
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Toward understanding and exploiting tumor heterogeneity

Published version:

DOI:10.1038/nm.3915

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1566488 since 2016-06-14T16:11:58Z



 

 

 

 

This is an author version of the contribution published on: 
Questa è la versione dell’autore dell’opera: 

Nat Med. 2015 Aug;21(8):846-53. doi: 10.1038/nm.3915 

 

The definitive version is available at: 
La versione definitiva è disponibile alla URL: 

http://www.nature.com/nm/journal/v21/n8/full/nm.3915.html  



Title: Towards understanding and exploiting tumor heterogeneity 
 

Authors (listed alphabetically)  
 
Ash Alizadeh (Department of Medicine, Divisions of Oncology, Hematology, and Cancer 
Institute, Stanford University School of Medicine, Stanford, CA 94305 USA), Victoria 
Aranda (Nature Medicine), Alberto Bardelli (University of Torino, Department of 
Oncology, SP 142, Km 3.95, 10060 Candiolo, Torino, Italy & Candiolo Cancer Institute – 
FPO, IRCCS, Candiolo, Torino, Italy), Cedric Blanpain (Université Libre de Bruxelles (ULB), 
Brussels), Christoph Bock, Christine Borowski (Nature Medicine), Carlos Caldas 
(Department of Oncology, University of Cambridge, Cambridge, UK), Andrea Califano, 
Michael Doherty, Markus Elsner (Nature Biotechnology), Manel Esteller, Rebecca 
Fitzgerald (MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge), 
Bertil Johnsson, Jan Korbel, Peter Lichter, Christopher Mason, Nick Navin, Dana Pe’er, 
Kornelia Polyak (Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA), 
Charles Roberts, Lillian Siu (Princess Margaret Cancer Centre, Toronto, Canada), 
Alexandra Snyder-Charen, Hannah Stower (Nature Medicine). Charles Swanton ( 

University College London Cancer Institute Cancer Research UK Lung Cancer Centre of 
Excellence and University College London Hospitals NHS Foundation Trust.The Francis 
Crick Institute, 44 Lincoln’s Inn Fields, London, UK), Roland Verhaak (Department of 
Genomic Medicine, Department of Bioinformatics and Computational Biology, UT MD 
Anderson Cancer Center, Houston, TX 77030 USA), Jean C. Zenklusen, Johannes Zuber, 
Jessica Zucman-Rossi 
 
Introduction 
In many malignancies, molecular and cellular heterogeneity within a single tumor, 
between different sites of disease in a single patient, and between tumors in different 
patients confounds our understanding of tumor evolution and our ability to design and 
select effective therapies, as well as to curtail treatment resistance. 
http://www.nature.com/nrclinonc/journal/vaop/ncurrent/full/nrclinonc.2015.73.html 
http://www.ncbi.nlm.nih.gov/pubmed/22513401 
http://www.cell.com/cancer-cell/abstract/S1535-6108%2814%2900510-8 
 
We still, however, are at the very beginning of understanding the full extent of tumor 
heterogeneity (including the contribution of the tumor microenvironment), which 
types/aspects of tumor heterogeneity are relevant in which tumor types and in which 
clinical scenarios, and how to counter and/or exploit tumor heterogeneity for 
therapeutic gain. 
 
To begin to tackle these issues, Nature Medicine, Nature Biotechnology and the 
Volkswagen Foundation invited a group of 20 scientists from around the globe for a two 
day brainstorming session in the beautifully restored Herrenhausen Palace in Hanover, 

http://www.nature.com/nrclinonc/journal/vaop/ncurrent/full/nrclinonc.2015.73.html
http://www.nature.com/nrclinonc/journal/vaop/ncurrent/full/nrclinonc.2015.73.html
http://www.sciencemag.org/content/346/6206/251.long
http://www.sciencemag.org/content/346/6206/251.long
http://www.ncbi.nlm.nih.gov/pubmed/22513401
http://www.cell.com/cancer-cell/abstract/S1535-6108%2814%2900510-8


Germany [callout to Figure depicting Herrenhausen Palace grounds--Herrenhausen 
and Susan Kim to provide this figure]. 
Reflecting the variety of expertise needed to tackle the issues mentioned above, this 
group included computational biologists, technology developers, cancer biologists, 
clinicians, industry representatives and regulators.  The aims were to identify the most 
important questions that need to be answered about tumor heterogeneity, and map 
paths to answering them.  Hopefully the new collaborations and networks forged at the 
meeting will help make some of these paths a reality.  
All in attendance felt that sharing the group’s findings--especially the questions 
identified as most pivotal--with the broader community was key.  This Perspective aims 
to do just that, and is organized in the same manner as the two day meeting.  Whereas 
the first day involved all attendees brainstorming as a single larger group about the 
most important questions needing answers, the second day was spent in four smaller 
discussion groups (Cancer Evolution, Beyond the Genome, Clinical/Regulatory and 
Technology) brainstorming about the answers to four or five selected questions.  At the 
end of the second day, each group crafted a presentation to reveal their conclusions to 
the larger group. The question and answer period that resulted proved to be a highlight 
of the meeting.   
Cancer Evolution  
While many biological aspects of tumor heterogeneity are unknown, the group focused 
on establishing the basic premises by which we can define and study the parameters of 
tumor evolution. 

What is a clone?  

This term is used widely in the field but the discussion in this group revealed that 
perhaps surprisingly there is no consensus as to what it indicates; in fact this question 
sparked some of the most animated discussion at the meeting. In principle, under the 
assumption that tumors arise from a single cell, each tumor can be considered a clone. 
In this scheme, trunk mutations have thus a cancer cell fraction (CCF) of 1. All cells 
within a tumor with a CCF<1 could be considered subclones, at least with regard to their 
relative population frequency within a given lesion. However, the group recognized that 
even this definition is misleading, due to an illusion of clonality within a single biopsy, 
where a particular mutation can appear clonal within one biopsy with a CCF of 1, but on 
subsequent tumour sampling the mutation may be subclonal or absent altogether.  

What is a driver?  

The term ‘driver’ is typically used to denote a genetic event associated in some way with 
tumor progression. Although it might traditionally be viewed as a tumor cell-
autonomous alteration that promotes tumor proliferation, after discussion we felt it 
may be useful to extend this definition to encompass a broader slice of the complex 
biology of pro-tumorigenic events. In other words, a broader biological definition of 
cancer driver would be a cell autonomous or non-autonomous alteration that 
contributes to tumor evolution at any stage, including initiation, progression, metastasis 
and resistance to therapy, by promoting a variety of functions including proliferation, 



survival, invasion, or immune evasion. Accordingly, drivers can be identified based on 
statistical analyses of genetic or epigenetic alterations, or by functional screens, and 
should ideally be confirmed by experimental evidence including preclinical in vitro and 
in vivo data, as well as clinical data. Complicating the matter further, as the role of a 
driver is constrained by spatial and temporal contexts, genetic events can act as drivers 
at one stage of tumorigenesis, but as passengers at another stage and vice versa.  

What is the source of heterogeneity in cancer, and what is the contribution of 
heterogeneity to cancer evolution?  

Regarding the source(s) of heterogeneity, while evolution is driven by selection of 
phenotypes according to their relative fitness, not all somatic genetic alterations have a 
recognizable phenotypic consequence and even fewer provide a fitness advantage. 
Selection for phenotypic alterations can favor the outgrowth of cells with genetic 
alterations associated with that phenotype. Therefore, when studying cancer evolution, 
it is likely that multidimensional phenotyping--measuring signaling, epigenetic, 
transcriptional, metabolic, and other alterations in addition to genetic alterations--
together with functional screening will be most informative in revealing the source(s) of 
the phenotype(s) that is driving tumorigenesis. Generating and interpreting these data is 
not trivial and the unanswered questions related to these issues are covered in the 
Technology section, below.  Regarding the contribution of heterogeneity, while 
heterogeneity can be broadly considered as a trait that allows tumors to overcome 
evolutionary pressures, it can also reflect vulnerabilities that could be exploited 
therapeutically. This makes it even more important to develop tools to quantify and 
model tumor heterogeneity. 

How can we model tumor heterogeneity in preclinical experiments?  

One challenge to assessing the dynamic contribution of heterogeneity as a trait of tumor 
progression is the fact that current preclinical tumor models do not recapitulate the 
condition under which heterogeneous tumors arise and evolve in humans 
[http://www.nature.com/nm/journal/v21/n5/abs/nm.3853.html]. For example, 
although genetically engineered mouse models (GEMMs), have been instrumental in 
revealing crucial aspects of tumor biology, their tumors are relatively small and 
homogeneous, driven by a small number of genetic alterations, and can be polyclonal in 
nature. Tumor burden, metastatic potential and tumor longevity are also not 
recapitulated adequately in mouse models..  We need to apply new technologies to 
these problems; for example CRISPR/Cas-mediated genome editing can help 
recapitulate the genetic variability accumulated during human tumor evolution. Patient-
derived xenograft (PDX) models do capture, at least at the start, some of the 
heterogeneity of patient samples. However, some subclones can be selected for 
increased fitness for growth in the mouse host, which lacks the proper 
microenvironmental and immune components that may otherwise influence subclonal 
selection. Ongoing efforts to humanize mouse models may help incorporate relevant 
features that shape tumor evolution in humans. Beyond animal models, in vitro 
approaches such as tumor slice cultures can be exploited to recapitulate a snapshot of 

http://www.nature.com/nm/journal/v21/n5/abs/nm.3853.html


the tumor in its native environment, and organoids can be used to model tumorigenesis 
in human cells. In silico models that use multiscale parameters can also create 
interesting hypotheses that are experimentally testable. However, because no model is 
perfect, many in the group felt that there was no substitute for studying tumour 
evolution within the patient.  
Beyond the Genome  
What is the contribution of the epigenome to tumor phenotype and clinical outcome?  
 
Cell states are defined by the interplay of the genome, epigenome, transcriptome and 
proteome in each tumor cell. Because cell states tend to be self-stabilizing, there are 
typically many fewer distinct cell states in a tumor than the amount of genetic, 
epigenetic, and transcriptional heterogeneity would suggest. Thus, even genetically 
distinct cells may be in a similar cell “state” and hence may be susceptible to treatment 
with the same drugs. On the other hand, even genetically identical cells can express a 
large number of substantially different “cell states” due to influence of the micro-
environment and hence the epigenome. However we must stop thinking about the 
genetic and epigenetic contributions to cell state separately because both of their 
contributions to cell state may be intertwined. Furthermore, it is known that epigenetic 
defects, such as promoter CpG island hypermethylation-associated silencing of DNA 
repair genes, cause genetic changes; and translocations and mutations can also target 
epigenetic disruption thus resulting in further interaction between epigenetic and 
genetic traits.  
 
We must strive to identify different cell states by integrating different datasets and once 
these are identified, we must work toward therapeutic strategies based on inferred cell 
states.  Although epigenetic data forms only a part of such integrative analysis, because 
epigenetic modifications are dynamic and responsive to environmental pressures, they 
may exert a particularly strong role in the definition of the cell state and behavior at any 
given moment in time in response to therapy. In addition, although epigenetic marks are 
dynamic, they represent the history of the cancer, as once a cell has passed through a 
particular cell state, some of these epigenetic marks remain. Moreover, epigenetic 
marks, specifically regions of open chromatin, can also reflect the potential of the tumor 
to respond to an environmental or therapeutic pressure. Epigenetic marks are therefore 
unique in their ability to provide information about the previous, present and potential 
future states of a cell. 
 

Because epigenetics provides a different and complementary paradigm to the analysis 
of genetic mutations, it may be possible in the future, once we have defined these 
states to use two or three important epigenetic markers to infer cell states. 
Furthermore, as the epigenetic state of cancers is more plastic than that of normal 
development, such contributions may be critical to understanding phenotypic changes 
of cancers such as the epithelial-mesenchymal transition, the capacity to disseminate 
beyond the primary site, and drug resistance. 



What methods and samples do we need to describe and understand the heterogeneity 
and influence of the tumor microenvironment? 

To understand the influence of the microenvironment on cell state, we need to 
coordinately characterize DNA sequence, epigenome, transcriptome, protein, 
metabolites and infiltrating immune cells in both the tumor and the stroma. Evaluation 
of data from single cells will provide additional insights into heterogeneity. Only through 
integration of such data, can we begin to develop a more robust understanding of 
cancer states. As a consequence, there will continue to be increasing need for 
computational biologists. Such technologies are discussed further below. 
How do we increase the immunogenicity of tumors? 

Immunogenicity depends on mutations that generate epitopes that are not recognised 
as “self” by tumor-infiltrating T lymphocytes.  Therefore, chemotherapy and other 
genotoxic drugs may improve the outcome of immunotherapy interventions including 
adoptive T cell transfer and immune checkpoint blockade by generating mutations or 
modifying the immune microenvironment. 
(http://clincancerres.aacrjournals.org/content/20/21/5384.long). However, it is unclear 
whether subclonal changes in immunogenicity will be enough to cause the whole tumor 
to be eradicated by the immune system. It is possible that applying radiation therapy 
prior to checkpoint blockade will result in increased efficacy.  Isolated cases have 
suggested an abscopal effect of such treatment, but this has yet to be confirmed in a 
randomized clinical trial (http://www.nejm.org/doi/full/10.1056/NEJMoa1112824). 
Recent data suggest that sustained benefit of radiation combined with CTLA4 blockade 
may also require PD-L1 blockade to reverse T cell exhaustion, and that radiation 
increases the diversity of the T cell receptor repertoire on intratumoral T cells 
(http://dx.doi.org/10.1038/nature14292). Oncolytivc viruses may also be used to 
increase immunogenicity, via the induction of an inflammatory response upon local 
injection of virus, leading to control of distant tumors by an increase in tumor infiltrating 
cytotoxic populations (http://stm.sciencemag.org/content/6/226/226ra32.long).  For 
example, Talimogene laherparepvec (T-VEC) has shown promising data in Phase III 
clinical trials 
(http://jco.ascopubs.org/content/early/2015/06/16/JCO.2014.58.3377.long).  

Clinical/Regulatory  

What aspects of tumor heterogeneity actually matter in the clinic, and how can they be 
transformed into diagnostic strategies and treatment guidelines including biomarkers of 
response?  

We need more information on the degree to which heterogeneity affects the clinical 
management of patients. We need more work to document the phylogeny and generate 
atlases or road maps for each tumor subtype.  This will allow us to identify more 
confidently the trunk mutations for each subtype and begin to understand the 
branching properties. Although one could easily assume that between The Cancer 
Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and other 
consortia we have at our disposal the tumor genomic data needed to generate road 

http://clincancerres.aacrjournals.org/content/20/21/5384.long
http://www.nejm.org/doi/full/10.1056/NEJMoa1112824
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maps for each tumor subtype, this group felt that none of our existing tumor genome 
repositories are actually sufficient for this sort of analysis.  This is because these 
programs were not designed to address the heterogeneity component of cancer, and 
because all platforms used characterized the tumors in ‘bulk’, giving results that average 
across all tumor clones. Although some bioinformatics tools have been developed to 
tease out the clonal data in these datasets, their inherent limitations still exist.  What we 
need for each subtype is a minimum number of primary tumors; the minimum number 
will likely vary according to the tumor subtype and its inter-patient 
heterogeneity.  Ideally we will obtain multiple regions from each tumor to capture 
spatial heterogeneity.  To differentiate trunk mutations from subclones, we need to 
sequence each region deeply.  Ideally epigenetic and other analyses will also be 
performed.  Patients who donated their tumors must then be followed longitudinally 
and tissue--where practical--and blood collected at regular time points and subjected to 
more deep sequencing to follow the molecular changes.  Clinical annotation of samples 
and phenotypic correlation is essential at each step.  This sort of analysis should reveal a 
finite number of trunk (clonal) and tree (subclonal) mutations, which can inform about 
the signaling pathways involved, for each tumor type.  Excitingly, some new studies such 
as TRACERx incorporate several of these design elements, albeit in a single tumor type 
(https://www.clinicaltrials.gov/ct2/show/NCT01888601?term=TRACERx&rank=1).  

How can we maximize the extraction of molecular and clinical data that is sharable and 
likely to feed back to benefit patients? 

We need new consortia composed of academic medical centers and industry partners 
and regulatory agencies.  Prior to clinical sample collection or data generation, all 
stakeholders need to agree on a minimal set of metadata that need to be collected for 
each tumor in a format that enables sharing; characterization must be systematic and 
agnostic to the tumor subtype.  Genomic, clinical and any other data--once collected--
must be added within a time frame agreed upon at the outset to a repository identified 
by all as suitable.  To maximize the extent of effective data sharing and minimize sharing 
limitations caused by differences in consent practices across institutes, municipalities 
and nations, new harmonized consent practices consisting either of universal consent 
forms, or a universal option for patients to waive all restrictions on global sharing of 
data--even data such as germline sequences which have the potential to reveal identity 
of patients and their relatives--are needed up front. Patients, for example through 
formation of new patient advocacy organizations, should be empowered to drive data 
sharing.  Encouragingly, several of these considerations are being incorporated into new 
consortia such as Cancer Core Europe 
(http://www.ncbi.nlm.nih.gov/pubmed/?term=Eggermont+AM%2C+Caldas+C). 

How can we ‘drug’ tumor heterogeneity?  

Although combination drug studies are challenging, adaptive trial designs to test 
combinations of targeted therapies with chemotherapies and/or immunotherapies 
based on molecular information extracted from individual tumors will be needed. 
Whether these combinations are given simultaneously at the start of treatment, or 

https://www.clinicaltrials.gov/ct2/show/NCT01888601?term=TRACERx&rank=1
http://www.ncbi.nlm.nih.gov/pubmed/?term=Eggermont+AM%2C+Caldas+C


sequentially as new resistance or other subclonal mutations appear during longitudinal 
analysis of patient samples obtained through non-invasive methods, may vary 
depending on the appearance of the road map of each tumor subtype generated by the 
consortia mentioned above, and on the therapeutic window of each drug alone and in 
combination. Ideally we could always block druggable trunk mutations and then add 
drugs to block emerging subclones.  To simplify development of combination therapies, 
drugs showing a high degree of tumor vs. normal tissue selectivity (e.g. those targeting a 
mutant but not wild type version of a tyrosine kinase) may be prioritized. To minimize 
legal and financial hurdles that prevent testing of combinations of different drugs from 
different companies, ‘honest broker’ approaches that negotiate these issues with 
companies (along the lines of the Cancer Research Institute Clinical Accelerator, Cancer 
Core Europe, and the NCI Cancer Therapy Evaluation Program (CTEP)) should be 
proactively incorporated into the consortia mentioned above. It is likely that tumour 
heterogeneity in the form of increased somatic mutational diversity in some cases 
represents an Achilles’ Heel for tumours due to the increased likelihood of tumour neo-
antigens being recognised as non-self by T cells. 

Why do clinical trials fail and what is the clinical trial of the future? 

The ideal clinical trial will incorporate patients whose tumors have been selected as 
likely to respond based on molecular markers of response that have been well validated 
in preclinical studies.  However, trials in which a single agent is tested in a cohort with a 
matched biomarker do not provide information about the impact of heterogeneity, nor 
the longitudinal evolution of clonal or subclonal cells. The reason for lack of response, 
either in the cohort or at the individual level requires understanding of the spatial and 
longitudinal heterogeneity of the tumor. The ideal clinical trial will be dynamic--in real 
time--to molecular changes revealed by frequent characterization of tumor evolution in 
response to therapy.  This characterization will require material from the primary tumor 
or metastases (not always accessible) or could be achieved by studying nucleic acids 
and/or cells in the blood, as emerging data suggests liquid biopsies are feasible 
(http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3870.html, 
http://www.nature.com/nm/journal/v21/n6/full/nm.3854.html, 
http://www.nature.com/nm/journal/v20/n5/full/nm.3519.html 
http://www.nejm.org/doi/full/10.1056/NEJMoa1213261). Imaging approaches may not 
have sufficient resolution, information content, or speed to reveal molecular changes 
indicative of emerging resistance to therapy, although new imaging modalities such as 
13C-based magnetic resonance spectroscopy might provide metabolic readouts of 
response (http://www.nature.com/nm/journal/v20/n1/full/nm.3416.html).  Changes in 
clinical practice and regulatory procedures may be needed.  For example, are we ready 
to conduct trials in which treatment is adapted based on changes in circulating free 
tumor DNA as a surrogate of progression? Similarly, in the scenario where a resistance 
mutation is detected in the blood of a patient by analysis of circulating free tumor DNA, 
would a clinician be comfortable discontinuing that targeted therapy and switching to a 
different targeted therapy, even if the patient’s tumor remains stable or continues to 
shrink as revealed by imaging analysis? 

http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3870.html
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Technology  
What sources of heterogeneity can we measure and which are difficult to assess? 
DNA Assessing the mutational landscape of tumors by high throughput DNA sequencing 
of bulk samples is the most mature of all the technologies used for the molecular 
characterization of tumor heterogeneity. Single nucleotide and structural variations with 
a high allele frequency can be robustly detected with the sequencing depth that can be 
routinely achieved in experimental as well as clinical settings. For comprehensive 
cataloging of mutations that occur with a frequency of less than 1-2%, the required 
sequencing depth for robust variant calling (400-500x) is still prohibitive for larger scale 
studies, but it can be expected that with the continuing development in sequencing 
technology this issue will be solved in the near future. A major advantage of DNA 
sequencing is that it is relatively robust towards sample treatment and high quality data 
can be obtained from most specimens, although accurate enumeration of subclonal 
tumor heterogeneity in archival samples that are generally formalin-fixed and paraffin 
embedded (FFPE) can be more challenging 
 
Optimizing analysis pipelines for variant calling has been an intensive focus of research 
in recent years. A low false positive or false negative mutation detection rate has little 
effect in TCGA/ICGC-like cohort studies but may lead to artefactual differences between 
related mutation profiles, and cause critical misinterpretations of study results. What is 
currently missing is an independent systematic evaluation of the many pipelines 
currently used for mutation calling in cancer samples. In this context, a valuable 
community resource would be the availability of benchmarking reference specimens 
with defined clonal composition as assessed by a gold-standard. We expect the results 
from comparative evaluation such as ICGC-TCGA DREAM Genomic Mutation Calling 
Challenge will provide a good estimate of the relative performance of the different 
methods for the processing of whole genome datasets, but further investigations are 
likely to be needed to benchmark tools for calling of subclonal mutations and the 
estimation of allele frequencies. Conservative approaches, such as >60x coverage 
thresholds and mutation filtering using multiple germlines, are recommended when 
determining the amount of heterogeneity between tumor samples.  A relatively 
uncharted area is the development of metrics that quantify similarity and differences 
between samples from the same clonal origin, which includes multiple biopsies from the 
same tumor, pre- and post-treatment samples from the same patient, or comparison of 
tumor samples and (xenotransplanted) model systems.  . 
 
In the context of heterogeneity the more recent development of single cell genome 
sequencing is very exciting as it allows not just for an estimation of the frequency of 
individual mutated alleles in a cancer sample, but also for the determination of co-
occurring or mutually exclusive alterations. Currently, the main limitations for single cell 
genome sequencing are the relatively low throughput, and the partial genome coverage 
and high error rate when using amplification methods such as multiple displacement 
amplification (MDA). Also, algorithms for calling SNV and structural variations have not 
been optimized for single cell data yet. 



RNA As with DNA, sequencing is now the method of choice for investigating the RNA 
composition of tumors. In contrast to DNA data, it is difficult to learn much about the 
heterogeneity of bulk samples from RNA-seq data, beyond what can be done by 
sequencing samples from different parts of the tumor. The tumor microenvironment 
may represent as much as 90% of some tumor samples and contributes proportionally 
to the RNA pool, which affects measures of heterogeneity and the overall resulting 
transcriptional profile. Computational deconvolution of different expression 
components within a single sample are able to distinguish between cells from different 
lineages, but have limited applicability in samples with low transcriptional diversity.  
 
Single cell RNA-seq is a robust technology that, with the recently developed Drop-seq 
methods (http://www.ncbi.nlm.nih.gov/pubmed/?term=26000488, 
http://www.ncbi.nlm.nih.gov/pubmed/?term=26000487), can analyze tens of 
thousands of cells simultaneously in a cost-effective and efficient manner. That said, 
sensitivity for lowly expressed genes still needs to be increased for all RNA-seq protocols 
and we need better methods for controlling amplification biases and technical 
noise.  Optimized analysis tools for single cell RNA-seq methods are also being 
developed, but a thorough comparative benchmarking of these tools has also been 
lacking.  For single cell methods, obtaining full-length RNA molecule sequences or 
information about RNA modifications still remains challenging.       
   
As the transcriptome is highly dynamic, sample handling is a critical hurdle in the 
acquisition of quality transcriptomes.  Issues to consider include how quickly the sample 
is processed or frozen following its extraction from the patient and even more 
importantly the protocol through which the cells are disassociated from solid tumors. 
The availability of fresh or rapidly frozen samples is essential, as FPPE samples, although 
they can be processed for RNA-seq, are unlikely to provide a reasonable picture of 
cancer cell states. 
  
Proteins 
Compared to nucleic acid techniques the investigation of proteins lags behind, especially 
in terms of sensitivity and comprehensiveness. Although it is possible to get a complete 
picture of the protein content of a sample using mass spectrometry-based proteomics 
the comparatively large amount of material needed makes proteome-wide experiments 
on cancer samples unfeasible in most instances at the moment. Antibody-body based 
techniques are the method of choice when sample material is limited, but they are 
limited by the availability of high quality antibodies and throughput. On the single cell 
level, technologies such as FACS or CyTOF allow the investigation of currently up to 
about 17 (FACS) or 45 (CyTOF) proteins per cells with very high throughput. Future 
development of CyTOF technology might increase the number of proteins that can be 
monitored, but no technology that can provide a truly comprehensive protein atlas for 
single cells is on the horizon. 
 

http://www.ncbi.nlm.nih.gov/pubmed/?term=26000488
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The protein content is less dynamic than the transcriptome or the epigenome, which 
reduces the requirement for sample freshness.  However, the phosphor-proteome 
critical for the understanding of cancer signaling is even more sensitive and rapidly 
changing than the transcriptome. With regard to FFPE samples, they can be processed 
for proteomics experiments, but not for CyTOF or FACS.   
Epigenetic marks 
As discussed in the ‘Beyond the Genome’ section, the epigenetic features of chromatin 
includuing histone modification, DNA methylation and DNA accessibility provide 
information about both the cell state and the evolutionary history of a tumor. Robust 
technologies have been developed to provide genome-wide maps of most marks. For 
histone marks, Chip-seq methods have been developed that can reliably applied to very 
small samples (1,000 cells or less). Several techniques are currently routinely used to 
assess methylation levels. The most comprehensive picture can be obtained from whole 
genome bisulfite sequencing (WGBS), but precipitation techniques (methylated DNA 
immunoprecipitation sequencing and methylated DNA binding domain sequencing) or 
reduced representation bisulfite sequencing (RRBS) are also still commonly used. WGBS 
can be applied also be applied to small samples, but the DNA damaging effects of the 
bisulfite treatment limit genome coverage. The development of alternative chemistries 
that are less harsh will help reduce experimental artifacts. The Illumina Infinium 450k 
BeadChip platform provides an array-like alternative that has been found to provide 
acceptable DNA methylation profiles, even with FFPE samples. Assays for the various 
oxidized forms of 5-Methylcytosine have been developed, but not thoroughly validated 
in terms of reproducibility and sensitivity. DNA accessibility and nucleosome positioning 
can also be readily measured, most commonly using DNAase I-based assays and more 
recently ATAC-seq for bulk samples. As there are a large number of epigenetic 
modifications that one would like to measure in a given sample, a big need in the field is 
the development of multiplexing strategies that allow measuring many marks at the 
same time in the same sample.  
 
Although some estimation of cellular heterogeneity can be obtained from bulk 
experiments in the case of DNA methylation, single cell assays would provide 
advantages in terms of capturing the amount of heterogeneity, although they would be 
limited by throughput. Single cell assays for histone marks have yet to be developed, but 
given the rapid development in the field, single cell ChIP-seq assays can be expected in 
the near future.  
 
With regard to sample preparation, the epigenome, like the transcriptome, is highly 
dynamic and sensitive to changes in the environment. As such fresh or rapidly frozen 
samples is essential.  
 
Multiplexing 
 
A complete picture of a cell state will often require measuring differ parameters in the 
same single cell. Although it is usually possible to perform multiple assays on a bulk 



sample, this is in many cases not possible with single cell measurements (with the 
exception of RNA and DNA-seq  
 
How can we assess spatial organization of tumors? 
Traditionally, when a spatial resolution higher than what can achieved by multiple 
biopsies is desired, assessment of spatial heterogeneity in tissue samples has been 
limited to microscopy-based methods.  For example, immunofluorescence and 
fluorescence in situ hybridization can localize proteins, RNAs and DNA mutations in 
tissue slices with high sensitivity, potentially down to the single molecule level. In 
practice both methods suffer from difficulties in quantifying expression levels and in 
comparing results within and between different samples due to variable background 
and target accessibility. These techniques are also very low throughput and the number 
of mRNAs or proteins that can be imaged simultaneously are currently limited to a 
handful using standard technology. Imaging site-specific epigenetic modifications is 
currently not routinely done, although at least one method has been developed to 
visualize histone modifications in fixed tissues. 
 
Excitingly, new technologies have emerged in recent years that promise to revolutionize 
our ability to assess spatial heterogeneity of protein and RNA expression.  For proteins, 
CyTOF has been developed into an imaging tool that can image the localization of 
currently up to 32 proteins (and potentially up to 100) with subcellular resolution.  For 
RNA, in situ sequencing methods can provide information about the RNA content of 
individual cells in the context of a fixed tissue. The practical applications of these 
technologies are still in their infancy and a thorough benchmarking of reproducibility 
and sensitivity is yet to be done. Also throughput of these new technologies still seems 
to be severely limited at the moment.  
 
With all these new technologies on the rise, the critical bottleneck has become the 
development of computational methods to analyze each technology individually, 
integrate information from the different technologies together and connect these data 
to prognostic and actionable clinical value. 
 
What non- or minimally invasive technologies can be used to obtain information about 
tumor heterogeneity? 
 
Currently the best sources of information about the molecular makeup of a cancer that 
can be obtained without biopsying the tumor itself are found in the blood.  Cell-free 
DNA and circulating tumor cells are especially rich sources of information. Currently we 
still lack a sufficient number of high quality studies to assess how well data obtained 
from these blood-borne biomarkers reflects the tumor itself, although a number of 
recent studies have already highlighted the power of this approach for the noninvasive 
characterization of tumor heterogeneity in carcinomas of the colon, breast, and lung 
(http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3870.html, 
http://www.nature.com/nm/journal/v21/n6/full/nm.3854.html, 
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http://www.nature.com/nm/journal/v20/n5/full/nm.3519.html 
http://www.nejm.org/doi/full/10.1056/NEJMoa1213261). It is also unclear whether 
primary tumors or metastases contribute more to the pool of circulating cancer 
material. It seems clear however that even if it is determined that circulating material 
faithfully reflects the tumor itself, more efficient ways of isolating the cells and nucleic 
acids from the blood, and data analysis tools that can more faithfully reconstruct the 
parent tumor need to be developed.   
 
Although in vivo imaging technologies are currently not able to provide many insights 
into intratumor heterogeneity in patients due to resolution and labeling issues, some 
work indicates that heterogeneity in PET and MRI imaging is clinically predictive of 
response (http://www.ncbi.nlm.nih.gov/pubmed/25421725).  Image-guided biopsies 
may also make an important contribution to the analysis of genome based intratumoral 
heterogeneity by providing the spatial context to relate different regions.  
 
How do we benchmark and validate the methods used for assessing heterogeneity? 
Validation of the accuracy and robustness of the various assays discussed above will 
require the development of gold standard samples that are readily available and can be 
recreated in reproducible manner by individual labs. For some data types, such as DNA 
sequence mutations, simple mixtures of cell lines will be sufficient, while others such as 
the epigenome or RNA expression are too sensitive to environmental changes and will 
require test samples with more intrinsic control of biological variation, such as ‘spike in’ 
standards. For each assay a set of quality control metrics will have to be agreed upon 
that can be used to assess the performance of improved methods and that each 
investigator can apply to his or her own experiments. 
One should also keep in mind that the levels of accuracy needed for understanding 
biology and for informing clinical decision making may differ, and these should be 
investigated separately.  
What computational methods do we need to integrate the different types of data? 
 
Although we have a wealth of methods that can be applied to existing datasets, and 
methods to simulate tumor dynamics, we should apply our current knowledge to 
envision a more integrated experimental pipeline that can extract the most information 
from patients. Looking forward, several considerations should be taken into account 
when designing both individual lab experiments as well as cooperative projects for high-
throughput data acquisition and analysis. At the outset, a critical point to bring these 
emerging technologies to the clinic is improving sample handling from collection, 
through processing and into proper allocation towards different assays.  
 
Other questions that need to be carefully considered in an experimental design that 
aims to study tumor heterogeneity and evolution include: 1) Which tumor type should 
be chosen? Tumors need to be relatively large to provide enough material for the 
various assays, need to be readily resectable and need to progress sufficiently quickly to 
make a reasonable timeline possible.  2) When should a tumor be sampled and should it 
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be sampled repeatedly? 3) Which parts of the tumor should be analyzed? Should we 
include information about metastatic sites?  
 
Ideally, a coordinated effort to produce these kind of samples would generate gold 
standard datasets from a large number of patients with well annotated clinical history 
and comprehensive tumor imaging. Each patient’s tumor could then be analyzed with a 
wide array of experimental techniques that provide information about different levels of 
heterogeneity.  The core group of methods should include multi-focal bulk and single 
cell DNA sequencing, single cell RNA-seq, multi-focal bulk and single cell mapping of 
epigenetic marks and single cell CyTOF-based analysis of candidate marker proteins. 
Both tumor and micro-environment, including tumor infiltrating leukocytes would 
ideally be assayed. These data could be complemented with other assays that can 
measure spatial heterogeneity or investigate cell free DNA or circulating tumor cells. 
These assays would provide detailed protein, genome and RNA maps, but in order to be 
able to reconstruct patient-specific regulatory networks, algorithms will need to be 
substantially improved. 
 
This wealth of data should then be made available to the research community to 
develop new methods that analyze and integrate the information provided by different 
assays, in order to predict disease outcome and therapeutic success, so we can continue 
to gain insight into the importance and impact of cellular heterogeneity.  
 
Closing remarks 
 One take-home message from this meeting was that the phenomenon of tumor 
heterogeneity is likely to influence--for some time to come--all aspects of cancer 
research, from how we perceive tumor biology, to how we develop techniques to study 
tumors, to how we treat patients. This conference was unique in its goal of identifying 
questions rather than answers, and we hope that this description of the ‘known 
unknowns’ identified by this small group of experts sparks research and collaboration in 
the community at large. 
 


