antees that well-typed processes never communicate twice on the
same linear channel. In practice, one may be interested in stronger
guarantees, such as deadlock freedom [24] – the absence of stable
states with pending communications on linear channels – or lock
freedom [22, 26] – the possibility to complete pending communi-
cations on linear channels. A paradigmatic example of deadlock is
illustrated by the process

a?(x).b!〈x〉 | b?(y).a!〈y〉 (1)

where the left subprocess forwards on b the message x received
from a, and the right subprocess forwards on a the message y
received from b. The process (1) is well typed when a and b are
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linear channels, but none of the pending communications on a
and b can complete because of the mutual dependencies between
corresponding inputs and outputs. An example of lock which is not
a deadlock is illustrated by the process

c!〈a〉 | ∗c?(x).c!〈x〉 | a!〈1984〉 (2)

where there is a pending output operation on the rightmost occur-
rence of channel a, whereas the leftmost occurrence of a is repeat-
edly sent over the unlimited channel c. Also this process is well
typed when a is a linear channel, even though the pending commu-
nication cannot be completed because a is never actually used for
an input operation. Note that (2), unlike (1), reduces forever.

In this work we propose two refinements of the linear π-calculus
such that well-typed processes are (dead)lock free. The techniques
we put forward have been inspired by previous ideas presented
in [22–24, 26], except that by narrowing the focus on the linear
π-calculus we obtain type systems that are not just technically
simpler but also more accurate with respect to relevant processes.

In a nutshell, we consider channel types of the form pι[t]nm
where the polarity p (either input ? or output !), the type t of
messages, and the multiplicity ι (unlimited ω or linear 1), are just
like in the linear π-calculus. In addition, we annotate channel types
with two numbers, a level n and m tickets. Levels enforce an order
on the use of channels: when a process owns two or more channels
at the same time, channels with lower level must be used before
channels with higher level. In particular, an input u?(x).P is well
typed if u has lower level than all the channels occurring in P and
an output u!〈v〉 is well typed if u has lower level than v. This
mechanism makes (1) ill typed: it is not possible to assign two
levels h and k to a and b, for the structure of the process requires the
simultaneous satisfiability of the two constraints h < k and k < h.
Tickets limit the number of travels that channels can do: u!〈v〉 is
well typed if v has at least one ticket; each time a channel is sent
as a message, one ticket is removed from its type; a channel with
no tickets cannot travel and must be used directly for performing
a communication. This mechanism makes (2) ill typed, because
a is sent on c infinitely many times and so it would ideally need
infinitely many tickets.

The technique described thus far prevents deadlocks (if we just
consider the constraints on levels) and locks (if we also consider the
constraints on tickets). Unfortunately, it fails to type most recursive
processes. For example, the usual encoding of the factorial below
where, for convenience, we have annotated linear names with their
level, is ill typed:

∗fact?(x, yh).
if x = 0 then yh!〈1〉
else (νak)(fact !〈x− 1, ak〉 | ak?(z).yh!〈x× z〉)

(3)

Since the newly created channel a is used in the same position as y
in the recursive invocation of fact , we are led into thinking that a
and y should have the same type hence the same level h = k. This
clashes with the input on a that blocks the output on y, requiring



k < h. We see a symmetric phenomenon in

∗stream?(x, yh).(νak)(yh!〈x, ak〉 | stream!〈x+ 1, ak〉) (4)

which generates a stream of integers. Here too a and y are used in
the same position and should have the same level h = k, but the
output y!〈x, a〉 also requires h < k.

We need some way to overcome these difficulties. Let us digress
for a moment from fact and stream and consider the processes

F1
def
= c?(xh).yk!〈xh〉 and F2

def
= c?(xh, yk).yk!〈xh〉

both of which forward a linear channel x received from c to the
linear channel y. In both cases it must be k < h, but there is a
key difference between F1 and F2: the level of x in F1 has a fixed
lower bound k + 1 because y is free, while the level of x in F2

is arbitrary, provided that k < h, because y is bound. Rephrased
in technical jargon, c is monomorphic in F1 and polymorphic in F2

with respect to levels. The fact that a channel like c is monomorphic
or polymorphic depends on the presence or absence of free linear
channels in the continuation that follows the input on c. Normally
this information is not inferrable solely from the type of c, but it
turns out that we can easily approximate it in the linear π-calculus,
where replicated processes cannot have free linear channels be-
cause it is not known how many times they will run. So, unlimited
channels that are always used for replicated inputs (i.e., replicated
channels [27]), are polymorphic. This is a very convenient circum-
stance, because replicated channels are the primary mechanism for
implementing recursion.

Indeed, going back to fact and stream , we see that they are
replicated channels, that is they are polymorphic. This means that
the mismatches between the levels h of y and k of a in (3) and (4)
can be compensated by this form of polymorphism and these pro-
cesses can be declared well typed.

The interplay between recursion and polymorphism leads to a
technical problem, though. Recall that in (4) there are two occur-
rences of a, one in stream!〈x+1, a〉 having the same type as y but
higher level and another in y!〈x, a〉 with a similar type, but oppo-
site (input) polarity. Overall we realize that the type t of y should
satisfy the equations

t = ![int× t1]1 t1 = ?[int× t2]2

t2 = ?[int× t3]3

...

(5)

where t1 would be the type of a in y!〈x, a〉 (for the sake of
readability we omit tickets). The problem is that t is not a regular
type and therefore cannot be finitely represented by means of the
well-known µ notation [11]. To recover a finite representation for
t, we “relativize” levels. In particular, we postulate that t should
satisfy the equations

t = ![int× s]1 s = ?[int× s]1

and that the type of messages sent on a channel of type t is int× s
(as written in t) with levels shifted up by 1 (the level of t), namely
int×?[int×s]2. In turn, the type of messages sent on a channel of
type ?[int×s]2 is int×?[int×s]3, and so on and so forth. Note
that int is not affected by the shifting because it is not a linear type
and that overall the channel types obtained by such shifting are the
same t1, t2, . . . that we initially guessed in (5), except that now t
and s are regular hence finitely representable.

Summary of contributions. We strengthen the notion of linearity
in the linear π-calculus by defining two type systems ensuring the
absence of deadlocks and locks involving linear channels, namely
that linear channels are used exactly once as opposed to at most
once. We exploit the features of the linear π-calculus to devise a
form of channel polymorphism that allows us to deal with recursive

processes also in cyclic network topologies, that is in configurations
where two (or more) processes are mutually engaged in communi-
cations on different channels. These configurations, while common
in the implementation of parallel algorithms and session-based net-
works, cannot be dealt with existing type systems for the generic
π-calculus [22–24].

Outline. In Section 2 we quickly review syntax and semantics
of the π-calculus and give formal definitions of deadlock and lock
freedom. The type systems are described in Section 3 and illus-
trated on several examples that highlight the features of our ap-
proach, particularly in presence of cyclic network topologies. Sec-
tion 4 contains a more detailed and technical comparison with re-
lated work and particularly with [22–24]. Section 5 concludes and
hints at ongoing and future developments. Additional technical ma-
terial, extended examples, and proofs of the results can be found in
the associated technical report [31].

2. Language
We use integer numbers h, k, . . . , m, n, . . . , a countable set of
variables x, y, . . . , and a countable set of channels a, b, . . . ; names
u, v, . . . are either channels or variables. Expressions e, . . . and
processes P , Q, . . . are defined by:

e ::= n
∣∣ u ∣∣ (e, e)

∣∣ inl e ∣∣ inr e
P ::= 0

∣∣ u?(x).P
∣∣ ∗u?(x).P

∣∣ u!〈e〉
∣∣ (P |Q)

∣∣ (νa)P
∣∣

let x, y = e in P
∣∣ case e {i xi ⇒ Pi}i=inl,inr

Expressions are integers, names, pairs of expressions, or ex-
pressions injected using either inl or inr. Values v, w, . . . are
expressions without variables. Processes are the usual terms of the
π-calculus enriched with pattern matching for pairs and injected
values. In particular, let x, y = e in P deconstructs the value
of e, which must be a pair, and continues as P where x and y
have been respectively replaced by the first and second component
of the pair. A process case e {i xi ⇒ Pi}i=inl,inr evaluates e,
which must result into a value (i v) where i ∈ {inl, inr}, and
continues as Pi where xi has been replaced by v. Binders are as
expected, in particular let x, y = e in P , binds both x and y
in P , and case e {i xi ⇒ Pi}i=inl,inr binds xi in Pi. The no-
tions of free and bound names of a process P , respectively de-
noted by fn(P ) and bn(P ), are defined consequently. In the fol-
lowing we write (νã) for sequences of restrictions and we use
polyadic inputs u?(x1, . . . , xn) as an abbreviation for monadic in-
put of (possibly nested) pairs followed by (possibly nested) pair
deconstructions using let’s. For example, u?(x, y).P abbreviates
u?(z).let x, y = z in P for some fresh z.

The operational semantics is defined by a combination of
structural congruence ≡ and a reduction relation →. The former
is the same as in the π-calculus, except that we do not include the
law ∗P ≡ P | ∗P because we treat replicated inputs in a special
way. Reduction is defined by the rules below

a!〈v〉 | a?(x).P → P{v/x}
a!〈v〉 | ∗a?(x).P → P{v/x} | ∗a?(x).P

let x, y = v,w in P → P{v,w/x, y}
case k v {i xi ⇒ Pi}i=inl,inr→ Pk{v/xk}

and closed by reduction contexts C ::= [ ] | (C | P ) | (νa)C and
structural congruence. The rules are unremarkable and P{v/x} is
the usual capture-avoiding substitution of v in place of the free
occurrences of x in P . We write →∗ for the reflexive, transitive
closure of→ and we say that P is stable, notation P X→, if there is
no Q such that P → Q.

To formulate deadlock and lock freedom, we need a few pred-
icates that describe the pending communications of a process P



with respect to some channel a:

in(a, P )
def⇐⇒ P ≡ C [a?(x).Q] ∧ a 6∈ bn(C )

∗in(a, P )
def⇐⇒ P ≡ C [∗a?(x).Q] ∧ a 6∈ bn(C )

out(a, P )
def⇐⇒ P ≡ C [a!〈e〉] ∧ a 6∈ bn(C )

sync(a, P )
def⇐⇒ (in(a, P ) ∨ ∗in(a, P )) ∧ out(a, P )

wait(a, P )
def⇐⇒ (in(a, P ) ∨ out(a, P )) ∧ ¬sync(a, P )

In words, in(a, P ) holds if there is a sub-process Q within
P that is waiting for a message from a (it is similar to the live
predicate in [6]). Note that, by definition of reduction context, the
input cannot guarded by other actions. The condition a 6∈ bn(C )
implies that a occurs free in P . The predicates out(a, P ) and
∗in(a, P ) are similar, but they regard outputs and replicated inputs,
respectively. Therefore, when in(a, P ) holds it means that there is
a pending non-replicated input on a and when out(a, P ) holds it
means that there is a pending output operation on a. This discussion
explains the sync(a, P ) and wait(a, P ) predicates: the first one
denotes the fact that there are pending input/output operations on
a, but a synchronization on a is immediately possible; the second
one denotes the fact that there is a pending output or a pending
non-replicated input on a, but no immediate synchronization on
a is possible. There is an asymmetry in the way pending inputs
and outputs trigger the wait predicate. In particular, we do not
interpret ∗in(a, P ) as a pending input operation, meaning that we
do not require a replicated input process to run infinitely often.
At the same time, any pending output triggers the wait predicate,
even when the output regards an unlimited channel. This is because
such outputs may carry linear channels and, in order to guarantee
deadlock freedom, we must be sure that all outputs, including
those on unlimited channels, can be completed and the messages
delivered. For this reason we treat unlimited channels as replicated
channels and enforce input receptiveness for them. On the contrary,
replicated inputs, which can be though of as persistently available
servers, do not trigger the wait predicate because, by definition,
they are not allowed to have free linear channels (the type system
will enforce this property).

We define deadlock freedom as the absence of stable states
with pending communications and lock freedom as the ability to
eventually complete any pending communication. Formally:

Definition 2.1 (deadlock [24] and lock freedom [26]).

1. We say that P is deadlock free if, for every Q such that P →∗
(νã)Q X→, we have ¬wait(a,Q) for every a.

2. We say that P is lock free if, for every Q such that P →∗
(νã)Q and wait(a,Q), there exists R such that Q →∗ R and
sync(a,R).

For example, both (νa)a!〈1984〉 and (νa)a?(x).P are dead-
locks, whereas (νa)∗a?(x).P is lock free. In principle, we should
also require that let and case processes are always able to re-
duce and that expressions in top-level outputs are always evaluated.
These properties are already guaranteed (for closed processes) by
conventional type systems for the π-calculus, so we keep Defini-
tion 2.1 focused on pending communications. Note that lock free-
dom implies deadlock freedom, but not viceversa (process (2) is
deadlock free but not lock free).

Example 2.2. Many parallel algorithms (Jacobi and Gauss-Seidel,
leader election, vertex coloring, just to mention a few) use batteries
of processes that iteratively communicate with their neighbors. To
maximize parallelism, communication is full-duplex, that is pro-
cesses simultaneously send messages to each other. For instance,
the process

NodeA
def
= ∗cA?(x, y).(νa)(x!〈a〉 | y?(z).cA!〈a, z〉)

uses a channel x for sending messages to, and another channel y for
receiving messages from, a neighbor process. Each message sent
on x carries a payload (omitted) as well as a continuation channel
a with which NodeA communicates with its neighbor at the next
iteration. Symmetrically, each message received from y contains
the neighbor’s payload (omitted) and continuation z. The use of
fresh continuations at each iteration makes sure that messages are
received in the desired order. An alternative modeling using half-
duplex communication is

NodeB
def
= ∗cB?(x, y).y?(z).(νa)(x!〈a〉 | cB!〈a, z〉)

where the process first waits for the message from its neighbor,
and only then sends its own information. It may then be relevant
to understand whether a given configuration consisting of mixed
nodes, some of type A and others of type B, is lock free. Below we
represent three of them

L1(X)
def
= NodeA |NodeB | cX!〈e, e〉

L2(X, Y)
def
= NodeA |NodeB | cX!〈e, f〉 | cY!〈f, e〉

L3(X, Y, Z)
def
= NodeA |NodeB | cX!〈e, f〉 | cY!〈g, e〉 | cZ!〈f, g〉

where each of X, Y, and Z can be either A and B to yield a different
configuration. For example, we have

L2(B, B)→∗ NodeA |NodeB | f?(z).(νa)(e!〈a〉 | cB!〈a, z〉)
| e?(z).(νb)(f !〈a〉 | cB!〈b, z〉) X→

and the final configuration satisfies the in predicate but not out for
both e and f , namely L2(B, B) is not lock free. We will see later
that a given configuration Li is lock free if and only if at least one
of its nodes is of type A. �

3. Type system
Notation. Polarities p, q, . . . are subsets of {?, !}. We abbreviate
{?} with ?, {!} with !, and {?, !} with # and we say that ∅ and #
are even polarities. Multiplicities ι, . . . are either 1 or ω. We also
use a countable set of type variables α, . . . . Types t, s, . . . are
defined by the grammar below:

t ::= int
∣∣ α ∣∣ t× s ∣∣ t⊕ s ∣∣ pι[t]nm ∣∣ µα.t

The types int, t×s, and t⊕s respectively denote integers, pairs
inhabited by values (v,w) where v has type t and w has type s, and
the disjoint sum of t and s inhabited by values (inl v) when v has
type t or (inr w) when w has type s. The type pι[t]nm denotes a
channel to be used with polarity p and multiplicity ι for exchanging
messages of type t. The polarity determines the operations allowed
on the channel: ∅ means none, ? means input, ! means output,
and # means both. The multiplicity determines how many times
the channel can or must be used: 1 means that the channel must
be used exactly once (for each element in p), while ω means that
the channel can be used any number of times. The numbers n and
m are respectively the level and the tickets of the channel and are
used only when the channel is a linear one. As we have anticipated
in Section 1, levels are used for imposing an order on the usage
of channels, so that an action on a channel with high level cannot
block another action on a channel with lower level. For example
an input on a channel with level 4 can block an input on a channel
with level 5, but not viceversa. The tickets of a linear channel limit
the number of times the channel can be sent in a message. For
example, a channel with 3 tickets can be sent at most three times
in a message, but it can be used at any time for an input/output
operation according to its polarity. A linear channel with 0 tickets
cannot be sent in a message. Tickets are always non-negative. We
omit level and tickets when ι = ω and the multiplicity when it
is 1. Also, we often omit tickets when there is none. We use type



variables and µ’s for building recursive types. Notions of free and
bound type variables are as expected.

Contractiveness. For simplicity, we forbid non-contractive types
in which recursion variables are not guarded by a channel type. For
example, µα.α and µα.(α× α) are illegal while µα.pι[α]nm is al-
lowed. In this way, we will be able to define functions by induction
on the structure of types, when such functions do not recur within
channel types. Contractiveness can be weakened without compro-
mising the results that follow, but some functions on types must
be defined more carefully. The formal definition of contractiveness
can be found in [31]. We identify two types modulo renaming of
bound type variables and if they have the same infinite unfolding,
that is if they denote the same (regular) tree [11]. In particular, we
have µα.t = t{µα.t/α}.
Levels and tickets. The level of a channel gives a measure to
the urgency with which the channel must be used: the lower the
level is, the sooner the channel must be used. This measure can
be extended from channels to arbitrary types, the idea being that
the level of a type is the lowest of the levels of the channel types
occurring therein. To compute the level of a type, we define an
auxiliary function | · | such that |t| is an element of Z ∪ {⊥,>}
where ⊥ < n < > for every n ∈ Z. The function is defined
inductively thus:

|t| def
=


⊥ if t = pω[s] and ? ∈ p
n if t = p[s]nm and p 6= ∅
min{|t1|, |t2|} if t = t1 × t2 or t = t1 ⊕ t2
> otherwise

(6)

Intuitively, unlimited channels with input polarity have the low-
est level ⊥ (first equation) because their use cannot be postponed
by any means to guarantee input receptiveness. Numbers, unlim-
ited channels with only output polarity, and linear channels with
empty polarity have the highest level > (last equation) because
they do not affect (dead)lock freedom in any way. Linear chan-
nels with pending operations must be used according to their level
(second equation). The level of compound types is the minimum
of the levels of the component types (third equation). For instance,
|![t]31 × ?[s]24| = min{|![t]31|, |?[s]24|} = min{3, 2} = 2.

We say that a (value with) type t is unlimited if |t| = >, that it
is linear if |t| ∈ Z, that it is relevant if |t| = ⊥.

We define another auxiliary function $hk to shift levels and
tickets: $hk t has the same structure of t, except that all levels/tickets
in the topmost linear channel types of t have been transposed by h
and k respectively. Formally:

$hk t
def
=


p[s]n+hm+k if t = p[s]nm and p 6= ∅
($hk t1)× ($hk t2) if t = t1 × t2
($hk t1)⊕ ($hk t2) if t = t1 ⊕ t2
t otherwise

(7)

As an example, we have $11 (int× ?[int]3) = ($11 int) ×
($11 ?[int]3) = int×?[int]41. Note that positive/negative shifting
of levels respectively corresponds to decreasing/increasing the ur-
gency with which a value of a given type must be used. We write
$n for $n0 .

A key property used in the proof of subject reduction is that
shifting behaves like the identity on unlimited types:

Lemma 3.1. If t is unlimited, then $hk t = t for any h, k.

Monomorphic and polymorphic channels. A distinguishing fea-
ture of our type systems is that message types are “relative” to the
level of the channels on which they travel. We use shifting to com-
pute the absolute type of messages that can be sent on a channel.
For example, a channel whose type is ![s]h accepts messages of
type $h s, that is the type s (within the type of the channel) where

all top-level channel types have their level shifted by h (the level of
the channel). As we have seen in Section 1, this feature allows us to
work with finite representations of recursive types having infinitely
many different levels. For example, a recursive type that satisfies
the equation t = ![t]1 denotes a linear channel on which it is pos-
sible to send a message of type ![t]2. In turn, on such a channel it
is possible to send a message of type ![t]3, and so on and so forth.

Shifting is also used to implement polymorphism. For exam-
ple, an unlimited (i.e., polymorphic) channel of type !ω[s] accepts
messages of type $h s for any h. So, for linear (i.e., monomorphic)
channels, the shifting is fixed and determined by the level of the
channel, while for unlimited (i.e., polymorphic) channels, the shift-
ing is arbitrary.

We are aware that this way of realizing polymorphism, as op-
posed to e.g. using “level variables”, is sometimes more restric-
tive than necessary. For example, a channel of type !ω[?[int]1 ×
![int]0] accepts messages of type

$h (?[int]1 × ![int]0) = ?[int]h+1 × ![int]h

for every h, but not messages of type ?[int]h+2 × ![int]h where
the first component of the pair has been shifted by h + 1 and the
second component of the pair only by h. A message of the latter
type could be safely sent on the unlimited channel c appearing in
the process F2 of Section 1. The type system for deadlock freedom
allows more flexible forms of polymorphism (see Section 5).

Type environments. We check that processes are well typed in
type environments Γ , . . . , which are finite maps from names to
types written u1 : t1, . . . , un : tn. We write dom(Γ) for the domain
of Γ , namely the set of names for which there is an association in Γ ,
and Γ , Γ ′ for the union of Γ and Γ ′ when dom(Γ) ∩ dom(Γ ′) =
∅. In general we need a more flexible way of composing type
environments, taking into account the linearity and relevance of
types and the fact that we can split channel types by distributing
different polarities to different processes. Following [27], we define
a partial composition operator + between types, thus:

t+ t = t if t is unlimited
pω[t] + qω[t] = (p ∪ q)ω[t]
p[s]nh + q[s]nk = (p ∪ q)[s]nh+k if p ∩ q = ∅

(8)

Informally, unlimited types compose with themselves without
restrictions. The composition of two unlimited/relevant channel
types has the union of their polarities. Two linear channel types can
be composed only if they have the same level and disjoint polarities,
and the composition has the union of their polarities and the sum of
their tickets. We extend the partial operator + to type environments:

Γ + Γ ′
def
= Γ , Γ ′ if dom(Γ) ∩ dom(Γ ′) = ∅

(Γ , u : t) + (Γ ′, u : s)
def
= (Γ + Γ ′), u : t+ s

(9)
Note that Γ + Γ ′ is undefined if there is u ∈ dom(Γ)∩ dom(Γ ′)

such that Γ(u) + Γ ′(u) is undefined and that dom(Γ + Γ ′) =
dom(Γ) ∪ dom(Γ ′). We write un(Γ) if all the types in the range
of Γ are unlimited. We let |Γ | denote the lowest level of the types in
the range of Γ , that is |Γ | = min{|Γ(u)| | u ∈ dom(Γ)}.

Typing rules. The typing rules for expressions and processes are
presented in Table 1. A judgment Γ ` e : t denotes that e is well
typed and has type t in Γ and a judgment Γ `k P denotes that P
is well typed in Γ . The only difference between the type systems
for deadlock and lock freedom is the “cost” k of travels for linear
channels, which is 0 for deadlock freedom and 1 for lock freedom.
This parameter affects only the rules for outputs, and is always
propagated unchanged by all rules.

Rules for expressions as well as [T-IDLE], [T-PAR], [T-LET], and
[T-CASE] are standard for the linear π-calculus, with the usual split-



Expressions

[T-CONST]
un(Γ)

Γ ` n : int

[T-NAME]
un(Γ)

Γ , u : t ` u : t

[T-PAIR]
Γ ` e : t Γ ′ ` e′ : s

Γ + Γ ′ ` (e, e′) : t× s

[T-INL]
Γ ` e : t

Γ ` inl e : t⊕ s

[T-INR]
Γ ` e : s

Γ ` inr e : t⊕ s

Processes

[T-IN]
Γ , x : $n t `k P n < |Γ |
Γ + u : ?[t]nm `k u?(x).P

[T-OUT]
Γ ` e : $nk t 0 < |t|
Γ + u : ![t]nm `k u!〈e〉

[T-IN*]
Γ , x : t `k P un(Γ)

Γ + u : ?ω[t] `k ∗u?(x).P

[T-OUT*]
Γ ` e : $nk t ⊥ < |t|
Γ + u : !ω[t] `k u!〈e〉

[T-NEW]
Γ , a : pι[t]nm `k P p even

Γ `k (νa)P

[T-PAR]
Γi `k Pi(i=1,2)

Γ1 + Γ2 `k P1 | P2

[T-IDLE]
un(Γ)

Γ `k 0

[T-LET]
Γ ` e : t× s Γ ′, x : t, y : s `k P

Γ + Γ ′ `k let x, y = e in P

[T-CASE]
Γ ` e : t⊕ s Γ ′, x : t `k P Γ ′, y : s `k Q

Γ + Γ ′ `k case e {inl x⇒ P, inr y ⇒ Q}

Table 1. Typing rules for expressions and processes.

ting of environments and the requirement that unused environments
in axioms must be unlimited.

Rule [T-IN] is used for typing linear inputs u?(x).P , where u
must have type ?[t]nm. The continuation P is typed in an environ-
ment where the input polarity of u has been removed and the re-
ceived message x has been added. Note that the type of x is not
just t, but t shifted by n, consistently with the relative interpreta-
tion of levels of message types. The tickets are irrelevant since u is
used for an input operation, not as the content of a message. The
condition n < |Γ | verifies that the input on u does not block oper-
ations on other channels with equal or lower level. In particular, Γ
cannot contain relevant channels. Below are some typical examples
of ill-typed processes that violate this condition:

• a : ?[int]1, b : ![int]0 `k a?(x).b!〈x〉 is not derivable
because 1 6< 0: the input on a blocks the output on b, but b
has lower level than a;

• a : #[int]h `k a?(x).a!〈x〉 is a degenerate case of the previous
example, where the input on a blocks the very output that
should synchronize with it. Note that this process is well typed
in the traditional linear π-calculus because #[int] = ?[int] +
![int];

• a : ?[int]h, c : ?ω[int] `k a?(x).∗c?(y) is not derivable
because |?ω[int]| = ⊥. To guarantee input receptiveness,
we require that replicated inputs cannot be guarded by other
operations.

Rule [T-OUT] is used for typing linear outputs on channels of
type ![t]nm. The type of the message e must be t (as specified in the
type of the channel u) shifted by n again since t is relative to the
level of u. The tickets are shifted by 1, but only for lock freedom
(k = 1). The meaning is that, by sending e as a message, one ticket
from every linear channel type in the type of e is consumed. This
prevents the degenerate phenomenon of infinite delegation that we
have seen in (2). The condition 0 < |t| verifies that the level of
the message is greater than that of the channel on which it travels.
Below are a few examples:

• The judgment a : ![?[int]10]20, b : ?[int]31 `1 a!〈b〉 is derivable
because ?[int]31 = $21 ?[int]10. Note in particular that the
channel to be sent on a must have no tickets, which is in fact
what happens to b after 1 ticket is consumed from its type before
it travels on a.

• The judgment a : ?[![int]20]00, b : ![![int]10]10 `1 a?(x).b!〈x〉
is not derivable, because x received from a has no tickets so it
cannot travel on b.

• Let t = µα.?[α]0 and observe that #[t]1 = ![t]1 + ?[t]1.
The judgment a : #[t]1 `0 a!〈a〉 is not derivable, despite
the message a has the “right” type ?[t]1 = $1 t, because
the condition 0 < |t| = 0 is not satisfied. According to
Definition 2.1, a process like (νa)a!〈a〉 is deadlock (there are
systems in which such process would actually be able to reduce,
but in doing so it would generate memory leaks [4, 21]).

Rule [T-IN*] is used for typing replicated inputs ∗u?(x).P . This
rule differs from [T-IN] in three important ways. First of all, u must
be an unlimited channel with input polarity. Second, the residual
environment Γ must be unlimited, because the continuation P can
be spawned an arbitrary number of times. Third, it may be the case
that u ∈ dom(Γ), because ?ω[t] + !ω[t] = #ω[t] according to (8)
and !ω[t] is unlimited. This means that replicated input processes
may invoke themselves, as we have seen in many examples.

Rule [T-OUT*] is used for outputs on unlimited channels. There
are two key differences with respect to [T-OUT]. First, the condi-
tion ⊥ < |t|, where t is the type of e, implies that only relevant
names cannot be communicated, but a process like a!〈a〉 is well
typed when a is unlimited, for example by giving the inner a type
µα.!ω[α]. Second, the type of the message need not match exactly
the type t in the channel, but its level can be shifted by an arbitrary
amount n. This is the technical realization of polymorphism. In par-
ticular, each distinct output on u can shift the type of the message
by a different amount, therefore allowing polymorphic recursion.
We will see this feature at work Example 3.7.

Rule [T-NEW] is used for restricting new (linear and unlimited)
channels. Only channels with an even polarity can be restricted:
either the channel comes with full polarity #, or with no polarity ∅
(this is only useful for subject reduction).

Notation 3.2 (well-typed process). We write:

1. `DF P if ∅ `0 P , and
2. `LF P if ∅ `1 P and all levels in the derivation are non-

negative.

Intuitively, posing k = 0 in the type system for deadlock
freedom means that tickets are not consumed (and therefore are
irrelevant) when a channel travels as a message. This is acceptable
because infinite delegations (like in (2)) are not deadlocks. The type
system for lock freedom requires a well-founded order on levels
(hence the restriction to natural numbers for levels) and posing
k = 1 means establishing an upper bound on delegations (hence
the relevance of tickets).



a : $n2 s ` a : $n2 s 0 < m
[T-OUT]

x : t, a : $n2 s `1 x!〈a〉

z : $m1 s, a : $m1 t ` (a, z) : $m1 (t× s)
[T-OUT*]

cB : !ω[t× s], z : $m1 s, a : $m1 t `1 cB!〈a, z〉
[T-PAR]

cB : !ω[t× s], x : t, z : $m1 s, a : #[$01 s]
m+n
3 `1 x!〈a〉 | cB!〈a, z〉

[T-NEW]
cB : !ω[t× s], x : t, z : $m1 s `1 (νa)(x!〈a〉 | cB!〈a, z〉) m < n

[T-IN]
cB : !ω[t× s], x : t, y : s `1 y?(z).(νa)(x!〈a〉 | cB!〈a, z〉)

[T-IN*]
cB : #ω[t× s] `1 ∗cB?(x, y).y?(z).(νa)(x!〈a〉 | cB!〈a, z〉)

Table 2. Typing derivation for NodeB.

Properties. The relative interpretation of levels makes it possible
to shift whole derivations and preserve typing. More precisely,
let $n Γ be the environment obtained by shifting all the types
in the range of Γ by n, that is ($n Γ)(u) = $n Γ(u) for every
u ∈ dom(Γ). We have:

Lemma 3.3 (shifting). The following properties hold:

1. If Γ ` e : t, then $n Γ ` e : $n t.
2. If Γ `0 P , then $n Γ `0 P .
3. If Γ `1 P and n ≥ 0, then $n Γ `1 P .

Note that the converse of 3) does not hold. For example, the
derivation for u : ![int]10 `1 (νa)(a!〈1984〉 | a?(x).u!〈x〉) relies
on the fact that u has level 1, for otherwise it would not be possible
to prefix u!〈x〉 with an input operation on a.

Typing is preserved by reductions and the type environment
may change as a consequence of communications on linear chan-
nels, just like in the linear π-calculus [27]:

Lemma 3.4 (subject reduction). If Γ `k P and P → P ′, then
Γ ′ `k P ′ for some Γ ′.

The proof is essentially standard, except for the interesting case
concerning the communication on unlimited (i.e., polymorphic)
channels sketched below. Consider the derivation

Γ ` v : $n t

a : !ω[t], Γ `k a!〈v〉

Γ ′, x : t `k P un(Γ ′)

a : ?ω[t], Γ ′ `k ∗a?(x).P

a : #ω[t], Γ + Γ ′ `k a!〈v〉 | ∗a?(x).P

and observe that the actual type $n t of the message v being sent
does not match exactly the type t expected by the receiver, but is
shifted by some arbitrary amount n. In order to type the reduct
P{v/x}, we proceed like this. First of all we shift the derivation of
Γ ′, x : t `k P using Lemma 3.3, and obtain:

$n Γ ′, x : $n t `k P
Then, we observe that Γ ′ is unlimited because it is the type

environment used for typing a replicated process. This means
that $n Γ ′ = Γ ′, since shifting is the identity on unlimited types
(Lemma 3.1). Therefore we deduce:

Γ ′, x : $n t `k P
Now, the actual and expected types of the message v coincide

and we know from the initial derivation that Γ + Γ ′ is defined, so
we can apply the conventional substitution lemma for the linear
π-calculus [27] and conclude:

Γ + Γ ′ `k P{v/x}
Since the type systems refine the one in [27], all the properties of

the linear π-calculus (partial confluence, linear usage of channels,
etc.) still hold. The added value is that the refined type systems
guarantee deadlock/lock freedom.

Theorem 3.5 (soundness). The following properties hold:

1. If `DF P , then P is deadlock free.
2. If `LF P , then P is lock free.

The proof of 1) is by contradiction, for the existence of a well-
typed, stable process with pending input or output operations on
linear channels would imply the existence of an infinite chain of
channels with different levels, contradicting the fact that there are
only finitely many distinct channels in the process. The proof of
2) does an induction on a measure that includes, among other
information, level and tickets of the linear channel for which we
are completing the communication (see Definition 2.1(2)). The
induction is well founded if so is the domain of levels, whence the
restriction to natural numbers for the levels in the type system for
lock freedom. The details can be found in [31].

We conclude this section with a few examples showcasing the
key features of our type systems. In particular, the recursive pro-
cesses in Examples 3.6, 3.8, and 3.9 are representative of those
configurations that are typeable thanks to our form of channel poly-
morphism, but not in similar type systems [22–24] (see Section 4
for a detailed discussion).

Example 3.6. Regarding the processes in Example 2.2, let

t
def
= ![s′]n0 and s

def
= ?[s′]m0 and s′

def
= µα.?[α]m1

and observe that s′ = $01 s = ?[$01 s]m1 . For NodeB we obtain the
typing derivation shown in Table 2 if and only if 0 < m < n. An
analogous derivation is obtained for NodeA if and only if 0 < n,m.
We deduce that L1(A), L2(A, A), L2(A, B), and L2(B, A) are all
well typed. Since these constraints on levels are the most general
ones, we also deduce that there are no derivations for L1(B) and
L2(B, B), suggesting that these configurations are locked. �

Example 3.7. Below is the encoding of the function that com-
putes the n-th number in the sequence of Fibonacci. Instead of
showing the typing derivation, which is conventional for the lin-
ear π-calculus, we just annotate each linear name occurring in the
term with its level and leave it to the reader to verify that such an-
notations are consistent with the constraints expressed in the typing
rules for deadlock freedom:

∗fibo?(x, y0).
if x ≤ 1 then y0!〈x〉
else (νa−1)(νb−2)

(
fibo!〈x− 1, a−1〉 | fibo!〈x− 2, b−2〉 |
b−2?(z2).a−1?(z1).y0!〈z1 + z2〉

)
Note the use of negative levels associated with the fresh con-

tinuation channels a and b, due to the fact that the inputs on these
channels block the output on the continuation y. Observe also the
role of polymorphic recursion in typing this process: the two recur-
sive invocations of fibo are applied to continuation channels a and
b with different levels. �
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+ +

Alice→ Bob : M0

| |

Bob→ Alice : A0Alice→ Bob : M1

| |

Bob→ Alice : A1

Figure 1. The protocol between Alice and Bob from [15].

Example 3.8. The following variation of the process NodeA gives
an example of dynamic lock-free system (beware that in this and
the next example, subscripts in names denote tickets; we use colors
to ease readability):

Ring
def
= ∗c?(x00, y

0
0).

(νa13)
(
x00?(z11).(νb12)(c!〈z11, b11〉 | c!〈b11, a11〉) | y00!〈a12〉

)
Each message on c spawns two duplicates connected by a new
channel b. As a consequence, the process (νe)(Ring | c!〈e, e〉)
grows as a ring of processes, each sending a message to its neigh-
bor, and the ring doubles its diameter each time a round of commu-
nications is completed. �

Example 3.9. Figure 1 depicts a protocol between two interacting
parties Alice and Bob taken from [15] in which Alice sends alter-
nated messages M0 and M1 to Bob, and Bob answers with cor-
responding acknowledgments A0 and A1. The diagram describes
communications (the rectangles) between the two parties and their
dependencies (the arcs), combined with merging points (+ nodes),
forks (| nodes with two outgoing arcs) and joins (| nodes with two
incoming arcs). The particularity of this modeling of the protocol
is that Alice concurrently waits for both A0 and A1 before sending
the next corresponding Mi, but always alternating between M0 and
M1 messages.

We model Bob as the process below, which is parametric in two
channels x and y from which Bob respectively receives messages
M0 and M1 along with the continuations on which he sends the cor-
responding Ai (we omit the actual payloads and focus on channels
and their continuations):

Bob
def
= ∗bob?(x0, y2).

(νa33b
5
3)
(
x0?(x̄1).(x̄1!〈a32〉 | y2?(ȳ3).(ȳ3!〈b52〉 | bob!〈a31, b51〉))

)
We model Alice as two parallel threads Alice0 and Alice1, each

handling messages and acknowledgments with matching number,
so that Alice0 corresponds to the rightmost vertical flow in Figure 1,
and Alice1 to the leftmost one. To respect the protocol and prevent
that two messages with the same index are sent in a row, Alice uses
a third channel z (unknown to Bob) with which she synchronizes

the two threads:

Alice0
def
= ∗alice0?(x0, z1).

(νa11c
2
1)
(
x0!〈a11〉 | z1!〈c21〉 | a1?(x̄31).c2?(z̄41).alice0!〈x̄31, z̄41〉

)
Alice1

def
= ∗alice1?(y2, z1).

(νb31c
4
3)
(
z1?(z̄2).(y2!〈b31〉 | z̄2!〈c42〉 | b3?(ȳ51).alice1!〈ȳ51, c41〉)

)
The whole protocol is modeled as the term (νab)(Bob |Alice0 |

Alice1 | bob!〈a, b〉 | (νc)(alice0!〈a, c〉 | alice1!〈b, c〉)). Note the
interleaving of possibly blocking actions on different channels in
both Alice and Bob. �

4. Related work
The articles [22–24, 26] have been a source of inspiration for our
work so we devote most of this section to them. The discussion
is quite technical and space constraints force us to assume some
familiarity with these works.

Deadlock freedom. Kobayashi [24] defines a type system for en-
suring deadlock freedom in the π-calculus. Channels types are pairs
[t]/U where t is the type of messages and U – called usage – is a
term of a process algebra that includes prefixing and parallel com-
position and that specifies how the channel is accessed. For exam-
ple, a channel of type [int]/(!mn .?hk | ?nm.!kh) can be used con-
currently by two processes, one that first sends and then receives
an integer and the other that does the opposite. Actions like !mn
are annotated with an obligation m and a capability n to prevent
mutual dependencies between channels: inputs on a channel with
capability n can only block operations on other channels whose
obligation is larger than n. The special value∞ is allowed for de-
noting various forms of unlimited channels. There is a significant
overlapping between [24] and our work: usages can describe lin-
ear channels as a particular case; linearized channels (those that
can be accessed multiple times, but only sequentially) can be en-
coded using linear channels and continuation passing; levels have
been directly inspired by obligations and capabilities and are used
similarly. Let us now analyze the main differences.

First we observe that distinguishing between obligations and
capabilities as opposed to having just a single level may improve
the accuracy of the analysis in some cases. For example,

∗c?(x, y).x?(z).y?(z) | ∗c?(x, y).y?(z).x?(z)

is ill typed in our type system but is typeable in [24] by giving
both x and y obligation 1 and capability 0. The null capability
means that, assuming that outputs on x and y are available in
the environment immediately (capability 0), then either of these
processes guarantees that both inputs will be performed after at
most one reduction (obligation 1).

The main distinguishing features of our approach, however, are
polymorphism and the fact that levels have a relative interpretation
in message types. To illustrate the effect of these features on the
accuracy of our type systems, we revisit Example 2.2 in the setting
of [24] assuming to extend usages with recursion (recursive usages
are admitted in [24], but only for type reconstruction purposes).
The following modeling of L2(A, A) uses no explicit continuation
passing and therefore is the most favorable to the type system
in [24]:

∗c?(x, y).(x!〈3〉 | y?(z).c!〈x, y〉) | c!〈e, f〉 | c!〈f, e〉 (10)

The process is tentatively typed using the assignments

e : [int]/(µα.!mn .α | µα.?nm.α)
f : [int]/(µα.?hk .α | µα.!kh.α)

where the fact that obligations and capabilities are swapped in
complementary actions of the usages of e and f is necessary to



satisfy the reliability condition [24] which corresponds, in our
setting, to the property that channel types with opposite polarities
and same level can be combined together (last equation of (8)).
The structure of (10) requires the simultaneous satisfiability of
k < m (there is an input on f with capability k that blocks e
whose topmost obligation is m) and of m < k (there is an input
on e with capability m that blocks f whose topmost obligation is
k), therefore (10) cannot be proven deadlock free with the type
discipline in [24]. The problem is that obligations and capabilities,
unlike levels, are statically associated with actions: e and f always
have the same obligation and capability regardless of the number
of unfoldings of their usages. By contrast, in Example 3.6 the
channels e and f and their continuations are assigned an increasing
sequence of levels. There are two features in [24] that partially
overcome the limitations due to the static assignment of obligations
and capabilities. The first one is that the behavioral nature of usages
allows the typing of recursive processes involving one channel. For
example, the following variant of L2(A, B)

∗c?(y).(y!〈〉 | c!〈y〉) | ∗d?(y).y?(z).d!〈y〉 | c!〈e〉 | d!〈e〉
is well typed in [24]. The point is that in [24] an input process
u?(x).P is well typed if the capability of u is smaller than the
obligation of all the channels in P except u itself. The second
feature stems from the observation that the strict order < used
for comparing the capability of a channel u and the obligation
of another channel v can be safely weakened to ≤ if u has been
created later than v. This property, denoted by the relation u ≺ v
in [24], can be inferred from the syntactic structure of processes
and makes it possible to deal with processes like (3), where the
input on the newer channel a is allowed to block operations on the
older channel y despite the fact that a and y have the same type
(hence the same obligations and capabilities). As noted in [24], the
very same feature would also work using the opposite order �,
but one would have to choose between either ≺ or �, since using
their union would be unsound. The opposite order� however arises
naturally with continuation passing, as we have seen in (4) and in
most of the examples throughout the paper.

In summary, the techniques based on static obligations and
capabilities have difficulties handling systems where two or more
recursive processes interleave actions on two or more channels.
The use of the ≺ relation alleviates in part these limitations, when
processes have a function-like behavior. The adaptation of our form
of polymorphism to the type systems based on usages remains an
open problem that we have not investigated in detail.

Usages provide more precise information on unlimited chan-
nels. For example, the lock-free modeling of the dining philoso-
phers in [22] cannot be captured by our type system because it
uses non-replicated unlimited channels for representing shared re-
sources (the forks) accessed by competing processes (the philoso-
phers). We are investigating whether it is possible to identify a sub-
class of unlimited channels used for modeling these configurations
and that can be integrated within our typing discipline.

Lock freedom. Type systems for lock freedom have been pre-
sented in [22, 23]. These works rely on essentially the same types
and usages already discussed for deadlock freedom, and so they
are subject to the same problems that arise in (10). In particular,
all the processes discussed in Examples 3.6, 3.8, 3.9, which are
representative configurations mixing recursion and cyclic network
topologies, are ill typed in [22–24].

The partial order ≺ is unsound and cannot be used to improve
the accuracy of lock-free analysis in [22, 23]. This is reflected also
in our type system for lock freedom, where negative levels are
banned. Consequently, processes such as (3) or the one in Exam-
ple 3.7 can be proved deadlock free but not lock free. Lock-free
typability of (3) (restricted to natural numbers) and other recursive-

like processes is recovered in [26], where it is observed that lock
freedom can be characterized as the conjunction of deadlock free-
dom and termination. Such characterization turns out to be more
accurate on recursive processes with function-like behaviors, partly
because the type system for deadlock freedom imposes fewer con-
straints, partly thanks to the accuracy of the techniques for proving
termination. In fact, the hybrid approach [26] is parametric on the
specific techniques for verifying deadlock freedom or termination.
This means that it suffers from the same shortcomings that we have
discussed earlier for processes like (10) when instantiated with the
deadlock free analysis of [24], but also that it should be applicable
in our setting, in which case it would benefit from the better ac-
curacy of our type system for deadlock freedom. By the way, the
limit we impose on the number of times a channel can be sent in
a message is akin to ensuring a form of termination (in fact, the
eventual use of the channel for performing a communication) so in
a sense our type system for lock freedom can already be seen as an
instance of the hybrid framework described in [26].

Termination. The techniques used in [26] for ensuring termina-
tion are based on previous type systems studied by Deng and San-
giorgi [14]. Interestingly, also these type rely on levels associated
with channels. There are two fundamental differences between lev-
els in these and in our work. First, levels in [14] are associated with
replicated channels, while in our case they matter only for linear
ones. This is motivated by the two orthogonal purposes of the type
systems in [14] and ours: in the former ones, the focus is on repli-
cated channels since it is replication that may jeopardize termina-
tion, whereas in our type systems the focus is on linear channels,
which are the critical ones as far as locks and deadlocks are con-
cerned. The second difference is that levels in [14] work “the other
way round” in the sense that a replicated process ∗a?(x).P is well
typed if the level of a is greater than the levels of the channels
used in subject position within P . The idea is that recursive “calls”
within P should involve “smaller” channels or channels with equal
level but “smaller” messages. Interestingly, in the case of termina-
tion only the channels in subject position are considered in the typ-
ing rule for replication, whereas for (dead)lock freedom we enforce
an ordering on all channels in the rule [T-IN]. Again, this difference
is explained by the different purposes of the two type systems. In
the case of termination, it is the act of sending of a message on a
replicated channel that may yield divergences. In our type systems,
the mere occurrence of a channel, no matter whether in subject
or object position, may jeopardize (dead)lock freedom so the full
extent of the condition in the rule [T-IN] is crucial in the proof of
Theorem 3.5.

Session types. Session types [17, 18] are behavioral types akin
to sequential usages in which each single input/output action is
annotated with the type of a message. For example, the session type
![int].?[bool] denotes a channel on which it is possible to first
sent an integer, and then receive a boolean. Duality relates session
types associated with corresponding endpoints of a binary session
and generalizes the composition operator between linear types (8).
For example, the session type above is dual of ?[int].![bool]. In
general, session type disciplines provide intra-session safety and
progress guarantees, but fall short in assuring these properties at
the inter-session level because channels are typed independently.
There exist works relating communications on different sessions
using correspondence assertions [3], although these cannot be used
for preventing (dead)locks. In some works [6, 34] a plain session
type discipline ensures deadlock freedom also when sessions are
interleaved, but only because the syntax of (well-typed) processes
prevents the modeling of cyclic network topologies.

Multiparty sessions and global types. A possibility for guaran-
teeing (dead)lock freedom to configurations where multiple pro-



cesses are interacting is to extend the notion of session to multiple
participants. This idea has inspired studies on multipoint [2] and
multiparty [19] session types. In the particular case of multiparty
session types, a global type [7, 15, 16, 19] is used to describe the
interactions between participants of a session as opposed to the
actions that participants perform on the channel of the session. For
example, the interactions between the three processes that compose
the system L3(A, B, B) in Example 3.6 can be described by the re-
cursive global type G3 that satisfies the equation

G3 = A→ B.B→ C.C→ A.G3

which gives names A, B, and C to the three participants and speci-
fies the order of their synchronizations. In general, global types also
allow the specification of the type of the exchanged messages and
include operators other than prefixing, such as choice and parallel
composition. Global types that satisfy some well-formedness con-
ditions are projectable into session types and processes that con-
form to these projections are guaranteed to be type safe, to imple-
ment the protocol described by the global type, and to be lock free.
Therefore, global types are an effective way of extending the lock
freedom property from binary to n-ary sessions (a similar property
is conjectured also for multipoint session types in [2]).

One downside of global types is that they may make it harder to
build and maintain systems compositionally (although some mod-
ularity and compositionality aspects have recently been addressed
in [13] and [28]). For instance, L2(A, B) and L3(A, B, B) in Ex-
ample 2.2 are assembled in a modular way using the same con-
stituents, but the global types G2 = A → B.B → A.G2 and G3

above that describe the interactions in these systems are quite dif-
ferent. It may also be harder to describe “unstructured” interactions
from a global perspective. For instance, it takes the most sophis-
ticated global type language available to date [15] to describe ac-
curately the dependencies between Alice’s threads in Example 3.9.
For these reasons, global types are ideal for describing delimited
interactions within sessions, but they cannot dispense completely
from the need of interleaving different sessions, in which case they
are unable to prevent (dead)locks.

These observations have motivated the study of mixed ap-
proaches [1, 9, 10] that keep track of the order in which different
sessions interleave with the purpose of detecting and flagging mu-
tual dependencies between sessions that could lead to (dead)locks.
These mixed approaches turn out to be quite restrictive (e.g., re-
cursive processes can access one session only [10]) and require
heavyweight and multi-layer type systems.

5. Conclusions
Type systems that enforce (dead)lock freedom of communicat-
ing processes inevitably rely on trade-offs, for such properties are
undecidable [5] even under severe restrictions of the communi-
cation model (e.g., for half-duplex communication with three or
more processes [8]). These type systems essentially follow one
of two approaches: some [22–24] favor compositionality and ap-
ply to generic process algebras, but have difficulties in dealing
with recursive processes and cyclic network topologies; others can
handle such configurations, but only within the scope of (multi-
party) sessions and assuming that the communication protocol is
explicitly described in advance by a global type. In the context
of the linear π-calculus, our type systems conjugate the advan-
tages of both approaches and do so with minimal machinery. In-
deed, all previous type systems for (dead)lock freedom rely on
rich behavioral types (usages [22–26], session types [29], global
types [1, 9, 10, 15, 16, 19], conversation types [33]), and when they
are able to deal with recursive processes it is because they take
advantage of such richness (see Section 4), almost implying the ne-

cessity of rich types to ensure (dead)lock freedom. We have shown
that this is not the case, at least for the linear π-calculus.

The linear π-calculus is an adequate model for many concrete
communicating systems. In particular, it is the “assembly lan-
guage” that lies beneath binary sessions [12, 25] and in [31] we
show that many multiparty sessions too can be compiled into the
linear π-calculus. So, one can establish (dead)lock freedom of a
session-based process (also in presence of session interleaving) by
compiling it into the linear π-calculus and by typing the resulting
process using our type systems. When this approach is unfeasible
– not all multiparty sessions can be encoded using linear channels
– or undesirable – the structure of sessions may serve other impor-
tant purposes – the technique described in this paper can still be
used for reasoning on inter-session (dead)lock freedom: just like
we annotate channel types with levels and tickets, it is possible
to annotate the single actions within session and global types in
the same way. This experiment was already attempted in [29, 33],
but in these works the annotations are “static”, much like obliga-
tions/capabilities, and so they suffer from issues analogous to those
described in Section 4.

We conclude the paper discussing three lines of development.

Polymorphism. The form of channel polymorphism that lies at
the core of our type systems allows the shifting of levels with maps
of the shape z 7→ z + n. This prevents, for example, typing an
output a!〈x0, y1〉 if a has type !ω[?[int]1 × ![int]3], because
a expects x and y to have levels at distance 2, while they are at
distance 1. In fact, the type system for deadlock freedom can be
generalized to rational numbers for levels and positive affine maps
for transforming them. In the example above, the map z 7→ 1

2
z− 1

2
turns the levels 1 and 3 in the type of a into 0 and 1, namely the
levels of x and y. The type system for lock freedom is slightly less
flexible, because its soundness proof requires levels to be part of a
well-founded set.

Type reconstruction. As witnessed by the examples in this paper,
it is unrealistic to assume that the programmer is capable of guess-
ing the correct values of levels and tickets of linear channels in gen-
eral. We are finalizing a complete type reconstruction algorithm for
our type systems as an extension of existing reconstruction algo-
rithms for the linear π-calculus [20, 30]. The algorithm consists of
two phases: in the first one, it uses variables for representing un-
known types, levels, and tickets and relies on a modified set of typ-
ing rules that compute constraints between such variables instead of
of enforcing them. The second phase attempts at solving these con-
straints. Clearly, the most critical constraints are those concerning
level and ticket variables, especially because of the shifting opera-
tor used in the rules [T-IN], [T-OUT], and [T-OUT*]. It turns out that,
because of the nature of the shifting operator, the constraints con-
cerning levels and tickets are always linear, hence their solvability
coincides with that of an integer programming problem, for which
there are well-known resolution methods.

Programming languages. Rule [T-IN] compares the level of a lin-
ear channel used for an input operation with that of all the channels
that occur in the continuation of the process after the operation.
This rule is not particularly realistic in a concrete (i.e. structured)
programming language where input/output operations may occur
within functions, methods, objects, modules, etc. In general, the
structure of a program may prevent the type checker from know-
ing the behavior of the program beyond a certain horizon, which
is in contrast with the rightmost premise of rule [T-IN]. In [32] we
have shown how to adapt the type system for deadlock freedom to
a higher-order concurrent programming language based on linear
channels. The basic idea is to use an effect system to keep track of
the channels occurring in, and used by, functions so as to enable a
compositional analysis of programs.
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