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Oncogenes and angiogenesis: a way to personalize anti-angiogenic therapy? 
 
 
Alessia Bottos, Alberto Bardelli 
 
Abstract The acquisition of oncogenic mutations and promotion of angiogenesis are key hallmarks of cancer. 
These features are often thought of as separate events in tumor progression and the two fields of research have fre- 
quently been considered as independent. However, as we highlight in this review, activated oncogenes and deregu- 
lated angiogenesis are tightly associated, as mutations in cancer cells can lead to perturbation of the pro- and anti- 
angiogenic balance thereby causing aberrant angiogenesis. We propose that normalization of the vascular network 
by targeting oncogenes in the tumor cells might lead to more efficient and sustained therapeutic effects compared 
to therapies targeting tumor vessels. We discuss how pharma- cological inhibition of oncogenes in tumor cells 
restores a functional vasculature by bystander anti-angiogenic effect. As genetic alterations are tumor-specific, 
targeted therapy, which potentially blocks the angiogenic program activated by individual oncogenes may lead to 
personalized anti- angiogenic therapy. 
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Anti-angiogenic therapy: where are we? 
 
Angiogenesis is the biological process that drives the for- mation of new blood vessels from a pre-existing 
vascula- ture. Throughout embryonic development, physiological angiogenesis allows for expansion of the 
primitive vascular network formed by vasculogenesis, thanks to branching, remodeling, and maturation of the 
vascular bed [1]. During adulthood, angiogenesis normally occurs in only a few pro- cesses, such as in the female 
reproductive apparatus, and in pathological situations including wound healing, diabetic retinopathy, rheumatoid 
arthritis, and cancer [2]. 
More than 50 years ago, angiogenesis was described as a hallmark of tumor biology, and for the first time anti-
angio- genic therapy was proposed as a cancer cure. Folkman and colleagues were pioneers in demonstrating that 
growing tumors need neovascularization when reaching a critical volume (around 1–2 mm3) in order to continue 
their expan- sion [3, 4]. The induction of tumor vasculature, also known as “angiogenic switch”, represents a 
complex and time-reg- ulated process in cancer progression during which both the cancer cells and the tumor 
microenvironment secrete sig- nals that recruit and expand the vascular network [5]. 
Tumor angiogenesis is central for tumor progression since blood vessels provide essential nutrients as well as 
oxygen to the proliferating malignant cells. Beyond the importance of angiogenesis for primary tumor expansion, 
blood vessels are an important route for cancer cell dis- semination to distant organs. Indeed, the vascular system 
provides the motorway through which cancer cells dissemi- nate, a process facilitated by the fact that the 
integrity of the endothelial layer is significantly impaired in the tumor vasculature [6, 7]. Tumor blood vessels 
were initially spot- ted as attractive targets in cancer at two levels: to inhibit tumor growth by cutting nutrient 
delivery to proliferating tumors, and to prevent metastases formation by blocking the main route for cancer cell 
dissemination. As angiogene- sis is a peculiar feature of a growing tumor mass, its block- ade was considered 
highly tumor selective, with limited potential for side effects. Moreover, most solid cancers are dependent on 
angiogenesis for their expansion and for this reason anti-angiogenic therapy was envisioned as broadly applicable 
in clinical oncology. 
Among the angiogenic factors, vascular endothelial growth factor, or vascular permeability factor (VEGF/VPF) 
has historically been considered the main target for the development of anti-angiogenic drugs [8–10]. Indeed, the 
most widely used anti-angiogenic inhibitor, bevacizumab, is a humanized monoclonal antibody that binds and 
selec- tively neutralizes the biological function of VEGF [11]. Over the years, other kinase inhibitors, such as 
sorafenib and sunitinib, have been developed to target the VEGFR pathway and interfere with VEGF-driven 
angiogenesis [12–14]. Multiple preclinical studies showed that anti- VEGF therapy that blocks tumor angiogenesis 
could delay tumor growth in animal models [15, 16]. 
In 2004, bevacizumab became the first anti-angiogenic FDA-approved drug for the treatment of metastatic colon 
cancer. This decision followed a phase III clinical trial where patients with metastatic colorectal cancer had an 
improvement in progression-free survival from 6.2 to 10.6 months when treated with bevacizumab in combina- 



 

tion with chemotherapy, compared to chemotherapy alone [17]. Afterwards, bevacizumab therapy was extended 
to other malignancies such as non-small cell lung cancer, HER2-negative breast cancer, renal cell cancer, and glio- 
blastoma [18–21]. In parallel, small-molecule tyrosine kinase inhibitors blocking the VEGFR pathway, like suni- 
tinib, sorafenib, and pazopanib showed efficacy in the treat- ment of renal cell cancer and hepatocellular carcinoma 
[22–25]. 
While the initial results were regarded as highly prom- ising, clinical evidence indicated that anti-VEGF therapy 
also had limitations. Bevacizumab was rarely successful as a single agent and the clinical benefits, reached only 
in combination with chemotherapy, were shown to be only transitory. Notably, multiple clinical studies quickly 
estab- lished that even within the same tumor subtype (i.e., colo- rectal and lung cancer) not all patients display 
the same rate of response to anti-angiogenic drugs and importantly, demonstrated that anti-angiogenic therapy can 
be overcome [17, 21, 26]. 
Several reasons can contribute to primary or second- ary resistance to anti-VEGF clinical approaches [27]. 
An important consideration is that, in contrast to predictions, not all tumors are addicted to angiogenesis for their 
expan- sion and treatments that merely target blood vessels cannot provide benefit in these types of cancer [28, 
29]. A relevant observation was revealed by the transcriptional analyses of angiogenic factors in primary breast 
tumors compared to adjacent normal tissue. In this study, the majority of pro- angiogenic molecules appeared to be 
down-regulated in the tumor tissue and thus leading the authors to suggest that breast cancer primary tumor is not 
a site of active angio- genesis [28]. We now know that tumors can use alternative ways to become vascularized 
and in this context a therapy directed to sprouting angiogenesis would exert a limited effect. Tumor vascularization 
can occur by multiple mecha- nisms including: co-option of pre-existing vessels, tumor cells can surround pre-
existing tissues vasculature, vascu- lar mimicry, when dedifferentiated tumor cells contribute to the formation of 
blood vessels, and postnatal vasculo- genesis through the recruitment of bone marrow-derived endothelial 
precursors [30–34]. Of note, the different processes are often mixed within the tumor mass and can provide an 
alternative route of vascularization exploited by tumors to escape anti-angiogenic treatment [35, 36]. A second 
mechanism that can lead to refractoriness to anti- VEGF therapy is that tumors are biologically diverse and 
angiogenesis can be stimulated by alternative molecules. A clear example came from the analyses of biopsies 
from different grades of primary breast cancer. As previously shown, VEGF expression was correlated with 
poor prog- nosis, but its expression was higher in the early stage of the disease, while in high-grade breast 
cancer a wide range of other angiogenic factors, like FGF2, were more promi- nent [37]. This suggests not only 
that different tumors use diverse stimuli but also that within the same malignancy the tumor stage influences 
angiogenic pathway activation and thereby the response to therapy. 
The most common mechanism of resistance to anti- angiogenic drugs appears to be tumor adaptation to the loss of 
vessels. The process involves the onset of compen- satory stimuli that drive neovascularization, thereby evad- ing 
anti-angiogenic approach [27]. Several angiogenic mol- ecules secreted in the tumor microenvironment are thought 
to be involved in the angiogenesis rebound, such as FGF2, ephrins, angiopoietins, PDGF, SDF1, and G-CSF. These 
fac- tors can directly stimulate angiogenesis or act by recruiting inflammatory cells, as it has been described for 
SDF1 and G-CSF, like tumor-associated macrophages (TAM) and bone marrow-derived cells (BMBC) that in turn 
provide angio- genic stimuli [27, 38–40]. In the RIP-Tag pancreatic mouse tumor model, treatment with a 
VEGFR-blocking antibody causes an initial response followed by tumor regrowth and rebound angiogenesis. A 
broad analysis revealed that several hypoxia-mediated genes are up-regulated in the environment 
 and, among them, FGF2 was shown to have an essential role in driving tumor revascularization [41]. A similar 
phenom- enon has been observed in the clinic; glioblastoma patients treated with VEGFR2 small-molecule 
inhibitors display elevated FGF2 and SDF1 levels at the time when tumors became refractory to treatment [42]. 
Several reports have pointed to the tumor stroma as an important mediator of secondary resistance to anti-angio- 
genic therapy. For instance, tumor-associated fibroblasts release growth factors like PDGFC, Angptl2, and SDF1 
that are involved in resistance to anti-VEGF treatment [43, 44]. BMDCs are recruited to the tumor 
microenvironment and promote cancer growth and angiogenesis rebound by provid- ing alternative growth factors 
like Bv8 (or prokineticin-2) and HGF in anti-VEGF therapy refractory tumors [45–47]. 
Recent observations obtained in mouse model systems indicate that anti-angiogenic drugs might have concurrent 
deleterious side effects due to the generation of hypoxic stress. In preclinical models, preconditioning of the so- 
called metastatic niche or short-term treatment with anti- VEGF targeted therapy have been shown to enhance tumor 
invasiveness and metastatic burden in response to hypoxic stress [48–50]. These unexpected outcomes suggest that 
the generation of hypoxia resulting from blood vessels pruning may increase tumor aggressiveness, raising concerns 
about the clinical application of classic anti-angiogenic therapy. Importantly, the clinical relevance of these findings 
is still under investigation as evidence that patients treated with bevacizumab have a shorter time of progression-free 
sur- vival are lacking [51]. However, glioblastoma tumors that relapse after bevacizumab treatment can have a more 



infil- trative phenotype [52, 53]. Similar observations have been made in renal cell cancer patients, where, after 
interruption of VEGFR tyrosine kinase inhibitor treatment, tumor growth rebounded with a concomitant increase in 
metastases [54]. 
The negative impact of the hypoxic stress can be extended to other aspects of tumor maintenance. The gen- eration 
of a hypoxic niche is pivotal to support cancer stem cell population and to increase the expression of stem cell 
markers, at least in glioblastoma [55, 56]. Anti-angiogenic therapy is associated with this phenomenon since, as 
dem- onstrated in breast cancer preclinical models, the onset of hypoxia as consequence of anti-VEGF therapy 
increases the population of cancer stem cell within the tumor [57]. This is a new challenging aspect to be 
considered as cancer stem cells have been proposed as key actors in resistance to therapy and tumor recurrence 
[58–60]. 
 
 
 
Emerging concepts of tumor angiogenesis 
 
In recent years, the process of tumor angiogenesis has been further detailed. We have learned, for example, that 
tumor neovascularization does not merely reflect an increase in capillary number but also a general modification in 
the physiology of the vasculature [6, 61]. Secretion of pro- angiogenic signals by both tumor cells and the 
microenvi- ronment causes the formation of an abnormal vasculature, with chaotic and tortuous blood vessels and 
aberrant func- tion, due to vasodilatation and increased vascular perme- ability [6, 62]. An aberrant vasculature 
results in hypoxia and necrosis that negatively impacts tumor progression, and vessel leakiness causes suboptimal 
blood flow and tumor perfusion. Impaired tumor perfusion affects the response to standard therapies due to 
reduced cytotoxic drug delivery within the tumor mass and defective production of oxygen radical species required 
for successful radiotherapy [63]. 
This additional knowledge must now be incorporated in the definition of new anti-angiogenic therapies. The 
latter should be implemented also considering the goal of revert- ing abnormal vasculature and to restore normal 
blood flow. In principle, this strategy should improve tumor perfusion while decreasing interstitial pressure and 
hypoxia-driven tumor aggressiveness [63, 64]. 
As mentioned above, another important consideration is that the tumor mass is a complex environment 
com- posed not only of cancerous cells but also of many other cell types such as fibroblasts, endothelial, and 
BMDCs. Considering the continuous and dynamic cross-talk among these cell lineages, current treatments are 
unlikely selec- tive for only one cell type. Indeed, targeting blood vessels affects tumor cell proliferation and 
migration, and simi- larly targeting cancer cells deeply impinges on the tumor environment. This phenomenon, 
which has been referred to as “accidental anti-angiogenic therapy”, can be a con- sequence of chemotherapy or 
small molecules inhibitors [65]. In the case of small-molecule inhibitors, possible off- target effects are an 
important consideration. For example, it has been reported that targeting oncogenic BRAF with the tyrosine 
kinase inhibitor sorafenib not only inhibits cell proliferation in mutated tumor cells but directly affects 
angiogenesis because it blocks VEGFR2 and PDGFR activ- ity [12]. A different mechanism acts in bystander anti-
angi- ogenic therapy where targeting oncogenic events in the epi- thelial cell compartment indirectly impinges on 
the tumor environment [66]. 
 
 
 
Oncogenes in tumor angiogenesis 
 
Genetic modifications occurring in the genome initiate the transformation process that leads to cancer. Two types 
of genetic aberration can drive tumorigenesis: mutation/ amplification of oncogenes, and inactivation/deletion of 
oncosuppressor genes. The discovery that cancer cells rely on specific genetic alterations for their survival has 
driven the development of targeted therapy with the aim of inhib- iting the proliferation of tumor cells [67–70]. 
Activation of oncogenic pathways triggers profound modifications in the expression profile of tumor cells. Among 
others, the expression of several cytokines and growth factors is directly affected by the activity of individual 
oncogenes, thereby influencing the tumor environment [66, 71, 72]. 
Angiogenesis, just like most biological processes, relies on an appropriate balance of factors to maintain an 
optimal physiological condition. In cancer, the delicate equilibrium between pro- and anti-angiogenic factors is 
lost, with the abundance of pro-angiogenic cytokines being the main driver of tumor angiogenesis. A therapeutic 
approach that depletes or inactivates an angiogenic pathway, such as anti- VEGF therapy, causes vessel pruning 



 

and an inadequate vasculature with necrosis and hypoxic stress that negatively effects the tumor environment [63]. 
We suggest that an alternative strategy to target tumor angiogenesis could be to rescue the equilibrium of 
angiogenic signals by target- ing the mutated oncogenes, which play a central role in this process. 
Several examples of oncogene-driven angiogenesis have been described [65, 66]. Indeed, activation of MAPK and 
PI3K-AKT pathways, which are usually deregulated in cancer, enhances the expression of pro-angiogenic factors 
by acting at both the transcriptional and translational levels [73–75]. These findings may explain why targeted 
therapy, which usually has a cytostatic effect on tumor cells, also affects the tumor environment and normalize 
tumor vascu- lature (Table 1). 
We recently described how targeting oncogenic BRAF, a serine threonine kinase, affects angiogenesis [71]. BRAF 
is frequently mutated in human cancer and the BRAFV600E mutation can influence the tumor environment by 
increas- ing expression of HIF1α, VEGFA, IL1β, and IL8, and by lowering levels of the angiogenic blocker 
thrombospondin 
1 [71, 76–80]. We found that the most common BRAF vari- ant (the BRAFV600E mutation) modulates the 
production of angiogenic molecules by cancer cells. Furthermore, evaluated the effect of the specific 
BRAFV600E inhibitor PLX4720 on tumor angiogenesis and demonstrated that targeting BRAF stabilizes the 
tumor vasculature and abro- gates hypoxia in tumor xenografts. Intriguingly, we found that PLX4720 acts by 
specifically switching-off the MAPK pathway in BRAF-mutated cells, thereby decreasing the expression of 
angiogenic molecules. These data led us to suggest that pharmacological inhibition of oncogenes in tumor cells 
can restore a functional vasculature and poten- tially blocks the specific angiogenic program activated by 
individual tumors. This mechanism of action provides a clear example of bystander anti-angiogenic therapy. 
Similarly to BRAF, the RAS oncogene is a master regu- lator of the MAPK pathway that has been directly 
linked to induction of tumor angiogenesis [81]. Activated RAS increases the expression of VEGF and other 
angiogenic chemokines like CXCL1, CXCL5, and IL8 while sup- pressing expression of the angiogenesis 
inhibitor throm- bospondin 1 [82–86]. A concomitant mechanism by which oncogenic RAS stimulates the 
angiogenic program is by up-regulating proteases important for matrix remod- eling, such as uPA, MMP2, and 
MMP9 [87, 88]. The role of KRAS in driving angiogenesis is supported by clinical data in non-small cell lung 
cancer and in pancreatic tumor showing that KRAS activating mutations correlate with high VEGF expression 
[89, 90]. Inhibition of RAS activ- ity by gene silencing suppresses VEGF expression. Moreo- ver, decreased 
VEGF expression in KRAS-mutated colon cancer cells reduces the tumorigenic potential in vivo, highlighting 
the importance of VEGF expression in KRAS- driven tumors [91]. 
The PI3K-AKT-mTOR axis, which is often deregulated in human cancer, is another important pathway that con- 
trols the angiogenic program in tumor cells. The activa- tion of this signaling pathway up-regulates the 
expression of HIF1α and VEGF and consequently promotes tumor angiogenesis [92–94]. Small-molecule 
inhibitors block- ing different signaling nodes of this pathway have shown important effects on vascular 
normalization with conse- quent improvement in vascular blood flow and tumor oxy- genation [95, 96]. 
Myc and p53 also act as master regulators of angiogenic factors. C-Myc triggers the expression of VEGF while 
it Oncogenes targeted therapies with anti-angiogenic properties angiogenic factors like VEGF and FGF as well as 
in the up- regulation of thrombospondin 1 [99–101]. For example the expression of p53 is required to reverse the 
angiogenic pro- gram in hematopoietic malignancy. In this type of tumor, Myc inactivation is sufficient to induce 
tumor regression, but its effect is less prominent when p53 is lost. Expres- sion of p53 reverses tumor angiogenesis 
by controlling the up-regulation of thrombospondin 1 and allows a sustained tumor regression after Myc 
inactivation [102]. A recent study shows that p53 can also repress the thrombospon- din 1 promoter in prostate 
cancer cell lines, suggesting a context-dependent regulation of thrombospondin 1 by p53 [103]. 
The inhibition of EGFR or HER2, tyrosine kinase receptors that activate MAPK and PI3K, is another exam- ple 
of vessel normalization by bystander oncogene target- ing. EGFR can be amplified and mutated in several tumors 
including lung, colon, and glioblastoma. Pharmacological inhibition of EGFR decreases the expression of HIF1α 
and VEGF by tumor cells and treatment of tumor xenografts with Erlotinib or Iressa, two different tyrosine kinase 
inhibitors, also lead to vessel normalization [95, 104, 105]. As mentioned above, this effect on the tumor 
microenvi- ronment can improve the success of both cytotoxic chemo- therapy and radiotherapy. A preclinical 
study has shown that pretreatment of tumor xenografts with Erlotinib increases the delivery of chemotherapeutic 
agents within the tumor and results in higher inhibition of tumor growth compared to the single treatment [106]. 
Moreover, pre- treatment with Erlotinib enhances the effect of radiation therapy in vivo but not in vitro, 
demonstrating that EGFR targeting may positively affect the tumor microenviron- ment [106]. HER2 is an 
important oncogene overexpressed in aggressive breast cancer. It has been found that targeting HER2-positive 
tumors with Herceptin strongly influences vascular structure and function and cause vessel normali- zation. 
Herceptin treatment slows down the secretion of VEGF, PAI-1, TGF-α, and Angiopoietin1, all important 



mediators of angiogenesis and in parallel up-regulates the expression of the anti-angiogenic factor 
thrombospondin 1 [107]. 
In conclusion, multiple evidences show that oncogene- targeted drugs might also impact tumor angiogenesis, 
suggesting an innovative strategy to revert aberrant vascu- lature and positively impact tumor environment. The 
limi- tation of this approach relies in the ability of tumor cells to develop secondary resistance towards targeted 
therapy. It is known that a tumor can overcome the dependency on a specific oncogene through various 
mechanisms: by involv- ing compensatory genes through the activation of alter- native molecular pathways or by 
the acquisition of new genetic alterations due to the intrinsic genomic instability of cancer cells [108]. The 
finding that targeting oncogene addiction in tumor cells results in abrogation of pro-angi- ogenic signals suggests 
that once acquired resistance is established reactivation of oncogenic pathways may trig- ger an angiogenic 
rebound. Therefore, any anticancer ther- apy (be it directed to the tumor cells or to the surrounding stroma) will 
always be limited by secondary resistance. Overcoming the latter is key in providing long-lasting clinical benefit. 
 
Conclusions and perspectives 
 
Both tumor angiogenesis and oncogenic addiction are con- sidered hallmarks of cancer [62, 109]. In this review, 
we highlight the connection between these two events and dis- cuss the hypothesis that targeting oncogenes can 
positively affect the tumor environment. We summarized examples of therapies aimed at blocking oncogenes that 
concomitantly were shown to have a clear effect on vascular normaliza- tion and tumor perfusion. At the same 
we note that tar- geting oncogenes can improve blood vessel structure and tumor oxygenation without having any 
obvious effect on tumor cell proliferation [95]. This suggests that oncogenic pathways can be involved in the 
activation and mainte- nance of the angiogenic program even in cancer cells that are not addicted to the targeted 
oncogenic mutations for proliferation. 
By comparing the anti-angiogenic effect of oncogene- targeted therapy with an anti-VEGF approach important 
considerations can be made (see Fig. 1). An anti-VEGF approach causes blood vessel pruning and hypoxic stress 
that can result in an adaptive response with associated rebound in neoangiogenesis and in some case enhanced 
tumor aggressiveness. This is a feasible explanation for the short clinical benefit observed in patients treated with 
anti- angiogenic drugs [110, 111]. In contrast, oncogene-targeted therapy causes blood vessel normalization by 
restoring the equilibrium of angiogenic molecules and it is predicted that this effect is more sustainable and should 
allow a prolonged response [64]. 
A second relevant consideration is that anti-VEGF therapy is directed towards a single angiogenic stimulus and 
acts by blocking the VEGFR signaling pathway. The first limitation of this strategy is that to obtain a functional 
vasculature, the maintenance of a correct amount of angio- genic cytokines and not a complete depletion is 
important. Moreover, tumors develop resistance to anti-VEGF treat- ment and drive revascularization by 
alternative angiogenic programs. Despite the fact that the main read-out described for oncogene-driven 
angiogenesis is VEGF, other angio- genic stimuli are modulated by oncogenic mutations and blocking oncogenes 
with targeted inhibitors has the advan- tage of affecting a wide range of pro- and anti-angiogenic molecules [27, 
64]. 
All these factors suggest that standard anti-angiogenic therapy is unlikely to succeed in all tumors, but treatment 
strategies need to be adapted to individual cancers. Selec- tive biomarkers are needed to predict which patients will 
benefit from anti-angiogenic therapy and, considering that a specific angiogenic profile can be activated in 
different cancers, to select the appropriate therapy. Moreover, sev- eral studies have aimed at identifying 
molecular changes which is an important parameter for the early identification of response or resistance to the 
therapy [112–114]. 
To date, reliable markers to predict response to anti- angiogenic treatment are not available; for example in 
metastatic colorectal cancer, neither VEGF nor microvessel density was predictive for response to bevacizumab 
[115]. Oncogenic mutations are already considered an important clinical parameter to stratify patients and identify 
suitable therapies. However, oncogenes have failed to be predic- tive for response to classical anti-angiogenic 
therapy [116], but it is possible that they will become useful for choosing alternative strategies. The knowledge 
about how the tumor microenvironment is influenced by targeted therapy will allow a better understanding of the 
clinical outcome and hopefully a clearer prediction of patient response. 
We propose that blocking oncogenic pathways may result in inhibition of cancer cell proliferation, while con- 
comitantly normalizing tumor vasculature. This approach opens possibilities for combinatorial treatments with 
chem- otherapeutic agents or radiation therapy that would rely on the positive effects of vascular normalization on 
blood flow and tissue perfusion. Furthermore, by selectively blocking oncogenes, it should be possible to stall, at 
least temporar- ily, the angiogenic program. As oncogenes are activated in a tumor-specific fashion, we envision a 



 

personalized anti- angiogenic therapy that normalizes tumor vasculature even in cancers that are intrinsically 
refractory to anti-VEGF treatment thereby overcoming some of the limits of current anti-angiogenic drugs. 
 

Fig. 1 Anti-VEGF and anti- 
oncogene-targeted therapy 
in tumor angiogenesis. a 
Onco- genic mutations 
drive tumor angiogenesis 
by increasing the 
expression of pro-
angiogenic factors. The 
unbalance between pro- and 
anti-angiogenic fac- tors 
causes an aberrant and 
missfunctional vasculature. 
b Anti-VEGF therapy 
causes blood vessel pruning 
and hypoxia that negatively 
impacts tumor progression. 
c Oncogene- targeted 
therapy potentially slows 
down the angiogenic 
program in tumor cells and 
restores the balance 
between 

pro- and anti-angiogenic fac- tors, thereby leading to blood vessel normalization 
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