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Abstract

Variation at regulatory elements, identified through hypersensitivity to digestion by DNase I, is believed to contribute to
variation in complex traits, but the extent and consequences of this variation are poorly characterized. Analysis of terminally
differentiated erythroblasts in eight inbred strains of mice identified reproducible variation at approximately 6% of DNase I
hypersensitive sites (DHS). Only 30% of such variable DHS contain a sequence variant predictive of site variation.
Nevertheless, sequence variants within variable DHS are more likely to be associated with complex traits than those in non-
variant DHS, and variants associated with complex traits preferentially occur in variable DHS. Changes at a small proportion
(less than 10%) of variable DHS are associated with changes in nearby transcriptional activity. Our results show that whilst
DNA sequence variation is not the major determinant of variation in open chromatin, where such variants exist they are
likely to be causal for complex traits.
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Introduction

Deoxyribonuclease I (DNase I) hypersensitive sites (DHS) mark

alterations in chromatin structure associated with active regions of

regulatory DNA [1]. Tissues differ in the genomic distribution of

DHS, reflecting variation in tissue specific regulatory factors [2–4],

but less is known about the extent and causes of variation between

individuals. In this paper we address the relationship between

sequence variation, DHS variation and phenotypic variation.

Two previous studies have estimated individual variation in

regulatory regions in human lymphoblastoid cell lines: 10% of

DHS displayed inter-individual variation [5] and 25% of binding

sites for RNA polymerase II (sites that will appear in surveys of

DHS) [6]. Both studies identified underlying sequence variation as

an important contributor, but could not determine whether

sequence variation was the major contributor. For example, the

total fraction of significant binding differences coinciding with

genetic variations was 26% for RNA polymerase II [6], leaving the

possibility open that non-genetic causes are an important cause of

variation at regulatory sites.

Variation in regulatory elements is thought to have functional

consequences: thus sequence variation could give rise to new

functional elements, which in turn would alter gene expression and

result in phenotypic variation. In one example a single nucleotide

polymorphism (SNP) upstream of the human a-globin genes

created a new promoter-like element between the globin gene

upstream regulatory elements and their cognate promoters. This

element caused significant down-regulation of the a-globin genes,

resulting in an inherited anemia [7], demonstrating the potential

importance of the mechanism, but leaving open the question of its

prevalence. It is possible that many variable DHS are without

readily detectable phenotypic consequences.

A recent genome-wide survey of DHS in lymphoblastoid cell

lines confirmed the importance of sequence variation as a source

of DHS variation, and reported that 16% of DHS associated with

local sequence variants were also associated with variation in

transcript abundance at neighbouring genes [8]. Potentially

therefore these 16% might contribute to phenotypic variation.

Many of the genetic signals identified through genome wide

association studies (GWAS) for complex traits and disease

susceptibility reside within DHS [2,9], but whether these signals

preferentially exist at variable DHS is not known.

We set out to estimate the proportion of heritable variation in

DHS, to estimate how much of this is captured by local sequence

variation, and assess the consequences of variation on both gene

expression and phenotypic variation. To do so, we chose a

relatively homogeneous, primary tissue type (terminally differen-

tiated erythroblasts) obtained from eight inbred mouse strains (A/

J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and

LP/J) for which availability of near complete sequence of all eight

strains permitted identification of virtually all sequence variants

contributing to DHS variation [10,11]. Furthermore, 843 quan-

titative trait loci (QTLs) have been identified in over 2,000

heterogeneous stock (HS) mice descended from these strains [12].

The traits mapped included disease models (asthma, anxiety and

type 2 diabetes), as well as haematological, immunological,
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biochemical and anatomical assays. We were thus able to ask

whether sequence variants contributing to DHS variation are also

likely to influence quantitative traits [13].

Results

We generated DHS data using 19 mice from eight inbred strains

(three each of C57BL/6J, A/J, and CBA/J mice, and two each of

AKR/J, C3H/HeJ, DBA/2, BALBc/J, and LP/J strains). We

avoided alignment biases towards alleles present in the reference

genome (C57BL/6J) by creating strain specific reference sequences

using known SNPs [10,11]. Figure 1a shows normalized counts of

aligned reads for the eight inbred strains over a 100 Kb region

containing the previously well characterized alpha globin gene

cluster on chromosome 11 [14]. DHS for each strain are identical

and agree on the location of previously mapped DHS (the position

of known DHS are shown by vertical lines) [15]. Furthermore

within-strain DHS, mapped in two entirely independent experi-

ments, are highly concordant (Figure 1b). After adjusting for local

variation in the coverage of aligned reads, we called DHS by

searching for regions with high numbers of aligned reads (hereafter

peak heights) [16]. Across all 19 experiments there was a total of

36,693 DHS that covered 9.1 Mb (0.29% of the genome); 25,700

peaks (6.3 Mb) lay within mappable (single copy) regions of the

genome and we used this subset for further analyses.

We carried out a genome-wide quantification of heritable peak

variation by comparing variation in peak height between and

within strains to find peaks where the pattern of variation between

strains was consistent across biological replicates. Variation

between peaks was estimated under the assumption that the

distribution of reads at a peak can be modeled as a negative

binomial distribution, using DESeq software [17]. At a false

discovery rate (FDR) of 10% we found 2,530 variable peaks

(9.8%), and 1,397 peaks at a 1% FDR (5.4%). We checked the

automated detection of variable peaks by visual inspection of peaks

on chromosomes 14 to 19 and confirmed all were detected in the

automated analysis (Table S1). We found that across a wide range

of parameter values the proportion of variable peaks detected

automatically remained approximately constant (Figure S1). We

refer to these 1,397 DHS as the set of variable DHS (Table S1).

Visual inspection of the variable peaks revealed that the

majority (86%) differ in peak height and shape (continuous

variation). A minority of variable peaks (196 peaks, 14%) display

discrete variation between strains, with a loss (or gain) of a peak in

one or more strains. A proportion of the latter were found to occur

in clusters, characterized by a number of closely linked peaks

(defined here as within 10 Kb) present in one strain, but absent in

others. We identified 23 of these discrete compound variable peaks

(1.6% of the total) and 173 discrete unique variable peaks (12.3%

of the total). Examples are given in Figure 2.

We estimated how much of the variation might be attributable

to underlying sequence differences by calculating heritability from

between and within strain variation [18]. Heritability was defined

as half the between strain component of variance divided by the

sum of the within strains variance and half the between strain

variance. The mean heritability of the variable peaks is 69.4%.

We compared the 1,397 variable DHS to 2,849 with least

evidence for variation (P-value .0.97) and noted the following

features of variable DHS (Table 1). First, they contain more

sequence variants: 75% contain one or more previously identified

sequence variants within 100 bp of the edges of the peak

compared to 58.3% of non-variable DHS (P-value = 4.3e-27,

Fisher exact test). For this and subsequent analysis of sequence

variants we analysed all classes of variation, SNPs, insertion

deletion polymorphisms and structural variants [10,11]. Second,

variable DHS are less likely to coincide with conserved regions

(using the multiple alignment of 30 vertebrate species and

measurements of evolutionary conservation, UCSC browser track)

of the mouse genome (61.5% compared to 71.4%, P-

value = 1.07e-10 (Fisher exact test)). Third, variable DHS were

more likely to be associated with chromatin that has the signature

of an enhancer (20.7% compared to 9.7%, P-value = 5.6e-22

(Fisher exact test)), rather than a promoter (25.5% compared to

52.2%, P-value = 3.1e-63 (Fisher exact test)). Here enhancers were

classified as DHS overlapping a genomic region enriched for

H3K4me1 and promoters for H3K4me3 enrichment in terminally

differentiated mouse erythroblasts, using data from [15].

It is possible that our comparison between variable and non-

variable peaks is biased by the choice of an extremely non-variable

set of peaks. Therefore we compared variable peaks with all other

peaks (excluding the most variable) and with the 16,299 peaks

where analysis of variation gave a P-value of 0.5 or greater. The

results, presented in Table 1 show similarly highly significant

differences in the same features as those obtained from the most

non-variable sites. Note that as the set of sites becomes less variable

(as indicated by an increasing P-value in column one of the table)

the relative enrichment in promoter elements and conservation

increases, as does the relative impoverishment in enhancers and

sequence variant. This is consistent with the hypothesis that the

2,849 DHS with least evidence for variation (P-value .0.97) are

simply an extreme, rather than an atypical set.

To identify the probable causal variants for DHS variation, we

correlated sequence and site variation. Causal variants will be

those with the same strain distribution pattern (SDP) as the DHS

(i.e. strains with similar peak heights must have the same causal

allele). This method of haplotype association mapping is appro-

priate when searching for a local effect (in-cis), but will not allow us

to detect trans effects. An example is shown in Figure 2a. However,

it should be noted that large shared haplotype blocks in the inbred

strains used here typically make it impossible to unequivocally

identify single causative variants because many variants may share

the same SDP. Bearing in mind these caveats, we assessed the

correlation between sequence and DHS strain distribution

patterns at all variable sites. 503/1397 (36%) of DHS are

associated with a sequence variant located within the site or

100 bp either side at an FDR of 5%. 165 of the variable sites (12%

of the total) contained one or more variants that either disrupted a

known motif for transcription factor binding site or created a novel

one in one or more strains.

Author Summary

Regulatory sites of the genome affect gene expression and
complex traits, including disease susceptibility. Variable
regulatory sites are potentially interesting because they
are a likely cause of phenotypic variation, providing a
bridge between sequence and transcriptional variation. In
this paper we identify regions of the genome where DNA
is not wrapped up in chromatin (hence potentially
regulatory) in eight inbred strains of mice. We compare
sites that vary among strains and compare them to non-
variable sites. We show that more than half of variable sites
cannot be attributed to local sequence variation. Func-
tional consequences (in terms of readily detectable
changes in gene expression) are associated with less than
10% of variable DNase I hypersensitive sites. We show that
variable sites are enriched for sequence variants contrib-
uting to complex traits in mice.

Dnase Hypersensitivity Sites in Inbred Mice
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We chose to search for variants within 100 bp of the DHS to

take into account the fact that nucleosome occupancy at the edge

of the sites is not entirely fixed. Ideally we would like to look

further, but our ability to do so is limited by the small number of

haplotypes we are examining in the eight inbred strains (there are

only 127 possible combinations of di-allelic variants in 8 strains).

The further we extend our search out from the DHS, the greater

the chance that we will find an association by chance. Figure S2

shows a linear increase in the percentage of associated sequence

variants (up to to 70% at 100 Kb). We are unable to tell which of

these represent true associations.

We asked next whether sequence variants potentially causal for

site variation are more likely to be found for discretely varying sites

(the set of 196 sites where there is either total loss or gain of a site

in at least one strain). Of the 196 DHS, 113 (57%) contain a

sequence variant within 100 bp of the site whose strain

distribution pattern correlates with that of the variable DHS (at

an FDR of 5%). This is significantly different from the set of

continuously varying (P-value 1.18e-8, Fisher exact test). Four

discretely varying DHS coincide with a structural variant (one

deletion and three insertions) and 42 (21%) contain a variant in a

known transcription factor binding site.

What are the functional consequences of alteration in DHS? To

evaluate this we analysed the relationship between DHS variation

and expression of RNA in erythroblasts. Using RNA-Seq,

genome-wide RNA abundance and inter-strain variability was

estimated in erythroblasts from the same eight strains used for the

DHS analysis. We hypothesised that changes in both RNA

expression as well as RNA processing are more likely to be found

associated with variable DHS than with non-variable DHS.

We identified 3,472 poly(A)+ transcripts that varied between

strains (using an FDR of 5%). We calculated the shortest distance

from the start of each variable transcript to variable DHS and to

non-variable DHS (the 2,849 least variable, P-value ,0.008).

Figure 1. DNase I Hypersensitive sites at the a globin cluster on chromosome 11. a) Chromosomal positions in Kb on chromosome 11 are
shown for MGSC37 mouse reference genome. The names of previously annotated DNaseI hypersensitive sites (DHS) are shown coloured as
ubiquitous (green), erythroid (red) and black (CTCF) [15]. Two previously unpublished DHS (marked *) are associated with CTCF binding sites. The
density of aligned DHS-seq reads in a moving 300 bp window, with a 30 bp increment is shown for each mouse strain. DHS-seq peaks are aligned
with the position of each previously described DHS by dashed lines, colour coded as described. The position of Refseq annotated genes are named
and shown below in blue. b) Two examples of DHS-seq biological replicates for the C57BL/6J and CBA/J strains are shown over the same region as in
Figure 1a.
doi:10.1371/journal.pgen.1003570.g001

Figure 2. Three categories of variable DNase I hypersensitive sites. (a) Discrete variation (simple): DHS entirely absent in one or more strains.
The position of a DHS missing in one or more strains is highlighted in red. The position of annotated Refseq genes are named and shown in blue. The
strain specific genotype of the DNA underlying the variable peaks is shown below with a grey bar representing the portions identical to the current
mm9 build; differences are represented as black lines. b) Discrete variation (compound): clusters of variable DHS. Positions of DHS that vary together
with the underlying strain differences are displayed as described for panel a). c) Continuous variation: DHS vary in shape or size. The position of DHS
sites together with underlying strain differences are displayed as described for panel a). The top part of each panel shows chromosomal positions in
kilobases (Kb) (MGSC37 mouse reference), while the lower section gives the chromosomal positions in base pairs (bp) over the highlighted DHS. The
density of aligned DHS-seq reads in a moving 300 bp window, with a 30 bp increment is shown for each mouse strain.
doi:10.1371/journal.pgen.1003570.g002

Dnase Hypersensitivity Sites in Inbred Mice
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Within 10 Kb of any variable poly(A)+ transcript there are a total

of 181 variable DHS (13% of the total) compared to 85 non-

variable (P-value = 3.4e-91, Fisher exact test) (Figure 3). Proximity

of variable RNA and variable DHS does not mean the two events

are correlated so we tested whether this was so. We found that

quantitative variation in peak height at 54 of these 181 variable

DHS lying within 10 Kb of variable poly(A)+ RNA transcripts was

significantly (P-value ,0.05, uncorrected) correlated with varia-

tion in RNA abundance. If we assume that the effect of a variable

DHS on a transcript is limited to transcripts within 10 Kb, then

this result indicates that at most 4% (54) of the 1,396 variable DHS

affect transcription. This is a conservative estimate since the

analysis does not take into account the number of false discoveries

(5% of 181 = 36).

Our findings appear to indicate that over 95% of the variable

DHS are not related to readily detectable variation in gene

expression. We investigated this further in three ways. We

analysed the set of DHS for which an effect on transcription is

likely most easily observed, namely that set of 196 sites with either

total loss or gain of a site in at least one strain (this is the set of

DHS with discrete, rather than continuous variation). Second, we

examined the effect of discrete DHS variation over a larger

interval, up to 300 Kb from the site. Finally we extended our

analysis to the poly(A)2 fraction for the set of discretely varying

DHS. Poly(A)2 RNA represents nascent transcripts both from

genes and regulatory elements. Its analysis provides a more

dynamic and comprehensive assessment of RNA expression.

We visually inspected 300 Kb either side of the 196 discretely

varying peaks for poly(A)+ and poly(A)2 transcriptional changes.

An example is shown in Figure S3. At 14 loci (7%) the gain or loss

of a DHS was associated with a change in gene expression. For

example, at the Emb gene (embigin, a transmembrane protein of

the immunoglobulin super-family class of cell adhesion molecules)

the occurrence of two DHS, one at the transcriptional start site

and another 3,600 bp upstream, are associated with transcription

of the gene (Figure 4). Thus approximately 7% of variable DHS of

the peaks with discrete variation are associated with changes in

transcription (either poly(A)+ or poly(A)2). The DNA sequence

variants associated with the presence or absence of DHS peaks are

clearly correlated with the presence or absence of RNA transcripts

(Figure 4).

Our results do not exclude the possibility that some DHS alter

transcription without the presence of a sequence variant. We

searched for examples by re-examining the entire set of 36,693

Figure 3. Proximity of DNase I hypersensitive sites to variable RNA. The histogram shows the relative abundance of DHS within one
megabase (Mb) of the transcriptional start site of variable RNA species. The horizontal scale is in kilobases (Kb). Variable RNA refers to the 3,472
poly(A)+ transcripts that varied between strains (FDR of 5%). Variable DHS refer to the 1,396 variable peaks (as described in the text), and non-variable
refers to 2,849 with least evidence for variation.
doi:10.1371/journal.pgen.1003570.g003

Table 1. Characteristics of variable Deoxyribonuclease I hypersensitive sites.

Peak type
Number of
peaks

Variants
(%) LogP

Conservation
(%) LogP

Enhancer
(%) LogP

Promoter
(%) LogP

Most variable peaks (P value ,0.0008) 1,396 75.00 61.53 20.63 25.50

All peaks (P value .0.008) 24,303 61.05 25.02 70.04 10.04 13.91 10.13 46.22 52.01

All peaks (P value .0.5) 16,299 59.11 28.95 71.37 12.09 10.78 20.85 50.74 68.33

Least variable peaks (P value .0.97) 2,849 58.25 26.37 71.43 9.98 9.72 20.84 52.12 62.07

The table shows features of the most variable Deoxyribonuclease I hypersensitive sites (identified at FDR threshold of 1%, equivalent to an adjusted P-value of 0.008),
compared to non variable peaks. The features shown are the percentage of sites containing sequence variants (Variants), the percentage of sites showing sequence
conservation (Conservation), the percentage of sites with the signature of an enhancer (Enhancer) and those with the signature of a promoter (Promoter). The P-value is
that obtained from estimating peak differences between strains (modeled as a negative binomial distribution). Results are shown for comparisons between the most
variable peaks and three sets of non-variable peaks, defined at different stringencies (P-values.0.008, 0.5 and 0.97). The significance of the comparison is shown as the
negative logarithm (base 10) of the P-value of a Fisher exact test.
doi:10.1371/journal.pgen.1003570.t001
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DHS. We identified 42 additional discretely varying peaks that did

not appear to contain correlated sequence variants. In one case,

we found a DHS present only in one strain (DBA/2J) associated

with both poly(A)+ and poly(A)2 transcription (Figure 5). The

novel transcript contains a re-activated LTR repeat element. No

variants were detected consistent with the strain distribution

pattern of the DHS (Figure 5) (failure to find variants could not be

attributed to low sequence coverage or read mapping errors).

Thus, in some circumstances, changes in both DHS and

expression can occur in the absence of local sequence variation.

We then investigated the relationship between DHS and

phenotypic variation. To do so, we took advantage of a prior

analysis in which variants in the genomes of the eight strains

analysed here had been tested for causal involvement at each of

843 quantitative trait loci (QTLs) for over 100 different

phenotypes [12] [13]. The results provide data similar to that

from human genome wide association studies, namely a set of

positions in the genome that are candidate functional variants.

We asked if variable DHS that coincide with QTLs are

enriched for candidate variants. Within the 1,397 variable DHS

we identified 199 candidate variants and 2,614 non-candidate

variants. Within the 2,849 non-variable DHS we identified 188

candidate variants and 3,220 non-candidate variants. This

difference is significant P-value = 0.013 (Fisher’s exact test).

Restricting the analysis to variants at QTLs relevant to haema-

tological phenotypes (mean cellular haemoglobin, mean cellular

volume, red blood cell count and haemoglobin concentration) we

again observed an enrichment (3 candidate variants in the variable

DHS compared to none in the non-variable DHS) with a P-value

of 0.08 (Fisher’s exact test).

Discussion

We have shown that among eight mouse inbred strains about

9% of DHS are variable. The majority of these variable sites

cannot be explained by a sequence variant either within the site, or

100 bp either side, thus ruling out simple models in which a

sequence variant locally alters chromatin conformation. In our

assays, the functional consequences of site variation are relatively

limited: only 7% are correlated with changes in transcriptional

activity. Finally we find that sequence variants within variable

DHS are 30% more likely to be associated with complex traits

than sequence variants lying in non-variant DHS. We discuss these

points below.

Our estimate of the proportion of DHS that is variable is

consistent with those obtained from human lymphoblastoid cell

lines [5,6]. However we have reported fewer sites than identified in

ENCODE cell lines (ranging from 84,201 to 266,618 total sites per

cell line) [3]. This may be because there are fewer DHS in primary

differentiated cells than in immortalised cell lines; and that we

chose to concentrate our analysis on high confidence peaks,

reducing the chances that our detection of variable peaks would

include false positive peaks.

About 65% of variable sites are not correlated with sequence

variation. Even when we limit our observations to instances where

a site is lost or gained, at a third of peaks we are still unable to

attribute this alteration to a variant lying under the peak or within

100 bp. One possibility is that sequence variation within distal

regulatory elements result in changes in interactions with the

variant DHS. Such interactions, in which widely separated regions

of the genome come into contact with each other via regulatory

elements, would explain the occurrence of clustered sites (e.g.

Figure 2b). Trans-acting effects and heritable epigenetic changes

(such as DNA methylation) may also contribute. Our study, like

others, is not sufficiently powered to detect this source of genetic

variation [8].

We identified a potential molecular mechanism for DHS

variation (the disruption of a TFB site or a structural variant

coinciding with a DHS) at 165 sites (12% of the total). While this

analysis cannot unequivocally identify which variants are causal, it

is consistent with recently published ENCODE results indicating

the importance of sequence variation at a proportion of DHS

[2,3]. However in one case we observed the presence of a DHS in

a single strain, associated with a novel transcript, without an

underlying sequence change, indicating that sequence variation at

the DHS alone is an insufficient explanation both for DHS change

and its functional consequences.

Indeed the functional consequences of DHS variation from our

data appear relatively limited. We found that less than 10% of

variable DHS are likely to have an effect on transcription.

However we cannot exclude the possibility that the effect of DHS

variation is broader than we have observed, having an effect only

in different environments or tissues to those assayed, or that the

effects are too subtle to have been detected.

It is possible that the relative absence of causative sequence

variants and the difficulties finding functional correlates of site

variation might arise in part from the fact that site variation

reflects some unknown but consistent measurement artefact, or is

simply a biologically unimportant consequence of chromatin

structure around DHS. The bulk of DHS variation we observe is

continuous, so that we resort to using a probability cut-off to

determine what is variable and what is not.

To counter this problem, we analysed separately the 196 sites

with discrete, rather than continuous variation. These DHS show

total loss or gain of a site in at least one strain. Our analyses of the

discrete sites support results from the entire set of variable sites,

namely only a small fraction (approximately 7%) are associated

with changes in transcription (either poly(A)+ or poly(A)2). A third

of 196 DHS lack sequence variants that can explain strain

distribution pattern correlates with that of the variable DHS.

Finally, our data address the question whether sequence

variants underlying variable DHS contribute to complex pheno-

types. Functional sequence variants are indeed enriched in DHS.

We have shown that sequence variants at variable DHS are more

likely to contribute to phenotypic variation than sequence variants

within non-variable DHS, consistent with the finding that DHS

are enriched with signals from human genome wide association

studies [9]. Our data suggest that searching for causal variants of

complex traits will profit by focusing within variable DHS, but

such an approach will have to survey many tissues, presumably at

different developmental time points and under a variety of

environmental circumstances, to find a substantial fraction of the

sequence variants involved in complex traits.

Figure 4. Relationship between variable DNase I hypersensitive sites, underlying sequence and transcript variation. Scale and
position in the MGSC37 mouse reference are shown as before. The density of aligned DNase-seq reads in a moving 300 bp window, with a 30 bp
increment, is shown for the mouse strains C57BL/6J, LP/J, A/J and CBA/J. The poly(A)2 transcription from each strain is displayed (in blue) as the
aligned read depth per base pair normalized per million of aligned reads. The two variable DHS (one at the Emb gene promoter and one upstream of
the promoter) are highlighted in red. The strain specific genotype of the DNA underlying the variable peaks is shown below (regions indicated by
roman numerals) with a grey bar representing the portions identical to the current mouse genome build; differences are represented as black lines.
doi:10.1371/journal.pgen.1003570.g004

Dnase Hypersensitivity Sites in Inbred Mice
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Figure 5. Some variable DNase I hypersensitive sites have no underlying sequence variation. The figure shows one example on
chromosome 4 where a DHS, present only in strain DBA/2J, is associated with both poly(A)2 (blue) and poly(A)+ (green) transcription, in the absence
of sequence variation consistent with the strain distribution of the DHS. The chromosomal position in is shown in Kb. The density of aligned DHS-seq
reads in a moving 300 bp window, with a 30 bp increment is shown for strains C3H/HeJ and DBA/2J. The strain specific genotype of the DNA
underlying the variable peaks is shown below with a grey bar representing the portions identical to the current mm9 build; differences are
represented as black lines. Note that there are no differences between C3H/HeJ and DBA/2J.
doi:10.1371/journal.pgen.1003570.g005

Dnase Hypersensitivity Sites in Inbred Mice
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Materials and Methods

Primary cells
Mature primary erythroid cells were obtained from phenylhy-

drazine-treated adult (6–9 weeks old) female mice as described

[19]. Spleens containing erythroblasts were mechanically disrupt-

ed to single cell suspension and erythroblast purity was between

60–80%. Mice for this experiment were the progenitors of the

heterogeneous stock (HS) (A/J [JAX #646], AKR/J [JAX #648],

BALB/cJ [JAX #651], CBA/J [JAX #656], C3H/HeJ [JAX

#659], DBA/2J [JAX #671] and LP/J [JAX #676]).

DNase-seq
DNase I assays were performed using ,56107 cells. Nuclei

from mainly terminally differentiated erythroblast (,60–80%

cells) were digested with eight different concentrations of DNase I

(0ice, 037, 0.5, 1, 2, 4, 8, 16, 32, 64 ml of 10 U/ml DNase I in 1 ml

reaction volume) at 37uC (except 0ice) until the sample containing

16 ml reached water-like viscosity. The digestions were stopped

instantly by transferring the tubes to an ice box followed by

transferring the reactions into lysis buffer. DNA was extracted

using a phenol/chloroform mix and ethanol precipitated. Since

DHS represent a spectrum of signal intensities, and the optimal

sample should include material from different DNase I concen-

tration digestions, the mid phase of digestions were selected for

library preparation by qPCR (see below). Based on the principle

that DNase I may cut more than once across DHS, generating

small DNA fragments that can be amplified, Solexa compatible

libraries were constructed as follows: DNA (2–4 mg) was blunt-

ended with T4 DNA Polymerase (NEB), adenine overhangs were

added using Klenow 59-39 exo-minus, Illumina Solexa sequencing

adapters were ligated using T4 DNA ligase (NEB) and amplifi-

cation was carried with 10 PCR cycles (15 sec extension time)

using Phusion DNA polymerase (Finnzymes) and Illumina Solexa

sequencing primers 1.1 and 2.1 (Illumina). Finally, libraries were

size selected by electrophoresis and sequenced on an Illumina

Genome Analyzer (GA-IIx) or HiSeq2000.

Quantification of DNase I digestion by qPCR
To assess DNase I digestion in terminally differentiated

erythroblasts, three pairs of forward and reverse primers were

designed to amplify ,140–160 bp products in murine positive

(MCS-R2, MCS-R3, minus14) and negative (Control-1, Control-

2, Control-3) DHS. The efficiency of the primers, their uniqueness

and whether or not they contain any SNP in different 8 strains

were interrogated. MCS-R2 and MCS-R3 are two of the

regulatory elements of the a-globin genes [20]. Minus14 amplifies

the promoter of a housekeeping gene (Nprl3) within the murine a-

globin regulatory domain. Controls one and two are regions in the

a-globin locus which appeared inactive using H3K4me2 ChIP on

chip. Control-3 measures the Pkdrej gene, which is sperm specific

and is very condensed in all tissues. Among these, the best positive

and negative set of primers were chosen for qPCR based on the

similar efficiency of test and control amplification, and the

specificity of primers from melting curve analysis and visualizing

the PCR products on agarose gels. The standard curves were used

to calculate the percentage of copies of the MCS-R3 amplicon

remaining in 5 ng of DNase I-treated genomic DNA in different

phases of digestion (different DNase I concentrations).

The amount of template DNA was standardized by correcting

for amplification of the DNase I-insensitive Control-2 or Control-3

sequence [21]. From three replicates of DNase I digestion per

strain, mid-phase of digestion of the sample was selected for GAII

library preparation. PCR was performed using SYBR green PCR

iQTM SYBR Green Supermix (BioRad), and real-time PCR was

performed on a iCycler iQTM real-time PCR detection system

(BioRad). Genomic DNA was quantified three-times by using the

NanoDrop 2000 Spectrophotometer (Thermoscientific) and a

PicoGreen dsDNA Assay kit (Invitrogen). Five nanograms of

genomic DNA was digested with eight different concentrations of

DNase I and loaded onto 96-well optical PCR plates by using a

iCycler machine. PCRs performed in triplicate generated highly

reproducible results (SD#0.2); outliers (.3SD) were excluded

from the analysis. A similar approach was applied to design qPCR

in C57BL/6J mouse embryonic fibroblasts (MEFs). To improve

the efficiency of the primers, ,110–120 bp primer sets were

designed to capture regulatory sites at 2 housekeeping genes (Gapdh

and b-actin) as positive DHSs in MEFs and 3 negative sites

(Control-1–Control-3 as previously described).

Sequence alignment
In order to mitigate the impact of inter-strain sequence

variation on mapping quality we first created pseudo genomes

for each of the eight strains by introducing single nucleotide

polymorphisms from the relevant strain into the MGSC37 mouse

reference [10]. We then aligned reads from each lane to the

appropriate mouse strain genome using STAMPY [22]. Purpose-

written software was used to calculate the genomic coverage for

DNA fragments represented by each read pair. In particular, for

short fragments where the two reads of a pair overlap, sequencing

primers were removed and bases of the overlapping region were

only counted once. Conversely, the coverage included the entire

aligned DNA insert and not merely two ends sequenced in the

read pair. Read map alignments were filtered for quality,

removing reads with a mapping quality values ,2. Alignments

to repetitive parts of the genome were filtered by excluding

genomic regions with a CRG 50-mer Alignability score of ,0.5

[23]. These are duplicate regions that are present in more than

two (near) identical copies in the genome.

Peak detection and analysis
We called DNase I hypersensitive sites using purpose-written

software. Let Xj be the count of aligned reads covering position j in

the genome. To allow for local variation in the coverage of aligned

reads, we computed the deviation dj of the overall mean coverage

from the local mean coverage (in a window of width 2L+1) and

adjusted Xj to Wj = Xj2dj+m where m is the overall mean coverage.

This maintains the same average read coverage, m. A small

number of sites where the adjusted values were negative were

truncated to 0. Then we called peaks on the transformed scores

Yj = log2(Wj/pm) where the parameter p controls the stringency of

the peak detection. We called peaks by searching for high-scoring

segments [16], defined as intervals [m,n] such that Smn =Sm,j,n

Wj, satisfies the conditions Smn.0 and Smn.Suv where [u,v] is any

interval containing [m,n]. Wj is negative whenever Xj-dj,pm, so we

only call peaks in regions where adjusted counts are at least p times

the mean coverage. The motivation for the definition of Y is first

that Y is effectively independent of the average coverage (so that

we can compare data with different read coverage, e.g. from an

Illumina GA-II and a HiSeq2000) and second that peaks with

extremely high values (e.g. to due to unresolved repeats being

mapped to the same locus) carry relatively little additional weight.

Variation between peaks was estimated under the assumption

that the distribution of reads at a peak can be modeled as a

negative binomial distribution. We used the DESeq package to

estimate the differences between peaks in different strains [17].

Correlation between peaks and sequence variation was performed

in linear models using the statistical software package R. The
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strain distribution pattern of a variant was expressed as a vector, so

that for example a sequence variant present only in strains A/J

and LP/J would be the vector ABBBBBBA (where strains are in

the order A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J,

DBA/2J, LP/J). We asked if the same vector is present in the

pattern of strain variation of DHS peaks.

The degree of variation was estimated by the heritability of the

site, defined as half the between strain component of variance

divided by the sum of the within strains variance and half the

between strain variance [18]. Although the distribution of peak

heights violates some assumptions behind this calculation, the

heritability provides an intuitive measure of the extent of variation.

Peak coordinates were associated with the following genomic

features: sequence variants identified in the eight inbred progen-

itor strains of the HS [10,11]; vertebrate sequence alignments

taken from the multiz30way track of the UCSC genome browser

[24]; regions enriched for H3K4me1 (enhancer feature) and

H3K4me3 enrichment (promoter feature) [15]; transcription

factor binding motifs from TRANSFAC database identified by

running FIMO [25] with a detection threshold of P-value ,1025

(FIMO was run on the MGSC37 mouse reference and on

sequences for each strain by introducing single nucleotide

polymorphisms into the reference sequence (as described above).

Statistical analyses were carried out using the R software package

[26].

RNAseq
For RNA-Seq libraries, total RNA was split into poly(A)+ and

poly(A)2 RNA using the PolyATract mRNA isolation system

(Promega). Poly(A)+ RNA libraries were generated using the

Illumina mRNA-Seq paired-end kit after globin depletion using

GlobinClear (Ambion). Poly(A)2 RNA libraries were generated

using the ScriptSeq v2 RNA-Seq Library Preparation Kit

(Epicentre), after depletion of ribosomal transcripts with RiboMi-

nus Eukaryote Kit for RNA sequencing (Invitrogen). Poly(A)+ and

poly(A)2 libraries were sequenced on Illumina HiSeq2000 and

GA-IIx respectively. Read alignments were filtered for quality

using samtools version 0.1.18 [27] and reads with a MAPQ value

,15 were removed. Sequence reads that overlap with transcript

intervals were counted using the R package IRanges [26] and a

table of transcript and exon coordinates provided by UCSC, based

on the mouse reference genome assembly mm9. Reads were

mapped to n = 26347 (out of 37681) transcripts. Normalization of

read numbers was carried out using DESeq version 1.8.3 [17].

Transfrags were assembled de-novo using Cufflinks version 1.3.0

[28] (n = 74390 transfrags) and these transfrags were linked to the

reference genome using cuffcompare. Differential expression of

transcripts in the strains used was analysed using cuffdiff.
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Supporting Information

Figure S1 Effect of altering parameters in the peak finding

algorithm on the detection of variable peaks. The two parameters

are the window size (in kilobases), shown on the horizontal axis,

and the stringency (p), shown for values between 2 and 8 as a set of

coloured lines. The vertical axis shows the percentage of variable

sites, as calculated using a 5% FDR threshold. The number of

variable peaks at each combination of parameter settings was

estimated using the DESeq package as described in the Materials

and Methods section of this paper.

(PDF)

Figure S2 Closest distance from a variable DHS to a

significantly associated sequence variant. The horizontal axis

shows the distance in kilobases (Kb) from each of the 1,397

variable DHS to a sequence variant that is associated at a 5%

FDR. The P-value is calculated by associating the strain

distribution pattern of the DHS with the strain distribution

sequence variant. We report here the distance to the closest variant

(because of the haplotype structure of the inbred mouse genome

there are often large haplotype blocks with identical strain

distribution patterns). The vertical axis shows the percentage of

DHS for which an association is found.

(PDF)

Figure S3 Relationship between variation in transcription and a

variable cluster of DHS peaks. Chromosomal positions are shown

in kilobases. The density of aligned DHS-seq reads in a moving

300 bp window, with a 30 bp increment is shown for each mouse

strain. The poly(A)2 transcription from each strain is displayed (in

blue) as the aligned read depth per base pair normalized per

million of aligned reads.

(PDF)

Table S1 Table of variable DHS and associated features. The

1,397 peaks are categorized into three classes: I discrete simple; II

discrete compound; III continuous quantitative variation. The

table provides results from analysis of matches to regions of

sequence conservation, to regions identified as enhancers and

promoters (is.enh and is.promoter), and the names of genes closest

to the peak (ENSEMBL id and MGI ID). The last three columns

provide information about the degree of variation between strains.

The first column is the P-value for the analysis that models the

distribution as a negative binomial (from the DESeq package). The

next column is the heritability and the last the P-value of the

heritability.

(XLSX)
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