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Abstract: From December 2011 to May 2014, about 5 fb−1 of data were taken with the BESIII detector at center-of-

mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium

states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing

events produced by the large-angle Bhabha scattering process.
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1 Introduction

As a τ-charm factory, the BESIII experiment has
collected the world’s largest sample of e+e− collision
data at center-of-mass (CM) energies between 3.810 GeV
and 4.600 GeV. In this energy region, the charmonium-
like states and higher excited charmonium states are
produced copiously, which makes comprehensive studies
possible.

The charmonium-like states discovered in recent
years have drawn great attention from both theorists
and experimentalists for their exotic properties, as re-
viewed e.g. in Ref. [1]. Being well above the open charm
threshold, the strong coupling of these states to hidden
charm processes makes their interpretation as conven-
tional charmonium states very difficult. On the other
hand, the theory of the strong interaction, Quantum
Chromodynamics (QCD), does not prohibit the existence
of exotic states beyond the quark model, e.g. molecu-
lar states, tetraquark states, hybrid states, etc. Either
the verification or the exclusion of the existence of such
states will help to evaluate the quark model and better
understand QCD. Even though some states have been
identified as higher excited charmonium states, such as
the ψ(4040), ψ(4160), and ψ(4415), their large widths
and interference with each other make their precise study
complicated. In addition, the relationship between the
charmonium-like states and higher excited charmonium
states is still not clear. Precise knowledge of the time-
integrated luminosity is essential for quantitative analy-
sis of these states.

In this paper, we present a measurement of the inte-
grated luminosity based on analysis of the Bhabha scat-
tering process e+e− → (γ)e+e−. A similar method has
been used in the luminosity measurement of ψ(3770)
data at BESIII [2]. The process has a simple and clean
signature and a large production cross section, which al-
lows for a small systematic and a negligible statistical
uncertainty. A cross check of the result is performed by
analyzing the di-gamma process e+e−→γγ.

2 The detector

BESIII is a general purpose detector which covers
93% of the solid angle and operates at the e+e− collider
BEPCII. A detailed description of the facilities is given
in Ref. [3]. The detector consists of four main compo-
nents: (a) A small-cell, helium-based main drift chamber
(MDC) with 43 layers provides an average single-hit res-
olution of 135 μm, and a momentum resolution of 0.5%
for charged tracks at 1 GeV/c in a 1 T magnetic field;
(b) An electro-magnetic calorimeter (EMC), consisting
of 6240 CsI(Tl) crystals in a cylindrical structure (barrel
and two endcaps). The energy resolution for 1.0 GeV
photons is 2.5% (5%) in the barrel (endcaps), while the

position resolution is 6 mm (9 mm) in the barrel (end-
caps); (c) A time-of-flight system (TOF), constructed of
5 cm thick plastic scintillators, arranged in 88 detectors
of 2.4 m length in two layers in the barrel and 96 fan-
shaped detectors in the endcaps. The barrel (endcap)
time resolution of 80 ps (110 ps) provides 2σ K/π sepa-
ration for momenta up to about 1.0 GeV/c; (d) A muon
counter (MUC), consisting of nine layers of resistive plate
chambers in the barrel and eight layers for each endcap.
It is incorporated in the iron return yoke of the supercon-
ducting magnet. Its position resolution is about 2 cm.
A geant4 [4, 5] based detector simulation package has
been developed to model the detector response. Due to
the crossing angle of the beams at the interaction point,
the e+e− CM system is slightly boosted with respect to
the laboratory frame.

3 Data sample and Monte Carlo simula-
tion

Twenty-one data samples have been taken at CM en-
ergies between 3.810 GeV and 4.600 GeV. Six of the
data sets exceed the others in accumulated statistics by
an order of magnitude. These samples were taken on
the peaks of charmonium-like states, like the Y(4260),
Y(4360), and Y(4630), or higher excited charmonium
states, like ψ(4040), and ψ(4415), in order to study these
resonances and their decays in great detail. The data
samples taken at the other CM energies serve as scan
points to study the behavior of the cross section around
these resonances. All individual data samples are listed
in Table 1.

At each energy point, one million Bhabha events were
generated using the babayaga3.5 [6] generator with the
options presented in Table 2. For the babayaga3.5 gen-
erator, the uncertainty in calculating the cross section is
0.5%, which meets the demand of the total uncertainty
of luminosity measurement. The kinematic distributions
of the final state particles from the babayaga3.5 gen-
erator are consistent with those from data. In the sim-
ulation, the scattering angles of the final state particles
were limited to a range from 20◦ to 160◦, which slightly
exceeds the angular acceptance of the detector, in order
to save on computing resources. An energy threshold of
0.04 GeV was applied to the final state particles. The
acollinearity of the events has not been constrained. Fi-
nally, the generation was taking into account the running
of the electromagnetic coupling constant and final state
radiation (FSR).

To study the background and optimize the event se-
lection criteria, an inclusive Monte Carlo (MC) sample
corresponding to a luminosity of 500 pb−1 at CM en-
ergy of 4.260 GeV was generated, in which the Quan-
tum Electrodynamics (QED) processes e+e− → e+e−,
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e+e− → μ+μ− and e+e− → γγ, the continuum produc-
tion of hadrons, and the initial state radiation (ISR) to
J/ψ and ψ(3686) resonance process were included. The
babayaga3.5 generator was used to simulate the rele-
vant QED processes. Other processes, such as the decays
of the J/ψ, were generated with specialized models that
have been packaged and customized for the BESIII Of-
fline Software System (BOSS) (see [7] for an overview).

Table 1. Center-of-mass energy, luminosity ob-
tained from the nominal measurement (L), cross
check results (Lck), and relative differences be-
tween the two results. The uncertainties are sta-
tistical only. Superscripts indicate separate sam-
ples acquired at the same CM energy.

CM relative
energy/GeV

L/pb−1 Lck/pb−1

difference (%)
3.810 50.54±0.03 50.11±0.08 −0.85±0.17
3.900 52.61±0.03 52.57±0.08 −0.08±0.17
4.009 481.96±0.01 480.54±0.23 −0.30±0.05
4.090 52.63±0.03 52.37±0.08 −0.49±0.17
4.190 43.09±0.03 43.08±0.08 −0.03±0.20
4.210 54.55±0.03 54.27±0.09 −0.62±0.18
4.220 54.13±0.03 54.22±0.09 +0.17±0.18
4.2301 44.40±0.03 44.64±0.08 +0.54±0.20
4.2302 1047.34±0.14 1041.56±0.37 −0.56±0.04
4.245 55.59±0.04 55.52±0.09 −0.13±0.18
4.2601 523.74±0.10 524.57±0.26 +0.16±0.06
4.2602 301.93±0.08 301.11±0.20 −0.28±0.08
4.310 44.90±0.03 45.29±0.08 +0.87±0.19
4.360 539.84±0.10 541.38±0.28 +0.29±0.06
4.390 55.18±0.04 55.27±0.09 +0.16±0.18
4.4201 44.67±0.03 44.77±0.08 +0.22±0.20
4.4202 1028.89±0.13 1029.63±0.37 +0.07±0.04
4.470 109.94±0.04 109.51±0.13 −0.39±0.13
4.530 109.98±0.04 109.47±0.13 −0.46±0.13
4.575 47.67±0.03 47.57±0.08 −0.21±0.18
4.600 566.93±0.11 563.45±0.28 −0.62±0.06

Table 2. Options for the babayaga3.5 generator
used to generate the simulated MC data samples.

parameters value
Ebeam 2.130 GeV or others

MinThetaAngle 20◦
MaxThetaAngle 160◦
MinimumEnergy 0.04 GeV

MaximumAcollinearity 180◦
RunningAlpha 1

FSR switch 1

4 Event selection and results

Signal candidates are required to have exactly two
oppositely charged tracks. The tracks must originate
from a cylindrical volume, centered around the interac-
tion point, which is defined by a radius of 1 cm perpen-
dicular to the beam axis and a length of ±10 cm along
the beam axis. In addition, the charged tracks are re-
quired to be within |cosθ| < 0.8, where θ is the polar
angle, measured by the MDC. Without applying further
particle identification, the tracks are assigned as elec-

tron and positron depending on their charge. The de-
posited energies of electron and positron in EMC must

be larger than
√

s

4.26
×1.55 (GeV) to remove the di-muon

background, where
√

s is the CM energy in GeV; the mo-
menta of electron and positron are required to be larger

than
√

s

4.26
×2 (GeV/c), to suppress background events

from lighter vector resonances produced in the ISR pro-
cess, such as J/ψ, ψ(3686) and other resonances, decay-
ing into e+e− pairs. For the data sample with a CM
energy of 3.810 or 3.910 GeV, the effect of the remaining
ψ(3686) events is studied by applying a 20% larger mo-
mentum requirement, and is found to be negligible. The
requirements on the deposited energies and momenta
are not optimized in detail, as the number of the sig-
nal events in such an analysis is large enough. All the
variables mentioned above are determined in the initial
e+e− CM frame. The ratio of the number of remaining
background events to the number of signal events, esti-
mated from the inclusive MC sample, is found to be less
than 2×10−4, which is negligible. Thus all the selected
events are taken as Bhabha events.

Figure 1 shows the comparisons between data and
MC simulation for the kinematic variables of the lep-
tons by taking data at the CM energy of 4.260 GeV as
an example. Reasonable agreement is observed in the
angular and momentum distributions. The striking dif-
ference between data and simulation found in the distri-
butions of energies deposited by the leptons in the EMC
emerges from imperfections in the simulation of the en-
ergy response of individual detector channels. At the
CM energies analyzed in this work, a single shower in the
calorimeter can be so energetic that the deposited energy
per crystal exceeds the dynamic range of the analog-to-
digital converter (ADC), causing individual ADC chan-
nels to saturate. In the analysis presented here, the very
loose requirements on the energy deposits will not cause

any bias, since they have been applied in regions of
reasonable agreement between data and simulation. Rel-
evant deviations between data and MC are considered as
contributions to the systematic uncertainties.

The integrated luminosity is calculated with

L =
N obs

Bhabha

σBhabha×ε
, (1)

where N obs
Bhabha is the number of observed Bhabha events,

σBhabha is the cross section of the Bhabha process, and
ε is the efficiency determined by analyzing the signal
MC sample. The cross sections are calculated with the
babayaga3.5 generator using the parameters listed in
Table 2 and decrease with increasing energies. The ef-
ficiencies are almost independent of the CM energy, as
intended by the choice of relative conditions on lepton
momenta and deposited energies. The luminosity results

093001-5



Chinese Physics C Vol. 39, No. 9 (2015) 093001

Fig. 1. (color online) Comparison between data and MC simulation at the CM energy of 4.260 GeV. The top row
is for positron and the bottom row for electron. From left to right, the plots show the distribution of deposited
energy in EMC, the distribution of the cosine of the polar angle measured by the MDC, and the distribution of the
track momentum from the MDC. Black points with error bars illustrate data and red points are MC simulation.
Note that the y-axis is in logarithmic scale and the MC is normalized to data by the number of events for each
sub-plot. When drawing the distribution of one variable, the requirements on the other variables are applied.

calculated with Eq. (1) are listed in Table 1. The sta-
tistical accuracy of the resulting integrated luminosity is
better than 0.1% at all energy points.

5 Systematic uncertainty

The following sources of systematic uncertainties are
considered: the uncertainty of the tracking efficiency, the
uncertainty related to the requirements on the kinematic
variables, the statistical uncertainty of the MC sample,
the uncertainty of the beam energy measurement, the
uncertainty of the trigger efficiency, and the systematic
uncertainty of the event generator.

To estimate the systematic uncertainty related to the
tracking efficiency, the Bhabha event sample is selected
using information from the EMC only, without using the
tracking information in the MDC. The selection criteria
are: at least two clusters in the EMC for each candidate,
and the two most energetic clusters are assumed to origi-
nate from the e+e− pair; the deposited energies of the two

clusters are required to be larger than
√

s

4.26
×1.8 (GeV).

At CM energies above 4.420 GeV, the requirement is

changed to
√

s

4.26
×1.55 (GeV). This adjustment allows us

to avoid additional systematic uncertainties which would
be introduced by the deviation of data and simulation in
the deposited energy in the EMC, as discussed in Sec-
tion 4. The polar angle of each cluster is required to
be within |cosθEMC|< 0.8, where θEMC is the polar an-
gle measured by the EMC; to remove the background
from the di-photon process, Δφ is required to be in the
range of [−40◦,−5◦] or [5◦,40◦], where Δφ=|φ1−φ2|−180◦

and φ1,2 are the azimuthal angles of the clusters in the
EMC boosted to the CM frame. The efficiency that the
selected Bhabha events pass through the track require-
ments applied in the nominal analysis is calculated for
both data and MC sample, and the difference between
them is taken as the systematic uncertainty connected
to the tracking efficiency.

The systematic uncertainty in the polar angle accep-
tance is estimated by changing the requirement from
|cosθ|< 0.8 to |cosθ|< 0.7. The difference between the
resulting and nominal luminosity is taken as the associ-
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ated systematic uncertainty. The systematic uncertainty
caused by the requirement on the energy deposited in
the EMC is estimated by changing the requirement from√

s

4.26
×1.55 (GeV) to

√
s

4.26
×1.71 (GeV). The system-

atic uncertainty caused by the requirement on the mo-
mentum is estimated by changing the requirement from√

s

4.26
×2 (GeV/c) to

√
s

4.26
×2.06 (GeV/c). The ranges

are picked as these cause the largest deviations from the
nominal luminosity result near the requirements applied.

The statistical uncertainty of the efficiency deter-
mined from MC simulations is 0.25%. The CM energy is
determined using e+e−→(γ)μ+μ− events. The invariant
mass of the di-muon system is calculated taking into ac-
count ISR and FSR effects1). The difference between the
CM energy listed in Table 1 and that measured with the
di-muon process is about 2 MeV, and the correspond-
ing systematic uncertainty is estimated by changing the
CM energy by 2 MeV in the MC simulation. The trigger
efficiency for the Bhabha process is 100% with an uncer-
tainty of less than 0.1% [8]. The theoretical uncertainty
of the cross section calculated by the babayaga3.5 gen-
erator is given as 0.5% [6].

Table 3. Summary of the systematic uncertainties.

source relative uncertainty (%)
tracking efficiency 0.39
energy requirement 0.09

momentum requirement 0.43
polar angle requirement 0.38

MC statistics 0.25
beam energy 0.42

trigger efficiency 0.10
generator 0.50

total 0.97

The same systematic uncertainty estimation method
is applied to all the sub-samples. The largest relative un-
certainty among them is taken as the associated uncer-
tainty for all the sub-samples. The systematic uncertain-

ties considered in this work are summarized in Table 3.
By assuming the sources of the systematic uncertainties
to be uncorrelated, the total uncertainty is calculated as
0.97% by adding the contributions in quadrature.

6 Cross check

To verify the result, a cross check with di-gamma
events is performed. The event selection criteria are the
same as those used in estimating the systematic uncer-
tainty caused by the tracking efficiency, except for the
requirement on Δφ. In order to reduce the Bhabha
background, the Δφ is required to be in the range of
[−0.8◦,0.8◦], since photons are not deflected in the mag-
netic field.

The luminosity results of this cross check (Lck) are
shown in Table, together with the relative differences to
the nominal ones. Both results have good consistency for
all individual measurements, indicating the robustness of
the result.

7 Summary

The integrated luminosity of the data samples taken
at BESIII for studying the charmonium-like states and
higher excited charmonium states is measured to an
accuracy of 1% with Bhabha events. The total uncer-
tainty is dominated by the systematic uncertainty. A
cross check with di-gamma events is performed and the
results are consistent with each other. The result pre-
sented here is essential for future measurements of cross
sections with these data, and has already been used in
the discovery of charged charmonium-like states [9–12].

The BESIII collaboration would like to thank the staff
of BEPCII and the IHEP computing center for their ded-
icated support.
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