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1 Introduction

All mesurements performed in LHC Run I relative to the resonance discovered at about

125 GeV [1, 2] are consistent with the hypothesis that the new particle is indeed the Stan-

dard Model Higgs boson. While the mass is already known to an astonishing three per

mill from the latest published CMS measurement [3], the signal strengths µi = σi/σiSM,

where i runs over the decay channnels, are known to about 10 to 20% [3–5]. This leaves

room for modifications of the SM with a more complicated Higgs sector provided they are

consistent within experimental errors with the data. A larger Higgs sector implies that

additional scalar states are present in the spectrum. Direct searches have provided limits

on the existence of new spin zero particles and on the strengths of their couplings [6].

The larger luminosity and energy in Run II will allow more precise measurements of the

already discovered Higgs properties and extend the mass range in which other scalars can

be searched for.

The simplest renormalizable extension of the SM is the one Higgs Singlet Model

(1HSM). It introduces one additional real scalar field which is a singlet under all SM

gauge groups. The 1HSM has been extensively investigated in the literature [7–31], how-

ever, to our knowledge, no public MC implementation of the model is available. In this

note we present such an implementation using FeynRules for the derivation of the vertices

and Madgraph 5 for the generation of the amplitudes. We then discuss the simple case of

Higgs production via gluon fusion at the LHC.

2 The Singlet Extension of the Standard Model

The singlet extension of the SM is defined by adding to the standard Lagrangian the

following gauge invariant, renormalizable term:

Ls = ∂µS∂µS − µ21Φ†Φ− µ22S2 + λ1(Φ
†Φ)2 + λ2S

4 + λ3Φ
†ΦS2. (2.1)
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where S is a real SU(2)L ⊗ U(1)Y singlet and Φ is the SM Higgs weak isospin doublet.

Here and in the following we adopt the notation of ref. [25]. A Z2 symmetry which forbids

additional terms in the potential is assumed. A detailed discussion of the 1HSM without

Z2 symmetry can be found in refs. [9, 11, 24, 28, 29].

The neutral components of the scalar fields can be expanded around their respective

Vacuum Expectation Values (VEVs) as follows:

Φ =

(
G±

vd+l
0+iG0
√
2

)
S =

vs + s0
√

2
. (2.2)

The minimum of the potential is achieved for

µ21 = λ1v
2
d +

λ3v
2
s

2
; µ22 = λ2v

2
s +

λ3v
2
d

2
, (2.3)

provided

λ1, λ2 > 0; 4λ1λ2 − λ23 > 0 . (2.4)

The mass matrix in the gauge basis can be diagonalized into the (tree-level) mass basis

introducing new fields:

h = l0 cosα− s0 sinα and H = l0 sinα+ s0 cosα (2.5)

with −π
2 < α < π

2 . The masses are

m2
h,H = λ1 v

2
d + λ2 v

2
s ∓ |λ1 v2d − λ2 v2s |

√
1 + tan2(2α) , tan(2α) =

λ3vdvs

λ1v2d − λ2v2s
, (2.6)

with the convention m2
H > m2

h. They correspond to a light [h] and a heavy [H] CP-even

mass-eigenstate.

The Higgs sector in this model is determined by five independent parameters, which

can be chosen as

mh, mH , sinα, vd, tanβ ≡ vd/vs , (2.7)

where the doublet VEV is fixed in terms of the Fermi constant through v2d = G−1F /
√

2. Fur-

thermore one of the Higgs masses is determined by the LHC measurement of 125.02 GeV.

Therefore, three parameters of the model are presently free.

It should be mentioned that allowing a discrete symmetry to be spontaneously broken,

as is the case in the simplified model considered here when the singlet field S has a non zero

vacuum expectation value, will introduce potentially problematic cosmic domain walls [13,

32–36]. These considerations, however have little bearing on the paper’s main point as

explained in section 4 and will not be discussed further.

As only the doublet component, before mixing, can couple to the fermions (via ordinary

Yukawa interactions) and the gauge bosons (via the gauge covariant derivative), all of the
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Figure 1. On the left: the partial width for the H → hh process for sα = 0.3, 0.2, 0.1 and

tanβ = 1.0. On the right: the corresponding branching ratios.

corresponding Higgs couplings are rescaled universally, yielding

gxxs =gSMxxh(1 + ∆xs) with 1 + ∆xs =

{
cosα s = h

sinα s = H
. (2.8)

gxxs1s2 =gSMxxhh(1 + ∆xs1)(1 + ∆xs2). (2.9)

where xx represents a pair of SM fermions or vectors.

The couplings in the scalar sector involve tan β and are slightly more complicated. As

an example we reproduce the triple scalar vertices in terms of the independent parameters

mentioned above (sα = sinα, cα = cosα):

Vhhh −
3ieM2

h

2MW sW
{c3α − s3α tanβ} (2.10)

VhHH − iesαcα
2MW sW

{sα − cα tanβ}{M2
h + 2M2

H} (2.11)

VHhh − iesαcα
2MW sW

{cα + sα tanβ}}{2M2
h +M2

H} (2.12)

VHHH −
3ieM2

H

2MW sW
{s3α + c3α tanβ} (2.13)

The tree level partial width for the decay of the heavy scalar into two light ones reads:

Γ(H → hh) =
e2M3

H

128πM2
W s

2
W

(
1−

4M2
h

M2
H

) 1
2
(

1 +
2M2

h

M2
H

)2

s2αc
2
α (cα + sα tanβ)2 (2.14)
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In figure 1 we show the partial width and the corresponding branching ratios as a

function of the heavy Higgs mass for sα = 0.3, 0.2, 0.1 and tan β = 1.0. The BR is

computed as the ratio of the lowest order width in eq. (2.14) to the total width given in

ref. [37] multiplied by s2α. The BR rises sharply above the kinematical threshold and, for

the parameter range we have considered, remains larger than 25% up to MH = 1 TeV.

This raises the tantalizing prospect of a relatively abundant production of heavy Higgses

followed by their decay into two light ones if MH > 2Mh. See ref. [29] for a detailed

discussion in the framework of the 1SHM.

3 Limits on the parameters

The strongest limits on the parameters of the 1HSM come from measurements of the

coupling strengths of the light Higgs [3–6], which dominate for small masses of the heavy

Higgs, and from the contribution of higher order corrections to precision measurements, in

particular to the mass of the W boson [26], which provides the tightest constraint for large

MH . The most precise result for the overall coupling strength of the Higgs boson from

CMS [3] reads

µ̂ = σ̂/σSM = 1.00± 0.13. (3.1)

Therefore the absolute value of sinα cannot be larger than about 0.4. This is in agreement

with the limits obtained in refs. [26, 30] which conclude that the largest possible value for the

absolute value of sinα is 0.46 for MH between 160 and 180 GeV. This limit becomes slowly

more stringent for increasing heavy Higgs masses reaching about 0.2 at MH = 700 GeV.

4 Interference effect and simulation tools

The focal point of this note is the interference between the two Higgs fields. In general,

any amplitude involving a single Higgs exchange can be written as

A = A′
(

c2α
q2 −M2

h + iΓhMh
+

s2α
q2 −M2

H + iΓHMH

)
+A0 = A1 +A0 (4.1)

where A0 does not involve the scalar fields. The real parts of the two propagators in-

tefere destructively for M2
h < q2 < M2

H and constructively for q2 < M2
h and M2

H < q2.

This phenomenon has already been noticed in ref. [27] where however it was dismissed as

numerically irrelevant.

As will be argued in section 5, the interference effects can be substantial, their relevance

increasing with MH . The shape of the the heavier Higgs peak is also strongly affected and

this will need to be taken into account in any search for additional scalars and eventually

in the measurement of their properties.

These features are neglected by any prediction based on the narrow width approxima-

tion, or equivalently on a production times decay approach.

Clearly, this interference between different Higgs fields is not a peculiarity of the Singlet

Model. It will indeed occur in any theory with multiple scalars which couple to the same

set of elementary particles, albeit possibly with different strengths. For instance, in the

– 4 –
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MSSM the couplings of the two CP-even Higgs fields to vector bosons and fermions are

equal to the SM ones multiplied by simple trigonometric functions of the mixing angle α

and of β, the arctangent of the ratio of the vacuum expectation values. As a consequence,

effects similar to those discussed in this paper are to be expected in the MSSM.

The relevance of the interference term does depend on the relative size of A0 and A1 in

eq. (4.1) and in particular on the couplings of the scalars to the rest of the spectrum which

in general will not follow the simple pattern which characterizes the 1HSM. The effect is

expected to be significant for processes in which the resonant part of the amplitude is large

as in gluon fusion for large values of the heavy Higgs mass.

In order to allow for the Monte Carlo simulation of the 1HSM we have used Feyn-

Rules [38, 39] to prepare a UFO file [40] for the model, which can be imported, as we

did, in MadGraph 5 [41] and many other general purpose MC tools. It enables the sim-

ulation at tree level of any process in the 1HSM. The UFO file can be downloaded from

http://personalpages.to.infn.it/∼maina/Singlet.

The gluon fusion channel in MadGraph requires particular care. MadGraph treats the

gluon-Higgs effective vertex in the narrow width approximation, through an expansion of

the top loop amplitude in powers of M2
h/M

2
top, which is unsuitable in the present context

and which fails for Higgs masses above the t-tbar threshold. The appropriate effective

vertex Vggh must be introduced by hand in the matrix element:

Vggh = −i
2αs(

√
2GF )

1
2M2

top

πŝ

(
1− 1

2
(1− τ)C(τ)

)
, (4.2)

with

C(τ) =


−2 arcsin (1/

√
τ)

2
τ > 1

1

2

(
log

(
1 + β

1− β

)
− iπ

)2

τ < 1
(4.3)

where τ = 4M2
top/ŝ, β =

√
1− τ and ŝ is the square of the sum of the momenta carried by

the gluons which in general is not equal to the Higgs mass squared.

The tensor structure of the vertex is already taken care of by MadGraph.

5 Results

As an example we have studied Higgs production through gluon fusion in the four electron

channel, gg → h,H → ZZ → 4e, at the LHC with a center of mass energy of 13 TeV.

We neglect the non resonant contribution given by qq̄ → ZZ and by gg → ZZ through

a quark box amplitude. This continuum is known to be large and in particular there is

a non negligible interference between the box contribution and Higgs production through

the heavy quark three point loop. These terms are well known [42–55] and are essential

for accurate phenomenological predictions. The region of large invariant masses of the

four final state leptons in gg → ZZ,WW → 4l has been studied in detail in ref. [55]

in the SM with a Higgs of 125 GeV. Above the light Higgs peak, the differential cross
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Figure 2. gg → h,H → ZZ → 4e at the LHC with a center of mass energy of 13 TeV. Upper

part:four lepton invariant mass distribution for Mh = 125 GeV, MH = 400 GeV and sα = 0.2.

The red line is the full result (σ). The violet histograms (σh) shows the SM prediction with Higgs

couplings scaled by cosα. The blue line (σH) gives the result when the light Higgs diagrams are

neglected while the H → hh contribution to ΓH is retained. The black histogram (σNI) refers to

the sum of the violet and blue lines and corresponds to neglecting the interference effects. Lower

part: the ratio σ−σNI

σNI
.

section is dominated by the continuum for M4l < 2Mtop. The box contribution however

drops more rapidly with increasing M4l than the Higgs mediated one. Unitarity requires

the interference between these two components to be negative and while it is essentially

negligible below the top threshold it becomes more relevant for larger masses and exceeds

50% of the incoherent sum of the two contributions in the one TeV range.

Our main results are shown in figures 2–5 and table 1. No cut has been applied to

the final state. We have used CTEQ6L1 parton distribution functions [56]. The ratio of

vacuum expectation values tan β has been taken equal to one.
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Figure 3. Four lepton invariant mass distribution for Mh = 125 GeV, MH = 400 GeV, sα = 0.3.

The meaning of the various histograms is as in figure 2.

The width of the light and heavy scalar are

Γh = ΓSM(Mh)c2α, ΓH = ΓSM(MH)s2α + Γ(H → hh). (5.1)

This corresponds, using eq. (2.14) for the H → hh width and ref. [37] for the SM Higgs

width, to ΓH = 1.77(4.08) GeV for MH = 400 GeV, sα = 0.2(0.3); ΓH = 15.80 GeV for

MH = 600 GeV and sα = 0.3; ΓH = 16.69 GeV for MH = 800 GeV and sα = 0.2. We have

assumed Mh = 125 GeV which corresponds to ΓSM(125) = 4.03 MeV.

We show the region around the heavy Higgs peak where the interference affects are

most prominent. The invariant mass distribution in the neighborhood of the light Higgs

resonance is unaffected within the accuracy of the present simulation. In all figures the

violet histogram is the result obtained including only the light Higgs with SM couplings

scaled by cα which we denote as σh. Since Γh is small σh ≈ σSM(Mh)c4α for large M4l.
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Figure 4. Four lepton invariant mass distribution for Mh = 125 GeV, MH = 600 GeV, sα = 0.3.

The meaning of the various histograms is as in figure 2.

200 GeV < M4l < 1 TeV MH−25 GeV < M4l < MH+25 GeV

σ σh + σH σH σ σh + σH σH

MH = 400 GeV, sα = 0.2 72.95 70.96 26.00 32.09 32.13 25.55

MH = 400 GeV, sα = 0.3 101.48 96.51 55.99 60.36 59.70 53.74

MH = 600 GeV, sα = 0.3 48.44 52.52 11.99 11.51 11.96 9.97

MH = 800 GeV, sα = 0.2 43.96 45.96 1.00 1.57 1.46 0.65

Table 1. Cross sections in ab for gg → h,H → ZZ → 4e at the LHC with a center of mass energy

of 13 TeV.
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Figure 5. Four lepton invariant mass distribution for Mh = 125 GeV, MH = 800 GeV, sα = 0.2.

The meaning of the various histograms is as in figure 2.

The blue line shows the cross section when only the heavy Higgs is present, which will be

referred to as σH . The H → hh contribution to ΓH is retained and therefore σH is not equal

to σSM(MH)s4α. The full result, σ, is shown in red in figure 2 for sα = 0.2, MH = 400 GeV,

in figures 3, 4 for sα = 0.3 with MH = 400 GeV and MH = 600 GeV respectively and finally

in figure 5 for sα = 0.2, MH = 800 GeV. The black histogram displays the sum of the blue

and violet lines, σNI = σh + σH , and corresponds to neglecting the interference between

the two scalars. The fractional size of the correction to σNI is displayed in the bottom part

of the figures where the ratio of the interference term and σNI ,
σ−σNI
σNI

, is shown.

Contrary to naive expectations the light Higgs contribution is non negligible outside

the peak region [55] and the interference effect is substantial. While the details depend

obviously on the mass of the heavy Higgs and on the mixing angle, we find a decrease

of 10 to 20% of the differential cross section at invariant masses of the four leptons of

300 GeV for MH = 400 and of about 20% for M4l = 350, MH = 600 and for M4l = 500,
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MH = 800. This depletion becomes more pronounced as M4l increases and reaches a dip

which is almost two orders of magnitude smaller than the predictions which neglect the

interplay of the two Higgs fields. The interference stays negative for four lepton masses

below the heavy Higgs mass and then turns positive. It attains a maximun in which the

true value is about a factor of two larger than σNI and then slowly decreases. The position

of the peak is shifted to slightly larger masses. At four lepton masses about 200 GeV larger

than MH the interference still amounts to about 20 to 40% of σNI . Because of unitarity,

for very large M4l the full cross section σ must approach the SM result σSM. In this region,

where the width of the two Higgses can be neglected, σSM = σh/c
4
α = σH/s

4
α.

Table 1 shows the cross section in ab for two mass intervals: 200 GeV < M4l < 1 TeV,

which roughly coincides with the range employed so far by the experimental collaborations

to set limits on the presence and couplings of additional scalars, and MH−25 GeV < M4l <

MH+25 GeV, as an indication of the possible effects on an analysis in smaller mass bins

which requires high luminosity. In the first case, the contribution of the heavy Higgs is a

relatively small fraction of the Higgs production cross section in gluon fusion. Furthermore,

the interference effects in the 200 GeV < M4l < 1 TeV depend crucially on the heavy Higgs

mass. For MH = 400 the exact result is larger than the incoherent sum σh + σH . The

long tail for M4l > MH gives a larger contribution than the intermediate region 200 GeV

< M4l < MH . On the contrary, for larger heavy Higgs masses we have σ < σh + σH .

The negative interference in the intermediate region outweights the positive contribution

at larger masses. In the smaller range, MH−25 GeV < M4l < MH+25 GeV, the positive

and negative contributions are very close for MH = 400 GeV and the full result is in

rough agreement with σh + σH . For this value of MH and mass interval, the heavy Higgs

contribution is significantly larger than the light Higgs one. For sα = 0.3, MH = 600 GeV

the exact cross section is about 4% smaller than the incoherent sum while for sα = 0.2,

MH = 800 GeV it is approximately 8% larger. We see that for large values of the heavy

Higgs mass the interference effects are non negligible even on a restricted mass range.

Our results have no pretense to be a complete prediction. They need to be validated

with the inclusion of the continuum contribution and of higher order corrections. It should

be noticed that, for Higgs decay to color neutral final states, all relevant amplitudes in

QCD will have the structure of eq. (4.1) and therefore interference effects between the

scalar fields will not be spoiled by QCD corrections.

The interference with the quark box amplitude deserves more care. The gluon-gluon

continuum term does not involve scalar exchanges and therefore it cannot be cast in the

form of eq. (4.1) and could in principle dilute the effect. However, the interference between

the box diagrams and the light Higgs mediated ones is always negative, while the ampli-

tude with a heavy Higgs exchange changes sign at the resonance. As a consequence the

continuum and the heavy Higgs term are expected to be in phase for Mh < M4l < MH

and out of phase for M4l > MH . A detailed study of this topic is in preparation.

6 Conclusions

In any theory with multiple neutral Higgs which couple to the same set of elementary

particles the scalars are expected to interfere. We have shown in the case of Higgs produc-
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tion through gluon fusion in the 1SHM that the interference effects can be significant and

cannot be neglected when aiming for high accuracy predictions.
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