Is NLRP3 inflammasome a new pharmacological target in myocardial ischemia/reperfusion injury?

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1563302 since 2016-05-29T18:32:39Z

Published version:
DOI:10.1016/j.vph.2015.11.030

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
IS NLRP3 INFLAMMASOME A NEW PHARMACOLOGICAL TARGET IN MYOCARDIAL ISCHEMIA/REPERFUSION INJURY?


*Department of Clinical and Biological Sciences; **Department of Drug Science and Technology; ***Department of Life Sciences and Systems Biology, University of Turin, Italy

Objectives: Recently it has been documented that the NLRP3 inflammasome plays a pivotal role in the inflammatory response to tissue injury. The NLRP3 inflammasome is a large multimeric danger-sensing platform that induces activation of the caspase-1 and mediates the cleavage of inactive pro-IL-1β, among other proteins, into its active form. We have shown that the activation of the NLRP3 inflammasome exacerbates myocardial ischemia/reperfusion (I/R) injury in diabetic mice. Moreover, our group previously demonstrated that INF-4E inhibits NLRP3, ATPase and caspase-1 activities in THP-1 cells. Here we test in an ex-vivo model whether INF-4E inhibiting NLRP3 may positively affect I/R injury, post-ischemic cardiac function and molecular response in the rat hearts.

Materials and methods: Isolated hearts from male Wistar rats (body weight 450-550 g; n=7) underwent perfusion without ischemia (Sham) or I/R (30-min ischemia plus 20-min or 60 min reperfusion) with and without IFN-4E treatment (50M for 20-min before ischemia). Coronary perfusion pressure and left ventricular pressure (LVP) were monitored, and dP/dtmax assessed during the entire period of perfusion. Biopsies obtained at the end of reperfusion were used for Western blotting evaluations of NLRP3 and caspase-1 (apoptosis index) levels/activities and for assessment of RISK pathway involvement. At the end of 60 min reperfusion infarct size was measured with nitro-blue-tetrazolium technique by an independent observer.

Results: In this preliminary study, the 20 min IFN-4E pre-ischemic administration induced a significant reduction of infarct size and an improvement in post-ischemic LVP recovery. Western blot analysis demonstrated NLRP3 and caspase-1 activation by I/R procedure, which were strongly attenuated after IFN-4E pre-treatment. Moreover, an important modulation of RISK kinase phosphorylation was observed, though a clear-cut correlation between the reduction in infarct size and phosphorylation of RISK kinases was not observed.

Conclusions: These preliminary results demonstrate that the IFN-4E inhibits the formation of the NLRP3 inflammasome in the rat heart and ameliorates the response to myocardial I/R injury, confirming the ability of this drug to affect NLRP3 inflammasome complex activation.