

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Geology of the Fontane talc mineralization (Germanasca valley, Italian Western Alps)

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1566203 since 2018-07-16T16:07:13Z
Published version:
DOI:10.1080/17445647.2016.1142480
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

UNIVERSITÀ DEGLI STUDI DI TORINO

- 1 2
- 3 This is an author version of the contribution published on:
- 4 *Questa è la versione dell'autore dell'opera:*
- 5 [Journal of Maps, 10.1080/17445647.2016.1142480]
- 6 ovvero [Paola Cadoppi, Giovanni Camanni, Gianni Balestro, Gianluigi
- 7 Perrone, Taylor & Francis, 2016]
- 8 The definitive version is available at:
- 9 La versione definitiva è disponibile alla URL:
- 10 [http://dx.doi.org/10.1080/17445647.2016.1142480]

11	Geological map of the Fontane Talc Mineralization (Germanasca
12	Valley, Italian Western Alps)
13	
14	Paola Cadoppi ¹ , Giovanni Camanni ² , Gianni Balestro ^{1*} and Gianluigi Perrone ¹
15	
16	
17	
18 19 20	¹ Department of Earth Sciences, University of Torino, Via Valperga Caluso, 35, 10125 Torino, Italy
21 22 23	² Fault Analysis Group, School of Geological Sciences, University College Dublin, Belfield Dublin 4, Ireland
24	
25 26 27 28 29	*Corresponding Author: Gianni Balestro email: gianni.balestro@unito.it
30 31 32	<u>Submitted to</u> : Journal of Maps
33	
34	
35	
36	
37	
38	
39	

41 Abstract

42	The 1:5,000 scale Geological Map of the Fontane Talc Mineralization aims to give new
43	information about the origin and geological structure of an important talc mineralization
44	occurring in the axial sector of the Italian Western Alps. The Fontane Talc
45	Mineralization is hosted within a pre-Carboniferous polymetamorphic complex which
46	was deformed and metamorphosed during both Variscan and Alpine orogenesis, and is
47	part of the Dora-Maira continental crust. Field mapping and underground investigations
48	highlight that the talc bodies (i) never crop out but occur at depth along a well-defined
49	lithostratigraphic association between micaschist, marble and gneiss, and (ii) were
50	deformed during different Alpine-related deformation phases (i.e. D_1 , D_2 and D_3 syn-
51	metamorphic phases and post-metamorphic extensional faulting). The here defined
52	lithostratigraphic and structural characterization of talc bodies, is a input for further
53	researches onto geodynamic context wherein talc formed and for new mineral
54	exploration outside the mapped area.
55	
56	
57	
58	
59	
60	Keywords: Western Alps; Talc mineralization; Alpine tectonics; extensional faulting
61	
62	

63 1. Introduction

- 64 One of the industry-related geological features of the Italian Western Alps is a
- discontinuous, several kilometre-wide belt of talc mineralizations (throughout the paper
- 66 we define talc mineralization a geological body with a significant content in talc). The
- 67 most important of these mineralizations (and one of the most important in Europe), due
- to both quantity and quality of the extracted talc, is located in the Germanasca Valley
- 69 (Italian Western Alps) and is known as the Fontane Talc Mineralization (FTM
- 70 hereafter) (Grill et al., 1955; Peretti, 1966; Zucchetti, 1969, 1972; Sandrone et al., 1987,
- 71 1990; Sandrone & Zucchetti, 1989). The FTM is hosted within a pre-Carboniferous
- 72 polymetamorphic complex which was deformed and metamorphosed during both
- 73 Variscan and Alpine orogenesis, and is part of the Dora-Maira continental crust
- 74 (Sandrone et al., 1993) (Fig. 1).
- 75 Despite its industrial significance, both origin and geological structure of the FTM has
- been never defined in detail, and published map exists only at small scale (i.e., the
- Pinerolo sheet of the Geological Map of Italy at 1:100,000 scale; Mattirolo et al., 1913).
- 78 In this paper, we present a new 1:5,000 scale geological map that spans an area of about
- 8 km^2 above the main infrastructures (i.e., tunnels) of both past and current extraction
- sites, with the aim of further advancing knowledge about geology of the FTM. Since the
- 81 talc bodies never crop out, we have integrated the map with geological cross sections
- 82 that allow identifying their location at depth, as well as defining their geometry and
- 83 lithostratigraphic association with embedding rocks.
- 84

85 **2. Methods**

- 86 The geological map presented in this study is the result of fieldwork carried out at
- 87 1:5,000 scale. Lithological observations and collection of structural data were
- 88 performed both in the field and in underground locations. Data were stored in a GIS
- database (Coordinate System WGS 1984 UTM Zone 32N) and represented on a raster
- 90 topographic map derived from "Carta Tecnica Provinciale" 1:5,000 ("Dai tipi di
- 91 proprietà della Città Metropolitana di Torino Servizio Cartografico",
- 92 authorization n.105625/2015 on July 21, 2015).
- 93 The geological map includes (*i*) three cross sections localized in the area where talc is
- 94 currently being extracted and defined through an integration of field data with borehole
- 95 data (i.e., data available from companies holding the mining concession over the years),

and (*ii*) a 1:20,000 scale tectonic map wherein geological interpolation, interpretation
and generalization of outcrops and structures are given.

98

99 **3. Regional setting**

100 The FTM is located along the western edge of the Dora-Maira, a slab of paleo-European

101 continental crust which belongs to the Penninic Domain of the Western Alps (Fig. 1)

102 (see e.g. Bigi et al., 1990; Dal Piaz et al., 2003). The Dora-Maira (Vialon, 1966;

- 103 Sandrone et al., 1993; Cadoppi et al., 2002) was involved in Alpine-related E-dipping
- 104 subduction, W-verging continental collision and deep crust/mantle indentation (see e.g.

105 Wheeler, 1991; Chopin et al., 1991), and is now stacked in the axial sector of the

106 Western Alps and tectonically overlain by blueschist-facies and eclogite-facies meta-

107 ophiolite units (i.e., the Queyras Schistes Lustrès Complex and the Monviso Meta-

- 108 ophiolite Complex, respectively; see e.g., Tricart and Schwartz, 2006; Balestro et al.,
- 109 <u>2014</u>).
- 110 In its northern sector, the Dora-Maira comprises two main superposed units that, during
- 111 Alpine orogeny, were metamorphosed under different P–T peak conditions (Fig. 1). The
- 112 upper one corresponds to an eclogite-facies polymetamorphic complex, which consists
- 113 of metasediments and Upper Ordovician meta-intrusives (Bussy and Cadoppi, 1996)
- 114 covered by thin Mesozoic carbonate metasediments; the lower one consists of a
- 115 blueschist-facies Permo-Carboniferous monometamorphic complex (i.e., the Pinerolo

116 Graphitic Complex; Vialon, 1966; Borghi et al., 1984; Sandrone et al., 1993). Both

117 complexes contain meta-intrusives of granitic to dioritic composition, which can be

related to a late Variscan magmatic event (Bussy & Cadoppi, 1996).

119 The FTM is included within the upper, polymetamorphic complex, which was affected

120 by Variscan-related medium-grade metamorphism, and, after the Alpine-related

121 eclogite-facies metamorphism, was pervasively re-equilibrated under blueschist- and

122 greenschist-facies metamorphic conditions (Sandrone et al., 1987, 1990; Borghi and

123 Sandrone, 1990; Cadoppi, 1990; Cadoppi and Tallone, 1992; Damiano, 1997; Camanni,

124 **2010**).

125

126 4. Lithostratigraphy

127 In the map area, the Dora-Maira consists of a Paleozoic basement and a thin Mesozoic128 cover.

- 129 The Paleozoic basement corresponds to a pre-Carboniferous polymetamorphic complex
- that mainly consists of medium-grained garnet-chloritoid micaschist (Fig. 2a). This

131 micaschist locally preserves Variscan-related medium grade mineral relics,

- 132 corresponding to garnet porphyroblasts (Fig. 2a) and muscovite lepidoblasts. The
- 133 garnet-chloritoid micaschist embeds layers and bodies of impure marble, metabasite and
- 134 gneisses. The impure marble is several metres-thick and is characterized by a mylonitic
- 135fabric defined by alternating centimetres-thick grey (calcite-rich) and yellow-whitish
- 136 (dolomite-rich) layers (Fig. 2b). It also consists of subordinate chlorite, white mica,
- tremolite and clinopyroxene (diopside), which likely represents a relic of the Variscan
- 138 mineral assemblage. The metabasite crops out both as boudinage layers (up to ten of
- 139 meters-thick) and small boudins (decimetre in size), and occurs within the micaschist
- 140 (Fig. 2c) and marble (Fig. 2b and Fig. 2d). The metabasite, despite of widespread re-
- 141 equilibration under greenschist-facies conditions, preserves relics of the eclogitic
- 142 assemblage consisting of garnet, omphacite, white mica (phengite) and rutile. The up to
- tens of meters-thick gneisses can be distinguished in fine-grained layered gneiss (Fig.
- 144 2e) and coarse-grained K-feldspar-bearing ones (Fig. 2f and 2g). The former is
- 145 characterized by a compositional banding defined by alternating centimetres-thick light
- 146 grey and dark green layers (Fig. 2e), which mainly consist of albite + quartz + garnet +
- 147 phengite, and epidote + phengite + albite + quartz + Ca-amphibole, respectively. The
- 148 coarse-grained K-feldspar-bearing (Fig. 2f and 2g) gneiss also consists of quartz, albite,
- 149 phengite, epidote and biotite, and is characterized by occurrences of centimetres to
- decimetres-thick levels of silvery micaschist (Fig. 2h), which is made up of quartz andwhite mica (phengite).
- 152 The Mesozoic cover consists of massive white marbles and overlying calcschists. The
- 153 former is made up of calcite, with minor dolomite and white mica (phengite), and is
- 154 locally characterized by occurrence of few centimetres-thick metapelitic layers. The
- 155 calcschists are fine- to medium-grained and consist of calcite, quartz, white mica
- 156 (phengite), with minor chlorite and albite. Similar cover successions occur in other
- sectors along the western edge of the Dora-Maira and have been interpreted as Middle
- 158 Triassic to Early Jurassic in age (Balestro et al., 2013, 2015).
- 159

160 **5. Structures**

- 161 Variscan-related structures have been recognized exclusively as microscale relics,
- whereas Alpine structures are widely exposed at mesoscale and result from three main syn-netamorphic deformation phases (named D_1 , D_2 and D_3).
- 164 The D_1 developed during the eclogite-facies metamorphism and is responsible for the
- development of a mylonitic foliation (i.e. the S_1 ; Fig. 3a). Symmetric and asymmetric
- 166 boudins of metabasite occurring within the impure marble, garnet-chloritoid micaschist
- and layered gneisses, are interpreted to be related to the S_1 -parallel stretching during D_1
- simple shear.
- 169 The D_2 developed under the early blueschist-facies metamorphic re-equilibration and is
- 170 defined by isoclinal folds, with thickened hinges and thinned limbs (Fig. 3a and 3b),
- 171 characterized by N-S sub-horizontal axes and W-dipping axial planes (Fig. 4). The pre-
- 172 existing S_1 mylonitic fabric is clearly deformed by D_2 folds that developed an axial
- 173 plane foliation (i.e. the S_2), which corresponds to the W-dipping main regional foliation
- 174 (Fig. 4). At the map scale, an example of these structures is the folding of the impure
- 175 marble body in the central part of the map area (see also cross section E-F).
- 176 D_2 isoclinal folds and their axial plane foliation appear to be gently refolded by D_3 folds
- 177 (Fig. 3c and 3d), especially in the western part of the map area. D₃ folds developed
- 178 under greenschist-facies metamorphic condition and are characterized both by tight
- profiles in the form of crenulation folds (Fig. 3c) and open to gentle geometries. D₃
- 180 axial planes weakly dip towards the NE and D₃ axes are on average sub-horizontal with
- 181 a roughly N-S trend (Fig. 4).
- 182 A last significant phase of deformation is a stage of extensional faulting that post-dates
- 183 the syn-metamorphic structures and has been also described outside the study area
- 184 (Perrone et al., 2009, 2011). Extensional faults are nearly NE-SW striking and NW
- steeply dipping (Fig. 5a), and their displacements range from a minimum of a few
- 186 centimetres to a maximum of several metres (Fig. 5b, 5c, 5d and 5e). Fault rocks are
- 187 mostly represented by tectonic breccia that are well exposed close to Fontane locality
- and in the northern part of the map area (i.e., the "Meison breccias" of Novarese, 1895,
- 189 Borghi et al., 1984). At map scale, extensional faults are expressed as NE-SW
- 190 hectometre- to kilometre-scale fault segments arranged in en-echelon, left-stepping
- 191 geometrical pattern, and spaced several hundreds of metres.
- 192

193 **6. Geometry of the FTM**

- 194 Defining the structure and extent of the FTM is of critical importance both for
- understanding the origin of talc and for any industrial operations related with its
- 196 extraction. Talc is not distributed in continuous horizons but forms isolated bodies
- 197 embedded within the garnet-chloritoid micaschist and the K-feldspar-bearing gneiss
- 198 closely associated with the impure marble.
- 199 Talc bodies appear to define lenses with a shape similar to that of the boudins of
- 200 metabasite (see cross section C-D), suggesting that their early geometry resulted from
- 201 D_1 deformation. These lenses were later deformed during the D_2 phase and now outcrop
- 202 in the form of thickened hinges of rootless folds, and were slightly affected by the D_3
- that seems to cause minor changes in the dip of the isolated lenses.
- Finally, extensional faults that intersect talc bodies at depth appear to be responsible for their dislocations towards the NW with displacements of up to several tens of metres
- 206 (see cross section A-B).
- 207

208 **7. Conclusions**

- The 1:5,000 scale Geological Map of the Fontane Talc Mineralization gives newinformation for interpreting the origin and distribution of talc bodies.
- 211 Detailed geological mapping and underground observations highlight that the talc
- bodies (i) are embedded within a pre-Carboniferous polymetamorphic complex, (ii)
- 213 occur along a well-defined lithostratigraphic association between micaschist, marble
- and gneiss, and (*iii*) never occur within the Mesozoic cover.
- 215 Structural analysis highlights that the talc bodies were clearly deformed during Alpine-
- related deformation phases (i.e. the D_1 , D_2 and D_3 phases) and, therefore, their genesis
- 217 predate Alpine tectonics.
- 218 These considerations may be useful for future research regarding the origin of the FTM
- as well as other talc mineralizations occurring along the western edge of the Dora-
- 220 Maira. Pre-rift tectonics (and associated metasomatic processes?) which affected the
- 221 paleo-European continental margin likely appear as a geodynamic context wherein talc
- 222 could be formed. Extensional tectonics model is described for other important talc
- 223 mineralization, such as the Trimouns Talc Deposit in the Pyrenees (Schärer et al.,
- 224 **1999**).
- 225 Moreover, the here defined lithostratigraphic and structural characterization of the FTM
- 226 may represent a useful geological model for new mineral explorations outside the map
- 227 area.

228	
229	
230	Software
231	The geological map was digitized using the software ArcMap of the suite ArcGis
232	Desktop (v. 9.3) by ESRI®.
233	
234	Acknowledgements
235	We thank E. Casciello, P. Conti and B. Cattoor for constructive reviews, and R.
236	Orndorff for editorial handling. Giulia Codegone, and Elena Cerino Abdin are
237	acknowledged for their help during fieldwork. This research has been supported by "ex
238	60%-2013 and 2014" Università degli Studi di Torino and by the Italian Ministry of
239	University and Research Cofin-PRIN 2010/2011 ("Subduction and exhumation of
240	continental lithosphere: Implications on orogenic architecture, environment and
241	climate").
242	
243	
244	References
245	
246	Balestro, G., Fioraso, G. and Lombardo, B. (2013). Geological map of the Monviso
247	massif (Western Alps). Journal of Maps, 9, 623-634.
248	
249	Balestro, G., Lombardo, B., Vaggelli, G., Borghi, A., Festa, A., and Gattiglio, M.
250	(2014). Tectonostratigraphy of the northern Monviso Meta-ophiolite Complex (Western
251	Alps. Italian Journal of Geosciences, 133 (3), 409-426.
252	
253	Balestro, G., Festa, A., and Tartarotti, P. (2015). Tectonic significance of different
254	block-in-matrix structures in exhumed convergent plate margins: examples from
255	oceanic and continental HP rocks in Inner Western Alps (northwest Italy). International
256	Geology Review, 57 (5-8), 581-605.
257	
258	Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V., Sartori, R., Scandone, P. and Vai,
259	G. B. (1990). Structural Model of Italy, sheet 1, C.N.R., Progetto Finalizzato
260	Geodinamica, Litografia SELCA, Firenze.
261	

262	Borghi A. & Sandrone R. (1990). Structural and metamorphic constraints to the
263	evolution of a NW sector of the Dora-Maira Massif (Western Alps). Memorie della
264	Società Geologica Italiana, 45, 131-141.
265	
266	Borghi A., Cadoppi P., Porro A., Sacchi R. & Sandrone R. (1984). Osservazioni
267	geologiche nella Val Germanasca e nella media Val Chisone (Alpi Cozie). Bollettino
268	del Museo Regionale di Scienze Naturali di Torino, 2, 503-530.
269	
270	Bussy F. & Cadoppi P. (1996). U-Pb zircon dating of granitoids from the Dora-Maira
271	massif (Western Italian Alps). Schweiz. Mineral. Petrogr. Mitt., 76, 217-233.
272	
273	Cadoppi P. (1990). Geologia del basamento cristallino nel settore settentrionale del
274	Massiccio Dora-Maira (Alpi Occidentali). Ph.D thesis, University of Turin, Turin-Italy:
275	pp. 208.
276	
277	Cadoppi P. & Tallone S. (1992). Structural and lithostratigraphic heterogeneity of the
278	northern part of Dora-Maira massif (Western Alps). Atti Ticinesi di Scienze della Terra,
279	35, 9-18.
280	
281	Cadoppi P., Castelletto M., Sacchi R., Baggio P., Carraro F. & Giraud V. (2002). Note
282	illustrative della Carta Geologica d'Italia alla scala 1:50.000 - Foglio 154, Susa. Servizio
283	Geologico d'Italia, pp. 127.
284	
285	Camanni (2010). Geological-structural analysis and 3D modelling of the Fontane talc
286	mineralization (Germanasca Valley, Inner Cottian Alps). Unpublished MSc thesis,
287	Univ. Turin: pp. 126.
288	
289	Chopin C., Henry C. & Michard A. (1991). Geology and petrology of the coesite-
290	bearing terrain, Dora Maira massif, Western Alps. European Journal Mineral., 3, 263-
291	291.
292	
293	Dal Piaz, G.V., Bistacchi, A., Massironi, M. (2003). Geological outline of the Alps.
294	<i>Episodes</i> , 26, 175–180.
295	

296	Damiano A. (1997). Studio geologico delle mineralizzazioni a talco nelle valli
297	Germanasca, Chisone e Pellice (Massiccio Dora-Maira, Alpi Cozie). Unpublished
298	degree thesis, Univ. Turin: pp. 145.
299	
300	Grill E., Pagliani G. & Sacchi L. (1955). La genesi del talco della valle della
301	Germanasca (Alpi Cozie). Ist. Lombardo Sc. e Lett., 88, 442-490.
302	
303	Mattirolo, E., Novarese, V., Franchi, S. and Stella, A. (1913). Carta Geologica d'Italia a
304	scala 1:100.000, foglio 67 Pinerolo, Litografia Artistica Cartografica, Roma.
305	
306	Novarese V. (1895). Sul rilevamento geologico eseguito nel 1894 in valle della
307	Germanasca (Alpi Cozie). Boll. R. Comit. Geol. It., 26: 253-282.
308	
309	Peretti L. (1966). Geologia e genesi dei giacimenti di talco nel Pinerolese. Boll. Ass.
310	Min. Sub., 3: 283-306.
311	
312	Perrone G., Cadoppi P., Tallone S. & Balestro G. (2011). Post-collisional tectonics in
313	the Northern Cottian Alps (Italian Western Alps). Int. J. Earth. Sci. (Geol Rundsch),
314	100, 1349–1373, DOI 10.1007/s00531-010-0534-1
315	
316	Perrone G., Morelli M., Cadoppi P., Tallone S. & Giardino M. (2009). A
317	multidisciplinary approach to the study of the fault network in the internal Cottian Alps
318	(Western Alps). Ital. J. Geosci., 128, 541-549.
319	
320	Ramsay, J.G. (1967). Folding and fracturing of rocks. New York, McGraw-Hill Book
321	Company, pp. 560.
322	
323	Sandrone R. & Zucchetti S. (1989). Geology of the Italian high-quality cosmetic talc
324	from the Pinerolo district (Western Alps). Proceedings of Symposium "Zuffardi"
325	days", Cagliari, 1988.
326	
327	Sandrone R., Borghi A., Carosso G., Morsetti C., Tagliano C. & Zucchetti S. (1990).
328	Geometry of the talc deposit of Fontane, and structural evolution of the area (Dora
329	Maira Massif, Western Alps). Boll. Assoc. Min. Subalpina, 27: 45-62.

330	
331	Sandrone R., Cadoppi P., Sacchi R. & Vialon P. (1993). The Dora-Maira Massif. In:
332	von Raumer J.F. & Neubauer F. (eds.), "Pre-Mesozoic Geology in the Alps", Springer-
333	Verlag, Berlin Heidelberg New York: 317-325.
334	
335	Sandrone R., Trogolo Got D., Respino D & Zucchetti S. (1987). Osservazioni geo-
336	giacimentologiche sulla miniera di talco di Fontane (Val Germanasca, Alpi Cozie).
337	Mem. Sci. Geol. Padova, 39: 175-186.
338	
339	Schärer U., de Parseval Ph., Polvé M., de Saint Blanquat M. (1999). Formation of the
340	Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between
341	112 and 97 Ma. Terra Nova, 11: 30-37.
342	
343	Tricart, P., and Schwartz, S. (2006). A north-south section across the Queyras Schistes
344	lustrés (Piedmont zone, western Alps): Syn-collision refolding of a subduction wedge:
345	Eclogae Geologicae Helvetiae, 99, p. 429–442
346	
347	Vialon P. (1966). Etude géologique du Massif Cristallin Dora-Maira (Alpes Cottiennes
348	internes-Italie). Trav. Lab. Géol. Grenoble, 4: pp. 293.
349	
350	Zucchetti S. (1969) Osservazioni sui giacimenti di talco della Val Germanasca (Torino)
351	- Nota Preliminare. Boll. Ass. Min. Sub., 6: 240-248.
352	
353	Zucchetti S. (1972). Caratteri lito-mineralogici e genetici dei giacimenti di talco della
354	Val Germanasca nelle Alpi Occidentali (Italia). Proceedings of the 2. International
355	Symposium on the Mineral Deposits of the Alps, Ljubljana, S. Kolenko: 263-279
356	
357	Wheeler, J. (1991). Structural evolution of a subducted continental sliver: The northern
358	Dora Maira massif, Italian Alps: Journal of the Geological Society of London, 148:.
359	1101–1113.
360	
361	

363 Figure captions

364 365 Figure 1: Localization of the Fontane Talc Mineralization in the tectonic map of the 366 Western Alps. 367 368 Figure 2: a) medium-grained garnet-chloritoid micaschist with porphyroblasts of centimetric pre-Alpine garnet (road to Rodoretto Village); b) impure marble with 369 370 mylonitic fabric defined by a compositional banding of grey (calcite-rich) and yellow-371 whitish (dolomite-rich) alternating layers. Black arrows indicate a boudinated 372 centimetres-thick layer of metabasite occurring within the marble (Rocca Bianca quarry, 373 just outside the study area); c) and d) boudins of metabasite embedded into the 374 micaschist and marble, respectively (road to Rodoretto Village and Gianna mine 375 tunnel); e) layered gneiss with its characteristic compositional banding (near the bridge 376 on the mouth of the Rodoretto Stream in the Germanasca Stream): f) outcrop view and 377 g) detail of the K-feldspar-bearing gneiss (road to Rodoretto Village); h) decimetres-378 thick level of silvery micaschist embedded in the K-feldspar-bearing gneiss

- 379 (Serrevecchio locality).
- 380

381 Figure 3: D2 and D3 structures. a) S₁ mylonitic layering of impure marble fabric 382 deformed by D₂ folds (Maiera quarry, near the study area); b) isoclinal D₂ folds with 383 thickened hinges occurring within the garnet-chloritoid micaschist (road to Rodoretto 384 Village); c) D_3 structures folding of S_2 foliation within the garnet-chloritoid micaschists 385 (road to Rodoretto Village); d) Type-3 interference pattern (Ramsay, 1967) between D₂ 386 and D_3 folds and related axial plane foliation (S_2 and S_3), occurring within the impure 387 marble (ma) and garnet-chloritoid micaschist (ms) (S_M corresponds to the S₁ foliation; 388 sample from the Gianna mine tunnel).

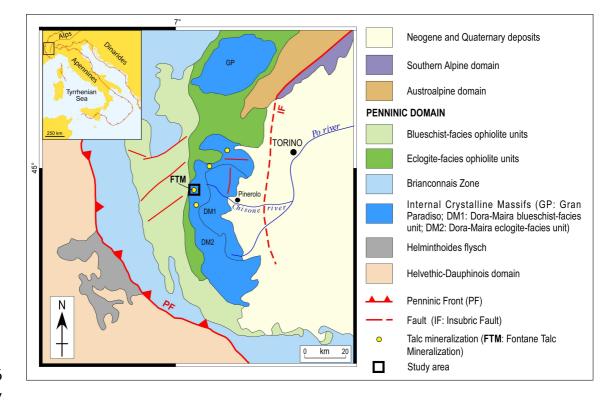
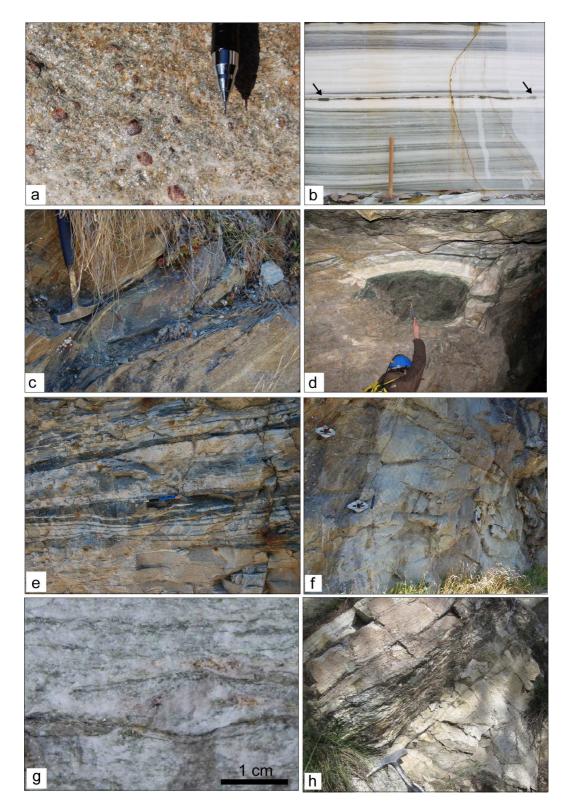
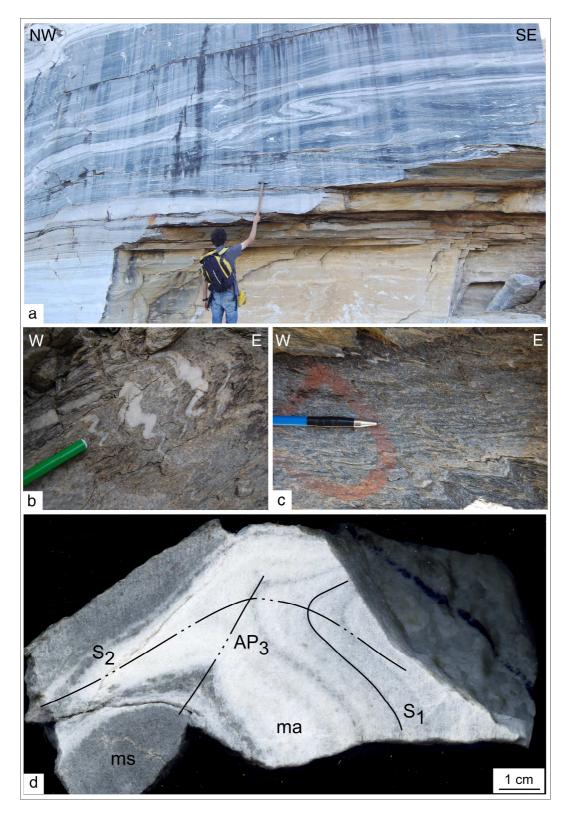
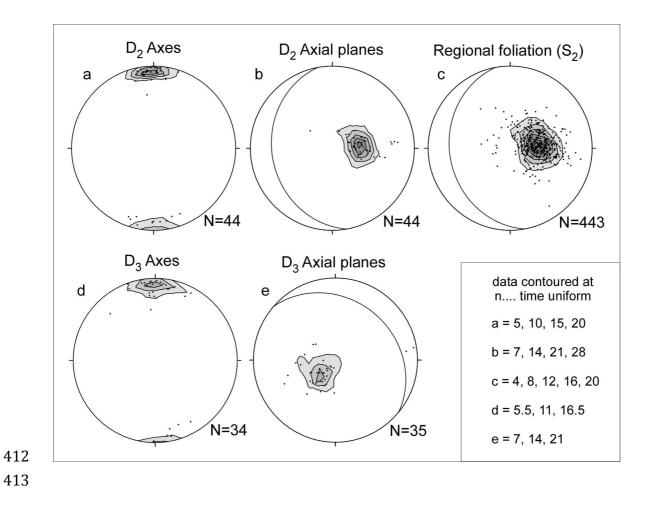

389

Figure 4: contoured stereographic projections (equal-area, lower hemisphere) of the D_2 and D_3 structures. The great circles show the mean orientation. N is the number of data.


393 Figure 5: a) contoured stereographic projections (equal-area, lower hemisphere


394 projections) of the extensional faults. The great circles show the mean fault


- 395 plane orientations. Data contoured at n = 2, 4, 6, 8, 10, 12 times uniform. N is the
- 396 number of data. The red, blue and green squares represent the maximum (P),
- 397 intermediate and minimum (T) shortening axes for the average incremental strain
- 398 solution, respectively; b) and c) Riedel shear-sense indicators (R and R') and inflection
- 399 of the S_2 foliation (dashed white line) along normal fault planes occurring within the
- 400 garnet-chloritoid micaschist (entrance of the Gianna mine tunnel); d) Plurimetric
- 401 displacement of the contact (dashed white line) between the garnet-chloritoid
- 402 micaschist (above) and impure marbles (below) (E of Fontane Village); e)
- 403 pluridecimetric displacement of the contact (dashed white line) between the K-feldspar-
- 404 bearing gneiss (above) and garnet-chloritoid micaschist (below) (Gianna mine tunnel).
- 405

