
06 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Depth image based rendering with inverse mapping

Publisher:

Published version:

DOI:10.1109/MMSP.2013.6659277

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE

This is the author's manuscript

This version is available http://hdl.handle.net/2318/140704 since 2016-06-16T12:22:38Z

This	copy	represents	the	peer	reviewed	and	accepted	version	of	paper:	
	
M.	Farid;	M.	Lucenteforte;	M.	Grangetto.		
“Depth	image	based	rendering	with	inverse	mapping..”,	in:	IEEE	15th	
International	Workshop	on	Multimedia	Signal	Processing,	IEEE,	2013,	
9781479901258,	pp:	135-140.		
DOI:10.1109/MMSP.2013.6659277.	
	
The	published	version	is	available	at		
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6659277	
	
	
IEEE	Copyright.	This	material	is	presented	to	ensure	timely	dissemination	of	
scholarly	and	technical	work.	Copyright	and	all	rights	therein	are	retained	by	
authors	or	by	other	copyright	holders.	All	persons	copying	this	information	are	
expected	to	adhere	to	the	terms	and	constraints	invoked	by	each	author's	
copyright.	In	most	cases,	these	works	may	not	be	reposted	without	the	explicit	
permission	of	the	copyright	holder.	Personal	use	of	this	material	is	permitted.	
However,	permission	to	reprint/republish	this	material	for	advertising	or	
promotional	purposes	or	for	creating	new	collective	works	for	resale	or	
redistribution	to	servers	or	lists,	or	to	reuse	any	copyrighted	component	of	this	
work	in	other	works	must	be	obtained	from	the	IEEE.	

Depth Image Based Rendering with Inverse
Mapping

Muhammad Shahid Farid, Maurizio Lucenteforte, Marco Grangetto
Dipartimento di Informatica, Università di Torino

Corso Svizzera 185, 10149 Torino, ITALY
lastname@di.unito.it

Abstract—Three-dimensional video has gained much attention

during the last decade due its vast applications in cinema, tele-

vision, animation and virtual reality. The design of intermediate

view synthesis algorithms that are efficient both in terms of

computational complexity and visual quality is a paramount goal

in the fields of 3D free view point television and displays. This

papers focuses on the design of a low complexity view synthesis

algorithm that produces better quality of the virtual image. A

novel view synthesis technique to create a virtual view from

two video sequences with corresponding depths is proposed.

The technique employs low complexity integer pixel precision

warping and a novel approach for hole filling based on inverse

mapping. The proposed technique is tested over a number of

video sequences and compared with existing state of the art

methods, yielding excellent results both in terms of signal to

noise ratio and visual quality.

Index Terms—3D-TV, Depth image based rendering, View

synthesis, 3D warping

I. INTRODUCTION

The quest for novel and efficient 3D video representations
and coding techniques in area of 3D television (3DTV) has
recently revitalized the research in the area of intermediate
view synthesis. In fact, emerging 3D display technologies,
such as autostereoscopic displays, require the availability of
several images corresponding to different point of views. It
turns out that the possibility to synthesize intermediate views
from a limited set of original video sequences has gained much
attention in the last years. View synthesis has the potential
to greatly reduce the amount of video data to be transmitted
and can be integrated in the common hybrid predictive coding
approaches to capture the inter-view redundancy.

The concept of creating a virtual view from two or more
views has been coined in the computer vision literature almost
four decades ago [1] using different terms like view synthesis
[2], view morphing [3] and image metamorphosis [4]. A
number of techniques to create a virtual view from two or
more views have been proposed. They may be classified into
three broad categories [5]. Any view can be generated if the
scene is represented with its 3D structure, which is usually not
reasonable for natural video shots. The second class, known
as depth image based rendering (DIBR), uses a number of
views with implicit geometry like depth of the scene to create

MMSP’13, Sept. 30 - Oct. 2, 2013, Pula (Sardinia), Italy.
978-1-4799-0125-8/13/$31.00 c�2013 IEEE.

intermediate views [6], [7]. In the third category, only images
are used to create a new view without depth or geometry
information like [8]. The view synthesis technique proposed
in this paper falls in the second category: in particular, we
consider the common problem to estimate an intermediate
view in between two original views plus the corresponding
depth maps. All DIBR techniques comprise two main algorith-
mic steps; first, the intermediate virtual view is generated by
warping the original pixels to the corresponding intermediate
positions, based on depths and camera parameters. After that,
two warped views are blended to create a single virtual view.
Because of geometrical occlusions, depth imprecision and/or
lossy coding of depth there may still be some pixels of the
virtual view which are uninitialized, referred to as holes. In
DIBR, the second step consists in estimating such missing
pixels usually exploiting image inpainting techniques.

Many DIBR techniques have been proposed so far. An
extensive review can be found in [9], [10]. Minh Do et. al.
[11] proposed an intensity propagation algorithm to generate a
virtual view from two views with their depths. Their algorithm
works in three steps. In first step, without considering the
occlusions all pixels of a view are warped to the new positions.
In second step, the occluded pixels are identified with the help
of their depth. In the final step, the occluded pixels’ intensities
are interpolated using a cubic spline function. To compute
the intensities in occluded regions, texture based approach is
proposed in [12]. Texture based synthesis normally generates
better visual quality in case of large size occlusions but can
be very expensive in terms of computational costs making
it unfeasible in real time applications. Hofsetz et. al. [13]
presented a technique for view synthesis when the depth maps
are not accurate. The regions with inaccurate depths are termed
as uncertain regions. Their approach is to determine these re-
gions and then apply 3D ellipsoidal Gaussian kernels to render
the virtual view. Schmeing and Jiang [14] proposed an image
based rendering technique that first estimate the background
and uses the segmentation results to fill the occluded regions.
This technique yields accurate results in the particular case of
scenes with only two depth layers. A number of techniques
have been developed to recover synthesis holes. A hole filling
algorithm that uses pixels’ depths and intensities to compute
the occluded regions has been presented in [15]. Another
technique to compute the occluded regions by registering the
two views has been presented in [16]. In [17] foreground and

background weights are used to interpolate the missing pixel.
Finally, [18], [19], [20] exploits inpainting techniques. Most
of the mentioned techniques have led to the development of
View Synthesis Reference Software (VSRS) [21] by the 3DV
MPEG group and that will be used as a benchmark for our
experiments.

This major contribution of this paper is a novel low com-
plexity View Synthesis with Inverse Mapping (VSIM), which
yields competitive results as compared to state of the art
VSRS. As opposed to more complex solutions, VSIM achieves
excellent results applying warping with integer pixel precision
and recovering synthesis holes using a novel inverse-mapping
function.

The rest of the paper is organized as follows. In Sect. II the
proposed algorithm for virtual view generation is presented. In
Sect. III experimental results and comparisons with existing
techniques are shown and in Sect. IV our conclusions are
drawn.

II. PROPOSED VIEW SYNTHESIS WITH INVERSE MAPPING
(VSIM) TECHNIQUE

The proposed VSIM algorithm works in two steps like other
view synthesis algorithm. It takes two views with depths (left
view and right view) as input and computes the intermediate
virtual view. Each input view is warped to the intermediate po-
sition and the two resultant virtual views are merged together
to get a single virtual view. While warping the original views
to intermediate positions, a mapping function is defined against
each warped view. The missing pixels are then computed with
the help of the mapping functions. The proposed algorithm
assumes the usual horizontal shift camera setup. The following
subsections describe the algorithm.

A. Pixel warping

Let vL and vR be left and right original views of size m⇥
n, and dL, dR the respective depth maps. Let fL and fR

be the camera focal lengths, and bL, bR the position of the
two cameras on the base line, i.e. their disparity is equal b =
bR� bL. Usually, the depth maps are provided as 256 levels
images where values 0 and 255 represents the farthest and
nearest depths, respectively. The true depth values dL

0 (dR0)
are recovered from the encoded depth map dL (dR) using the
following equation:

dL

0 =
1

dL
255 (

1
zNear �

1
zFar) +

1
zFar

(1)

where zNear and zFar are the nearest and farthest depths in
the scene.

Since the cameras are parallel with baseline b, the position
of the virtual camera for intermediate view is bL+ b

2 (= bR� b
2)

and original image pixels can be warped to intermediate view
position by applying horizontal shifts that depend on the their
depth values. If we let (u, v) represent the coordinates of a
given pixel in the view (vL), then the coordinates of the same
pixel in the left virtual view (vL0) turns to be (u0

, v

0) = (u, v0)

with:
v

0 = v � fL⇥ b

dL

0(u, v)
(2)

The value fL⇥b
dL0(u,v) is usually termed column shift. Column

shift will be subtracted from the pixel column value to find
its position in the virtual view because the considered pixel in
the left view will move leftward in the coordinate system of
the virtual view. Similarly, in case of right virtual view (vR0),
the column shift would be added to the pixel column value.

Using Eq. 2, the warped positions of each pixel can be
easily computed. During warping more than one pixels from
the original view may map to the same position in the virtual
view. In this case only the foremost pixel (the one with the
largest depth) will be considered. It is also possible that some
locations in the virtual view remain empty, i.e. synthesis holes:
these positions represent pixels that look occluded from the
original view point or they can be caused by warping errors
due to depth estimation or quantization errors.

Once the left virtual view vL

0 and right virtual view vR

0

have been computed applying horizontal warping, a single
intermediate virtual view vM is obtained by merging the two
images according to the following equation:

vM(u, v) =

8
>><

>>:

vL0(u,v)+vR0(u,v)
2 , if hL(u, v) = hR(u, v) = 0

vL

0(u, v), if hL(u, v) = 0 ^ hR(u, v) = 1

vR

0(u, v), if hL(u, v) = 1 ^ hR(u, v) = 0

0, otherwise

(3)
where hL (hR) is a binary map identifying the holes in the left
(right) virtual view. According to previous equation only those
pixels that are missing in both the virtual views will appear as
holes in the merged view vM . A binary map holesV is used
to identify the location of these holes. Fig. 1 shows the whole
warping process schematically.

dL’ vL dR’ vR

Compute Left Virtual
View, holesL, shiftL

Compute Right Virtual
View, holesR, shiftR

holesR
shiftR

vR’

holesL
shiftL

vL’

Merge the left and right
virtual views

Inverse Mapping Function

vM: Final Virtual View

holesV
vM

Fig. 1: Schematic diagram of the proposed technique.

B. Holes filling through inverse mapping
Not all the pixels of the virtual view can be recovered for

three main reasons that are recalled in the following.
1) Holes due to inaccurate depth: the depth maps may

contain some errors as they are usually estimated and
then quantized to 256 levels. Because of inaccurate
depth values erroneous shifts may be applied to the
pixel locations. Some warping techniques proposed in
literature try to limit this effect by smoothing the depth
maps before warping.

2) Cracks: the warping process does not warp the objects
or surfaces as whole and this may introduce holes in
the surface (we name them cracks). These cracks can
be recovered by the proposed inverse mapping function.
The black lines on the right hand side in Fig. 2 are
example of cracks.

3) Disocclusion: third case is represented by disocclusions
that appear when an object in the foreground uncover
a portion of background that is not visible from the
original view points. Such unknown background regions
clearly appear as holes in the virtual view. The green
areas on the right side of Fig. 2 are examples of
disocclusion.

Fig. 2: Green area in enlarged rectangle on the right side of
the image is the new region introduced in the scene whereas
the black lines in the enlarged region on the left side of the
image are cracks.

In the DIBR literature holes of the virtual view are recovered
by different techniques, e.g. averaging the neighboring pixels,
applying non-linear filters like median filer or by using more
complex techniques like texture based inpainting. In this paper,
we fill the holes by re-mapping their locations in the original
view based on the column-shifts of the neighborhood. Using
such information holes can be mapped backward to one of the
original views so as to identify the missing pixel values. We
name this technique inverse mapping.

An inverse mapping function can be defined for both the
left and the right virtual view. The function takes a missing
hole position as input and returns its approximated position in
the respective original left or right view.To define this function
we maintain a table that records the column shift of each pixel

with respect to the virtual view. Let shiftL be such a table
for left virtual view: if vL(u, v) is shifted to position (u, v0)
in vL

0, then shiftL(u, v0) = v. Similarly, shiftR is used for
right virtual view.

The first step in inverse mapping is to determine the original
locations of holes in holesV by trying to interpolate the
missing values in the table shiftL (shiftR). To this end,
VSIM applies a median filter to shiftL and shiftR. We
verified experimentally that the median filter yields better
results than average or weighted average filters. In particular,
we have observed that the median filters with kernel size 3⇥3
and 5 ⇥ 5 produce the best results. The locations recovered
by applying median filter to shiftL and shiftR are used to
determine the pixels of the original views that can be copied
to fill holes of the virtual view. Due to the limited size of
the median filter some holes cannot be recovered with this
mechanism. We observed that iteratively increasing the size
of the filter to recover all holes generally yields poor shift
interpolation results with the creation of artifacts in the virtual
view. We have found that the few remaining holes can be
recovered by simply assuming that their depth is the same
as the co-located pixels in the original views. The detailed
description of inverse mapping function is shown in Algorithm
1.

Algorithm 1 Inverse Mapping Function
Require: vL, vR, vM, holesV, shiftL, shiftR, zInvL,

zInvR, f, b

Ensure: vM : Final virtual view after filling the holes
1: shiftL

0 medianfilter(shiftL)
2: shiftR

0 medianfilter(shiftR)
3: for (u, v) 2 holesV do

4: v

0 = shiftL

0(u, v)
5: if v

0 m and v

0
> 0 then

6: vM(u, v) vL(u, v0)
7: else

8: v

0 = shiftR

0(u, v)
9: if v

0
<= m and v

0
> 0 then

10: vM(u, v) vR(u, v0)
11: else

12: v

0 = round(v + zInvL(u, v)⇥ f ⇥ b)
13: if v

0
<= m and v

0
> 0 then

14: vM(u, v) vL(u, v0)
15: else

16: v

0 = round(v � zInvR(u, v)⇥ f ⇥ b)
17: vM(u, v) vR(u, v0)
18: end if

19: end if

20: end if

21: end for

{zInvL and zInvR are 1
dL0 and 1

dR0 as we are multiply-
ing it with focal length f and camera base line difference
b. Compare it with Equation 2}

22: return vM : Final intermediate virtual view

III. EXPERIMENTAL EVALUATION

The proposed VSIM technique has been tested over a
number of standard test sequences. VSIM implementation
takes as input two views and their depth maps in YUV(4:2:0)
format and estimate the intermediate view in the same format.
The warping phase works using integer pixel precision, i.e. by
rounding to nearest integer all shifted column positions. The
chroma components U, V are warped in their native (down-
sampled) resolutions as well. The proposed inverse mapping
procedure is then used to fill the holes, independently on each
of the 3 components.

First of all the VSIM technique has been compared with
MPEG VSRS reference software using both integer and quar-
ter pixel precisions. Tab. I show the experimental settings
reporting sequence name, rendered view index, video reso-
lution and total number of rendered frames (NF), along with
the average Luma PSNR yielded by VSIM and VSRS with
integer and quarter pixel precision (see VSRS1 and (VSRS4

columns respectively). It can be observed that VSIM achieves
a significant gain over VSRS with integer pixel precision
and exhibits quite similar performance compared to VSRS
with quarter pixel precision. In other words, VSIM favorably
competes with the reference software without requiring either
up-sampling or interpolation of the warped views. In order to
better appreciate the effect of the proposed inverse mapping
procedure an additional set of experiments have been worked
out by replacing it with a simple 7 averaging filter (see
VSIMa column in Tab. I). It can be observed that inverse
mapping yields a noticeable improvement with respect to pixel
interpolation by averaging.

Fig. 3, Fig. 4 and Fig. 5 show the Luma PSNR versus
frame number obtained by VSRS and VSIM on Undo Dancer,
Kendo and Cafe sequences, respectively. It can be noted that
VSIM yields a major improvement especially in the case of
the computer generated Undo Dancer sequence.

0 25 50 75 100 125 150 175 200 225 250
34

35

36

37

38

39

40

41

42

Frame No.

P
S
N

R

VSRS (Integer pp) VSRS (Quarter pp) Proposed

Fig. 3: Undo Dancer sequence: PSNR comparison of the
proposed technique with that of VSRS.

0 25 50 75 100 125 150 175 200 225 250
32

33

34

35

36

37

Frame No.

P
S
N

R

VSRS (Integer pp)
VSRS (Quarter pp)
Proposed

Fig. 4: Kendo sequence: PSNR comparison of the proposed
technique with that of VSRS

0 25 50 75 100 125 150
32.2

32.6

33

33.4

33.6

Frame No.

P
S
N

R

VSRS (Interger pp)
VSRS (Quarter pp)
Proposed

Fig. 5: Cafe sequence: PSNR comparison of the proposed
technique with that of VSRS

The experiments described above show that the VSIM
yields very competitive results in terms of objective PSNR
metric. The most important feature of VSIM is represented
by the novel hole filling procedure based on interpolation of
pixel coordinates through inverse mapping. On the contrary
most existing view synthesis techniques use inpainting al-
gorithms to fill the holes; such algorithms fill the holes by
either looking for similar texture areas or using the color
information in the pixel neighborhood. Such approaches are
effective in recovering holes within smooth areas (with limited
depth variations) but may fail in region with sharp transitions
between foreground and background objects. In this latter
situation inverse mapping can be more effective since it avoids
smoothing or averaging pixel values in the texture domain but
try to recover column shifts towards the corresponding pixels

TABLE I: Experimental settings and results showing sequence name, rendered view index, video resolution and total number
of frames (NF) and average Luma PSNR obtained with VSRS integer precision (VSRS1 and quarter pixel precision (VSRS4),
VSIM with hole filling by averaging (VSIMa) and proposed VSIM hole filling (VSIM).

Sequence Views Size NF PSNR Gain of VSIM over
VSRS1 VSRS4 VSIMa VSIM VSRS1 VSRS4 VSIMa

Undo Dancer 1,3 ! 2 1920⇥ 1088 250 35.7117 38.4899 40.5387 40.7348 5.0231 2.2448 0.1961
Balloons 1,5 ! 3 1024⇥ 768 250 34.0799 34.5399 33.2804 34.5000 0.4201 -0.0399 1.2196
Poznan Hall2 5,7 ! 6 1920⇥ 1088 200 35.6328 36.4990 36.0198 36.3705 0.7377 -0.1285 0.3507
Kendo 1,5 ! 3 1024⇥ 768 250 34.8026 35.3193 34.3606 35.2419 0.4393 -0.0774 0.8813
Cafe 2,4 ! 3 1920⇥ 1080 150 32.9975 33.0673 32.7299 33.1265 0.1290 0.0592 0.3966

(a) VSRS

(b) VSIM

Fig. 6: Rendering example for Undo Dancer sequence: VSRS
(a), VSIM (b).

of the original view. Fig. 6 shows a particular frame of the
Undo Dancer sequence where the background in between two
pillars (see the zoomed details) is rendered correctly by VSIM
whereas VSRS averages foreground and background pixels.
The proposed technique on the other hand, maps the missing
locations to the respective left or right views and fills the
hole without averaging pixels with completely different depths.
Other examples of visual details that are rendered better by
VSIM than VSRS are shown in Fig. 7 and Fig. 8.

Finally, it is worth analyzing the computational cost of
the proposed VSIM with respect to VSRS. VSIM does not
require fractional pixel precision and therefore it requires
approximately the same computational cost of VSRS with

(a) VSRS

(b) VSIM

Fig. 7: Rendering example for Kendo sequence: VSRS (a),
VSIM (b).

integer pixel precision, that yields significantly lower perfor-
mance as reported in Tab. I. Moreover, the inverse mapping
hole filling algorithm is based on simple median filtering of
shift information that is already available after warping and
therefore it does not represent an issue in terms of memory
and computation. In this paper we cannot fairly compare
execution times of the two softwares because VSIM has been
implemented using MATLAB whereas VSRS in written in C
language. An efficient implementation of VSIM in C language

(a) VSRS

(b) VSIM

Fig. 8: Rendering example for LoveBirds sequence: VSRS (a),
VSIM (b).

is part of our ongoing work.

IV. CONCLUSIONS

In this paper we have presented VSIM, a novel depth image
based rendering algorithm that conjugates limited computa-
tional complexity and high quality view synthesis results.
These conflicting goals have been achieved by using only
integer pixel warping on the one hand, and improving the
visual quality of the hole filling algorithm on the other hand.
Hole filling is based on the novel idea of inverse mapping that
consists in retrieving the missing pixels from the original views
rather than interpolating them from the surrounding neigh-
borhood. The presented experimental evaluation shows that
VSIM favorably compares with VSRS in terms of objective
and subjective results.

REFERENCES

[1] H. C. Longuet-Higgins, “Readings in computer vision: issues, problems,
principles, and paradigms,” chapter A computer algorithm for recon-
structing a scene from two projections, pp. 61–62. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1987.

[2] Shenchang Eric Chen and Lance Williams, “View interpolation for
image synthesis,” in Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, New York, NY, USA,
1993, SIGGRAPH ’93, pp. 279–288, ACM.

[3] Steven M. Seitz and Charles R. Dyer, “View morphing,” in Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques, New York, NY, USA, 1996, SIGGRAPH ’96, pp. 21–30,
ACM.

[4] George Wolberg, Digital Image Warping, IEEE Computer Society Press,
Los Alamitos, CA, USA, 1st edition, 1990.

[5] Heung-Yeung Shum and Sing Bing Kang, “A review of image-based
rendering techniques,” in IEEE/SPIE Visual Communications and Image
Processing (VCIP), 2000.

[6] Christoph Fehn, “A 3d-tv approach using depth-image-based rendering
(dibr),” in Proc. of VIIP, 2003, vol. 3.

[7] Christoph Fehn, “Depth-image-based rendering (dibr), compression,
and transmission for a new approach on 3d-tv,” in Proc. SPIE 5291,
Stereoscopic Displays and Virtual Reality Systems XI, 93 (May 21,
2004), April 2004.

[8] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen, “The lumigraph,” in Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, New York, NY, USA,
1996, SIGGRAPH ’96, pp. 43–54, ACM.

[9] C. Zhang, “A survey on image-based renderingrepresentation, sampling
and compression,” Signal Processing: Image Communication, vol. 19,
no. 1, pp. 1–28, Jan. 2004.

[10] Heung-Yeung Shum, Sing Bing Kang, and Shing-Chow Chan, “Survey
of image-based representations and compression techniques,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 13, no.
11, pp. 1020–1037, 2003.

[11] Ha T. Nguyen and Minh N. Do, “Image-based rendering with depth
information using the propagation algorithm,” in in Proc. IEEE Int.
Conf. Acoust., Speech, and Signal Proc, 2005, pp. 589–592.

[12] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, and T. Wiegand, “Depth image-based rendering with
advanced texture synthesis for 3-d video,” Trans. Multi., vol. 13, no. 3,
pp. 453–465, June 2011.

[13] Christian Hofsetz, Kim Ng, George Chen, Peter McGuinness, Nelson
Max, and Yang Liu, “Image-based rendering of range data with
estimated depth uncertainty,” IEEE Comput. Graph. Appl., vol. 24, no.
4, pp. 34–42, July 2004.

[14] M. Schmeing and Xiaoyi Jiang, “Depth image based rendering: A
faithful approach for the disocclusion problem,” in 3DTV-Conference:
The True Vision - Capture, Transmission and Display of 3D Video
(3DTV-CON), 2010, June, pp. 1–4.

[15] Kwan-Jung Oh, Sehoon Yea, and Yo-Sung Ho, “Hole filling method
using depth based in-painting for view synthesis in free viewpoint
television and 3-d video,” in Picture Coding Symposium, 2009. PCS
2009, May, pp. 1–4.

[16] M. Koppel, Xi Wang, D. Doshkov, T. Wiegand, and P. Ndjiki-Nya,
“Consistent spatio-temporal filling of disocclusions in the multiview-
video-plus-depth format,” in Multimedia Signal Processing (MMSP),
2012 IEEE 14th International Workshop on, Sept., pp. 25–30.

[17] V. Paradiso, M. Lucenteforte, and M. Grangetto, “A novel interpolation
method for 3d view synthesis,” in 3DTV-Conference: The True Vision
- Capture, Transmission and Display of 3D Video (3DTV-CON), 2012,
Oct., pp. 1–4.

[18] M.S. Farid, H. Khan, and A. Mahmood, “Image inpainting based on
pyramids,” in Signal Processing (ICSP), 2010 IEEE 10th International
Conference on, Oct., pp. 711–715.

[19] M.S. Farid and H. Khan, “Image inpainting using dynamic weighted
kernels,” in Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on, July, vol. 8, pp. 252–255.

[20] I. Daribo and H. Saito, “A novel inpainting-based layered depth video
for 3dtv,” Broadcasting, IEEE Transactions on, vol. 57, no. 2, pp. 533–
541, 2011.

[21] ISO/IEC JTC1/SC29/WG11 (MPEG), “View synthesis reference soft-
ware (vsrs) 3.5,” Mar. 2010.

