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Abstract. Computational fields are spatially distributed data structures created
by diffusion/aggregation processes, designed to adapt their shape to the topology
of the underlying (mobile) network and to the events occurring in it: they have
been proposed in a thread of recent works addressing self-organisation mecha-
nisms for system coordination in scenarios including pervasive computing, sensor
networks, and mobile robots. A key challenge for these systems is to assure be-
havioural correctness, namely, correspondence of micro-level specification (com-
putational field specification) with macro-level behaviour (resulting global spa-
tial pattern). Accordingly, in this paper we investigate the propagation process
of computational fields, especially when composed one another to achieve com-
plex spatial structures. We present a tiny, expressive, and type-sound calculus of
computational fields, enjoying self-stabilisation, i.e., the ability of computational
fields to react to changes in the environment finding a new stable state in finite
time.

1 Introduction

Computational fields [11, 17] (sometimes simply fields in the following) are an ab-
straction traditionally used to enact self-organisation mechanisms in contexts includ-
ing swarm robotics [1], sensor networks [3], pervasive computing [12], task assign-
ment [22], and traffic control [6]. They are distributed data structures originated from
pointwise events raised in some specific device (i.e., a sensor), and propagating in a
whole network region until forming a spatio-temporal data structure upon which dis-
tributed and coordinated computation can take place. Example middleware/platforms
supporting this notion include TOTA [12], Proto [13], and SAPERE [24, 15]. The most
paradigmatic example of computational field is the so-called gradient [4, 12, 15], map-
ping each node of the network to the minimum distance from the source node where
the gradient has been injected. Gradients are key to get awareness of physical/logical
distances, to project a single-device event into a whole network region, and to find the
direction towards certain locations of a network, e.g., for routing purposes. A number of
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works have been developed that investigate coordination models supporting fields [12,
21], introduce advanced gradient-based spatial patterns [14], and develop catalogues of
self-organisation mechanisms where gradients play a crucial role [8].

As with most self-organisation approaches, a key issue is to try to fill the gap be-
tween the system micro-level (the single-node computation and interaction behaviour)
and the system macro-level (the shape of the globally established spatio-temporal struc-
ture), namely, ensuring that the programmed code results in the expected global-level
behaviour. However, the issue of formally tackling the problem is basically yet unex-
plored in the context of spatial computing, coordination, and process calculi—some
exceptions are [4, 9], which however apply in rather ad-hoc cases. We note instead that
deepening the problem will likely shed light on which language constructs are best
suited for developing well-engineered self-organisation mechanisms based on compu-
tational fields, and to consolidate existing patterns or develop new ones.

In this paper we follow this direction and address the problem of finding an ex-
pressive calculus to specify the propagation process of those computational fields for
which we can identify a precise mapping between system micro- and macro-level. We
identified a core calculus with sound type systems formed by three constructs only:
sensor fields (considered as an environmental input), pointwise functional composi-
tion of fields, and a form of spreading that tightly couples information diffusion and
re-aggregation. The latter is constrained so as to enforce a special “terminating pro-
gressiveness” property that we identified, by which we derive self-stabilisation [7], that
is, the ability of the system running computational fields to reach a stable distributed
state in spite of perturbations (changes of network topology and of local data) from
which it recovers in finite time. A consequence of our results is that the ultimate (and
stable) state of an even complex computational field can be fully-predicted once the
environment state is known (network topology and sensors state).

The remainder of this paper is organised as follows: Section 2 presents the proposed
linguistic constructs by means of examples, Section 3 provides the formal calculus, Sec-
tion 4 states soundness and self-stabilisation properties, and finally Section 5 discusses
related works and concludes.

2 Computational Fields

From an abstract viewpoint, a computational field is simply a map from nodes of a
network to some kind of value. They are used as a valuable abstraction to engineer
self-organisation into networks of situated devices. Namely, out of local interactions
(devices communicating with a small neighbourhood), global and coherent patterns (the
computational fields themselves) establish that are robust to changes of environmental
conditions. Such an adaptive behaviour is key in developing system coordination in
dynamic and unpredictable environments [16].

Self-organisation and computational fields are known to build on top of three ba-
sic mechanisms [8]: diffusion (devices broadcast information to their neighbours), ag-
gregation (multiple information can be aggregated back into a single sum-up value),
and evaporation/decay (a cleanup mechanism is used to reactively adapt to changes).
For instance, these mechanisms are precisely those used to create adaptive and stable



e ::= x
∣∣ v ∣∣ s

∣∣ g(e1, . . . ,en)
∣∣ {e : g(@,e1, . . . ,en)} expression

g ::= f
∣∣ o function

F ::= def T f(T1 x1, . . . ,Tn xn) is e function definition

Fig. 1. Syntax of expressions and function definitions

gradients, which are building blocks of more advanced patterns [8, 14]. A gradient is
used to reify in any node some information about the path towards the nearest gradient
source. It can be computed by the following process: value 0 is held in the gradient
source; each node executes asynchronous computation rounds in which (i) messages
from neighbours are gathered and aggregated in a minimum value, (ii) this is increased
by one and is diffused to all neighbours, and (iii) the same value is stored locally, to
replace the old one which decays. This continuous “spreading process” stabilises to a
so called hop-count gradient, storing distance to the nearest source in any node, and au-
tomatically repairing in finite time to changes in the environment (changes of topology,
position and number of sources).

2.1 Basic Ingredients

Based on these ideas, and framing them so as to isolate those cases where the spreading
process actually stabilises, we propose a tiny calculus to express computational fields.
Its syntax is reported in Figure 1. Following the general approach used in other lan-
guages for spatial computing [20, 13], which the one we propose here can be considered
as a core, our language is functional.

An atomic expression can be a variable x, a value v, or a sensor s. Variables are
the formal parameters of a function. Values can be of different sorts: integers (0, 1, ...
and INF meaning the maximum integer), floats (e.g., 1.0, -5.7), booleans (TRUE and
FALSE), tuples (<1,TRUE>,<2,-3.5>,<1,FALSE,3>), and so on. Sensors are sources
of input produced by the environment, available in each device (in examples, we shall
use for them literals starting with symbol “#”). For instance, in a urban scenario we may
want to use a crowd sensor #crowd yielding non-negative real numbers, to represent the
perception of crowd level available in each deployed sensor over time [15].

Expressions can be composed functionally, by either a (built-in) operator o or a
user-defined function f. Operators include usual mathematical/logical ones, used either
in prefix or infix notation: e.g. to form expressions 2*#crowd and or(TRUE,FALSE).
Operators 1st, 2nd, and so on, are used to extract the i-th component of a tuple. Func-
tions are typed and can be declared by users; cyclic definitions are prohibited, and 0-ary
function main is the program entry point. Types include int, float, bool, and tuple-
types like <int,int>, <int,bool> and so on; each type T has a total ordered relation
≤T—we use natural ordering, though in principle ad-hoc ordering relations could be
used in a deployed specification language. As an example, we will use the follow-
ing function restrict: def int restrict(int i, bool b) is b ? i : INF.
It takes two arguments i and b, and yields the former if b is true, or INF otherwise—as
we shall see, because of our semantics INF plays a role similar to an undefined value.



As in [20, 13], expressions in our language have a twofold interpretation. When
focussing on the local device behaviour, they represent values computed in a node at a
given time. When reasoning about the global outcome of a specification instead, they
represent whole computational fields: 1 is the immutable field holding 1 in each device,
#crowd is the (evolving) crowd field, and so on.

The key construct of the proposed language is spreading, denoted by syntax
{e : g(@,e1, . . . ,en)}, where e is called source expression, and g(@,e1, . . . ,en) is called
progression expression. The latter is an expression formed by an operator/function g:
if it is a function, its body should not include a spreading construct or a sensor (nor
the function it calls should). Additionally, the progression expression has one hole @

playing the role of a formal argument; hence the progression expression can be seen as
the body of an anonymous, unary function, which we simply call progression. Viewed
locally to a node, expression e = {e0 : g(@,e1, . . . ,en)} is evaluated at a given time to
value v as follows:

1. expressions e0,e1, . . . ,en are evaluated to values v0,v1, . . . ,vn;
2. the current values w1, . . . ,wm of e in neighbours are gathered;
3. for each w j in them, the progression function is applied as g(w j,v1, . . . ,vn), giving

value w′j;
4. the final result v is the minimum value among {v0,w

′
1, . . . ,w

′
m}: this value is made

available to other nodes.

Note that v ≤T v0, and if the device is isolated then v = v0. Viewed globally,
{e0 : g(@,e1, . . . ,en)} represents a field initially equal to e0; as time passes some field
values can decrease due to smaller values being received from neighbours (after apply-
ing the progressive function).

The hop-count gradient created out of a #src sensor is hence simply defined as
{ #src : @ + 1 }, assuming #src holds what we call a zero-field, namely, it is 0 on
source nodes and INF everywhere else. In this case #src is the source expression, and
g is unary successor function.

2.2 Composition Examples

As a reference scenario to ground the discussion, we can consider crowd steering in
pervasive environments [15]: computational fields run on top of a myriad of small
devices spread in the environment (including smartphones), and are used to guide
people in complex environments (buildings, cities) towards point of interested (POIs)
across appropriate paths. There, a smartphone can perceive neighbour values of a
gradient spread from a POI, and give directions towards smallest values so as to steer
its owner and make him/her quickly descend the gradient [12]. Starting from the
hop-count gradient, various kinds of behaviour useful in crowd steering can be pro-
grammed, based on the definitions reported in Figure 2. Note that as a mere syntactic
sugar, we allowed there the use of functional compositions of built-in operators and
user-defined functions as progression expressions. For instance, in function gradobs,
the composition of restrict and + is used. A pre-processor could easily lift out such
compositions into automatically-generated functions: e.g., for gradobs it could be



def int grad(int i) is { i : @ + #dist }

def int restrict(int i, bool b) is b ? i : INF

def int gradobs(int i, bool b) is { i : restrict(@ + #dist, b) }

def <int,bool> sum or(<int,bool> x, <int,bool> y) is

<1st(x) + 1st(y), 2nd(x) or 2nd(y)>

def bool sector(int i, bool b) is 2nd({ <i, b> : sum or(@,<#dist, b>) }

def <int,int> add to 1st(<int,int> x, int y) is <1st(x)+ y, 2nd(x)>

def <int,int> gradcast(int i, int j) is { <i, j> : add to 1st(@, #dist) }

def int dist(int i, int j) is gradcast(restrict(j,j==0),grad(i))

def bool path(int i, int j, int w) is grad(i)+grad(j)-w < dist(i, j)

def int channel(int i, int j, int w) is gradobs(grad(j),not path(i, j, w))

Fig. 2. Definitions of examples

Fig. 3. A pictorial representation of various fields: hop-count gradient (a), gradient circumventing
“crowd” obstacles (b), sector (c), and channel (d)

“def int gradobs$lifted(int x,int y,bool b) is restrict(x + y,b)”,
so the body of gradobs could become “{ i : gradobs$lifted(@,#dist,b) }”
as the syntax of our calculus actually requires.

The first function in Figure 2 defines a more powerful gradient construct, called
grad, which can be used to generalise over the hop-by-hop notion of distance: sensor
#dist is assumed to exist that reifies an application-specific notion of distance as a
positive number. It can be 1 everywhere to model hop-count gradient, or can vary from
device to device to take into consideration contextual information. For instance, it can
be the output of a crowd sensor, leading to greater distances when/where crowded ar-
eas are perceived, so as to dynamically compute routes penalising crowded areas as in
[15]. In this case, note that function g maps (v1,v2) to v1 + v2. Figure 3 (a) shows a
pictorial representation, assuming devices are uniformly spread in a 2D environment:
considering that an agent or data items moves in the direction descending the values
of a field, a gradient looks like a sort of uniform attractor towards the source, i.e., to
the nearest source node. It should be noted that when deployed in articulated environ-
ments, the gradient would stretch and dilate to accommodate the static/dynamic shape
of environment, computing optimal routes.

By suitably changing the progression function, it is also possible to block the diffu-
sion process of gradients, as shown in function gradobs: there, by restriction we turn
the gradient value to INF in nodes where the “obstacle” boolean field b holds TRUE. This
can be used to completely circumvent obstacle areas, as shown in Figure 3 (b). Note that



we here refer to a “blocking” behaviour, since sending a INF value has no effect on the
target, and could hence be avoided for the sake of performance, e.g., not to flood the
entire network. This pattern is useful whenever steering people in environments with
prohibited areas—e.g. road construction in a urban scenario.

In our language it is also possible to keep track of specific situations during the
propagation process, as function sector showcases. It takes a zero-field source i and a
boolean field b denoting an area of interest: it creates a gradient of pairs, orderly holding
distance from source and a boolean value representing whether the route towards the
source crossed area b. As one such gradient is produced, it is wholly applied to operator
2nd, extracting a sector-like boolean field as shown in Figure 3 (c). To do so, we use a
special progression function sum or working on int,bool pairs, which sums the first
components, and apply disjunction to the second. This pattern is useful to make people
be aware of certain areas that the proposed path would cross, so as to support proper
choices among alternatives [14].

The remaining functions gradcast, dist, path and channel are used to obtain a
spatial pattern more heavily relying on multi-level composition, known as channel [20,
13]. Assume i and j are zero-fields, and suppose to steer people in complex and large
environments from area i to destination j, i.e., from a node where i holds 0 to a node
where j holds 0. It is important to activate the steering service (spreading information,
providing signs, and detecting contextual information such as congestion) only along
the shortest path, possibly properly extended (of a distance width w to deal with some
randomness of people movement)—see Figure 3 (d). Function gradcast generates a
gradient, holding in each node a pair of the minimum distance to source i and the value
of j in that source; this is typically used to broadcast along with a gradient a value held
in its source. Function dist uses gradcast to broadcasts the distance d between i and
j—i.e., the minimum distance between a node where i holds 0 and a node where j

holds 0. This is done by sending a gradcast from the source of j holding the value of
grad(i) there, which is exactly the distance d. Function path simply marks as positive
those nodes whose distance from the shortest path between i and j is smaller than w.
Finally, function channel generates from j a gradient confined inside path(i,j,w),
which can be used to steer people towards the POI at j without escaping the path area.

3 The Calculus of Self-Stabilising Computational Fields

After informally introducing the proposed calculus in previous section, we now provide
a formal account of it, in order to precisely state the self-stabilisation property in next
section. We first discuss typing issues in Section 3.1, then formalise the operational
semantics by first focussing on single-device computations in Section 3.2, and finally
on whole network evolution (Section 3.3).

3.1 Typing and Self-stabilisation

The syntax of the calculus is reported in Figure 1. As a standard syntactic notation in
calculi for object-oriented and functional languages [10], we use the overbar notation
to denote metavariables over lists, e.g., we let e range over lists of expressions, written



Expression typing: A ` e : T
[T-VAR]

A ,x : T ` x : T
[T-SNS]

A ` s : typeof(s)
[T-VAL]

A ` v : typeof(v)

[T-OPFUN] signature(g) = T g(T) A ` e : T
A ` g(e) : T

[T-SPR] stabilising(g) A ` g(e,e) : T
A ` {e : g(@,e)} : T

Function typing: F OK
[T-DEF] x : T ` e : T
def T f(T x) = e OK

Fig. 4. Typing rules for expressions and function definitions

e1 e2 . . . en, and similarly for x, T and so on. We write [[T]] to denote the set of the
values of type T, and signature(g) to denote the signature T g(T) of g (which specifies
the type T of the result and the types T= T1, . . . ,Tn of the n≥ 0 arguments of g).

A program P in our language is a mapping from function names to function defi-
nitions, enjoying the following sanity conditions: (i) P(f) = def f · · ·(· · ·) is · · · for
every f ∈ dom(P); (ii) for every function name f appearing anywhere in P, we have
f ∈ dom(P); (iii) there are no cycles in the function call graph (i.e., there are no recur-
sive functions in the program); and (iv) main ∈ dom(P) and it has zero arguments.

The type system we provide aims to guarantee self-stabilisation: its typing rules
are given in Figure 4. Type environments, ranged over by A and written x : T, contain
type assumptions for program variables. The typing judgement for expressions is of
the form A ` e : T, to be read: e has type T under the type assumptions A for the
program variables occurring in e. As a standard syntax in type systems [10], given
x = x1, . . . ,xn, T = T1, . . . ,Tn and e = e1, . . . ,en (n ≥ 0), we write x : T as short for
x1 : T1, . . . ,xn : Tn, and A ` e : T as short for A ` e1 : T1 · · · A ` en : Tn. Typing
of variables, sensors, values, built-in operators and user-defined functions application
are almost standard (in particular, values and sensors are given a type by construction).
The only ad-hoc typing is provided for spreading expressions {e : g(@,e)}: they are
trivially given the same type of g(e,e), though additional conditions has to be checked
to guarantee self-stabilisation, which are at the core of the technical result provided
in this paper. In particular, any function g used in a spreading expression must be a
stabilising progression function, according to the following definition.

Definition 1 (Stabilising progression). A function g with signature T g(T1, . . . ,Tm) is
a stabilising progression (notation stabilising(g)) if the following conditions hold:

(i) m > 0 and T= T1;
(ii) g is a so-called pure operator, namely, it is either a built-in operator o, or a user-

defined function f whose call graph (including f itself) does not contain functions
with spreading expressions or sensors in their body: in this case, we write [[g]] to
denote the trivial mapping that provides the semantics of g symbol to a function;

(iii) T is so-called locally noetherian, to mean that [[T]] is equipped with a total order
relation ≤T, and for every element v ∈ [[T]], there are no infinite ascending chains
of elements v0 <T v1 <T v2 · · · such that (for every n≥ 0) vn <T v;



(iv) g is monotone in its first argument, i.e., v≤T v
′ implies [[g]](v,v)≤T [[g]](v

′,v)) for
any v;

(v) g is progressive in its first argument, i.e.,
– if [[T]] has not a maximum element,3 it holds that: v<T [[g]](v,v) for any v;
– if [[T]] has a maximum element4 written top(T), it holds that [[g]](top(T),v) =
top(T) and, for all v ∈ [[T]]−{top(T)}, v<T [[g]](v,v).

Function typing (represented by judgement “F OK”) is standard. Then, in the fol-
lowing we always consider a well-typed program P, to mean that all the function decla-
rations in P are well typed.

Note that all examples provided in previous section amount to well typed functions,
with few inessential caveats. First, as already discussed, in spreading expressions we
use compositions of functions: this is legitimate since it is easy to see that composi-
tion of stabilising progressions is stabilising. Second, more refined types are needed to
correctly identify certain spreading expressions as stabilising. For instance, in function
grad, the sensor #dist must have a positive integer type (e.g., posint), and operator
+ should be replaced by a sum operator that accepts a positive number only on right
(e.g., +<int,posint>), and similarly for other cases. Third, to correctly type-check
the functions that use tuples (which have not been explicitly modelled in the calcu-
lus) one would need to consider a polymorphic type system a la ML in the usual way.
Handling all these advanced typing aspects, as well as presenting the formalisation of
the stabilising(·) predicate (that is, an algorithm to check whether the conditions for a
function to be stabilising hold), has not been considered here for the sake of space and
since they are orthogonal aspects.

3.2 Device Computation

In the following, we let meta-variables ι and κ range over the denumerable set I of
device identifiers, meta-variable I over finite sets of such devices, meta-variables u, v
and w over values. Given a finite nonempty set V ⊆ [[T]] we denote by

∧
V its minimum

element, and write v∧v′ as short for
∧
{v,v′}.

To simplify the notation, we shall assume a fixed program P and write emain to de-
note the body of the main function. We say that “device ι fires”, to mean that expression
emain is evaluated on device ι . The result of evaluation is a value-tree, which is an or-
dered tree of values, tracking the result of any evaluated subexpression. Intuitively, such
evaluation is performed against the value-trees of neighbours and the current value of
sensors, and produces as result a new value-tree that is conversely made available to
other neighbours for their firing.5 The syntax of value-trees is given in Figure 5, to-
gether with the definition of the auxiliary functions ρ(·) and πi(·) for extracting the
root value and the i-th subtree of a value-tree, respectively—also the extension of these

3 Like, e.g., the BigInteger type in JAVA.
4 Like, e.g., the the double type in JAVA, which has top element Double.POSITIVE INFINITY.
5 Accordingly, since a function g used in a spreading expression {e0 : g(@,e1, . . . ,en)} must be

a pure operator (cf. Section 3.1), only the root of the produced sub-tree must be stored (c.f. rule
[E-SPR]). Also, note that any implementation might massively compress the value-tree, storing
only enough information for spreading expressions to be aligned.



functions to sequences of value-environments θ is defined. We sometimes abuse the
notation writing a value-tree with just the root as v instead of v(). The state of sensors
σ is a map from sensor names to values, modelling the inputs received from the exter-
nal world. This is written s �v as an abuse of notation to mean s1 �v1, . . .sn �vn. We
shall assume that it is complete (it has a mapping for any sensor used in the program),
and correct (each sensor s has a type written typeof(s), and is mapped to a value of
that type). For this map, and for the others to come, we shall use the following nota-
tions: σ(s) is used to extract the value that s is mapped to, σ [σ ′] is the map obtained by
updating σ with all the associations s �v of σ ′ which do not escape the domain of σ

(namely, only those such that σ is defined for s).
The computation that takes place on a single device is formalised by the big-step

operational semantics rules given in Figure 5. The derived judgements are of the form
σ ;θ ` e ⇓ θ , to be read “expression e evaluates to value-tree θ on sensor state σ and
w.r.t. the value-trees θ”, where:

– σ is the current sensor-value map, modelling the inputs received from the external
world;

– θ is the list of the value-trees produced by the most recent evaluation of e on the
current device’s neighbours;

– e is the closed expression to be evaluated;
– the value-tree θ represents the values computed for all the expressions encountered

during the evaluation of e— in particular ρ(θ) is the local value of field expression
e.

The rules of the operational semantics are syntax directed, namely, the rule used
for deriving a judgement σ ;θ ` e ⇓ θ is univocally determined by e (cf. Figure 5).
Therefore, the shape of the value-tree θ is univocally determined by e, and the whole
value-tree is univocally determined by σ , θ , and e.

The rules of the operational semantics are almost standard, with the exception that
rules [E-OP], [E-FUN] and [E-SPR] use the auxiliary function πi(·) to ensure that, in the judge-
ments in the premise of the rule, the value-tree environment is aligned with the expres-
sion to be evaluated.

The most important rule is [E-SPR] which handles spreading expressions formalising
the description provided in Section 2.1. It first recursively evaluates expressions ei to
value-trees ηi (after proper alignment of value-tree environment by operator πi(.)) and
top-level values vi. Then it gets from neighbours their values w j for the spreading ex-
pression, and for each of them g is evaluated giving top-level result w j. The resulting
value is then obtained by the minimum among v0 and the values w j (which equates to
v0 if there are currently no neighbours).

3.3 Network Evolution

We now provide an operational semantics for the evolution of whole networks, namely,
for modelling the distributed evolution of computational fields over time. Figure 6 (top)
defines key syntactic elements to this end. F models the overall computational field
(state), as a map from device identifiers to value-trees. τ models network topology,



Value-trees and sensor-value maps:
θ ,η ::= v(θ) value-tree

σ ::= s�v sensor-value map

Auxiliay functions:
ρ(v(θ)) = v πi(v(θ1, . . . ,θn)) = θi
ρ(θ1, . . . ,θn) = ρ(θ1), . . . ,ρ(θn) πi(θ1, . . . ,θn) = πi(θ1), . . . ,πi(θn)

Rules for expression evaluation: σ ;θ ` e ⇓ θ

[E-SNS]

σ ;θ ` s ⇓ σ(s)
[E-VAL]

σ ;θ ` v ⇓ v

[E-OP] ι ;π1(θ) ` e1 ⇓ η1 · · · σ ;πn(θ) ` en ⇓ ηn v= [[o]](ρ(η1), . . . ,ρ(ηn))

σ ;θ ` o(e1, . . . ,en) ⇓ v(η1, . . . ,ηn)

[E-FUN]

def T f(T1 x1, . . . ,Tn xn) = e σ ;π1(θ) ` e1 ⇓ η1 · · · σ ;πn(θ) ` en ⇓ ηn
σ ;πn+1(θ) ` e[x1 := ρ(θ ′1) . . . xn := ρ(θ ′n)] ⇓ v(η)

σ ;θ ` f(e1, . . . ,en) ⇓ v(θ ′1, . . . ,θ ′n,v(η))
[E-SPR]

σ ;π0(θ) ` e0 ⇓ η0 · · · σ ;πn(θ) ` en ⇓ ηn
ρ(η0, . . . ,ηn) = v0 . . .vn ρ(θ) = w1 . . .wm
σ ; /0 ` g(w1,v1, . . . ,vn) ⇓ u1(· · ·) . . . σ ; /0 ` g(wm,v1, . . . ,vn) ⇓ um(· · ·)

σ ;θ ` {e0 : g(@,e1, . . . ,en)} ⇓
∧
{v0,u1, . . . ,um}(η0,η1, . . . ,ηn)

Fig. 5. Big-step operational semantics for expression evaluation

namely, a directed neighbouring graph, as a map from device identifiers to set of iden-
tifiers. Σ models sensor (distributed) state, as a map from device identifiers to (local)
sensors (i.e., sensor name/value maps). Then, E (a couple of topology and sensor state)
models the system’s environment. So, a whole network configuration N is a couple of a
field and environment.

We define network operational semantics in terms of small-steps transitions of the
kind N `−→ N′, where ` is either a device identifier in case it represents its firing, or label
ε to model any environment change. This is formalised in Figure 6 (bottom). Rule [N-
FIR] models a computation round (firing) at device ι : it reconstructs the proper local
environment, taking local sensors (Σ(ι)) and accessing the value-trees of ι’s neigh-
bours; then by the single device semantics we obtain the device’s value-tree θ , which
is used to update system configuration. Rule [N-ENV] takes into account the change of
the environment to a new well-formed environment E ′. Let ι1, . . . , ιn be the domain of
E ′. We first construct a field F0 associating to all the devices of E ′ the default value-trees
θ1, . . . ,θn obtained by making devices perform an evaluation with no neighbours and
sensors as of E ′. Then, we adapt the existing field F to the new set of devices: F0[F ] au-
tomatically handles removal of devices, map of new devices to their default value-tree,
and retention of existing value-trees in the other devices.

Upon this semantics. we introduce the following definitions and notations:

Initiality The empty network configuration 〈 /0� /0, /0� /0; /0� /0〉 is said initial.



System configurations and action labels:
F ::= ι �θ computational field
τ ::= ι � I topology
Σ ::= ι �σ sensors-map
E ::= τ,Σ environment
N ::= 〈E;F〉 network configuration
` ::= ι

∣∣ ε action label

Environment well-formedness:
WFE(τ,Σ) holds if τ,Σ have same domain, and τ’s values do not escape it.

Transition rules for network evolution: N `−→ N

[N-FIR] E = τ,Σ τ(ι) = ι Σ(ι);F(ι) ` emain ⇓ θ

〈E;F〉 ι−→ 〈E;F [ι �θ ]〉
[N-ENV]

WFE(E ′) E ′ = τ, ι1 �σ1, . . . , ιn �σn
σ1; /0 ` emain ⇓ θ1 · · · σn; /0 ` emain ⇓ θn F0 = ι1 �θ1, . . . , ιn �θn

〈E;F〉 ε−→ 〈E ′;F0[F ]〉

Fig. 6. Small-step operational semantics for network evolution

Reachability Write N `
=⇒ N′ as short for N

`1→ N1
`2→ ··· `n→ N′: a configuration N is

said reachable if N0
`

=⇒ N where N0 is initial. Reachable configurations are the
well-formed ones, and in the following we shall implicitly consider only reachable
configurations.

Firing A firing evolution from N to N′, written N =⇒ N′, is one such that N ι
=⇒ N′

for some ι , namely, where only firings occur.
Stability A system state N is said stable if N ι−→ N′ implies N = N′, namely, the com-

putation of fields reached a fixpoint in the current environment. Note that if N is
stable, then it also holds that N =⇒ N′ implies N = N′.

Fairness We say that a sequence of device fires is k-fair (k≥ 0) to mean that, for every
h (1 ≤ h ≤ k), the h-th fire of any device is followed by at least k− h fires of all
the other devices. Accordingly, a firing evolution N ι

=⇒ N′ is said k-fair, written
N ι
=⇒k N′, to mean that ι is k-fair. We also write N =⇒k N′ if N ι

=⇒k N′ for some ι .
This notion of fairness will be used to characterise finite firing evolutions in which
all devices are given equal chance to fire when all others had.

Self-stabilisation A system state 〈E;F〉 is said to self-stabilise to 〈E;F ′〉 if there is
a k > 0 and a field F ′ such that 〈E;F〉 =⇒k 〈E;F ′〉 implies 〈E;F ′〉 is stable, and
F ′ is univocally determined by E. Self-stability basically amounts to the inevitable
reachability of a stable state depending only on environment conditions, through
a sufficiently long fair evolution. Hence, the terminology is abused equivalently
saying that a field expression emain is self-stabilising if for any environment state E
there exists a unique stable field F ′ such that any 〈E;F〉 self-stabilises to 〈E;F ′〉.



3.4 An example application of the semantics

Consider the function definition def int main() is { #src : @ + #dist },
where #src is a sensor of type int (with default value 0), #dist is a sensor of type
posint (positive integers, with default value 1) and + is a built-in sum operator which
can be given signature int +(int,posint). Note that operator + (which is the pro-
gression function used in this spreading expression) is a self-stabilising progression,
according to the definition in 3.1.

Starting from an initial empty configuration, we move by rule [N-ENV] to a new
environment with the following features:

– the domain is formed by 2n (n≥ 1) devices ι1, . . . , ιn, ιn+1, . . . , ι2n;
– the topology is such that any device ιi is connected to ιi+1 and ιi−1 (if they exist);
– sensor #dist gives 1 everywhere;
– sensor #src gives 0 on the devices ιi (1≤ i≤ n, briefly referred to as left devices)

and a value u (u > n+ 1) on the devices ι j (n+ 1 ≤ j ≤ 2n, briefly referred to as
right devices).

Accordingly, the left devices are all assigned to value-tree 0(0,1), while the right ones
to u(u,1): hence, the resulting field maps left devices to 0 and right devices to 1—
remember such evaluations are done assuming nodes are isolated, hence the result is
exactly the value of the source expression. With this environment, the firing of a device
can only replace the root of a value-tree, making it the minimum of the source expres-
sion’s value and the minimum of the successor of neighbour’s values. Hence, any firing
of a device that is not ιn+1 does not change its value-tree. When ιn+1 fires instead by
rule [N-FIR], its value-tree becomes 1(u,1), and it remains so if more firings occur next.

Now, only a firing at ιn+2 causes a change: its value-tree becomes 2(u,1). Going on
this way, it easy to see that after any n-fair firing sequence the network self-stabilises
to the field state where left devices still have value-tree 0(u,1), while right devices
ιn+1, ιn+2, ιn+3, . . . have value-trees 1(u,1),2(u,1),3(u,1), . . ., respectively. That is, the
root of such trees form a hop-count gradient, measuring minimum distance to the source
nodes, namely, the left devices.

It can also be shown that any environment change, followed by a sufficiently long
firing sequence, makes the system self-stabilise again, possibly to a different field state.
For instance, if the two connections of ι2n−1 to/from ι2n−2 break (assuming n > 2), the
part of the network excluding ι2n−1 and ι2n keeps stable in the same state. The values
at ι2n−1 and ι2n start raising instead, increasing of 2 alternatively until both reach the
initial value-trees u(u,1)—and this happens in finite time by a fair evolution thanks to
the local noetherianity property of stabilising progressions. Note that the final state is
still the hop-count gradient, though adapted to the new environment topology.

An example of field that is not self-stabilising is { #src : @ }: there, progres-
sion function is the identity, which is not a stabilising progression (cf. Definition 1).
Assuming a connected network, and #src holding value vs in one node and top(int)
in all others, then any configuration where all nodes hold the same value v less than
or equal to vs is trivially stable. This would model a source gossiping a fixed value vs
everywhere: if the source suddenly gossips a value v′s smaller than v, then the network
would self-organise and all nodes would eventually hold v′s. However, if the source then



gossips a value v′′s greater than v′s, the network would not self-organise and all nodes
would remain stuck to value v′s.

4 Properties

In this section we state the main property of the proposed calculus, namely, self-
stabilisation. Few preliminaries and results are given first. Given an expression e such
that x : T ` e : T, the set WFVT(x : T,e,T) of the well-formed value-trees for e, is induc-
tively defined as follows: θ ∈WFVT(x : T,e,T) if there exist

– a sensor mapping σ ,
– well-formed tree environments θ ∈WFVT(x : T,e,T); and
– values v such that length(v) = length(x) and /0 ` v : T;

such that σ ;θ ` e[x := v] ⇓ θ holds. As this notion is defined we can state the following
two theorems, guaranteeing that from a properly typed environment, evaluation of a
well-typed expression yields a properly typed result and always terminates, respectively.

Theorem 1 (Device computation type preservation). If x : T ` e : T, σ is a sensor
mapping, θ ∈WFVT(x : T,e,T), length(v) = length(x), /0 ` v : T and σ ;θ ` e[x := v] ⇓
θ , then /0 ` ρ(θ) : T.

Proof (sketch). By induction on the application of the rules in Fig. 5 (by observing that,
in rules [E-OP], [E-FUN] and [E-GRD], the use of the auxiliary function πi(·) preserves the
well formedness of the value-trees θ ).

Theorem 2 (Device computation termination). If x : T ` e : T, σ is a sensor mapping,
θ ∈ WFVT(x : T,e,T), length(v) = length(x) and /0 ` v : T, then σ ;θ ` e[x := v] ⇓ θ

for some value-tree θ .

Proof (sketch). By induction on the syntax of expressions and on the number of func-
tion calls that may be encountered during the evaluation of the closed expression
e[x := v] (cf. sanity condition (iii) in Section 3.1).

The two theorems above basically state soundness and termination of local compu-
tations, that is, from a well-typed input computation completes without errors. On top
of them we state the main technical result of the paper, namely, self-stabilisation of any
well-constructed field expression in any environment.

Theorem 3 (Network self-stabilisation). Given a well-typed program, any reachable
network configuration 〈F ;E〉 self-stabilises.

Proof (sketch). By induction on the syntax of closed expressions e and on the number
of function calls that may be encountered during the evaluation of e. Let Fe denote the
computation field associated to the closed expression e, so F = Femain . The idea is to
prove the following auxiliary statements:

1. For every network configuration N, there exists k ≥ 0 such that: N =⇒k N′ implies
N′ is stable.



2. For every network configuration 〈Fe;E〉, there exist a stable field F ′e and an evolu-
tion 〈Fe;E〉 =⇒h 〈F ′e;E〉 (h ≥ 0) such that: (i) F ′e is univocally determined by E;
and (ii) for every stable network configuration 〈F ′′e ;E〉 it holds that F ′′e = F ′e.

For both the statements, the key case of the proof is that of a spreading expression,
e = {e0 : g(@,e1, . . . ,en)}, which exploits the following auxiliary results: (i) If e0 sta-
bilises to Fe0 , and 〈Fe;E〉 =⇒1 〈F ′′′e ;E〉 then the field F ′′′e is pre-stable, i.e., for every
device ι it holds that F ′′′e (ι) ≤ F ′′′e0

(ι) = Fe0(ι); (ii) Pre-stability is preserved by firing
evolution (i.e., if N1 is pre-stable and N1 =⇒ N2, then N2 is pre-stable); and (iii) Every
stable network configuration is pre-stable. Moreover, statement 2 above is proved by: (i)
Building an evolution 〈Fe;E〉=⇒1 〈F ′′′e ;E〉=⇒h−1 〈F ′e;E〉 together with a set of stable
devices S such that: (i.a) at the beginning of the evolution the set S is empty; (i.b) at the
end of the evolution the set S contains all the devices of the network; (i.c) during the
construction of the evolution, if a device ι is added to S, then ι is stable, its value is the
minimum about the values of the devices 6∈ S both in the current network configuration
and in the final network configuration 〈F ′e;E〉, and that value is univocally determined
by E; and (ii) Showing that, for any stable network configuration 〈F ′′e ;E〉, if the devices
fire in the same order they fire in the evolution 〈F ′′′e ;E〉=⇒h−1 〈F ′e;E〉 than each device
must assume the same value it has in F ′e. So, since 〈F ′′e ;E〉 is stable, it must hold that
F ′′e = F ′e. The construction of the evolution 〈F ′′′e ;E〉=⇒h−1 〈F ′e;E〉 exploits the fact that
g is a stabilising progression and that 〈F ′′′e ;E〉 is pre-stable.

The fact that any well-typed program self-stabilises in any well-formed environ-
ment independently of any intermediate computation state is a result of key importance.
It means that any well-typed expression can be associated to a final and stable field,
reached in finite time by fair evolutions and adapting to the shape of the environment.
This acts as the sought bridge between the micro-level (field expression in program
code), and the macro-level (expected global outcome).

5 Conclusion, Related and Future Work

This paper aims at contributing to the general problem of identifying sound techniques
for engineering self-organising applications. In particular: we introduce a tiny yet ex-
pressive calculus of computational fields, we show how it can model several spatial pat-
terns of general interest (though focussing on examples of crowd steering scenarios in
ad-hoc networks) and then prove self-stabilisation. Some of the material presented here
was informally sketched in [18]: the present paper fully develops the idea, providing
a type-sound calculus, a precise definitions of self-stabilisation, and proved sufficient
conditions for self-stabilisation.

The problem of identifying self-stabilising algorithms in distributed systems is a
long investigated one [7]. Creating a hop-count gradient is considered as a preliminary
step in the creation of the spanning tree of a graph in [7]: an algorithm known to self-
stabilise. Our main novelty in this context is that self-stabilisation is not proved for a
specific algorithm/system: it is proved for all fields inductively obtained by functional
composition of fixed fields (sensors, values) and by a gradient-inspired spreading pro-
cess. As argued in [8], there is a whole catalogue of self-organisation patterns can be
derived this way.



To the best of our knowledge, the only work aiming at a mathematical proof of
stabilisation for the specific case of computational fields is [4]. There, a self-healing
gradient algorithm called CRF (constraints and restoring forces) is introduced to esti-
mate physical distance in a spatial computer, where the neighbouring relation is fixed
to unit-disc radio, and node firing is strictly connected to physical time. Compared to
our approach, the work in [4] tackles a more specific problem, and is highly dependent
on the underlying spatial computer assumptions.

Our work is aimed to find applications to a number of models, languages, and ar-
chitectures rooted on spatial computations and computational fields, a thorough review
of which may be found in [5]. Examples of such models include the Hood sensor net-
work abstraction [23], the στ-Linda model [21], the SAPERE computing model [15],
and TOTA middleware [12], which all implement computational fields using similar no-
tions of spreading. More generally, Proto [13, 3] and its formalisation [19, 20], provides
a functional model which served as a starting point for our approach. Proto is based
on a wider set of constructs than the one we proposed, though, which makes it very
hard to formally address general self-stabilisation properties. In particular, it was key
to our end to neglect recursive function calls (in order to ensure termination of device
fires), stateful operations (in our model, the state of a device is always cleaned up before
computing the new one), and to restrict aggregation to minimum function and progres-
sion to what we called “self-stabilising” functions. In its current form, we believe our
result already implies self-stabilisation of certain Proto fields, like those intertwining
constructs rep (state), nbr (access to neighbours), and min-hood+ (min-aggregation)
as follows: (rep x (inf) (min F (g (min-hood+ (nbr x)) F1 .. Fn))). One
such connection, however, needs to be formally addressed in future works, along with
the possibility of widening the applicability of our result by releasing some assumption.
Additionally, we plan to develop an algorithm to check whether the progression func-
tion at hand is actually self-stabilising. Another interesting future thread concerns find-
ing a characterisation of expressiveness of computational field mechanisms and spatial
computing languages [2], with clear implications in the design of new mechanisms.
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