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1. Introduction 24 

Lawsonite-bearing blueschists and eclogites are witnesses of cold subduction processes occurred along 25 

ancient convergent margins. Metamorphic processes involved in the generation and preservation of 26 

lawsonite are crucial in many research areas, ranging from petrology to geochemistry, geodynamics and 27 

geophysics (e.g. Hacker et al., 2003; Bebout, 2007; Hacker, 2008; Davis, 2011; Martin et al., 2011; Vitale 28 

Brovarone et al., 2011; Chantel et al., 2012; Abers et al., 2013; Cao et al., 2013; Kim et al., 2013; Spandler & 29 

Pirard, 2013). Therefore, lawsonite-bearing eclogites and, to a lesser extent, lawsonite-bearing blueschists 30 

have been the focus of several studies, especially in recent years (Tsujimori and Ernst, 2014 and references 31 

therein). Compared to the rare occurrences of lawsonite eclogites worldwide (see the review paper by 32 

Tsujimori et al., 2006), lawsonite blueschist units are reported from several orogenic belts (e.g. Agard et al., 33 

2009; Tsujimori and Ernst, 2014 and references therein); however, in many cases, the lawsonite blueschist-34 

facies assemblages formed at peak metamorphic conditions are widely overprinted by epidote blueschist- 35 

and/or greenschist-facies retrograde assemblages during exhumation (e.g. Ernst, 1988; Agard et al., 2001, 36 

2006; Jolivet et al., 2003; Schumacher et al., 2008; Plunder et al., 2012). Lawsonite preservation requires 37 

exhumation along cold geothermal gradients, comparable to those required for its formation during 38 

subduction. Such geothermal regimes are typical of ancient Pacific-type plate convergent margins (see 39 

Tsujimori and Ernst, 2014 for a review); the occurrence of well-preserved high-pressure lawsonite 40 

blueschists and eclogites in an orogenic belt is therefore an appealing clue of a peculiar tectonic setting. 41 

Although the Himalaya is the archetype of collisional orogens, formed as a consequence of the closure of 42 

the Tethyan ocean separating India from Asia followed by continental collision between the two plates, 43 

high-pressure metamorphic rocks are rare along the orogen (e.g. Lombardo and Rolfo, 2002; Guillot et al., 44 

2008). Moreover, most of the eclogites reported so far from the Himalaya correspond to the 45 

metamorphosed continental Indian crust dragged below Asia (NW Himalaya: Kaghan, Tso Morari and Stak 46 

massifs; Pognante and Spencer, 1991; Guillot et al., 1997, 1999, 2007, 2008; de Sigoyer et al., 2000; O'Brien 47 

et al., 2001; Sachan et al., 2004; Lanari et al., 2013), or underthrusted beneath southern Tibet (E Himalaya: 48 

Kharta and Bhutan; Lombardo and Rolfo, 2002; Groppo et al., 2007; Chakungal et al., 2010; Grujic et al., 49 

2011; Warren et al., 2011). Evidence of the ancient Tethyan oceanic crust subducted below Asia are also 50 

rare and locally occur within the Indus-Tsangpo Suture (ITS) zone, which separates the northern margin of 51 

the Indian plate to the south (i.e. the Himalaya s.s.) from the southern margin of the Asian plate to the 52 

north (represented, from west to east, by the Kohistan Arc, the Ladakh block and the Lhasa block). These 53 

evidences are: (i) few lawsonite blueschists from the western part of the ITS zone in Pakistan (Shangla: 54 

Shams, 1972; Frank et al., 1977) and Ladakh (NW India) (Sapi-Shergol: Honegger et al., 1989; Zildat: Virdi et 55 

al., 1977; de Sigoyer et al., 2004), interpreted as related to paleo-accretionary prisms formed in response to 56 

the subduction of the Neo-Tethyan ocean below the Asian plate (e.g. Robertson, 2000; Mahéo et al., 2006; 57 

Guillot et al., 2008); (ii) few eclogite, lawsonite- and epidote blueschist -facies rocks reported from the 58 

Indo-Burmese Ranges (Nagaland Ophiolite Complex: Ghose and Singh, 1980; Acharyya, 1986; Chatterjee 59 

and Ghose, 2010; Ao and Bhowmik, 2014; Bhowmik and Ao, 2015; Chin Hill Ophiolite: Socquet et al., 2002), 60 

interpreted as the eastern extension of the ITS zone. These rare high-pressure/low-temperature (HP-LT) 61 

rocks are therefore crucial for constraining the evolution of the India-Asia convergence zone during the 62 

closure of the Neo-Tethyan ocean (Guillot et al., 2008); in this framework, the detailed reconstruction of 63 

their P-T paths is a fundamental step toward a reliable geodynamic interpretation.  64 

The P-T evolution of the eclogites and blueschists from the Indo-Burmese Ranges has been recently 65 

constrained by means of modern petrological methods (e.g. pseudosections); variable peak P-T conditions 66 

have been reported from different portions of the suture zone, ranging from 340 °C, 11.5 kbar (lawsonite 67 

blueschists: Ao and Bhowmik, 2014) to 540 ± 35 °C, 14.4 ± 2 kbar (epidote blueschists: Bhowmik and Ao, 68 
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2015) to 580-610°C and 17-20 kbar (eclogites: Chatterjee and Ghose, 2010). On the opposite, modern 69 

petrologic studies aimed at constraining the P-T evolution of the blueschist-facies rocks from the western 70 

sector of the ITS zone are lacking. Some 25 years ago, Honegger et al. (1989) reported peak metamorphic 71 

conditions of 350-420 °C, 9-11 kbar for the Sapi-Shergol lawsonite blueschists using conventional 72 

thermobarometry. P-T estimates for the Shangla blueschists were published even earlier (Guiraud, 1982; 73 

Jan, 1985) and suggest peak P-T conditions of ca. 400 °C, 5 kbar. Although detailed, these petrological 74 

studies are based on conventional methods and need to be updated using more recent and powerful 75 

petrological approaches (e.g. isochemical phase diagrams).   76 

In this paper, the lawsonite blueschists from Sapi-Shergol have been petrologically re-investigated with the 77 

aims of: (i) constraining their P-T evolution; (ii) evaluating the influence of Fe2O3 and of H2O on the stability 78 

of the high pressure mineral assemblages; (iii) understanding the processes controlling lawsonite formation 79 

and preservation, and (iv) interpreting the P-T evolution of the Sapi-Shergol blueschists in the framework of 80 

India-Asia collision.  81 

 82 

2. Geological setting 83 

In the India–Asia convergence system, the ITS zone records the closure of the Neo-Tethyan ocean from Late 84 

Cretaceous to Tertiary time (Frank et al., 1977; Honegger et al., 1989; Cannat and Mascle, 1990). Among 85 

the few occurrences of high-pressure rocks along the ITS, those of Ladakh (NW India) are the best in terms 86 

of rock freshness, areal extent and metamorphic assemblages. Blueschists in the Ladakh area occur along 87 

the ITS in few localities: from SE to NW these are Puga, Urtsi, Hinju and Sapi-Shergol (Honegger et al., 88 

1989). The largest outcrop is that of Sapi-Shergol (35 km south of Kargil), where the blueschists form a 12 89 

km x 1 km E-W trending narrow zone.  90 

Tectonically, the Sapi-Shergol blueschists belong to a narrow belt called “Ophiolitic Mélange Unit” 91 

(Honegger et al., 1989) (Fig. 1), which outcrops over a distance of 250 km along the ITS suture. This belt 92 

consists of several thrust slices sandwiched between the Nindam-Naktul-Dras nappes to the north, and the 93 

Lamayuru-Karamba nappes to the south. The Ophiolitic Mélange Unit is interpreted as a relic of a paleo-94 

accretionary prism formed in response to the northward subduction of the Neo-Tethyan ocean, originally 95 

separating the Ladakh arc to the south from the southern Asian active margin to the north (Mahéo et al., 96 

2006). This paleo-accretionary prism consists of sedimentary units including blocks of (mainly) basic 97 

lithologies that have been metamorphosed under variable P-T conditions, ranging from low-grade 98 

metamorphism to lawsonite blueschist -facies metamorphism (Frank et al., 1977; Honegger et al., 1989; 99 

Jan, 1987; Reuber et al., 1987; Sutre, 1990; Ahmad et al., 1996; Robertson, 2000; Mahéo et al., 2006). 100 

The Sapi-Shergol Ophiolitic Mélange (SSOM) is a complex unit which includes slices of the paleo-101 

accretionary prism, intercalated with numerous slices of other units including the Nindam and Lamayuru 102 

turbidites and low grade meta-ophiolitic slices consisting of serpentinized peridotites intruded by basic 103 

dikes (“sheared serpentinites” of Robertson, 2000). The narrow blueschist zone cropping out close to the 104 

village of Shergol (Fig. 1, 2a) is overlain discordantly by the Shergol conglomerate of post-Eocene (Oligo-105 

Miocene?) age (Honegger et al., 1989). Blueschist lithologies are dominated by volcanoclastic sequences of 106 

basic material (Fig. 2b,c) with subordinate interbedding of cherts and minor carbonatic lithologies. Mahéo 107 

et al. (2006) suggested that the blueschists derive from calc-alkaline igneous rocks formed in an intra-108 

oceanic arc environment. K-Ar ages of whole-rocks and glaucophane suggest an age of ca. 100 Ma for the 109 

high-pressure metamorphism (Honegger et al., 1989). 110 

 111 

2.1 Main blueschist lithologies of the SSOM 112 
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Metabasic and metavolcanoclastic rocks are the dominant lithologies in the SSOM, and they are associated 113 

to subordinate interbedded metasediments. These lithologies have been described in detail by Honegger et 114 

al. (1989); the most relevant petrographic features are therefore only summarized here.  115 

 116 

2.1.1 Metabasic and metavolcanoclastic rocks 117 

Metabasic rocks are mainly represented by fine-grained glaucophane-bearing schists (Fig. 2c,e) with 118 

variable amounts of lawsonite and minor clinopyroxene and phengite. Lawsonite can be either fine-grained 119 

or porphyroblastic and it generally overgrows the main foliation defined by the alignment of glaucophane ± 120 

phengite (Fig. 2e); where present, phengite often shows a slightly greenish pleochroism. Clinopyroxene 121 

(omphacite/aegirine-augite) generally occurs as fine-grained dusty and fibrous aggregates, probably 122 

replacing former magmatic clinopyroxene fenocrysts. Fine-grained titanite aggregates are often aligned to 123 

the main foliation (Fig. 2e); opaque minerals can be locally abundant and surrounded by pressure fringes of 124 

albite. Locally, remnants of a strongly vesciculated structure are evidenced by the alignment of fine-grained 125 

titanite. 126 

Metavolcanoclastic rocks are characterized by a clastic structure and consist of irregular fragments of 127 

metabasic rocks set in a very fine-grained matrix (Fig. 2b). Clasts of metabasic rocks are either rounded or 128 

sharp and vary in size from few millimeters to several centimeters (Fig. 2b, d). The clasts generally consist 129 

of blue amphibole + lawsonite ± minor clinopyroxene in different modal abundances and with different 130 

grain-size (Fig. 2d). The matrix is generally very fine-grained and mainly consists of blue amphibole, green 131 

clinopyroxene (aegirine/omphacite) forming fine-grained dusty aggregates, porphyroblastic lawsonite and 132 

minor phengite and chlorite. Fine-grained aggregates of titanite (leucoxene) replace former ilmenite. 133 

Both metabasic rocks and metavolcanoclastic rocks can be crosscut by glaucophane veins and/or late albite 134 

± calcite, and albite + chlorite ± quartz veins.  135 

 136 

2.1.2 Metasediments 137 

Both silicic and impure carbonatic metasediments occur as intercalations in the metabasic and 138 

metavolcanoclastic rocks. Among the silicic metasediments, glaucophane + lawsonite + phengite ± garnet 139 

schists, lawsonite + glaucophane + phengite + garnet quartzitic-micaschists and glaucophane + garnet + 140 

phengite quartzites (Fig. 2f) are the most common types. Lawsonite and garnet can be either fine-grained 141 

or pophyroblastic. Lawsonite and garnet porphyroblasts can reach few centimeters and few millimeters in 142 

size, respectively, and generally overgrow the main foliation; lawsonite porphyroblasts are locally dusty due 143 

to the presence of abundant fluid inclusions. Glaucophane and phengite are always fine-grained and define 144 

the main foliation, which is often intensely crenulated. Titanite is ubiquitous as accessory mineral. The 145 

lawsonite blueschists investigated in detail in this paper belong to this group of metasediments.    146 

The impure carbonatic metasediments are very fine-grained and mainly consist of lawsonite, calcite, 147 

glaucophane and minor phengite ± prehnite (Fig. 2g). Calcite often occurs as large poikiloblasts including 148 

idioblastic lawsonite. Prehnite is rare and occurs as reniform globular aggregates of fine-grained brownish 149 

fibrous crystals. 150 

Late quartz, albite ± quartz and calcite ± albite veins crosscut the main schistosity in most metasediments. 151 

 152 

3. Methods 153 

3.1 Micro-X-ray fluorescence (µ-XRF) maps  154 

The micro-XRF maps of the whole thin sections (Fig. 3 and Fig. SM1, SM2) were acquired using a µ-XRF 155 

Eagle III-XPL spectrometer equipped with an EDS Si(Li) detector and with an Edax Vision32 microanalytical 156 

system (Department of Earth Sciences, University of Torino, Italy). The operating conditions were as 157 
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follows: 100 ms counting time, 40 kV accelerating voltage and a probe current of 900 µA. A spatial 158 

resolution of about 65 µm in both x and y directions was used. Quantitative modal percentages of each 159 

mineral were obtained by processing the µ-XRF maps with the software program ‘‘Petromod’’ (Cossio et al. 160 

2002).  161 

 162 

3.2 Mineral chemistry 163 

Minerals were analysed with a Cambridge Stereoscan 360 SEM equipped with an EDS Energy 200 and a 164 

Pentafet detector (Oxford Instruments) at the Department of Earth Sciences, University of Torino. The 165 

operating conditions were as follows: 50 s counting time and 15 kV accelerating voltage. SEM–EDS 166 

quantitative data (spot size = 2 µm) were acquired and processed using the Microanalysis Suite Issue 12, 167 

INCA Suite version 4.01; natural mineral standards were used to calibrate the raw data; the Z correction 168 

(Pouchou and Pichoir, 1988) was applied. Absolute error is 1  for all calculated oxides.  169 

Mineral chemical data of representative minerals are reported in Tables SM1, SM2. Structural formulae 170 

have been calculated on the basis of 12 oxygens for garnet, 6 oxygens for omphacite, 8 oxygens for 171 

lawsonite, 11 oxygens for phengite and 23 oxygens for amphibole. Fe+3 has been calculated by 172 

stoichiometry except for amphibole (average Fe+3 values). 173 

 174 

3.3 Phase diagrams computation 175 

Isochemical phase diagrams were calculated in the MnNKCFMASH(O) system using Perple_X (version 6.7.1, 176 

Connolly 1990, 2009) and the thermodynamic dataset and equation of state for H2O–CO2 fluid of Holland 177 

and Powell (1998, revised 2004). The following solid solution models were used: garnet (Holland and 178 

Powell, 1998), amphibole (Diener et al., 2007, 2012), omphacite (Green et al., 2007; Diener et al., 2012), 179 

chlorite (Holland et al., 1998), phengite (Holland and Powell, 1998), plagioclase (Newton et al., 1980) and 180 

epidote (Holland and Powell, 1998). Quartz, lawsonite, and zoisite were considered as pure end-members. 181 

The bulk rock compositions of the studied samples have been calculated by combining the mineral 182 

proportions obtained from the modal estimate of micro-XRF maps (Fig. 3, Table 1) with mineral chemistry 183 

acquired at SEM–EDS, and are reported in Table 1: these whole rock compositions have been used to 184 

model: (i) the whole prograde P-T evolution in sample 14-4B; (ii) the growth of garnet core + mantle in 185 

sample 14-6F. For this last sample, the possible effects of chemical fractionation of the bulk composition 186 

due to the growth of the strongly zoned garnet porphyroblasts have been also considered. The bulk 187 

composition effectively in equilibrium during the growth of garnet rim has been therefore calculated by 188 

subtracting the garnet core and mantle compositions (i.e. the modal amount of garnet core + mantle was 189 

estimated from the micro-XRF maps as 3.5 vol%) to the whole rock composition (Table 1).   190 

 191 

4. Petrography and mineral chemistry  192 

Among the various lithologies observed in the study area, two metasediments (samples 14-4B and 14-6F/G) 193 

have been petrologically investigated in detail; they are both characterized by a relatively simple and very 194 

well preserved mineral assemblage, but differ for the grain size and the modal abundance of each phase 195 

(Table 1). Samples 14-6F/G derive from the same hand specimen (two different thin sections cut parallel 196 

and perpendicular to the main lineation); petrography and mineral chemistry refer to both thin sections, 197 

whereas the micro-XRF map and the thermodynamic modeling refer to sample 14-6F only.  198 

 199 

4.1 Sample 14-4B 200 

Sample 14-4B is a fine-grained lawsonite + glaucophane + garnet -bearing quartzitic-micaschist 201 

characterized by mm-thick quartz-rich layers alternating with mm-thick lawsonite + phengite-rich layers 202 
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(Fig. 4a). The main foliation, defined by the preferred orientation of phengite and glaucophane in both 203 

domains, is crosscut by late quartz-bearing and calcite ± albite -bearing veins (Fig. 3, and  Fig. SM1).  204 

Microstructural relationships between quartz (42 vol%), lawsonite (21 vol%), phengite (22 vol%), 205 

glaucophane (12 vol%) and garnet (3 vol%) suggest that these minerals all belong to the equilibrium 206 

assemblage (Fig. 7). Abundant titanite and minor pyrite occur as accessory minerals.  207 

Lawsonite occurs as fine-grained idioblasts (Fig. 4) with quartz ± titanite inclusions; in the quartz-rich layers, 208 

lawsonite is often crowded of quartz inclusions, locally assuming a skeletal habit. It is almost pure in 209 

composition, with a very low Fe content (0.00-0.30 a.p.f.u. on the basis of 8 oxygens).  210 

The fine-grained phengite (Fig. 4b,c) shows a relatively large compositional spread in Si, Altot and (Mg + 211 

Fetot). Its Si content ranges between 3.53 and 3.81 a.p.f.u. (on the basis of 11 oxygens), with the most 212 

frequent values in the range 3.53-3.64 a.p.f.u (Fig. 6d). Most of the phengite compositions broadly lie along 213 

the celadonite-muscovite compositional joint, reflecting the dominant role of Tschermak’s substitution; 214 

phengite with the lowest Si contents, however, plot slightly away from the celadonite- muscovite joint in 215 

both Si vs. Altot and (Mg + Fetot) vs. Si diagrams, thus suggesting the existence of very low Fe+3 contents 216 

(Vidal and Parra, 2000). 217 

Blue amphibole occurs as fine-grained idioblasts associated to phengite and lawsonite (Fig. 4a,b), and it is 218 

slightly zoned, with a lighter blue core and a darker blue rim. Both cores and rims are ferroglaucophane 219 

according to the classification of Leake et al. (1997), but are characterized by slightly different Si (on the 220 

basis of 23 oxygens), XNa (XNa=Na/Na+Ca) and XFe+3 (XFe+3=Fe+3/Fetot) contents (core: Si = 7.62-7.74 221 

a.p.f.u., XNa=0.92-0.95, XFe+3=0.23-0.27; rim: Si = 7.91-7.97 a.p.f.u., XNa=0.98-1.00, XFe+3=0.10-0.21) (Fig. 222 

6e,f).  223 

Garnet occurs as small slightly zoned idioblasts (up to 0.3 mm in diameter) (Fig. 4a), particularly enriched in 224 

Mn (Fig. 6a). XSps decreases and XAlm and XPrp increase from core to rim, whereas XGrs is almost 225 

homogeneous (core: Sps55-60Alm20-25Grs15-22Prp0-0.6; mantle: Sps50-54Alm25-28Grs16-23Prp0.4-0.9; rim: Sps44-47Alm30-226 

34Grs18-23Prp0.6-1.3) (Fig. 6a).   227 

 228 

4.2 Sample 14-6F/G 229 

Sample 14-6F/G is a lawsonite + glaucophane + phengite + garnet schist, dominated by glaucophane (44 230 

vol%) + lawsonite (22 vol%) + phengite (9 vol%) + garnet (4 vol%) layers alternating with discontinuous 231 

quartz (21 vol%) -rich domains. The main foliation, defined by the preferred orientation of glaucophane and 232 

minor phengite, is overgrown by large lawsonite and garnet porphyroblasts and it is intensely crenulated 233 

(Fig. 5a,b). Lawsonite and garnet porphyroblasts crystallization occurred prior to the crenulation event (Fig. 234 

7). Titanite occurs as accessory mineral aligned to the main foliation. Late quartz ± albite ± chlorite veins 235 

crosscut the main foliation (Fig. 5d, e).  236 

The fine-grained blue amphibole nematoblasts in the matrix (Fig. 5a-c) are quite homogeneous in 237 

composition; they are glaucophane according to the classification of Leake et al. (1997) and have Si = 7.71-238 

7.99 a.p.f.u., XNa=0.85-1.00 and XFe+3=0.14-0.24, with Si and XNa decreasing and XFe+3 increasing toward 239 

the rim (Fig. 6e,f).  240 

Lawsonite occurs as large porphyroblasts, up to few centimeter in size, overgrowing the main foliation (Fig. 241 

3, 5a-d and Fig. SM2). Lawsonite porphyroblasts are often boudinated; the boudinage still occurred in the 242 

lawsonite stability field because lawsonite + quartz + glaucophane are also found in the pressure shadows 243 

(Fig. 5c). The Fe content in lawsonite is very low (Fe = 0.03-0.05 a.p.f.u. on the basis of 8 oxygens).  244 

Garnet porphyroblasts, up to 2-3 mm in diameter, overgrow the main foliation and are also included in 245 

lawsonite (Fig. 5). They are strongly zoned (Fig. 5e, 6a, 6b), with spessartine decreasing and almandine and 246 

pyrope increasing from core to rim (core: Sps50-55Alm16-21Grs26-28Prp1.1-1.4; mantle: Sps40-48Alm22-27Grs29-247 

31Prp1.5-1.8; rim: Sps24-30Alm37-42Grs27-32Prp2.5-3.4) (Fig. 6a). Garnet porphyroblasts include glaucophane, 248 
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actinolite, quartz and chlorite in the core and mantle domains, and few omphacite (Jd16-33Acm9-17) (Fig. 6c), 249 

phengite (Si = 3.80 a.p.f.u.) and quartz in the mantle and rim domains (Fig. 5e,5f, 6d). 250 

Phengite occurs as small flakes in equilibrium with glaucophane (Fig. 5, 7); it is locally zoned, with the 251 

highest Si content in the rim (core: Si=3.36-3.57 a.p.f.u.; rim: Si=3.61-3.84 a.p.f.u. on the basis of 11 252 

oxygens). The Fe+3 content in phengite is low since most of the phengite compositions lie along the 253 

celadonite-muscovite compositional joint (Fig. 6d). 254 

 255 

5. Phase equilibria and P-T evolution 256 

5.1 P-T pseudosection in the MnNKCFMASH system 257 

The thermodynamic modeling approach was used to constrain the P-T evolution of the two blueschist 258 

samples. P-T pseudosections have been first calculated in the MnNKCFMASH model system (MnO-Na2O-259 

K2O-CaO-FeO-MgO-Al2O3-SiO2-H2O), and two assumptions were made: (1) H2O was considered in excess; (2) 260 

Fe+3 was not included in the calculation. The influence of these two important components on the stability 261 

of mineral assemblages will be discussed later. Concerning sample 14-6F, the fractionation effects on its 262 

bulk composition due to the growth of large garnet porphyroblasts have been considered, and two 263 

different pseudosections have been calculated: (i) a first pseudosection, calculated using the whole rock 264 

composition, has been used to model the growth of garnet core + mantle; (ii) a second pseudosection, 265 

calculated using the effective bulk composition derived by subtracting garnet cores and mantles to the 266 

whole rock composition (Table 1), has been used to model the growth of garnet rim. Fractionation effects 267 

on the bulk composition are negligible for sample 14-4B, because garnet is very small. 268 

 269 

5.1.1 P-T evolution constrained for sample 14-4B 270 

The topology of the pseudosection  calculated for sample 14-4B is very simple and dominated by three- and 271 

four-variant fields (Fig. 8a). The observed peak assemblage Grt + Gln + Lws + Phe is modelled by a relatively 272 

narrow five-variant field at P > 19 kbar, which separates a chlorite-bearing field (at lower T) from an 273 

omphacite-bearing field (at higher T). At P < 19 kbar, both chlorite and omphacite coexist in the three-274 

variant Grt + Gln + Lws + Phe + Chl + Omp field.  275 

The modeled garnet compositional isopleths (core: XSps=0.60, XAlm=0.24, XGrs=0.15, XPrp=0.006; mantle: XSps= 276 

0.52, XAlm=0.28, XGrs=0.18, XPrp=0.009; rim: XSps=0.44, XAlm=0.30, XGrs=0.23, XPrp=0.013) constrain the growth 277 

of garnet core, mantle and rim at about 365 °C, 19.5 kbar (in the Grt + Gln + Lws + Phe + Chl field), 390°C, 278 

20.5 kbar (in the Grt + Gln + Lws + Phe field) and 420°C, 22 kbar (in the Grt + Gln + Lws + Phe + Omp field) 279 

(Fig. 8a and Fig. SM3). The modeled modal amounts of chlorite and omphacite in equilibrium with garnet 280 

core and rim, respectively, are lower than 0.5 vol%. The modeled phengite compositional isopleths (Si = 281 

3.80-3.82 a.p.f.u.) constrain the growth of phengite at P-T conditions compatible with the growth of garnet 282 

core and mantle.  283 

The resulting prograde P-T evolution of sample 14-4B is therefore characterized by an increase in both P 284 

and T, up to peak conditions of about 420°C, 22 kbar (Fig. 8a). The modeled isomodes of the main mineral 285 

phases are consistent with the prograde growth (i.e. increase in its modal amount) of garnet along this P-T 286 

path, but predict the (slight) consumption of lawsonite (Fig. 8b; the P-T path crosses the Lws-isomodes 287 

downward), opposite to microstructural observations which suggest that garnet and lawsonite grew almost 288 

simultaneously (Fig. 7). This apparent discrepancy between the results of the thermodynamic modeling and 289 

the observed microstructure will be discussed in the following. The modeled H2O isomodes show that 290 

during the inferred prograde evolution, a moderate de-hydration occurred, thus implying that mineral 291 

assemblages were H2O saturated (Guiraud et al., 2001).  292 

 293 
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5.1.2 P-T evolution constrained for sample 14-6F 294 

The topologies of the two pseudosections calculated for sample 14-6F using the whole rock composition 295 

and the fractionated bulk composition are simple and dominated by three- and four-variant fields. Because 296 

the two pseudosections are quite similar (the main difference is the shift of the Grt-bearing fields toward 297 

higher temperatures in the fractionated pseudosection), they have been condensed in the same figure (Fig. 298 

9a). Two large three-variant fields, separated by a narrow di-variant field, dominate the two 299 

pseudosections: at higher P (and lower T) is stable the Chl + Grt + Act + Gln + Lws + Phe assemblage, 300 

whereas at lower P (and higher T) is stable the Chl + Grt + Gln + Lws + Omp + Phe assemblage.  301 

The modeled garnet compositional isopleths from the unfractionated pseudosection (core: XSps=0.55, 302 

XAlm=0.18, XGrs=0.27, XPrp=0.011; mantle: XSps= 0.40, XAlm=0.27, XGrs=0.30, XPrp=0.018) constrain the growth of 303 

garnet core and mantle at about 395 °C, 18.5 kbar (in the Chl + Grt + Act + Gln + Lws + Phe field) and 435°C, 304 

19.5 kbar (in the Chl + Grt + Gln + Lws + Omp + Phe field) (Fig. 9a and Fig. SM4). The transition from the Act-305 

bearing (Omp-absent) field to the Omp-bearing (Act-absent) field is consistent with the occurrence of 306 

actinolite inclusions within garnet core, and omphacite inclusions within garnet mantle. The modeled 307 

phengite compositional isopleths (Si = 3.81-3.83 a.p.f.u.) constrain the growth of phengite at P-T conditions 308 

slightly lower than the growth of garnet core.  309 

The modeled garnet compositional isopleths from the fractionated pseudosection (rim: XSps=0.24, 310 

XAlm=0.42, XGrs=0.31, XPrp=0.034) constrain the growth of garnet rim at about 470 °C, 20 kbar (in the Chl + 311 

Grt + Gln + Omp + Lws + Phe field) (Fig. 9a). The modeled modal amount of chlorite in equilibrium with 312 

garnet rim is lower than 1 vol%. 313 

Peak P-T conditions for sample 14-6F are therefore constrained at about 470 °C, 20 kbar. Overall, the 314 

prograde P-T evolution of sample 14-6F is similar in shape to that predicted for sample 14-4B but at lower P 315 

and slightly higher T (i.e. T = + 50 °C, P = -2 kbar). Similarly to sample 14-4B, the modeled isomodes do 316 

not predict the growth (i.e. increase in modal amount) of lawsonite along this P-T path (Fig. 9b), opposite to 317 

microstructural observation which clearly show that lawsonite grew simultaneously (or even later) to 318 

garnet (Fig. 7).    319 

 320 

5.2 The influence of Fe+3 321 

Although low, the Fe+3 content in glaucophane from both the samples is not negligible, suggesting that the 322 

metasediment bulk compositions were slightly oxidized. In order to test the influence of Fe+3 on the 323 

stability of the equilibrium assemblages and on the peak P-T conditions, two P-XFe2O3 and T-XFe2O3 324 

pseudosections were calculated at 420°C, 22 kbar (sample 14-4B; Fig. 10a,b), and 470°C, 20 kbar (sample 325 

14-6F; Fig. 10c,d), respectively, i.e. at the peak P-T conditions estimated for the two samples in the Fe+3-free 326 

MnNKCFMASH system. A XFe2O3 range of 0-0.5 was considered, with XFe2O3 = Fe2O3/FeOtot (i.e. XFe2O3 = 0 327 

means that all Fe is bivalent; XFe2O3 = 0.5 means that FeO and Fe2O3 are present in equal amounts).  328 

The P-XFe2O3 and T-XFe2O3 pseudosections modeled for sample 14-4B and contoured for the garnet rim 329 

compositional isopleths, show that peak-P conditions decrease of about 2-3 kbar with increasing XFe2O3, 330 

whereas peak-T conditions do not significantly change at variable XFe2O3 values. The XFe2O3 is constrained 331 

to a maximum of 0.20, above which the modeled peak assemblage (Grt + Gln + Lws + Phe + minor Omp) is 332 

no longer stable (Fig. 10a,b).  333 

The same effects are also observed for sample 14-6F, but in this case the decrease of peak-P conditions is 334 

less pronounced (ca. 1 kbar). The stability field of the peak assemblage (Grt + Gln + Omp + Lws + Phe + 335 

minor Chl) constrains the maximum XFe2O3 value to 0.4, but for XFe2O3 > 0.15 the modeled garnet 336 

compositional isopleths diverge, therefore constraining XFe2O3 to values in the range 0-0.15 (Fig. 10c,d).     337 
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The P-T paths of the two studied samples calculated for XFe2O3=0.10 mostly overlap, thus suggesting that 338 

the prograde P-T evolution of the SSOM blueschists was characterized by an increase in P and T from ca. 339 

370 °C, 17 kbar to peak conditions of ca. 470°C, 19 kbar. 340 

 341 

6. Discussion 342 

6.1 H2O-saturated vs. H2O under-saturated conditions 343 

The results obtained so far are based on the assumption that H2O was in excess during the whole 344 

metamorphic evolution: this is a common assumption in the modeling of lawsonite-bearing blueschist and 345 

eclogites (e.g. Davis and Whitney, 2006, 2008; Clarke et al., 2006; Groppo and Castelli, 2010; Endo et al., 346 

2012; Wei and Clarke, 2011; Vitale Brovarone et al., 2011; Ao and Bhowmik, 2014; Tian and Wei, 2014; 347 

Bhowmik and Ao, 2015). In many cases H2O is considered in excess because lawsonite-bearing assemblages 348 

demand that high water amounts are available in the system. Opposite to this common assumption, it has 349 

also been demonstrated that lawsonite can grow during subduction (at increasing P and T) at H2O-350 

undersaturated conditions (e.g. Ballevre et al., 2003; Lopez-Carmona et al., 2013). H2O-undersaturated 351 

conditions would significantly influence phase equilibria and hence P-T estimates; therefore, the possibility 352 

that prograde metamorphism could have occurred under H2O-undersaturated conditions should be 353 

carefully evaluated.     354 

This issue was explored by calculating two P/T-X(H2O) pseudosections for sample 14-4B (Fig, 11); similar 355 

results are obtained for sample 14-6F (see Fig. 12a). These pseudosections report the H2O content (in wt%) 356 

on the horizontal axis and a P/T gradient on the vertical axis. Two P/T gradients have been considered: the 357 

first one (gradient A: Fig. 11a) is coincident with the P-T path constrained using the P-T pseudosection 358 

calculated with H2O in excess, whereas the second one (gradient B: Fig. 11b) is steeper and similar to the 359 

early prograde P-T evolution of Eastern Himalayan blueschists reported in the literature (Ao and Bhowmik., 360 

2014). The two pseudosections are contoured for garnet core and rim compositions. The intersection 361 

between garnet compositional isopleths should provide information about: (i) whether the growth of 362 

garnet with the measured composition could have occurred along the previously discussed P/T gradient A 363 

but at H2O-undersaturated conditions, and (ii) whether the alternative (steeper) P/T gradient B would be 364 

compatible with the growth of garnet with the measured composition under H2O-undersaturated 365 

conditions.    366 

The white dotted lines in the calculated P/T-X(H2O) pseudosections represent the H2O-saturation surface 367 

and divide the pseudosections in a H2O-saturated part on the right and in a H2O-undersaturated part on the 368 

left. A H2O amount of 3-4 wt% (depending on T and P) is required to reach H2O-saturated conditions in 369 

sample 14-4B. Garnet compositional isopleths show that: (i) the steeper P/T gradient B (Fig. 11b) is not 370 

compatible with the observed garnet compositions because the modeled compositional isopleths of garnet 371 

core do not overlap; (ii) concerning the P/T gradient A, the intersection of garnet compositional isopleths 372 

on the H2O-saturation surface confirms that the growth of garnet with the measured composition occurred 373 

at H2O-saturated conditions (Fig. 11a, 12a), thus suggesting that the assumption of H2O in excess for the 374 

modeling of garnet growth was correct. 375 

 376 

6.2 When and how did lawsonite grow 377 

The P/T-X(H2O) pseudosections calculated at H2O saturated conditions for both samples 14-4B (Fig. 8) and 378 

14-6F (Fig. 9) fail in modeling the contemporaneous growth of lawsonite and garnet; in fact, the inferred 379 

prograde P-T path crosses the garnet isomodes upward (Fig. 8c, 9c), but the lawsonite isomodes are 380 

crossed downward (Fig. 8b, 9b), thus suggesting that lawsonite was (slightly) consumed when garnet was 381 

growing (i.e. lawsonite modal amount was slightly decreasing while garnet modal amount was increasing). 382 
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Two different hypothesis can be proposed to explain the discrepancy between the observed 383 

microstructures and the prediction of thermodynamic modeling: (i) the first hypothesis is still based on an 384 

equilibrium model for prograde metamorphism, which is the classical paradigm that is the basis of 385 

isochemical phase diagrams; (ii) the second hypothesis explores the possibility that the prograde 386 

appearance of lawsonite was controlled by nonequilibrium processes rather than by equilibrium ones (i.e. 387 

kinetics factors prevailing over equilibrium thermodynamics). 388 

 389 

6.2.1 The equilibrium approach 390 

Following an approach based on the principles of equilibrium thermodynamics, the P/T-X(H2O) 391 

pseudosection calculated for sample 14-6F (Fig. 12a), contoured for lawsonite and garnet modal amounts 392 

(Fig. 12b, 12c) is useful to explain the inconsistency between the observed and predicted sequence of 393 

porphyroblasts growth (i.e. Lws contemporaneous with Grt vs. Lws earlier than Grt) (see also Fig. SM5 for 394 

sample 14-4B). Fig. 12b shows that H2O addition is required to form lawsonite (i.e. to increase its modal 395 

amount). The observed microstructures suggest that lawsonite growth was contemporaneous to garnet 396 

growth (Fig. 7), thus implying that H2O was introduced in the system at the relatively high pressure of ca. 397 

17-18 kbar (large white arrow in Fig. 12b). Once reached H2O-saturated conditions, garnet (with the 398 

measured composition of Grt core) started to form; the simultaneous growth of high modal amounts of 399 

lawsonite, however, subtracted H2O to the system (“-H2O” arrows in Fig. 12b), that eventually became 400 

again H2O-undersaturated. A protracted H2O influx at high pressure (“+H2O” arrows in Fig. 12b) is therefore 401 

required in order to allow the contemporaneous growth of garnet (which requires H2O-saturated 402 

conditions) and lawsonite (whose growth subtracts H2O to the system).  403 

Our model thus suggests that the system might have been H2O-undersaturated during the early prograde 404 

subduction (i.e. prior to the appearance of garnet). According to the modeling, at H2O-undersaturated 405 

conditions, the Ca-rich precursor of lawsonite should have been epidote: the small epidote inclusions 406 

observed in garnet porphyroblasts (sample 14-6F: Fig. 5f) would support this assumption. This hypothesis 407 

confirms what has been already predicted by previous studies, i.e. the H2O-rich character of lawsonite-408 

bearing assemblages requires the addition of H2O at elevated pressure to allow them to form (Clarke et al., 409 

2006; Tsujimori and Ernst, 2014). Significant fluid release is predicted at these P-T conditions (e.g. Ulmer 410 

and Trommsdorff, 1995; Scambelluri et al., 2004; Poli and Schmidt, 1995; Poli et al., 2009) through 411 

metamorphic devolatilization reactions occurring in the subducting slab (Bebout, 1991, 1995; Jarrad, 2003). 412 

Our results suggest that fluids released at P > 17-18 kbar by the de-hydrating subducting slab can be largely 413 

re-incorporated in lawsonite, and confirm that the pervasive growth of lawsonite represents an efficient 414 

mechanism for fixing water in the high pressure accretionary prism, thereby delaying its ascent toward the 415 

surface (Ballèvre et al., 2003; Vitale Brovarone and Beyssac, 2014).  416 

 417 

6.2.2 The nonequilibrium approach 418 

Alternatively to what discussed in the previous point, the inconsistency between the observed 419 

microstructures and the equilibrium phase relations predicted by the pseudosections could suggest that 420 

nonequilibrium processes controlled the prograde appearance of lawsonite and garnet. Transient 421 

nonequilibrium states can be common during prograde metamorphism (e.g. Ague & Carlson, 2013), 422 

especially at low temperatures such those inferred for the early prograde evolution of the studied 423 

blueschists. Previous works addressed the question of the interplay between the approach to equilibrium 424 

on one hand, and reaction kinetics on the other hand (see Ague & Carlson, 2013 for a review). Crucial to the 425 

discussion is the concept of reaction affinity, which is an energetic expression of the easiness of a reaction 426 

to overstep the kinetic barriers to nucleation and growth (e.g. Waters & Lovegrove, 2002; Pattison et al., 427 

2011; Ketcham & Carlson, 2012). It has been demonstrated that mineral reactions which release large 428 
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quantities of H2O have higher reaction affinity per unit of temperature/pressure overstep than those which 429 

release little or no H2O. The former are expected to be overstepped in temperature and/or pressure less 430 

than the latter (see Pattison et al., 2011 for further details). Reactions with lower reaction affinity may be 431 

strongly influenced by kinetic factors, or may not occur at all.   432 

Some authors considered nucleation as the main rate-limiting process in metamorphic reactions (e.g. 433 

Waters & Lovegrove, 2002; Gaidies et al., 2011; Pattison et al., 2011). They demonstrated that low reaction 434 

affinity (and consequently high overstepping) of a prograde metamorphic reaction may cause the delayed 435 

nucleation (and growth) of porphyroblastic phases. Microstructurally, this becomes evident when the 436 

observed sequence of porphyroblasts growth does not coincide with the sequence predicted by 437 

thermodynamic modelling (e.g. Waters & Lovegrove, 2002). Other authors argued that intergranular 438 

diffusion is the main kinetic component controlling the nucleation and growth of porphyroblastic phases 439 

(e.g. Carlson, 1989, 2002; Hirsch et al., 2000; Ketcham & Carlson, 2012). In this case, delayed porpyroblasts 440 

growth would be related to the sluggishness of intergranular diffusion. More in detail, growing 441 

porphyroblasts extract nutrients from the immediate surroundings, suppressing the nucleation of new 442 

crystals in diffusionally depleted zones surrounding pre-existing crystals. 443 

A quantitative treatment of these concepts is well beyond the aim of this paper; nevertheless, it is worth 444 

nothing that the modelled pseudosection for sample 14-6F predicts that lawsonite is mainly produced at 445 

low P-T conditions (i.e. at P < 5 kbar, and T < 300°C; Fig. SM6) through the epidote or prehnite (depending 446 

on T) breakdown, much earlier than the onset of garnet growth. Both the epidote- and prehnite- 447 

consuming (lawsonite-producing) reactions are hydration reactions, i.e. they consumes H2O. Qualitatively, 448 

it is therefore to be expected that reaction affinity of these reactions is very low and that they might be 449 

significantly overstepped in temperature and pressure. The discrepancy between the observed and 450 

predicted sequence of porphyroblasts growth can be therefore explained by a delayed growth of lawsonite 451 

porphyroblasts, possibly due to: (i) low reaction affinity of the Lws-producing reaction (either Ep- or Prh- 452 

consuming), and/or (ii) difficulty of nucleation of lawsonite.  453 

Both the equilibrium- and nonequilibrium- hypothesis are compatible with microstructural observations 454 

(e.g. the rare occurrence of small epidote inclusions within garnet) and they are complementary rather 455 

than mutually exclusive.  456 

 457 

6.3 Interpretation of the P-T evolution and geodynamic implications 458 

Prior to this study, P-T estimates based on conventional thermobarometry suggested peak P-T conditions of 459 

350-420°C, 9-11 kbar for the SSOM blueschists (Honegger et al., 1989). The results of our petrological 460 

modeling point to peak P-T conditions significantly higher than those previously estimated, i.e. ca. 470°C, 461 

19 kbar (Fig. 13), thus suggesting that the careful re-examination (by means of modern petrological 462 

approaches) of previous P-T estimates obtained using conventional thermobarometry can provide new 463 

insights on the subduction history of the Neo-Tethyan ocean. The obtained results suggest that the SSOM 464 

blueschists experienced a cold subduction history along a very low to low thermal gradient (“early” 465 

prograde: ca. 5-6°C/km; “late” prograde: ca. 7-8°C/km; Fig. 13a). Furthermore,  in order to preserve 466 

lawsonite in the studied lithologies, exhumation must have been coupled with significant cooling (i.e. 467 

without crossing the lawsonite-out boundary; Zack et al., 2004). The resulting P-T path is therefore 468 

characterized by a clockwise hairpin loop along low thermal gradients (< 8-9 °C/km) (Fig. 13a).   469 

This P-T evolution is consistent with a cold subduction zone system in an intra-oceanic subduction setting, 470 

as also suggested by Ao and Bhowmik (2014) for blueschists  from the far eastern Himalaya. Moreover, the 471 

observed lithological associations (i.e. mainly volcanoclastic rocks and minor sediments), the estimated 472 

peak P-T conditions (very close to the eclogite stability field but still inside the lawsonite blueschist -facies) 473 

and the clockwise hairpin P-T trajectory, are all consistent with the interpretation that the SSOM represents 474 
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a relic of an oceanic paleo-accretionary prism, related to the northward subduction of the northern Neo-475 

Tethyan ocean beneath the Ladakh Asian margin (Robertson, 2000; Mahéo et al., 2006; Guillot et al., 2008).  476 

Interestingly, the estimated peak P-T conditions of ca. 470°C, 19 kbar roughly coincide with the maximum 477 

P-T estimates predicted by thermo-mechanical models for the metasediments exhumed in the accretionary 478 

wedge (Yamato et al. 2007) (Fig. 13a), and with the maximum P-T conditions registered by natural 479 

occurrences of blueschist accretionary complexes worldwide (Fig. 13b) (e.g. the Schistes Lustres Complex of 480 

the Western Alps and Alpine Corsica, Turkey, Zagros, Oman, New Caledonia, Franciscan Complex: e.g. 481 

Banno et al., 2000; Agard et al., 2001a,b; Warren al., 2005; Agard et al., 2006; Page et al., 2006; Tsujimori et 482 

al., 2006; Warren and Waters, 2006; Ernst and McLaughlin, 2012; Plunder et al., 2012, 2015;  Agard and 483 

Vitale Brovarone, 2013; Ukar and Cloos, 2014; Vitale Brovarone et al., 2014).  484 

Most of the studies focused on subduction-related HP-LT terranes from different localities point to a 485 

continuous increase of peak-T and associated P in adjacent tectonometamorphic units (Fig. 13b). A 486 

continuous metamorphic gradient is thus recorded in most of the blueschist-facies terranes worldwide, up 487 

to maximum P-T conditions of ca. 470°C, 18-19 kbar (e.g. Oman: Yamato et al., 2007; Corsica: Vitale 488 

Brovarone et.,  2014; Schistes Lustres of the Western Alps: Plunder et al., 2012; New Caledonia: Vitale 489 

Brovarone & Agard, 2013; Turkey: Plunder et al., 2015). This metamorphic zonation might reflect the 490 

repeated accretion of the ocean-floor sediments subducted at different depths and offscraped at the base 491 

of the accretionary prism (e.g. Agard et al., 2009 and references therein).  492 

A similar metamorphic zonation from greenschist to pumpellyite-diopside and up to lawsonite-blueschist -493 

facies conditions has been recently reported by Ao & Bhowmik (2014) for the Nagaland Ophiolite Complex 494 

of far-eastern Himalaya, whose geological setting is very similar to that of the SSOM (i.e. it is mainly 495 

dominated by metavolcanoclastic rocks, with minor intercalations of metasediments). Although a detailed 496 

discussion of the SSOM metamorphic units adjacent to the blueschist one is beyond the aim of this paper, it 497 

is worth mentioning that preliminary data suggest that a similar metamorphic zonation might characterize 498 

also the western portion of the ITS zone. Chlorite + epidote + green/blue-green amphibole -bearing 499 

metavolcanoclastic rocks, and prehnite-pumpellyte -bearing metagabbros occur in the thin metamorphic 500 

slices associated to the blueschist unit in the SSOM. Further petrological investigations could eventually 501 

confirm the existence of a continuous metamorphic gradient in the SSOM.         502 

 503 
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Figure captions 777 

Fig. 1 –  Geological sketch map of the studied area (modified after Honegger et al., 1989). (1) Dras-Naktul 778 

volcanoclastics and flysch;  (2) pillow lavas, sill and dyke series; (3) ultramafic lenses; (4) Shergol 779 

conglomerate; (5) mèlange formation; (6) blueschist zone; (7) Karamba and Lamayuru unit; (8) Zanskar unit. 780 

Star: samples location. Inset: simplified tectonic map of the Himalayan orogen showing the locations of the 781 

blueschist facies rocks in the Indus Tsangpo suture zone (ITS). 1, Shangla; 2, Sapi-Shergol; 3, Zildat; 4, Sans 782 

Sang; 5, Yamdrock; 6, Nagaland. Other abbreviations used: NP, Nanga Parbat; NB, Namche Barwa; MBT, 783 

Main Boundary Thrust; MFT, Main Frontal Thrust. 784 

 785 

Fig. 2 – (a) Panoramic view of the Sapi-Shergol Ophiolite Melange (in blue). View looking north-westward. 786 

Landscape width is about 20 km. (b,c) Outcrop appearance of the most abundant blueschist lithologies in 787 

the SSOM: volcanoclastic rocks (b) and metabasic rocks (c). (d-g) Representative microstructures of 788 

volcanoclastic (d) and metabasic (e) rocks and of silicic (f) and carbonatic (g) metasediments. The dotted 789 

white line in (d) separates a pluri-mm clast (lower right) from the reddish matrix (upper left). The inset in 790 

(g) shows a detail of a large poikiloblast of calcite including idioblastic lawsonite. Plane Polarized Light (PPL). 791 

 792 

Fig. 3 - Processed major elements µ-XRF maps of the whole thin sections of samples 14-4B and 14-6F. The 793 

unprocessed µ-XRF maps for each element are reported in Fig. SM1 and SM2. 794 

 795 

Fig. 4 – Representative microstructures of sample 14-4B. (a) Detail of a discontinuous quartz-rich layer 796 

alternated to thicker lawsonite + phengite + glaucophane layers. Note the small dark garnet on the right. 797 

(PPL). (b, c) Detail of a phengite + lawsonite + glaucophane layer: phengite and glaucophane define the 798 

main foliation. PPL (b) and Crossed Polarized Light (XPL) (c).     799 

 800 

Fig. 5 – Representative microstructures of sample 14-6F/G. (a) The main foliation, defined by the preferred 801 

orientation of glaucophane and minor phengite, is overgrown by large lawsonite and garnet porphyroblasts 802 

and is intensely crenulated. PPL (a), XPL (b). (c) Detail of a boudinated lawsonite porphyroblast overgrowing 803 

the fine-grained glaucophane + phengite matrix. Lawsonite and quartz occur in the pressure shadows. Note 804 

the garnet porphyroblasts, overgrowing the main foliation and included in lawsonite. PPL. (d) Detail of a 805 

lawsonite porphyroblast including several garnet crystals, crosscut by thin quartz veins. PPL. (e) Processed 806 

X-ray map of garnet reported in (d), highlighting the inclusion distribution within garnet and its chemical 807 

zoning. (f) Back-scattered (BSE) image of a garnet porphiroblast, showing the distribution of inclusions. 808 

Note the occurrence of a small omphacite inclusion in garnet rim and of a small epidote inclusion in garnet 809 

mantle.  810 

 811 

Fig. 6  - Compositional diagrams for the main mineral phases analysed in samples 14-4B and 14-6F/G. (a) 812 

Garnet compositions plotted in the Grs-(Sps+Andr)-(Alm+Prp) diagram. (b) Fe, Mg and Mn X-ray maps of 813 

the same garnet reported in Fig. 3d, e. (c) Omphacite compositions (inclusions in garnet) plotted in the Jd-814 

Quad-Aeg diagram. (d) Phengite compositions plotted in the Si vs. (Mg + Fe) (a.p.f.u.)  diagram. The black 815 

line represents the ideal celadonitic substitution. (e,f) Na-Amphibole compositions plotted in the Si 816 

(a.p.f.u.) vs. Mg/(Mg+Fe+2) (e), Si (a.p.f.u.) vs. Na/(Na+Ca) and Si (a.p.f.u.) vs. Fe+3/Fetot (f). (g) Ca-Amphibole 817 

compositions plotted in the Si (a.p.f.u.) vs. Mg/(Mg+Fe+2). 818 

 819 

Fig. 7 – Metamorphic evolution inferred for samples 14-4B and 14-6F. Sm is the main foliation.  820 

 821 
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Fig. 8 – (a) P-T pseudosection calculated for sample 14-4B in the MnNKCFMASH model system and at H2O 822 

saturated conditions using the whole rock bulk composition. The variance of the fields varies from two (i.e. 823 

8 phases, white fields) to five (i.e. 5 phases, darker grey fields). Garnet compositional isopleths are reported 824 

for garnet core, mantle and rim in dark, medium and light red, respectively (Alm: dashed; Grs: continuous; 825 

Prp: dotted; Sps: dashed-dotted lines); phengite compositional isopleths are reported in yellow. The 826 

modeled peak assemblage is reported in bold. The black arrow is the prograde portion of the P-T path 827 

inferred from the pseudosection. The entire set of garnet compositional isopleths is reported in Fig. SM3. 828 

(b, c) Same pseudosection of (a), contoured for lawsonite (b) and garnet (c) modal amount (vol%). Note 829 

that lawsonite is predicted to be slightly consumed along the inferred P-T path, whereas garnet is predicted 830 

to increase in modal amount.   831 

    832 

Fig. 9 – (a) P-T pseudosections calculated for sample 14-6F in the MnNKCFMASH model system and at H2O 833 

saturated conditions using the whole-rock (unfractionated: lower left) and the fractionated (upper right) 834 

bulk compositions, respectively, and used to model the growth of garnet core and mantle (unfractionated 835 

bulk) and garnet rim (fractionated bulk). The variance of the fields varies from two (i.e. 8 phases, white 836 

fields) to four (i.e. 6 phases, darker grey fields). Garnet compositional isopleths are reported for garnet 837 

core, mantle and rim in dark, medium and light red, respectively (Alm: dashed; Grs: continuous; Prp: 838 

dotted; Sps: dashed-dotted lines); phengite compositional isopleths are reported in yellow. The black 839 

arrows are the prograde portions of the P-T path inferred for the growth of garnet core, mantle and rim. 840 

The entire set of garnet compositional isopleths is reported in Fig. SM4. (b, c) Same pseudosections of (a), 841 

contoured for lawsonite (b) and garnet (c) modal amount (vol%). Note that lawsonite is predicted to be 842 

slightly consumed along the inferred P-T path, whereas garnet is predicted to increase in modal amount. 843 

 844 

Fig. 10 – (a, b) P-X(Fe2O3) and T-X(Fe2O3) pseudosections calculated for sample 14-4B in the 845 

MnNKCFMASHO model system at T = 420°C and P = 22 kbar, respectively. (c, d) P-X(Fe2O3) and T-X(Fe2O3) 846 

pseudosections calculated for sample 14-6F (fractionated bulk composition) the MnNKCFMASHO model 847 

system at T = 470°C and P = 20 kbar, respectively. In all the pseudosections the variance of the fields varies 848 

from two (i.e. 8 phases, white fields) to six (i.e. 5 phases, darker grey fields). Garnet compositional isopleths 849 

are reported for garnet rim in red (Alm: dashed; Grs: continuous; Prp: dotted; Sps: dashed-dotted lines). 850 

The modeled equilibrium assemblages are reported in bold. For both the samples, peak-P conditions 851 

decrease with increasing XFe2O3 (P = 2-3 kbar for sample 14-4B and P = 1 kbar for sample 14-6F), 852 

whereas peak-T conditions do not significantly change at variable XFe2O3 values.     853 

  854 

Fig. 11 – P/T-X(H2O) pseudosection calculated for sample 14-4B in the MnNKCFMASH model system along 855 

two different P/T gradients: gradient A (a) coincides with the P-T path constrained using the P-T 856 

pseudosection calculated with H2O in excess (black arrow in Fig. 8a); gradient B (b) is steeper (similar to the 857 

early prograde P-T evolution of Eastern Himalayan blueschists reported in the literature; Ao and Bhowmik., 858 

2014). The variance of the fields varies from two (i.e. 7 phases, white fields) to five (i.e. 5 phases, darker 859 

grey fields). Garnet compositional isopleths are reported for garnet core and rim in dark and light red, 860 

respectively (Alm: dashed; Grs: continuous; Prp: dotted; Sps: dashed-dotted lines). The observed 861 

equilibrium assemblage is reported in bold. The white dotted lines in both pseudosections represent the 862 

H2O-saturation surface and divide the pseudosections in a H2O-saturated part on the right and in a H2O-863 

undersaturated part on the left. The intersection of garnet compositional isopleths on the H2O-saturation 864 

surface in (a) confirms that garnet growth (with the measured composition) occurred at H2O-saturated 865 

conditions; garnet core compositional isopleths do not intersect in (b), thus implying that gradient B is not 866 

compatible with the observed mineral assemblage and compositions.  867 
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 868 

Fig. 12 – (a,b) P/T-X(H2O) pseudosections calculated for sample 14-6F in the MnNKCFMASHO model system 869 

along the same gradient A as in Fig. 11a and using the whole-rock (unfractionated: a) and the fractionated 870 

(b) bulk compositions. The variance of the fields varies from two (i.e. 7 phases, white fields) to five (i.e. 5 871 

phases, darker grey fields). Garnet compositional isopleths are reported for garnet core and rim in dark and 872 

light red, respectively (Alm: dashed; Grs: continuous; Prp: dotted; Sps: dashed-dotted lines). The white 873 

dotted line represents the H2O-saturation surface and divides the pseudosections in a H2O-saturated part 874 

on the right and in a H2O-undersaturated part on the left. The intersection of garnet compositional 875 

isopleths on the H2O-saturation surface confirms that garnet growth (with the measured composition) 876 

occurred at H2O-saturated conditions.(c-f) Same P/T-X(H2O) pseudosection of (a, b) contoured for lawsonite 877 

(c, d) and garnet (e, f) modal amounts (in vol%). The red ellipses indicate the P-T-X(H2O) conditions inferred 878 

for the growth of garnet core and rim from Fig. 12a, 12b. H2O addition is required to form lawsonite (c, d). 879 

A protracted H2O influx at high pressure is required in order to allow the contemporaneous growth of 880 

garnet, which requires H2O-saturated conditions (e, f) and lawsonite, whose growth subtracts H2O to the 881 

system (c, d) (see text for further details). 882 

 883 

Fig. 13 - (a) P-T path constrained for the Sapi-Shergol blueschist unit (red thick vs. dotted arrows are the P-T 884 

paths constrained in the MnNKCFMASHO vs. MnNKCFMASH system, respectively; the P-T path previously 885 

constrained by Honegger et al., 1989 and Guillot et al., 2008 is reported in orange) compared with the P-T 886 

paths of the other Himalayan blueschist rocks: Shangla (in yellow: Guillot et al., 2008) and Nagaland 887 

Ophiolite Complex (in green: Ao and Bhowmik, 2014). The dashed grey arrow is the schematic P–T path 888 

followed by the sedimentary particles in the accretionary wedge, as resulting from the thermomechanical 889 

numerical study of Yamato et al. (2007). (b) P-T diagram comparing the maximum P-T conditions for well-890 

documented examples of accretionary terranes in subduction zones (modified from Agard and Vitale 891 

Brovarone, 2013 and Plunder et al., 2015, with references therein) with the P-T conditions experienced by 892 

the Sapi-Shergol blueschist unit (this study; red squares) and the Nagaland Ophiolite Complex of far-eastern 893 

Himalaya (Ao and Bhowmik, 2014; green square). Data are mainly derived from: Agard et al. (2001b), 894 

Plunder et al. (2012): Western Alps; Ravna et al. (2010), Vitale Brovarone et al. (2011, 2013), Agard and 895 

Vitale Brovarone (2013): Corsica; David and Whitney (2008), Plunder et al. (2015): Turkey; Warren et al. 896 

(2005), Warren and Waters (2006), Agard and Vitale Brovarone, (2013): Oman; Agard et al. (2006): Zagros; 897 

Fitzherbert et al. (2003, 2004, 2005), Agard and Vitale Brovarone (2013), Vitale Brovarone and Agard 898 

(2013): New Caledonia; Banno et al. (2000), Page et al. (2006), Tsujimori et al. (2006), Ernst and McLaughlin 899 

(2012), Ukar and Cloos (2014): Franciscan Complex (western USA).  900 
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Sample 14-4B 14-6F

Qtz 42 21

Lws 21 22

Phe 22 9

Gln 12 44

Grt 3 4

Total 100 100

Sample 14-4B

unfractionated fractionated

SiO2 70.26 61.69 62.91

Al2O3 14.40 15.76 15.48

FeO 4.20 7.14 7.01

MgO 1.80 4.75 4.96

MnO 1.05 0.93 0.06

CaO 4.66 5.32 4.95

Na2O 0.96 3.34 3.51

K2O 2.67 1.07 1.12

Total 100.00 100.00 100.00

Table 1 - Modal (vol%) and bulk (wt%) compositions of 

samples 14-4B and 14-6F

14-6F
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