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We introduce a new class of nonparametric prior distributions on the space of continuously varying den-
sities, induced by Dirichlet process mixtures which diffuse in time. These select time-indexed random
functions without jumps, whose sections are continuous or discrete distributions depending on the choice
of kernel. The construction exploits the widely used stick-breaking representation of the Dirichlet pro-
cess and induces the time dependence by replacing the stick-breaking components with one-dimensional
Wright–Fisher diffusions. These features combine appealing properties of the model, inherited from the
Wright–Fisher diffusions and the Dirichlet mixture structure, with great flexibility and tractability for pos-
terior computation. The construction can be easily extended to multi-parameter GEM marginal states, which
include, for example, the Pitman–Yor process. A full inferential strategy is detailed and illustrated on sim-
ulated and real data.
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1. Introduction

Bayesian nonparametric inference has undergone a tremendous development in the last two
decades. This has been stimulated not only by significant theoretical advances, but also by the
availability of new and efficient computational methods that have made inference, based on an-
alytically intractable posterior distributions, feasible. A recent extensive survey of the state-of-
the-art of the discipline can be found in Hjort, Holmes, Müller and Walker [27].

In this paper, we tackle the problem of estimating continuously varying distributions, given
data points observed at different time intervals, possibly not equally spaced. More specifically,
we consider the following setting, stated as an assumption for ease of later reference.

Assumption 1. The data generating process is assumed to be a random function g :X×[0, T ] →
R+, 0 < T < ∞, where X is a locally compact Polish space, g is continuous in the sense that
sup|s−t |<δ supx∈X |g(x, s) − g(x, t)| → 0 as δ → 0, and sections g(·, t) are densities absolutely
continuous with respect to a common dominating measure.

Here we assume that given g(·, t), the data are such that at time ti

yti,1 , . . . , yti,k

i.i.d.∼ g(·, ti), (1)
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independently of the past observations ytj ,h, for all j < i and all h. Hence, observations yti ,j

are exchangeable for fixed i and varying j , but only partially exchangeable in general. Our goal
is to define an appropriate prior for g and carry out inference on its entire shape. We will deal
with both single and multiple data points available at every time ti , obtained by letting k = 1
and k > 1 in (1), and refer to these two settings as single data and multiple data, respectively.
These are of separate interest as in some frameworks only single data points are available (e.g.,
financial indices); it is then natural to wonder about the model performance in such settings, with
structural lack of information, while evaluating the precision gain that can be obtained when
more information is available.

The commonly recognised cornerstone for density estimation in a Bayesian nonparametric
framework is the Dirichlet process mixture model, introduced by Lo [35] and recalled in Sec-
tion 2 below. Here the idea is to extend some advantages of using a Dirichlet process mixture
to the case when g is considered to be the realisation of a measure-valued process. Hence, we
aim at inducing a prior on the space of functions as in Assumption 1 by constructing a measure-
valued process, with continuous sample paths and marginal states given by a Dirichlet process
mixture, which is suitable for nonparametric inference in continuous time. Different types of
temporal dependence induced on the observations are of interest. Here we focus on Markovian-
ity for the mixing measure. Although potential applications of assuming a Markovian mixing
measure concern a variety of fields such as econometrics, finance and medicine among others,
this approach has been object of only a limited amount of research, so far, in the literature on
Bayesian nonparametric inference. On the other hand, in a context of temporal dependence, the
Markov property for the mixing measure considerably simplifies the finite dimensional distribu-
tions structure, and, most importantly, it need not impose a Markovian dependence on the actual
observations.

Thus, our setting can be regarded in two ways. One is that of a nonparametric regression, where
the mixing measure is indexed by the covariate t , and the observations are partially exchangeable.
A second interpretation, given our above requests, is that of a hidden Markov model, whereby the
unobserved signal is an infinite-dimensional, or measure-valued, Markov process. Conditionally
on the knowledge of the signal g(·, t), the observations are independent of each other, and on the
past observations, with emission distribution given by the signal state, as in (1).

The paper is organized as follows. Section 2 recalls the essential preliminary notions, like that
of Dirichlet process and Dirichlet process mixture, and reviews to some extent the literature on
the so-called dependent processes in Bayesian nonparametrics. These are in fact measure-valued
processes, indexed by time or more generally by covariates, specifically designed for inferential
purposes in Bayesian nonparametric frameworks with nonexchangeable data. Section 3 moves
from the stick-breaking representation of the Dirichlet process to construct a class of diffusive
Dirichlet processes. The idea consists in replacing the Beta-distributed components of the stick-
breaking weights with one-dimensional Wright–Fisher diffusions. This yields a time-dependent
process with purely-atomic continuous paths and marginal states given by Dirichlet processes.
In order to have a statistical model suitable for estimating functions as in Assumption 1, we then
define a diffusive Dirichlet mixture by considering an appropriate hierarchy whose top level is
given by a diffusive Dirichlet process.

A challenging aspect of statistical models which involve diffusions regards the computational
side, even when this is performed via simulation techniques with the aid of a computer. In a



Dynamic estimation with diffusive mixtures 903

nutshell, this is due to the often encountered intractability of the transition density, in the fortunate
cases when this is known explicitly. Here we devise a strategy for posterior computation based
on Gibbs sampling and slice sampling, with the latter used both on the instant-wise infinite-
dimensional mixing measure and on the transition density of the time-dependent components.
After outlining the algorithm for posterior computation in Section 4, in Section 5 we illustrate
the use of diffusive Dirichlet mixtures on two sets of simulated data and on real financial data.
Section 6 collects some concluding remarks and briefly highlights possible extensions, concerned
with the model parametrisation and with the aim of relaxing some model constraints. All proofs
and the algorithm details are deferred to the Appendix.

2. Dependent processes in Bayesian nonparametrics

The Dirichlet process, introduced by Ferguson [20] and widely accepted as the main break-
through in the history of Bayesian nonparametric statistics, is a discrete random probability
measure defined as follows. Let X be a Polish space endowed with the Borel sigma algebra
B(X), P(X) be the space of Borel probability measures on X, and let α be a nonatomic, finite
and nonnull measure on X. A P(X)-valued random variable Q is said to be a Dirichlet pro-
cess with parameter α, denoted Q ∼ Dα , if for any measurable partition A1, . . . ,Ak of X, the
vector (Q(A1), . . . ,Q(Ak)) has the Dirichlet distribution with parameters (α(A1), . . . , α(Ak)).
A second construction of the Dirichlet process, still due to Ferguson [20], exploits the idea of
normalising the jumps of a gamma subordinator by their sum, locating the jumps at independent
and identically distributed points sampled from α/α(X). This strategy has been followed for con-
structing several other nonparametric priors, among which the normalised inverse-Gaussian pro-
cess Lijoi, Mena and Prünster [32] and the normalised generalized gamma process Lijoi, Mena
and Prünster [33]. A later construction of the Dirichlet process, formalized by Sethuraman [50]
and particularly useful for our purposes, is usually referred to as the stick-breaking representa-
tion. This states that the law of a Dirichlet process coincides with the law of the discrete random
probability measure

S =
∞∑
i=1

wiδxi
, (2)

obtained by letting

w1 = v1, wi = vi

i−1∏
j=1

(1 − vj ), vi
i.i.d.∼ Beta(1, θ), (3)

and xi ∼i.i.d. α/θ , where θ = α(X) and the vi ’s and xi ’s are mutually independent. The stick-
breaking construction has received a wide appreciation from the Bayesian community. In partic-
ular, this is due to the fact that it greatly facilitates the implementation of posterior simulation,
using Markov chain Monte Carlo techniques that exploit the slice sampler (Damien, Wakefield
and Walker [7], Walker [52]) or the retrospective sampler (Papaspiliopoulos and Roberts [40]).
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Such strategies for avoiding infinite computations, without deterministically truncating the ran-
dom measure, can be used, for example, with Dirichlet process mixtures (Lo [35]). The latter are
a very popular class of models which amplifies the use of Dirichlet processes to a wider spec-
trum of statistical applications, most notably density estimation and data clustering, by modelling
observations according to the random density

fS(y) =
∫

K(y|x)S(dx) =
∞∑
i=1

wiK(y|xi), (4)

where K(·|y) is a kernel density and S is as in (2). Thanks to the large support properties of the
Dirichlet prior, the above model results in a very flexible class of distributions: for instance, any
density on the real line can be recovered as an appropriate Dirichlet mixture of normal densities.
For this and other examples see Lo [35], Section 3 and Ghosh and Ramamoorthi [24], Section 5.

Many developments which derive from this modelling approach have been proposed. A first
possibility is to replace the Dirichlet process in (4) by letting S be some other discrete non-
parametric prior. See Lijoi and Prünster [34] and references therein. A different direction, which
currently represents a major research frontier of the area, is to extend S in (4) in order to accom-
modate forms of dependence more general than exchangeability. Besides pioneering contribu-
tions stimulated by Cifarelli and Regazzini [6], this line of research was initiated by MacEachern
[36,37], who proposed a class of dependent processes, that is a collection of random probability
measures {

Su =
∞∑
i=1

wi(u)δxi (u), u ∈U

}
, (5)

where the weights wi and/or the atoms xi depend on some covariate u ∈ U. The current litera-
ture on the topic includes, among other contributions: De Iorio, Müller, Rosner and MacEach-
ern [8], who proposed a model with an ANOVA-type dependence structure; Gelfand, Kottas and
MacEachern [22], who apply the dependent Dirichlet process to spatial modelling by using a
Gaussian process for the atoms; Griffin and Steel [25], who let the dependence on the random
masses be directed by a Poisson process; Dunson and Park [11], who construct an uncount-
able collection of dependent measures based on a stick-breaking procedure with kernel-based
weights; Rodriguez and Dunson [46], who replace the Beta random variables in (3) with a trans-
formation of Gaussian processes via probit links. See also Dunson, Pillai and Park [12], who
define a Dirichlet mixture of regression models; Dunson, Xue and Carin [13], who propose a
matrix-valued stick-breaking prior; Duan, Guindani and Gelfand [9] and Petrone, Guindani and
Gelfand [41] for other developments of dependent priors for functional data; Fuentes-García,
Mena and Walker [21] for a dependent prior for density regression; Trippa, Müller and John-
son [51], who define a dependent process with Beta marginals.

Of particular interest for the purposes of this paper are the developments of dependent pro-
cesses where the space U indexes time. In this regard we mention, among others, Dunson [10],
who models the dependent process as an autoregression with Dirichlet distributed innovations,
whereas in Griffin and Steel [26] the innovation is reduced to a single atom sampled from the
centering measure; Caron et al. [5], who model the noise in a dynamic linear model with a
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Dirichlet process mixture; Caron, Davy and Doucet [4], who develop a time-varying Dirichlet
mixture with reweighing and movement of atoms; Rodriguez and Ter Horst [47], who induce the
dependence in time only via the atoms, by making them into an heteroskedastic random walk.

Here we aim at constructing a measure-valued diffusion whose realisations are functions as in
Assumption 1. In this respect, the infinite-dimensional diffusions, found in the literature, which
are related to Bayesian nonparametric priors are not suitable for efficient inference. Just to men-
tion a few cases, this holds, for example, for the infinitely-many-alleles model (Ethier and Kurtz
[15,16]), related to the Dirichlet process; for its two-parameter version (Petrov [42]), related
to the two-parameter Poisson–Dirichlet distribution; and for normalised inverse-Gaussian diffu-
sions (Ruggiero, Walker and Favaro [49]), related to normalised inverse-Gaussian random mea-
sures. The reasons are mainly due to the fact that an inferential strategy based on these dependent
processes, given our current knowledge of their properties, would oblige to update single atoms
of a Pólya urn scheme (see, e.g., Ruggiero and Walker [48]; Favaro, Ruggiero and Walker [18]),
or otherwise face serious computational issues. To the best of our knowledge, the only model
which satisfies the given requirements, among which the Feller property, and allows efficient
inference is given in Mena, Ruggiero and Walker [38]. However, this is based on decreasingly
ordered weights, so, despite showing good performance, this feature can nonetheless be consid-
ered restrictive for certain applications. The model developed in the next section removes this
constraint by letting only the weights’ means be ordered, as happens for the Dirichlet process.

3. Diffusive Dirichlet process mixtures

In this section, we elaborate on a construction provided in Feng and Wang [19], in order to
develop a class of measure-valued processes, suitable to be used in a statistical model, with the
sought-after features outlined in the Introduction. Consider the special case of (5) given by the
collection of random probability measures

Pt =
∞∑
i=1

wi(t)δxi
, t ≥ 0, xi

i.i.d.∼ G, (6)

where
∑

i≥1 wi(t) = 1 for all t ≥ 0 and G is a nonatomic probability measure on X. Here the
atoms are random but do not vary with time, and the dependence is induced only via the weights.
This setting suffices for guaranteeing enough modelling flexibility (see Section 6 for more com-
ments on this point), whereas the opposite scheme, obtained by inducing the dependence only
via the atoms, may be unsatisfactory. See, for example, Rodriguez and Dunson [46] for a dis-
cussion. Recall now the stick-breaking structure of the Dirichlet process weights (3). A natural
extension for having time dependence with continuity in t is to let wi diffuse in time, in a way
that retains the marginal distributions. A simple way to achieve such result is to let each compo-
nent vi diffuse in [0,1], with fixed marginals, and perform the same construction as in (3). This
can be obtained by letting the vi ’s be one-dimensional Wright–Fisher diffusions, characterised
as the unique solution in [0,1] of the stochastic differential equation

dv(t) = 1
2

[
a
(
1 − v(t)

) − bv(t)
]

dt +
√

v(t)
(
1 − v(t)

)
dB(t), (7)
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Figure 1. Above: an approximated sample-path of a Wright–Fisher diffusion, with a = 1 and b = 4. Below:
ergodic frequencies of the above sample-path against invariant distribution Beta(1,4).

where a, b ≥ 0 and B(t) denotes a standard Brownian motion. See, for example, Karlin and
Taylor [31], Section 15.2. For our purposes, it will suffice to highlight the following properties
of Wright–Fisher diffusions v(t) with parameters (a, b) as in (7), henceforth denoted v(·) ∼
WF(a, b):

− when v(t) approaches 0 (resp., 1), the diffusion coefficient converges to 0 and the drift
approaches a/2 (resp., −b/2), thus keeping the diffusion inside [0,1];

− when a, b ≥ 1, the points 0 and 1 are both entrance boundaries, implying (essentially) that
they are never touched for t > 0;

− when a, b > 0, v(t) has invariant distribution given by a Beta(a, b);
− when a, b > 0, v(t) is strongly ergodic, that is, irrespective of the initial distribution, the

law of v(t) will converge to the invariant measure as t diverges.

A typical behavior of v(t), together with the occupancy frequencies plotted against the invariant
distribution, is shown in Figure 1, for values (a, b) = (1,4). Note how these parameters make the
trajectory occupy the half interval containing the mean value of Beta(1,4) for most of the time.

The idea is then to let every vi in (3) vary, independently of the other components, according
to a Wright–Fisher diffusion with parameters (1, θ), that is vi(·) ∼i.i.d. WF(1, θ), with vi(·) =
{vi(t), t ≥ 0}, and to construct diffusive stick-breaking weights

w1(t) = v1(t), wi(t) = vi(t)
∏
j<i

(
1 − vj (t)

)
, vi(·) i.i.d.∼ WF(1, θ). (8)

The process w(·) = {w(t), t ≥ 0} defined above for the vector of weights w(t) = (w1(t),

w2(t), . . .) has been characterised by Feng and Wang [19], who investigate its sample path prop-
erties. It is clear that the constraints a = 1 and b = θ are by no means essential but only chosen
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to preserve the connection with the Dirichlet process (see Proposition 3.3 below). Section 6 will
briefly discuss possible extensions. With this formulation, (6) defines a family of dependent ran-
dom probability measures which retain at every time point the stick-breaking structure featured
by (3). For ease of reference, we summarise the construction in the following definition.

Definition 3.1. A family of dependent random probability measures P = {Pt , t ≥ 0} with repre-
sentation (6)–(8) is said to be a diffusive Dirichlet process.

Besides studying w(·), Feng and Wang [19] also consider a construction more general than (6),
where the atoms (x1, x2, . . .) are let to be a Markov process on X

∞. However, their model is too
general for our purposes and its properties are hard to establish without further assumptions on
the model components. Hence, we need to formalise the path properties of P , as these cannot be
deduced directly from either of the models considered in their paper.

To this end, denote by CP(X)([0,∞)) the space of continuous functions from [0,∞) to P(X).
Here P denotes the CP(X)([0,∞))-valued random element {Pt , t ≥ 0}, and Pt its coordinate
projection at t , so that Pt ∈ P(X). We endow P(X) with the topology induced by the total
variation norm, so that elements of CP(X)([0,∞)) have modulus of continuity

ω(P, δ) = sup
|s−t |<δ

sup
A∈B(X)

∣∣Pt (A) − Ps(A)
∣∣,

and P ∈ CP(X)([0,∞)) if and only if ω(P, δ) → 0 as δ → 0, that is if Pt+s → Pt in total
variation distance as s → 0. See Billingsley [3], Chapter 2. The fact that the diffusive Dirichlet
Process P in Definition 3.1 has continuous sample paths in total variation, should be intuitive
from the construction, since the only time-varying quantities are diffusion processes mapped
through a continuous function. The following proposition formalises this fact.

Proposition 3.2. Let P be as in Definition 3.1. Then P is a Feller process with realisations
almost surely in CP(X)([0,∞)).

The Feller property for P guarantees certain desirable path properties which, among other
things, yield the well-definedness of the process and its Markovianity. We refer the reader to
Ethier and Kurtz [16], Chapter 4, for more details on Feller operators. However, the continuity
of sample paths is not implied by the Feller property and is proven separately. In particular, it is
such continuity that will allow, after embedding P in an appropriate statistical model, to select
almost surely continuous functions as in Assumption 1.

Since the stationary distribution of the Wright–Fisher diffusion, used in (8), is the same dis-
tribution used in (3) for the stick-breaking components, it is also intuitive that the process of
Definition 3.1 is stationary with respect to the law of a Dirichlet process, as stated by the next
proposition.

Proposition 3.3. Let P be as in Definition 3.1 and, for a finite nonnull measure α on X, let Dα

denote the law of a Dirichlet process. Then P is reversible and stationary with respect to Dα . In
particular, if P0 ∼ Dα , then Pt ∼ Dα for every t > 0.
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Hence, the marginal states of the diffusive Dirichlet process are Dirichlet distributed. Here
it is important to note that modelling the above measure-valued process as stationary will not
constrain the data to come from a stationary process. This will be more transparent when we will
consider the hierarchical statistical model for the data. On the contrary, this aspect will turn into
an advantage since it will allow to propagate in time the support properties of the Dirichlet prior.
Indeed it is well known that the Dirichlet prior has full weak support. That is, if X is the support
of the parameter measure α, then the support of Dα in the weak topology is

supp(Dα) = {
Q ∈ P(X): supp(Q) ⊂X

}
. (9)

See Ghosh and Ramamoorthi [24], Section 3.2.3. Proposition 3.3 then implies that at station-
arity Pt , marginally, has support (9). See also Barrientos, Jara and Quintana [1] for sufficient
conditions for having full weak support in the context of dependent stick-breaking processes.

Another byproduct of Proposition 3.3 is the immediate derivation of the marginal moments
of P . In particular, let P0 ∼ Dα , with α = θG, where θ > 0 and G ∈ P(X). Then, for all t ≥ 0
and A ∈ B(X),

E
[
Pt (A)

] = G(A), Var
[
Pt (A)

] = G(A)(1 − G(A))

θ + 1
, (10)

where Pt (A) denotes (6) evaluated at the set A. In addition, the following proposition provides
an explicit expression for the autocorrelation function of the process.

Proposition 3.4. Let P be as in Definition 3.1. Then, for any A ∈ B(X) and any t, s > 0,

Corr
(
Pt (A),Pt+s(A)

) = (1 + θ)[(2 + θ) + θe−λs]
(2 + θ)(1 + 2θ) − θe−λs

, (11)

where λ = (1 + θ)/2.

As expected, the correlation does not depend on the set A, since the time dependence enters
only via the weights and not the locations. Furthermore, it is easily seen that the correlation
decays exponentially to (1 + θ)/(1 + 2θ) as s → ∞. Although this can perhaps be considered as
an undesirable property, the existence of a lower bound for the correlation is a common feature
of all dependent processes whose atoms are fixed (see Rodriguez and Dunson [46]). In Section 6,
we will provide more comments on this point and outline a possible extension which aims at
relaxing some of the model constraints.

The above dependent process can be used to formulate a dependent mixture model by consid-
ering the time-varying density

fPt (y) =
∫

K(y|x)Pt (dx), (12)

where K(·|x) is a kernel density with parameter x. An equivalent formulation is provided in the
form of the hierarchical model

y|x ∼ K(y|x), (13)
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x|t,Pt ∼ Pt ,

P ∼ diff-DP,

where P ∼ diff-DP denotes that P is a diffusive Dirichlet process. Since P is the only time-
varying component in the statistical model, the dependent mixture inherits the diffusive behavior
from P , and Proposition 3.3 implies that marginally fPt is a Dirichlet process mixture. Thus,
the dependent mixture induces a prior distribution on the space CP(X)([0,∞)) of continuous
functions from [0,∞) to P(X), which almost surely selects functions g :X× [0, T ] →R+ that
satisfy Assumption 1. The choice of kernel K determines the discrete or continuous nature of the
sections g(·, t) = fPt (·) and their support.

4. Posterior computation

We overview the strategy for simulating from the posterior distribution of (12) and of other quan-
tities of interest, such as, for example, the mean functional process ηt = EfPt

(y), which depicts
the average stochastic process driving the observations. Here we highlight the main points of
interest, while the fully detailed procedure can be found in Appendix B. For notational simplic-
ity, and in view of the real data example below, we assume a single data setting. However, the
strategy allows a straightforward extension to the case of multiple observations at every time
point.

Specifically, we assume data y(n) = (yt1, . . . , ytn) are observed at times 0 ≤ t1 < · · · < tn,
where time intervals are not necessarily equally spaced. The target of inference is the data gen-
erating time-varying distribution g(y, t), such that yti ∼ g(·, ti ). We model such g by means of a
diffusive Dirichlet mixture, with g(·, t) = fPt (·). To this end, let v(·) = ((v1(t), v2(t), . . .), t ≥ 0)

denote a collection of independent Wright–Fisher diffusions defined as in (7), with vj (·) ∼i.i.d.

WF(1, θ). Let also x = (x1, x2, . . .) be the random locations sampled from a nonatomic proba-
bility measure G. Hence, the data generating process is modelled as

fPt

(
y|v(t), x

) =
∑
j≥1

wj(t)K(y|xj ), (14)

with wj(t) as in (8). The model induces dependence among the observations, which are ex-
changeable for fixed t but partially exchangeable in general.

The infinite dimensionality of the random measure at t is dealt with via slice sampling
(Damien, Wakefield and Walker [7], Walker [52]). Specifically, we extend the slice algorithm
in Kalli, Griffin and Walker [30] to augment the above random density by

fPt

(
y,u, s|v(t), x

) = I(u < ψs)

ψs

ws(t)K(y|xs), (15)

where s 	→ ψs is a decreasing function with known inverse ψ∗, for example, ψs = e−ηs , for
0 ≤ η ≤ 1. The latent variable s indexes which of the kernels K(·|xs) better captures the mass
at y, and given s, u ∼ U(0,ψs). For the purpose of estimation, it is enough to condition on
v(n) = {v(ti)}ni=1, rather than on the whole path v(·). In this section and in the Appendix, we will
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use the notation L(z) to indicate generically the law of z. The conditional augmented likelihood
is given by

L
(
y(n), u(n), s(n)|v(n), x

) =
n∏

i=1

I(ui < ψsi )

ψsi

[
vsi (ti )

∏
k<si

(
1 − vk(ti)

)]
K(yti |xsi ), (16)

where u(n) = (u1, . . . , un) and s(n) = (s1, . . . , sn), with ui = uti and si = sti . Due to the random
truncation induced by the slice sampling method, one is only able to learn about the first m

Wright–Fisher processes and locations, where

m = max
(⌊

ψ∗(u1)
⌋
,
⌊
ψ∗(u2)

⌋
, . . . ,

⌊
ψ∗(un)

⌋)
, (17)

and �A� denotes the integer part of A. Hence, denoting

v
(n)
1:m = (

v
(n)
1 , . . . , v(n)

m

)
, x1:m = (x1, . . . , xm), (18)

we see that

L
(
v

(n)
1:m,x1:m|y(n), u(n), s(n)

) ∝ L
(
y(n), u(n), s(n)|v(n)

1:m,x1:m
)
L

(
v

(n)
1:m

)
L(x1:m),

while the posterior distribution remains the unchanged prior for all v
(n)
l , l > m. Here the m

processes and locations are mutually independent, so that

L
(
v

(n)
1:m

) =
m∏

j=1

L
(
v

(n)
j

)
, L(x1:m) =

m∏
j=1

L(xj ).

It remains to observe that the finite dimensional distributions for each Wright–Fisher process are

L
(
v

(n)
j

) = πv

(
vj (t1)

) n∏
i=2

pv

(
vj (ti)|vj (ti−1)

)
, (19)

where πv = Beta(1, θ) and pv denotes the transition density of the Wright–Fisher diffusion. This
is known explicitly (Ethier and Griffiths [14]), but has an infinite series representation. In view of
a further implementation of the slice sampler, we resort to the representation of pv due to Mena
and Walker [39], which reads

pv

(
v(t)|v(0)

) =
∞∑

m=0

rt (m)D
(
v(t)|m,v(0)

)
, (20)

where rt (m) is an appropriate deterministic function and D(v(t)|m,v(0)) a finite mixture of Beta
distributions. This leads to an augmentation of pv similar to that outlined above for fPt , allowing
to avoid the infinite computation.

With the above specification, a Gibbs sampler algorithm can be designed as in Algorithm 1.
The reader is referred to Appendix B for the algorithm details not included in this section.
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Algorithm 1 Gibbs sampler for diffusive DP mixtures
1: input: data (yt1 , . . . , ytn ) and their recording times (t1, . . . , tn)

2: initial values for:
(a) Hyper-parameters in G and WF parameters
(b) Upper limit m(0) for the number of locations and WF processes
(c) Membership variables s(0) = (st1 , . . . , stn ), taking values in {1, . . . ,m(0)}
(d) WF processes at (t1, . . . , tn) and corresponding latent variables
(e) Location values

3: for I = 1 to ITER do
4: Sample slice variables uti ∼ U(0,ψsti

) and update the value of mI

5: if m(I) > m(I−1) then
6: Take extra WF processes and their latent variables from priors
7: end if
8: Update transition density latent variables
9: Update WF processes values

10: Update location values
11: Update WF parameter values
12: Update membership variables s(I ) taking values in {1, . . . ,m(I)}
13: end for

5. Illustration

Following the above framework, in this section we illustrate an application of the diffusive
Dirichlet process with simulated and real data. More specifically, we consider:

(i) simulated observations sampled at equally spaced intervals from the time-dependent nor-
mal density

N
(
cos(2t) + t/2,1/10

); (21)

(ii) 300 real observations given by daily exchange rates between US dollars and Mexican peso
during the period from September 26th, 2008, to December 7th, 2009.

The assumption of data collected at regular intervals here is for computational simplicity only,
as the model, through (20), allows for not equally spaced samples.

In order to complete the specification of the diffusive mixture, we use a conjugate vanilla
choice for the kernel K and centering measure G. Specifically, let

K(y|x) = N
(
y|m,v−1),

G(x) = N
(
m|0,1000v−1)Gamma(v|10,1),

with x = (m,v). The parametrization for G is chosen to achieve a large variance at the location
level, to cover all observations with high probability. This is required, as the locations are random
but fixed over time, and the weight processes should be able to pick any good candidate loca-
tion within the data state space at a given time. Running Algorithm 1 allows to draw posterior
inferences for any functional of the diffusive Dirichlet mixture model. In particular, besides the
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Figure 2. MCMC-based estimation for single data points (dots) sampled at equally spaced intervals from
(21). The picture shows the true model (heat contour), the pointwise posterior mode (solid line) and 95%
credible intervals for the mean functional (dotted lines), and the pointwise 95% quantiles of the posterior
estimate of the time-varying density (dotted lines).

time-varying density, we are interested in the mean functional

ηt =
∫
R

yfPt (dy). (22)

All examples in this section are based on 2000 effective iterations drawn from 10,000 iterations
thinned each five and after a burn in period of 5000 iterations. We verified practical convergence
using the convergence diagnostics of Gelman and Rubin [23] and of Raftery and Lewis [45], and
neither showed any evidence of convergence problems.

Figure 2 shows the results corresponding to a first dataset simulated from (21), where 100
single observations are collected at equally spaced intervals. The true data generating process
is shown as a heat contour, with darker regions being those of higher probability, and presents
traits of nonstationarity and seasonality. The dots are the simulated data, the solid and dashed
lines are the pointwise posterior mode and 95% credible intervals for the mean functional, re-
spectively, and the dotted lines are the pointwise 95% quantiles of the posterior estimate of the
time-varying density. The picture shows that the model correctly captures the nonstationary be-
haviour with a strong trend and seasonalities. Furthermore, even in this setting with structural
lack of instant-wise information, due to the availability of only single data points, the uncertainty
of the estimates is reasonably low, as the model instantaneous variance is indirectly learned by
the algorithm from the overall data pool. The smoothness level captured by the estimation is also
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Figure 3. MCMC-based estimation for multiple data points (dots) sampled at equally spaced intervals
from (21). The picture shows the true model (heat contour), the pointwise posterior mode (solid line) and
95% credible intervals for the mean functional (dotted lines), and the pointwise 95% quantiles of the poste-
rior estimate of the time-varying density (dotted lines).

acceptable, given the above considerations on the lack of information and considered that the
model is ultimately based on Wright–Fisher components.

In order to investigate the degree of improvement, one can gain with multiple data points, we
performed the same type of inference as in Figure 2 on a second set of data simulated from (21),
where at each of the 100 time points, five data are available. The results, reported in Figure 3,
show that the accuracy of the estimation increases satisfactorily, as the true model behaviour
is captured with considerably less uncertainty. This is especially true for the mean functional
(solid line), whose credible intervals (dashed lines) are very narrow. It is also important to note
that the smoothness of the true model is also correctly learned by the estimates. This is due
to the fact that the rough behaviours of the model subcomponents are confined to levels of the
hierarchy where their impact on the final estimation, in presence of enough information, is pooled
together and softened by adapting the component-specific volatilities. This however does not
prevent the model from capturing quick deviations from a smooth trend, as showed by the next
example.

For the illustration with real observations, we concentrate on a challenging set of single data
points per observation time, which again provides scarce instantaneous information. Financial
data sets as in (ii) are often described with parametric state-space models. This can put serious
constraints on the ability of the model to capture the correct marginal distributions and quick
deviations from the general pattern. By making the nonparametric assumption that the state-
space model follows a diffusive Dirichlet process mixture, we are relaxing such constraints and
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Figure 4. MCMC-based pointwise posterior density estimate (heat contour) and pointwise posterior mode
of the mean functional (solid line), based on single data points (dots) corresponding to dataset (ii).

granting great flexibility to the model. In the interpretation related to hidden Markov models, the
unobserved signal here models an evolving distribution, driven by a measure-valued Markov pro-
cess, and the observations are sampled from the signal states. Note however that this framework
does not impose any Markovianity nor stationarity on the observations.

Figure 4 shows the results on the exchange rate data set, with the horizontal axis representing
time and the vertical axis representing the index value. The heat contour outlines the shape of
the pointwise posterior estimate for the time-varying density function fPt , with darker regions
corresponding to higher posterior probability. The solid line is the pointwise mode of the poste-
rior mean functional (22). The model is able to capture highly volatile behaviours, such as that
encountered in the period between 70 and 130. These kind of changes are typically not well
recognised by parametric models for time series, which are too rigid to allow for unexpected de-
tours. Figure 5 shows a sub-region of Figure 4, where sudden spikes and different local trends are
also shown to be correctly captured, regardless of how abrupt these appear. Another important
aspect to be noted is the fact the regions of high estimated probability need not correspond to
the regions where data are observed, even having single data points, as in the central sub period
around day 225 in Figure 5. This feature is determined by the model dependence, which allows
to borrow information across time, and should not be confused with model rigidity, as the model
clearly captures sudden deviations from the trend as that occurring around time 200.
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Figure 5. A sub-region of Figure 4.

6. Discussion, extensions and future work

We introduced a new class of prior distributions on the space of time-indexed, t -continuous func-
tions g :X×[0, T ] →R+, such that g(·, t) is a density for all t ∈ [0, T ]. Such priors are induced
by diffusive Dirichlet process mixtures, which extend the Dirichlet process mixture model of
Lo [35] to a framework of Feller measure-valued processes with continuous trajectories. The
resulting dependent random density (12) can be used to tackle various statistical problems of
interest in many fields such as econometrics, finance and medicine among others, when the ran-
dom phenomena evolving in continuous time are not satisfactorily modelled parametrically. On
the other hand, it can be an alternative to other nonparametric dependent models which are sta-
tistically intractable. For example, when the underlying model structure is linked to population
dynamics, it could be desirable to model data by means of Fleming–Viot processes (see Ethier
and Kurtz [17]). However, such a process is computationally intractable in view of inference, and
the presented model can then be used to this end, as the main properties of the former such as the
stationary measure and path regularity are preserved.

Overall, the introduced model exhibits a good mix of flexibility and structure, yet leaving
room for computational efficiency. The full support property of the Dirichlet process and the
time dependence of Wright–Fisher diffusions are combined to yield an equilibrated compromise
between adaptivity and dependence, and the Gibbs sampler with slice steps is simple to imple-
ment. These aspects lead to the ability of jointly detecting smooth and irregular evolutions of the
distribution which generates the observations, while borrowing strength between observations
when this is needed.
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We briefly outline two possible extensions of the model, concerned with certain features that
can nonetheless be considered as constraints in certain contexts. The first is a reparametrisation
which retains the overall structure, and aims at broadening the set of stationary distributions of
the model. The second changes the qualitative features of the model and aims at removing some
rigidities. These are concerned with the fact that the correlation is bounded from below, together
with the fact that the dependence structure imposes some restrictions on the data generating
mechanism.

The construction can be easily extended by relaxing the assumption of identity in distribution
of the WF diffusions used in (8). This can be done, for example, by considering the class of
GEM diffusions, also developed in Feng and Wang [19], to allow for more general stationary
distributions of the weights, such as two-parameter Poisson–Dirichlet distributions (Pitman [43],
Pitman and Yor [44]) or GEM distributions (Johnson, Kotz and Balakrishnan [29], Chapter 41).
A general construction of the latter class of random measures is obtained by taking vi ∼ind

Beta(ai, bi) in (3), while the former corresponds to choosing ai = 1 − σ and bi = θ + iσ for
all i ≥ 1. By analogy with the construction in Section 3, GEM-type measure-valued diffusions
can be defined by letting vi(·) ∼ind WF(ai, bi) in (8), that is the collection of Wright–Fisher
diffusions which induce the time-dependence in the weights of (6) is given by independent, and
no longer identically distributed, processes. An appropriate extension of Proposition 3.3 easily
follows. One can then replace P in (13) with the resulting measure-valued GEM process to yield
additional modelling flexibility. The resulting class of dependent mixture models extends, to a
time-dependent framework, the priors considered in Ishwaran and James [28]. Of course there
is a trade-off between the amount of flexibility one pursues and the amount of parameters one
is willing to deal with in terms of computational effort. The choice of two-parameter Poisson–
Dirichlet distributions probably guarantees extra flexibility at almost no extra cost, as it allows
to control more effectively the posterior distribution of the number of clusters (Lijoi, Mena and
Prünster [33]), and only requires one additional step at every Gibbs sampler iteration for updating
the posterior distribution of σ .

A different direction can be considered with the aim of relaxing the dependence structure
the model imposes on the data. This is the object of a currently ongoing work by the authors,
of which we concisely outline the main ideas. We consider a specific choice for the general
dependent process

P
(γ )
t =

∞∑
i=1

wi(t)δxi (t), t ≥ 0,

parametrised by γ > 0, which keeps the model complexity and the implied computational burden
relatively low, but yields an autocorrelation which vanishes exponentially fast and whose struc-
ture can be inferred from the data. This is obtained, for example, by letting the weights w(·) be
as in (8), and by letting the initial atoms xi(0) ∼i.i.d. G be updated one at a time after an interval
with Exp(γ ) distribution from the last update. The atom to be replaced is chosen, for example,
according to a fixed distribution, and the update is chosen from G. The notation P (γ ) for the
resulting model highlights the role of the intensity γ of the underlying Poisson point process
which regulates how often these innovations occur. Such specification extends the model of Sec-
tion 3 to a model which is still stationary with respect to the law of a Dirichlet process, and has
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a correlation which decreases to zero exponentially with speed regulated by γ . Informally, P (γ )

interpolates between the diffusive Dirichlet process, obtained as an appropriate limit of P (γ ) as
γ → 0, and a purely discontinuous model P (∞), whereby in every finite interval infinitely many
atoms are updated, so that for every s > 0, P (∞)

t and P
(∞)
t+s are uncorrelated. This adds great flex-

ibility to the dependence structure, which can be learned from the data by implementing P (γ ) in
a hierarchical model, similar to (13), augmented with a prior distribution on γ . However, besides
the clear advantages related to the correlation which is no longer constrained, the model sample
paths are no longer continuous but only continuous in probability, and the Markov property is
retained only with respect to the filtration generated by (w(·), x(·)) and not with respect to the
natural filtration. A further alternative, which retains the path continuity, is the possibility of al-
lowing also the atoms to diffuse. However, this way seems difficult if one is interested in proving
minimal theoretical properties for the model.

Appendix A: Proofs

Proof of Proposition 3.2

Define

�∞ =
{
z ∈ [0,1]∞:

∑
i≥1

zi = 1

}
,

and let, for any fixed sequence x = (x1, x2, . . .) ∈ X
∞, Px be the set of purely atomic proba-

bility measures with support x ∈ X
∞. Denote by ϕx :�∞ → Px the transformation ϕx(φ(v)) =∑∞

i=1 wiδxi
, where v = (v1, v2, . . .) and φ : [0,1]N → �∞ is defined as

φ1(v) = v1, φi(v) = vi(1 − v1) · · · (1 − vi−1), i > 1.

Note that the map φ is a bijection, with vi = wi/(1 − ∑i−1
k=1 wk), and that ϕx is continuous as

a function of w = φ(v) in total variation norm, since for every ϕx(w) and ε > 0 we can find a
neighbourhood

U(w,ε) =
{
w′ ∈ �∞:

∑
i≥1

∣∣wi − w′
i

∣∣ < ε

}
(A.1)

so that w∗ ∈ U(w,ε) implies ϕx(w
∗) ∈ UTV(ϕx(w), ε), with

UTV
(
ϕx(w), ε

) = {
ϕx

(
w′) ∈ Px : dTV

(
ϕx(w),ϕx

(
w′)) < ε

}
, (A.2)

since

dTV
(
ϕx(w),ϕx

(
w′)) = sup

A∈B(X)

∣∣∣∣∑
i≥1

wiδxi
(A) −

∑
i≥1

w′
iδxi

(A)

∣∣∣∣ ≤
∑
i≥1

∣∣wi − w′
i

∣∣ < ε.
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Furthermore, ϕx(w) is invertible in w, with continuous inverse

ϕ−1
x (P ) = (

P
({x1}

)
,P

({x2}
)
, . . .

) = w. (A.3)

This implies that we can define a Feller semigroup {Tx(t)}t≥0 on C(Px) by means of Tx(t)ψ =
[S(t)(ψ ◦ ϕx)] ◦ ϕ−1

x , where {S(t)}t≥0 is the Feller semigroup on C(�∞) corresponding to the
process w(·) and ϕ−1

x is as in (A.3). Theorem 4.2.7 of Ethier and Kurtz [16] now implies that for
every probability measure ν on Px , there exists a Markov process P corresponding to {Tx(t)}t≥0
with initial distribution ν and sample paths in DPx

([0,∞)), the space of right-continuous func-
tions from [0,∞) to Px with left limits, equipped with the Skorohod topology. See Billings-
ley [3], Chapter 3, for details. Moreover, being a continuous bijection with continuous inverse,
for any fixed x, ϕx is a homeomorphism of �∞ into Px , from which Px is locally compact and
separable. Denote now with p1(t,P ,dP ′) and p2(t,w,dw′) the transition functions correspond-
ing to the semigroups {Tx(t)}t≥0 and {S(t)}t≥0, respectively, and define U(w,ε) as in (A.1) and
UTV(P, ε) as in (A.2). Then for every P ∈ Px and ε > 0, we have

t−1p1
(
t,P ,UTV(P, ε)c

) = t−1p2
(
t,w,U(w, ε)c

) → 0 as t → 0, (A.4)

where the identity follows form the fact that the two events are determined by the same subset of
elementary events, and the right-hand side of (A.4) follows from the continuity of the trajectories
of w(·). The result now follows from Ethier and Kurtz [16], Lemma 4.2.9.

Proof of Proposition 3.3

Since w(·) is reversible Feng and Wang [19], with each component vi(·) reversible with respect
to a Beta(1, θ) distribution, and the atoms xi(t) ≡ xi are trivially reversible and independent of
w(·), it follows that P is reversible. The full statement now follows by the fact that xi ∼i.i.d. G,
and by assuming the initial distribution vi(0) ∼ Beta(1, θ) for all i ≥ 1.

Proof of Proposition 3.4

We have

E
(
Pt (A)Pt+s(A)

) = E

(∑
i≥1

wi(t)δxi
(A)

∑
j≥1

wj(t + s)δxj
(A)

)

= E

(∑
i≥1

wi(t)wi(t + s)δxi
(A) +

∑
i≥1

∑
j �=i≥1

wi(t)wj (t + s)δxi
(A)δxj

(A)

)

= ksG(A) + (1 − ks)G
2(A),

where

ks = E

(∑
i≥1

wi(t)wi(t + s)

)
=

∑
i≥1

E
(
wi(t)wi(t + s)

)
. (A.5)
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Here ks is independent of t by stationarity and 1 − ks is obtained by subtraction, since

1 =
∑
i≥1

wi(t)
∑
j≥1

wj(t + s) =
∑
i≥1

wi(t)wi(t + s) +
∑
i≥1

∑
j �=i≥1

wi(t)wj (t + s),

from which

Cov
(
Pt (A),Pt+s(A)

) = ksG(A)
(
1 − G(A)

)
, (A.6)

and, using (10),

Corr
(
Pt (A),Pt+s(A)

) = ks(1 + θ). (A.7)

Now, from (8) and using independence among the vi(·)’s, we have

E
(
wi(t)wi(t + s)

) = E

[(
vi(t)

∏
j<i

(
1 − vj (t)

))(
vi(t + s)

∏
j<i

(
1 − vj (t + s)

))]

= E
[
vi(t)vi(t + s)

]∏
j<i

E
((

1 − vj (t)
)(

1 − vj (t + s)
))

= E
[
vi(t)vi(t + s)

]∏
j<i

(
1 − 2

1 + θ
+E

[
vj (t)vj (t + s)

])
.

Since Corr[vi(t), vi(t + s)] = e−λs with λ = (1 + θ)/2 (cf. Bibby, Skovgaard and Sørensen [2]),
it follows that E[vi(t)vi(t + s)] = (1 + θ)−2[1 + (2 + θ)−1θe−(1+θ)s/2], so

ks = (
c1 + c2e−(1+θ)s/2)∑

i≥1

(
c1θ

2 + c2e−(1+θ)s/2)i−1
,

c1 = 1

(1 + θ)2
, c2 = θ

(1 + θ)2(2 + θ)

from which the statement follows by direct computation. Note that by exchanging the limit op-
eration with the sum and the integral (of positive terms) in lims→0 ks , we obtain lims→0 ks =
(1 + θ)−1, hence lims→0 Corr(Pt (A),Pt+s(A)) = 1.

Appendix B: Algorithm details

We illustrate the complementary details of the summary of the simulation-based procedure, pro-
vided in Section 4, for estimating the time-varying density which generates the data. We will
refer to quantities there introduced whenever this does not compromise the readability. Here we
provide the general algorithm based on a GEM diffusive mixture as discussed in Section 6. For
ease of the reader, the simplifications implied by choosing a Dirichlet diffusive mixture are made
explicit in the last part of the present section.

To recall briefly the relevant notation, let y(n) = (yt1 , . . . , ytn) be the data points observed at
times (t1, . . . , tn), v(·) = ((v1(t), v2(t), . . .), t ≥ 0) with vj (·) ∼ind WF(aj , bj ) as in (7), x =



920 R.H. Mena and M. Ruggiero

(x1, x2, . . .) with xj ∼i.i.d. G, for G ∈ P(X) nonatomic. So, for example, πv in (19) becomes a
Beta(aj , bj ). Note that the (aj , bj ) parameters must be chosen such that

∑
j≥1 wj(0) = 1, with

wj(t) as in (8) (the Wright–Fisher dynamics would then imply the same holds for all t ≥ 0). See,
for example, Ishwaran and James [28] for sufficient conditions. Given the discussion in Section 4,
it remains to make explicit how to update the random measures locations and weights, the slice
and membership variables, and how to use the slice sampling on the Wright–Fisher transition
density. We treat these issues separately.

Updating the locations. Since the locations are not time dependent, these are updated as in
Kalli, Griffin and Walker [30]. That is

L(xj | · · ·) ∝ G(xj )
∏

{i:si=j}
K(yti |xj ) (B.1)

for j = 1, . . . ,m, so that only a finite number of locations need to be sampled.
Updating the weights. We need the full conditional distributions for each of the m×n Wright–

Fisher values vj (ti), where j = 1, . . . ,m, m is as in (17) and i = 1, . . . , n. Hence, for each
j = 1, . . . ,m we have

L
(
vj (t1)| · · ·

) ∝ pv

(
vj (t2)|vj (t1)

)
πv

(
vj (t1)

)
vj (t1)

I(s1=j)
(
1 − vj (t1)

)I(s1>j)
,

L
(
vj (ti)| · · ·

) ∝ pv

(
vj (ti+1)|vj (ti)

)
pv

(
vj (ti)|vj (ti−1)

)
vj (ti)

I(si=j)

(B.2)
× (

1 − vj (ti)
)I(si>j)

, i �= 1, n,

L
(
vj (tn)| · · ·

) ∝ pv

(
vj (tn)|vj (tn−1)

)
vj (tn)

I(sn=j)
(
1 − vj (tn)

)I(sn>j)
.

Note that dropping the dependence on time in the weights processes wj(t) would yield

L(vj | · · ·) ∝ πv(vj )
∏

{i:si=j}

[
vj

∏
k<j

(1 − vk)

]

∝ πv(vj )v

∑n
i=1 I(si=j)

j (1 − vj )
∑n

i=1 I(si>j).

Letting πvj
= Beta(aj , bj ), the previous simplifies to

L(vj | · · ·) = Beta

(
aj +

n∑
i=1

I(si = j), bj +
n∑

i=1

I(si > j)

)
,

which is the usual posterior update in the framework of stick-breaking random probability mea-
sures based on Beta distributed stick-breaking component. See Kalli, Griffin and Walker [30].

Updating the slice and membership variables. For each i = 1, . . . , n we have

L(uti | · · ·) = U(0,ψsti
)

and

L(sti | · · ·) ∝ wsti
(ti)

ψsti

K
(
yti |xsti

(ti)
)
I
(
sti ∈ {k: ψsti

> uti }
)
.
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Note that since {k: ψsti
> uti } is a finite set, the above distribution involves a finite sampling,

namely from sti = 1, . . . , �ψ∗(uti )�, where ψ∗ denotes the inverse of ψ .
Slicing the Wright–Fisher transition density. The analytic form for the transition density of

the Wright–Fisher diffusion model does not take a simple closed form. One could attempt to use
the corresponding spectral representation, which involves an infinite series of orthogonal Jacobi
polynomials. However, such infinite number of arguments with alternating sign prevents a robust
evaluation of the transition density, especially for the extreme points of the state space. Instead,
here we opt to use a slightly more general representation given in Mena and Walker [39]. That
is, an equivalent formulation of the transition density of the Wright–Fisher diffusion is

pv

(
v(t)|v(0)

) =
∞∑

m=0

rt (m)D
(
v(t)|m,v(0)

)
, (B.3)

where

rt (m) = (a + b)me−mct

m!
(
1 − e−ct

)a+b (B.4)

and

D
(
v(t)|m,v(0)

) =
m∑

k=0

Beta
(
v(t)|a + k, b + m − k

)
Bin

(
k|m,v(0)

)
. (B.5)

Here Beta(·|a, b) is the Beta density with parameters a, b and Bin(·|m,q) is the Binomial proba-
bility function with m trials and success probability q . A reparametrization of (7) given by letting
c = (a + b − 1)/2 leads to writing

dv(t) =
(

c(a − (a + b)v(t))

a + b − 1

)
dt +

(
2c

a + b − 1
v(t)

(
1 − v(t)

))1/2

dB(t).

The above representation is valid for a + b > 1, in which case 0 and 1 are entrance boundaries.
Such condition rules out the inconvenient case of weights wj(t) in (8) become 0 or 1. A byprod-
uct of the above re-parametrization is that it makes explicit the rate of decay in the autocorrela-
tion function of the Wright–Fisher diffusion, which for the Dirichlet process case (8) reduces to
Corr[vj (t), vj (t + s)] = e−(1+θ)s/2. See, for example, Bibby, Skovgaard and Sørensen [2].

The representation (B.3) is appealing not only due to the fact that it involves elementary func-
tions, but also and foremost since, unlike in the spectral decomposition, the summands are all
positive. It follows that truncations, or rather random truncations such as those invoked by the
slice method, are feasible. Indeed, with techniques similar to those used for (15) we can augment
the transition density in order to avoid the infinite computation. Introduce then (oj , kj , dj ) such
that

pv
t

(
vj (t), oj , kj , dj |vj (0)

)
= I

(
oj < g(dj )

) rj,t (dj )

g(dj )
Beta

(
vj (t)|aj + kj , bj + dj − kj

)
Bin

(
kj |dj , vj (0)

)
,
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where as before d 	→ g(d) is a decreasing function with known inverse g∗ and rj,t (·) de-
notes (B.4) computed on parameters (aj , bj , cj ). Augmenting for n observations by means on
(oi

j , k
i
j , d

i
j )

n
i=2 leads to the likelihood for m processes

L
(
v

(n)
1:m,o

(n)
1:m,k

(n)
1:m,d

(n)
1:m|aj , bj , cj

)
=

m∏
j=1

πv

(
vj (t1)

) n∏
i=2

I
(
oi
j < g

(
di
j

)) rj,τi
(di

j )

g(di
j )

× Beta
(
vj (ti)|aj + ki

j , bj + di
j − ki

j

)
Bin

(
ki
j |di

j , vj (ti−1)
)
,

where τi = ti − ti−1, and the subscript “1 : m” is interpreted as in (18). Therefore, given a prior
π(aj , bj , cj ), the posterior distribution for (aj , bj , cj ) is

L(aj , bj , cj | · · ·) ∝ L
(
v

(n)
1:m,o

(n)
1:m,k

(n)
1:m,d

(n)
1:m|aj , bj , cj

)
π(aj , bj , cj ). (B.6)

Furthermore, the full conditionals for the latent variables (oi
j , k

i
j , d

i
j )

n
i=2 for each j = 1, . . . ,m

are given by L(oi
j | · · ·) = U(oi

j |0, g(di
j )),

L
(
ki
j | · · ·

)(
di
j

ki
j

)
I(ki

j ∈ {0, . . . , di
j })

�(aj + ki
j )�(bj + di

j − ki
j )

{
vj (ti)vj (ti−1)

(1 − vj (ti))(1 − vj (ti−1))

}ki
j

and

L
(
di
j | · · ·

) ∝ �(aj + bj + di
j )

2[(1 − vj (ti))(1 − vj (ti−1))]d
i
j

edi
j cj τi �(bj + di

j − ki
j )�(di

j − ki
j + 1)g(di

j )
I
(
ki
j ≤ di

j ≤ g∗(oi
j

))
.

The supports of L(ki
j | · · ·) and L(di

j | · · ·) are discrete and bounded, so sampling from such
distributions is straightforward, for example, via the inverse cumulative distribution function
method.

Gibbs sampler for diffusive DP mixtures. When instead of a diffusive GEM mixture one
chooses the special case of a diffusive Dirichlet process mixture, this corresponds to letting
aj = 1, bj = θ and cj = c for all j = 1,2, . . . in the above derivation, or equivalently to take
independent and identically distributed Wright–Fisher processes as in (8). With these specifica-
tions the full conditionals (B.2) for the weights processes simplify to

L
(
vj (t1)| · · ·

) = Beta
(
vj (t1)|1 + k2

j + I(s1 = j); θ + d2
j − k2

j + I(s1 > j)
)
,

L
(
vj (ti)| · · ·

) = Beta
(
vj (ti)|1 + ki

j + ki+1
j + I(si = j);

θ + di
j + di+1

j − ki
j − ki+1

j + I(si > j)
)
, i = 2, . . . , n − 1,

L
(
vj (tn)| · · ·

) = Beta
(
vj (tn)|1 + kn

j + I(sn = j); θ + dn
j − kn

j + I(sn > j)
)
.
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Assuming independent priors for θ and c, and taking the logarithm, the full conditionals (B.6)
become

logL(θ | · · ·) ∝ log
(
π(θ)

) − m(n − 2) log�(1 + θ) − m log�(θ) + mθ

n∑
i=2

log
(
1 − e−cτi

)

+ θ

m∑
j=1

n∑
i=1

log
(
1 − vj (ti)

) + 2
m∑

j=1

n∑
i=2

log�
(
1 + θ + di

j

)

−
m∑

j=1

n∑
i=2

log�
(
θ + di

j + ki
j

)

and

logL(c| · · ·) ∝ log
(
π(c)

) + m(1 + θ)

n∑
i=2

log
(
1 − e−cτi

) − c

m∑
j=1

n∑
i=2

di
j τi .

These can be sampled using the Adaptive Rejection Metropolis Sampling (ARMS) algorithm.
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