
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Delta-Trait Programming of Software Product Lines

Publisher:

Published version:

DOI:10.1007/978-3-662-45234-9_21

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/150052 since 2016-11-19T15:11:01Z

This is the authors’ version of the paper:

Ferruccio Damiani, Ina Schaefer, Sven Schuster, Tim Winkelmann

Delta-Trait Programming of Software Product Lines

In Tiziana Margaria and (Eds.):

Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change

Volume 8802 of the series Lecture Notes in Computer Science pp 289-303

DOI: 10.1007/978-3-662-45234-9_21

The final publication is available at Springer via

http://dx.doi.org/ 10.1007/978-3-662-45234-9_21

Delta-Trait Programming of Software Product Lines?

Ferruccio Damiani1, Ina Schaefer2, Sven Schuster2, and Tim Winkelmann2

1 Università di Torino, Dipartimento di Informatica, 10149 Torino, Italy
ferruccio.damiani@unito.it

2 Technische Universität Braunschweig, Germany
{i.schaefer | s.schuster | t.winkelmann}@tu-braunschweig.de

Abstract. Delta-oriented programming (DOP) is a flexible approach for imple-
menting software product lines (SPLs). DOP SPLs are implemented by a set of
delta modules encapsulating changes to class-based object-oriented programs.
A particular product in a DOP SPL is generated by applying to the empty pro-
gram the modifications contained in the delta modules associated to the selected
product features. Traits are pure units of behavior, designed to support flexible
fine-grained reuse and to provide an effective means to counter the limitations
of class-based inheritance. A trait is a set of methods which is independent from
any class hierarchy and can be flexibly used to build other traits or classes by
means of a suite of composition operations. In this paper, we present an approach
for programming SPLs of trait-based programs where the program modifications
expressed by delta modules are formulated by exploiting the trait composition
mechanism. This smooth integration of the modularity mechanisms provided by
delta modules and traits results in a new approach for programming SPLs, delta-
trait programming (DTP), which is particularly well suited for evolving SPLs.

1 Introduction

A software product line (SPL) is a set of software systems with well-defined common-
ality and variability [13, 29]. SPL engineering aims at developing these systems by
managed reuse. Products of an SPL are commonly described in terms of features [20],
where a feature is a unit of product functionality. Feature-based product variability has
to be captured in the product line artifacts that are reused to realize the single products.
On the implementation level, reuse mechanisms for product implementations have to
be flexible enough to express the desired product variability [34].

Today, many product implementations of SPLs are carried out within the object-
oriented paradigm. Although class-based inheritance in object-oriented languages pro-
vides means for code reuse with static guarantees, the rigid structure of class-based
inheritance puts limitations on the effective modeling of product variability and on the
reuse of code [27, 17]. Feature-oriented programming (FOP) [5, 2, 16, 1] allows to flex-
ibly implement product lines within the object-oriented paradigm by class refinement.
In FOP, a product implementation for a particular feature configuration is obtained by
composing feature modules for the respective features. A feature module contains class

? Work partially supported by MIUR (proj. CINA), Ateneo/CSP (proj. SALT), Deutsche
Forschungsgemeinschaft (grant SCHA1635/2-1), and ICT COST Action IC1201 BETTY.

definitions and class refinements. A class refinement can modify an existing class by
adding new fields/methods, by wrapping code around existing methods or by chang-
ing the superclass. Delta-oriented programming (DOP) [31, 33, 32, 9] extends FOP by
the possibility to remove code from an existing product (see [33] for a straightforward
embedding of FOP into DOP). In DOP, a product implementation is obtained by ap-
plying modifications specified in delta modules to existing products. Using FOP/DOP
for implementing SPLs results in a scenario where class-based inheritance is the mech-
anism for intra-product code reuse (i.e., for reusing code within single products) and
FOP/DOP class refinement/modification is the mechanism for inter-product code reuse
(i.e., for reusing code across different products). Since class-based inheritance does not
support low coupling [27, 17], FOP/DOP class refinement/modification do not mix well
with class-based inheritance and, as a matter of fact, little or no intra-product code reuse
is realized via class-based inheritance in many FOP/DOP SPL implementations [36].

In object-oriented languages with class-based inheritance, classes have two com-
peting roles: (i) generators of objects and (ii) units of reuse. To counter this, traits are
introduced as pure units of behavior, designed for flexible, fine-grained reuse [35, 17].
A trait contains a set of methods, which is independent from any class hierarchy. Thus,
the common methods of a set of classes can be factored into a trait. The distinctive
characteristic of traits is that they can be composed in an arbitrary order and that the re-
sulting composite unit (which can be a class or another trait) has complete control over
the conflicts that may arise in the composition and must solve these conflicts explic-
itly. Since their first formulation [35, 17], various formulations of traits in a JAVA-like
setting can be found in the literature (see, e.g., [38, 28, 30, 12, 25, 11, 8, 7]).

In this paper, we present delta-oriented programming for software product lines of
trait-based programs. In the proposed approach, delta modules and traits work synergi-
cally together for modeling program variability by flexibly supporting both inter- and
intra-product code reuse. In particular, the program modifications expressed by delta
modules are formulated by exploiting the trait composition mechanism. This smooth in-
tegration of delta modules and traits results in a new approach for programming SPLs,
that we call delta-trait programming (DTP). As in DOP, intra-product code reuse is
rarely achieved by class-based inheritance, but it could be realized by using design pat-
terns in the implementation of the core products [37]. However, when the SPL evolves
the patterns used in core products might not be suitable for supporting intra-product
code reuse in the new products. So, either we accept to have code duplications in the
code of the new products, or we refactor the whole code base which is both undesirable.
To mitigate this problem, DTP offers trait-based intra-product code reuse. As unantic-
ipated SPL evolution (i.e., evolution involving changes for which developers have not
prepared in the original design of the SPL) scenarios become more common in long-
living software systems, DTP is a promising approach to alleviate the arising problems.

The paper is organized as follows. Section 2 introduces pure trait-based program-
ming. Section 3 discusses the main design choices made during the development of
DTP. Section 4 introduces DTP by a small case study. Section 5 illustrates how DTP
supports proactive, reactive and extractive SPL development and is particularly well
suited for evolving SPLs. Section 6 discusses related work. Section 7 concludes the
paper by outlining some directions for further work.

2 Pure trait-based programming

Pure trait-based programming [12, 11, 7, 10, 7] aims at supporting low coupling and at
maximizing the opportunities of reuse. It completely separates the competing roles of
object generators and units of code reuse, and the competing roles of types and units of
code reuse. Namely, trait names are not types and class-based inheritance is ruled out.

In this section, we summarize TRAITJ, a pure trait-
based programming language (based on [10]), which high-
lights the specific characteristics of pure trait-based programming.

ID ::= interface I
[
extends Ī

]
{ H; } interface

H ::= Sm (S x̄)
∣∣ void m (S x̄) method header

S ::= I
∣∣ boolean

∣∣ int
∣∣ · · · type

TD ::= trait T is TE trait
TE ::= {TM}

∣∣ T ∣∣ TE+TE
∣∣ T[TA] trait expression

TM ::= F;
∣∣ H;

∣∣ M trait member
TA ::= exclude m

∣∣m aliasAs m trait alteration
|m renameTo m | f renameTo f

F ::= S f field
M ::= H { · · · } method
CD ::= class C implements Ī by TE { FI; K } class
FI ::= F

∣∣ F= · · · field initialization
K ::= C(S x̄){ · · · } constructor

Fig. 1. TRAITJ syntax (I ∈ interface names, T ∈ trait
names, C ∈ class names, m ∈ method names, f ∈ field
names, x ∈ variables names)

The syntax of TRAITJ is given in
Figure 1, where we use the overbar
notation for sequences (as in [19])
and where the big square brack-
ets ‘

[
‘ and ‘

]
‘ denote an optional

element of the syntax. A program
consists of interface declarations,
trait declarations, and class dec-
larations. The syntax of interface
declarations ID, method headers H,
field declarations F, method dec-
larations M, field initializations FI
and class constructors K is sim-
ilar as in JAVA (without consid-
ering, e.g., visibility modifies and
checked exception declarations).

A trait declaration associates a
name to a trait expression. We say

that a trait declaration is: basic (or flat) if its body consists of a basic trait expression
{TM}, composite (or non-flat) otherwise. A basic trait expressions {TM} declares a set
of provided methods together with their required fields and required methods. Provided
methods are the methods defined in the trait, which will be included in any class using
the trait. Required fields and required methods are fields and abstract methods which
are assumed to be available in any class using the trait. The provided/required methods
and the required fields of a trait can be directly accessed in the body of the provided
methods of the trait. For instance, the following trait declaration
trait T1 is { int y; int getX(); int getY() { return this.y; } void setY(int value) { this.y = value; }

String toString() { return ”(” + this.getX() + ”,” + this.getY() + ”)”; } }

associates the name T1 to a basic trait expression which provides the methods getY,
setY and toString and requires the field y and the method getX.

The type system checks that each field/method requirement declared in a basic trait
is used by some method m provided by the basic trait (that is, the required method/field
is selected on this in the body of m).

Traits are building blocks that can be used to compose classes and other traits by
means of a suite of trait composition operations. In the following, we illustrate the
semantics of trait composition by associating to each composite trait declaration a flat

trait declaration with the same semantics. This way of specifying the semantics of traits,
called flattening [35, 17, 28], is quite common in the literature on traits.

The symmetric sum operation, +, merges two traits to form a new trait. The summed
traits must be disjoint (i.e., they must not provide identically named methods) and con-
sistent (i.e., required fields with the same name and required/provided methods with the
same name must have the same type). For instance, given the trait declaration
trait T2 is { int x; int getX() { return this.x; } void setX(int value) { this.x = value; } }

the composite trait declaration trait TPoint is T1 + T2 is equivalent to the flat trait
declaration
trait TPoint is { int x; int y; int getX() { return this.x; } int getY() { return this.y; }

void setX(int value) { this.x = value; } void setY(int value) { this.y = value; }
String toString() { return ”(” + this.getX() + ”,” + this.getY() + ”)”; } }

The operation exclude forms a new trait by removing a method from an existing
trait. For instance, the composite trait declaration trait T3 is T1[exclude toString] is
equivalent to the flat trait declaration
trait T3 is { int y; int getY() { return this.y; } void setY(int value) { this.y = value; } }

(where the method requirement int getX() from T1 has been automatically dropped,
since getX is not used by the provided methods of T3), and the composite trait declara-
tion trait T4 is T1[exclude getY, exclude setY] is equivalent to the flat trait declaration
trait T4 is { int getX(); int getY(); String toString(){return ”(”+this.getX()+”,”+this.getY()+”)”;} }

(where the field requirement int y from T1 has been automatically dropped, while the
excluded method getY has been changed into a requirement since it is used by the
provided methods of toString).

The operation aliasAs forms a new trait by adding a copy of an existing method with
a different name. When a recursive method is aliased, the recursive invocations in the
body of the new method are not renamed. For instance, given the trait declaration
trait T5 is
{ int x; void resetX(){if (this.x<0){this.x=−x; this.resetX();} else if (this.x>0){this.x−−; this.resetX();}} }

the composite trait declaration trait T6 is T5[resetX aliasAs resetXaux] is equivalent to
the flat trait declaration
trait T6 is {

int x;
void resetX() { if (this.x < 0){this.x=−x; this.resetX();} else if (this.x > 0){this.x−−; this.resetX();} }
void resetXaux() { if (this.x < 0){this.x=−x; this.resetX();} else if (this.x > 0){this.x−−; this.resetX();} }
}

The operation renameTo creates a new trait by renaming all the occurrences of a
required field name or of a required/provided method name from an existing trait. For
instance, the composite trait declaration trait T7 is T1[y renameTo x, getY renameTo

getX, setY renameTo setX] is equivalent to the flat trait declaration
trait T7 is { int x; int getX() { return this.x; } void setX(int value) { this.x = value; }

String toString() { return ”(” + this.getX() + ”,” + this.getX() + ”)”; } }

Since traits do not introduce any state, a class assembled from traits has to declare
and initialize the fields required by its constituent traits (non-explicitly initialized fields
ar implicitly initialized, as in JAVA). For instance, the class declaration

interface IPoint { int getX(); int getX(); void setX(int value); void setY(int value); String toString(); }
interface IColor { void setColor(String name); String toString(); }
interface IColoredPoint extends IPoint, IColor { }

Listing 1: Interfaces IPoint, IColor and IColoredPoint

class CPoint implements IPoint by TPoint
{ int x = 0; int y; CPoint() { } CPoint(int x, int y) { this.x = x; this.y = y; } }

defines a generator of objects of type IPoint (the interface IPoint is defined at the top
of Listing 1) with two constructors. The class, which is built by using the trait TPoint
(defined above in Section “Trait sum”), has the same semantics of the JAVA class ob-
tained by removing the clause “by TPoint” from the class header and inserting in the
class body the code of the methods provided by TPoint.

The following example shows the flexibility of traits. A trait TColor introduced for
building a class CColor:
trait TColor
{ String name; void setColor(String name){this.name = name;} String toString(){return this.name;} }

class CColor implements IColor by TColor { String name = ””; }

(the interface IColor is defined in Listing 1) can be straightforwardly reused for building
a class CColoredPoint:
trait TColoredPoint is TPoint[toString renameTo pointToString]+TColor[toString renameTo colorToString]+{
{ String pointToString(); String colorToString();

String toString() { return this.pointToString() + ”:” + this.colorToString(); } }
class CColoredPoint implements IColoredPoint by TColoredPoint { int x=0; int y=0; String name=””; }

(the interface IColoredPoint is defined in Listing 1) supporting the same kind of reuse
provided by multiple class-based inheritance.

Pure trait-based programming targets a scenario where a trait, which was developed
for a particular purpose, may later be adapted and reused in a completely different
context. For instance, trait TPoint introduced for defining a point in a plane can be
reused to define a counter:
interface ICounter { int getValue(); void setValue(int value); String toString(); }
trait TCountert is TPoint[exclude setY, exclude getY, exclude toString,

x renameTo n, getX renameTo getValue, setX renameTo setValue] +
{ int n; String toString() { return n; } void increment() { n++; } }

class CCounter implements ICounter by TCounter { int n = 0; }

3 Design choices for DTP

In this section, we discuss the main design choices made during the development of
DTP. We choose a pure trait-based programming language as the language for writing
the products of the SPL because pure trait-based programming has been developed in
order to maximize the opportunities of reuse. In particular, we consider TRAITJ since,
in previous work [10], it has been used to directly implement SPLs.

We approached the challenge of designing a suitable notion of delta module for
trait-based programs by exploring the possibility to adapt DOP delta modules. A DOP

delta module is a container of modification operations to a JAVA program. The mod-
ifications may add, remove or modify interfaces and classes. Modifying an interface
means changing the super interfaces, or adding or removing methods. Modifying a class
means: (i) changing the super class; (ii) adding or removing fields; and/or (iii) adding,
removing or modifying methods. The method-modification operation can either replace
the method body by another implementation, or wrap the existing method using the
original construct (similar to the Super construct in AHEAD [5])—the call original(· · ·)
expresses a call to the method with the same name before the modifications and is bound
at the time the product is generated. Since TRAITJ interfaces are literally JAVA inter-
faces, the DOP delta operations for adding, removing or modifying an interface can be
straightforwardly adopted for defining delta modules for trait-based programs. Also the
operations of adding or removing classes and traits do not pose design challenges and
can be straightforwardly defined.

The main challenge is to define suitable delta operations for expressing modifica-
tions to traits. As a first attempt, we have tried to adapt to traits the class-modification
operations provided by DOP (see above), thus defining delta operations for modifying
the body TE of a trait definition trait T is TE by: (i) replacing the used traits (i.e., the trait
names occurring in TE) by arbitrary trait expressions; (ii) adding or removing field re-
quirements and method requirements; and/or (iii) adding, removing or modifying (pos-
sibly using the original construct) methods. However, through some experiments, we
realized that such delta operations are quite complex to use and that the delta operation
on methods (point (iii) above) is less flexible than the TRAITJ composition operations,
which include also method/field renaming.

Thus, we realized that a flexible trait-modification operation can be expressed by re-
placing the body of the trait with a new trait expressions. The new trait expression may
contain occurrences of the TOriginal keyword, which refers to the trait with the same
name before the modification and is bound at the time the product is generated. In this
way, a smooth integration of the modularity mechanisms provided by delta modifica-
tion operations (modeling inter-product code reuse) and by trait composition operations
(modeling intra-product code reuse) is achieved.

4 Delta-trait programming

In order to illustrate the main concepts of delta-trait programming, we use a case study
of a simple product line of data structures for sequences, that we call the Sequences PL.

Sequences PL

Base Length Resizeable Dynamic

require exclude

Legend:
Mantatory

Optional

Alternative

Fig. 2. Feature Model for the Sequences PL

Figure 2 depicts the feature model
of the Sequences PL as a feature di-
agram. The Sequences PL has five
products. Each product provides a
stack and a queue data structure. The
base product (implementing only the
Base feature) provides a fixed capac-
ity stack and queue implementing the

empty/full tests and the canonical insertion/extraction operations. The other products
offer additional functionalities: an operation for getting the number of existing ele-

ments in a stack/queue (feature Length), and in mutual exclusion either operations for
changing the capacity of a stack/queue (feature Resizeable) or for the automatic man-
agement of the capacity (feature Dynamic). Since it would not be sensible to change
the capacity of a stack/queue without knowing the number of contained elements, the
feature Resizeable requires the feature Length.

The syntax of DELTATRAITJ is given in Figure 3.

DD ::= delta D { DO } delta module
DO ::= IO

∣∣ TO ∣∣ CO delta operation

IO ::= ID
∣∣ remove I

∣∣ interface operation
modify interface I

[
extends Ī

]
{ HO; }

HO ::= H
∣∣ remove m header operation

TO ::= TD
∣∣ remove T

∣∣ modify TD trait operaton

CO ::= CD
∣∣ remove C

∣∣ class operations
modify class C

[
implements Ī

] [
by TE

]
{ FO; KO }

FO ::= FI
∣∣ remove f

∣∣ modify FI field operation
KO ::= K

∣∣ remove C(S x̄)
∣∣ modify K constructor op.

Fig. 3. DELTATRAITJ delta modules syntax (D ∈ delta mod-
ule names and ID, H, TD, TE, CD, FI, K, m, f, x are defined
in Fig. 1). The body TE of the trait definition TD specified by
a trait-modify operation modifyTD may contain occurrences
of the TOriginal keyword, which denotes the original ver-
sion of the trait. The body {· · ·} of the constructor definition
K specified by a constructor-modify operation modifyK may
start with COriginal(· · ·), which represents a call to the orig-
inal version of the constructor.

Delta modules are containers
of modification operations to
programs. In the context of
trait-based programs, delta
operations may add, remove
or modify interfaces, traits
or classes. Modifying an
interface means changing the
super interfaces, or adding
or removing methods. Mod-
ifying a trait means replacing
its body or wrapping the
existing trait body by means
of the TOriginal construct.
Modifying a class means
changing the implemented
interfaces, or replacing/wrap-
ping the trait expression
providing the methods, or
adding/removing/modify-
ing field initializations, or
adding/removing/modifying

constructors. Modifying a constructor means replacing its body or wrapping the
existing constructor body by means of the COriginal construct.

A delta-trait product line (similar to a delta-oriented product line) consists of a code
base (containing the delta modules) and a product line declaration. The code in List-
ings 2 and 3 is a code base for the Sequences PL. The product line declaration creates the
connection to the product line variability specified in terms of product features. Listing 4
shows a product line declaration for the Sequences PL. The product line declaration: (i)
Lists the product features. (ii) Describes the set of valid feature configurations. In the
examples, the valid feature configurations are represented by a propositional formula
over the set of features. We refer to [4] for a discussion on other possible representa-
tions. (iii) Describes the possible application orders of the delta modules by defining a
total order on the sets of a partition of the delta modules. Delta modules in the same set
can be applied in any order, while the order of the sets must be respected. The ordering
allows the programmer to enforce semantic requires-relations that are necessary for the
applicability of the delta modules. In Listing 4, the ordering is represented by writing an
ordered list of the delta module sets after the keyword deltas {. . .}. (iv) A delta module
name can have an application condition to evaluate for which feature configurations the

delta module has to be included in the code of the corresponding product. In Listing 4,
the application condition is represented by a propositional constraint over the set of
features, given by when clauses. Since only feature configurations that are valid accord-
ing to the feature model are used for product generation, the application conditions are
understood as a conjunction with the formula describing the set of valid feature config-
urations. In Listing 4, the delta modules DBase, DLength, DResizeable and DDynamic are
associated to the features Base, Length, Resizeable and Dynamic, respectively. More-
over, in order to realize the feature Resizeable, both the delta modules DResizeable and
DResisazableOrDynamic must be applied. In order to realize the feature Dynamic, both
the delta modules DResizeableOrDynamic and DDynamic must be applied.

A product is valid if it corresponds to a valid feature configuration. The generation
of a product for a given feature configuration consists of two steps (that can be per-
formed automatically): (i) find the selected delta modules (that is, the delta modules
with a satisfied application condition); and (ii) apply them to the empty program in any
linear ordering that respects the total order on the partition of the delta modules. A delta
module is applicable to a program if: (i) each interface/trait/class to be added does not
exist; (ii) each interface/trait/class to be removed or modified exists; (iii) each interface-
modify operation is such that each method to be removed exists and each method to be
added does not exist; and (iv) each class-modify operation is such that each field to be
removed exists and each field to be added does not exist. During the product generation,
the selected delta modules must be applicable in the given order (otherwise the product
generation fails). In particular, the first delta module (which is applied to the empty
product) must contain only additions. I.e., its body must be a TRAITJ program.

Listing 2 illustrates the DBase delta module that, when applied to the empty prod-
uct, generates the product with the feature Base. Applying the delta module DBase is
mandatory for all feature configurations. It creates the classes for the basic data struc-
tures Stack and Queue. The functionality of the data structures are described in the
interfaces IStack and IQueue with the methods pop, push and enqueue, dequeue. Both in-
terfaces are extending the interface ISequence which describes the functionality to check
the status of a sequence. The trait TSequence implements the functionality of the inter-
face ISequence with an array of objects (for storing the elements of the sequence) and an
integer field (for storing the number of elements currently in the sequence). The traits
TStack and TQueue implement the interfaces IStack and IQueue and extend the trait TSe-
quence. The data structures are instantiated in the two classes CStack and CQueue which
use the implementation of the according traits and the description of the interfaces.

The delta module DLength for the Length feature (in Listing 3) modifies the inter-
face ISequence to add the method getLength and adds the implementation of the method
to the trait TSequence. The depending traits and classes will be automatically updated by
these modifications. The delta module DResizeableOrDynamic (Listing 3) contains the
commonality of the related features Resizeable and Dynamic. It implements the method
resize which can be used to increase the capacity of the data structures. The delta module
DResizeable for the Resizeable feature (Listing 3) extends the interface ISequence with
the two methods resize and getCapacity. In this module only the getCapacity method is
implemented which returns the capacity of the data structure. The delta module DDy-

namic implements the Dynamic feature (Listing 3) which automatically coordinates the

delta DBase {

interface ISequence {
boolean isEmpty();
boolean isFull();
}

interface IStack extends ISequence {
void push(Object e);
Object pop();
}

interface IQueue extends ISequence {
void enqueue(Object e);
Object dequeue();
}

trait TSequence is {
int length;
Object[] elements;
boolean isEmpty() { return (this.length == 0); }
boolean isFull()
{ return (this.length == this.elements.length); }

}

trait TStack is TSequence + {
int length;
Object[] elements;
boolean isFull(); //required Methods
boolean isEmpty(); //required Methods
void push(Object o) {

if (this.isFull()) throw new IllegalStateException();
this.elements[this.length] = o;
this.length++;
}
Object pop() {

if (this.isEmpty()) throw new IllegalStateException();
this.length−−;
Object o = this.elements[this.length];
this.elements[this.length] = null;
return o;
}
}

trait TQueue is TSequence + {
int length;
Object[] elements;
int first;
boolean isFull(); //required Methods
boolean isEmpty(); //required Methods
void enqueue(Object o) {

if (this.isFull()) throw new IllegalStateException();
this.elements[(this.first + this.length)

% this.elements.length] = o;
this.length++;
}
Object dequeue() {

if (this.length == 0)
throw new IllegalStateException();

this.length−−;
Object o = this.elements[this.first];
this.first=(this.first + 1) % this.elements.length;
return o;
}
}

class CStack implements IStack by TStack {
Object[] elements;
int length = 0;
CStack(int capacity)
{ this.elements = new Object[capacity]; }

}

class CQueue implements IQueue by TQueue {
Object[] elements;
int length = 0;
int first = 0;
CQueue(int capacity)
{ this.elements = new Object[capacity]; }

}

} // end of DBase

Listing 2: Delta module DBase

size of the data structures. When the feature Dynamic is selected, the operation for test-
ing whether a stack/queue is full (that is present in all the other products, including the
base product) is not present. Therefore, the delta module DDynamic removes the method
isFull from the interface ISequence. Then it creates a new trait TDynamic which imple-
ments new methods for the insertion and extraction of objects in the data structure. The
traits for the stack and the queue are then combined with the trait TDynamic in which the
original insertion and extraction methods are renamed to fit the required methods of the
trait TDynamic. The methods of trait TDynamic are renamed to fit the description from
the interfaces IStack or IQueue. Additionally, the classes for the stack and queue data
structure are extended with a new field for the minimal capacity of the data structures.
In order to realize the feature Resizeable both delta modules DResisazableOrDynamic

and DResizeable must be applied, and in order to realize the feature Dynamic both the
delta modules DDynamic and DResizeableOrDynamic must be applied.

delta DLength {
modify interface ISequence { int getLength(); }
modify trait TSequence is TOriginal + {

int length;
int getLength() { return this.length; }
}
}

delta DResizeableOrDynamic {
trait TResize is {

Object[] elements;
int length;
void resizeAndCopy(int newCapacity, int from) {

if (this.length > newCapacity)
throw new IllegalStateException();

Object[] newElements = new Object[newCapacity];
for (int i = 0; i <= this.length − 1; i++) {

newElements[i] = this.elements[(from + i)
% this.elements.length];

}
this.elements = newElements;
}
}
modify trait TStack is TOriginal + TResize + {

void resizeAndCopy(int newCapacity, int from);
void resize(int newCapacity)
{ this.resizeAndCopy(newCapacity,0); }

}
modify trait TQueue is TOriginal + TResize + {

int first;
void resizeAndCopy(int newCapacity, int from);
void resize(int newCapacity) {

this.resizeAndCopy(newCapacity,this.first);
this.first = 0;
}
}
}

delta DResizeable {
modify interface ISequence {

void resize(int newCapacity);
int getCapacity();
}
modify trait TSequence is TOriginal + {

int getCapacity() { return this.elements.length; }
}
}

delta DDynamic {

modify interface ISequence{remove boolean isFull();}
trait TDynamic is {

Object[] elements;
int length;
int minCapacity;
boolean isFull();
void resize(int cap);
void originalInsert(Object o);
Object originalExtract();
void insert(Object o) {

if (this.isFull()) {
resize(this.elements.length ∗ 2);
}
this.originalInsert(o);
}
Object extract() {

if ((this.length <= this.elements.length / 2)
&& (this.elements.length!=this.minCapacity)){

resize(this.elements.length / 2);
}
return this.originalExtract();
}
}
modify trait TStack is

TOriginal[push renameTo originalInsert,
pop renameTo originalExtract] +

TDynamic[insert renameTo push,
extract renameTo pop]

modify trait TQueue is
TOriginal[enqueue renameTo originalInsert,

dequeue renameTo originalExtract] +
TDynamic[insert renameTo enqueue,

extract renameTo dequeue]
modify class CStack {

int minCapacity;
CStack(int capacity) {

COriginal(capacity);
this.minCapacity = capacity;
}
}
modify class CQueue {

int minCapacity;
CQueue(int capacity) {

COriginal(capacity);
this.minCapacity = capacity;
}
}
}

Listing 3: Delta modules DLength, DResizeableOrDynamic, DResizeable and DDynamic

features Base, Length, Resizeable, Dynamic configurations Base
& (Resizeable −> Length) & (!(Resizeable & Dynamic)) deltas
{ DBase }
{ DLength when Length }
{ DResizeableOrDynamic when (Resizeable | Dynamic)}
{ DResizeable when Resizeable }
{ DDynamic when Dynamic }

Listing 4: Declaration of the Sequences PL

5 Development and evolution of delta-trait product lines

As an example of unanticipated SPL evolution, consider the case of evolving the Se-
quences PL by adding three products that additionally contain the feature Peekable.
This feature creates a product that, in addition to the classes CStack and CQueue,
contains the classes CPeekableStack and CPeekableQueue. These new classes pro-
vide a method Object peek(int i) for returning the value of the i-th element of a
sequence. Figure 4 depicts the feature model of the evolved Sequence PL. In or-
der to be able to safely peek the elements of a sequence, it is useful to know
the length of the sequence. Therefore, the feature Peekable requires feature Length.

Evolved Sequences PL

Base Length Resizeable Dynamic Peakable

require
require

exclude

Fig. 4. Feature model for the evolved Sequences PL

The declaration of the evolved Se-
quences PL is shown in Listing 5.
The delta module DPeekable for im-
plementing the feature Peekable is
shown in Listing 6. In the application
order, the delta module DPeekable is
included in the first set of the partition
(together with the DBase delta mod-
ule). Indeed, DPeekable can be safely

moved to any other set of the partition, since it does not modify or remove existing
interfaces/traits/classes and, thus, it does not interfere with the other delta modules.

The delta module DPeekable adds three new interfaces (IPeekableSequence, IPeek-
ableStack and IPeekableQueue), three new traits (TPeekable, TPeekableStack and TPeek-

ableQueue), and two new classes (CPeekableStack and CPeekableQueue). The last two
interfaces IPeekableStack and IPeekableQueue extend the first interface by adding the
methods to add and remove an element of the respective data structure. The methods
for removing an element (pop and dequeue) no longer return that element. The trait
TPeekable provides the implementation of the method peek of the IPeekableSequence

interface. The new traits for the peekable data structures are based on the trait TPeek-
able and the corresponding trait from Listing 2 (TStack and TQueue, respectively)—this
straightforward intra-product code reuse would not be possible in DOP, which relies on
class-based inheritance for intra-product code reuse. Note that, in the products with
feature Peekable, the classes CPeekableStack and CPeekableQueue (which use the trait
TPeekableStack and TPeekableQueue, respectively) coexists with the classes CStack and
CQueue (which use the trait TStack and TQueue, respectively).

features Base, Length, Resizeable, Dynamic, Peekable
configurations Base & (Resizeable −> Length) & (Peekable −> Length) & (!(Resizeable & Dynamic))
deltas
{ DBase}
{ DLength when Length, DPeekable when Peekable }
{ DResizeableOrDynamic when (Resizeable | Dynamic)}
{ DResizeable when Resizeable }
{ DDynamic when Dynamic }

Listing 5: Declaration of the evolved Sequences PL

delta DPeekable {
interface IPeekableSequence extends ISequence {

Object peek(int i);
}
interface IPeekableStack extends IPeekableSequence {

void push(Object e); void pop();
}
interface IPeekableQueue extends IPeekableSequence {

void enqueue(Object e); void dequeue();
}
trait TPeekable is {

int length; Object[] elements; int first;
Object peek(int i) {

if (i >= this.length)
throw new IllegalArgumentException();

return this.elements[(this.first + i)
% this.elements.length];

}
}
trait TPeekableStack is

TStack[pop renameTo topPop] +
TPeekable + { void pop() { topPop(); }
}

trait TPeekableQueue is
TQueue[dequeue renameTo frontDequeue] +
TPeekable + {

void dequeue() { frontDequeue(); }
}
class CPeekableStack implements IPeekableStack

by TPeekableStack {
Object[] elements;
int length = 0;
int first = 0;
CPeekableStack(int capacity)
{ this.elements = new Object[capacity]; }

}
class CPeekableQueue implements IPeekableQueue

by TPeekableQueue {
Object[] elements;
int length = 0;
int first = 0;
CPeekableQueue(int capacity)
{ this.elements = new Object[capacity]; }

}
} // end of DPeakable

Listing 6: Delta module DPeekable

As we can see in this example, DTP seems well suited for evolving SPLs, since the
developer is allowed to flexibly reuse already existing code both within single products
and across different products. Proactive SPL development [23] prescribes to analyze
beforehand the set of products to be supported and to plan and develop in advance all
reusable artifacts. The Sequence PL case study presented in Section 4 can be seen as
an example of proactive product line development, since the feature model defining
the scope of the product line is first introduced and then the delta modules and the
product line declaration for implementing the products are developed. When applying
proactive development, a high upfront investment is required to define the scope of
the of the product line and to develop reusable artifacts. Therefore, in order to reduce
the adoption barrier Krueger [23] proposed reactive and extractive SPL development.
In reactive SPL development, an initial product line that comprises only a basic set
of products is created. Then, the initial SPL is evolved in order to deal with changing
requirements. The evolved Sequence PL case study presented above can be seen as an
example of reactive product line development.

In extractive SPL development, the engineering process starts with a set of exist-
ing legacy application that are turned into a product line. For instance, a product line
described by the feature diagram in Fig. 4 could be developed from 5 legacy products
corresponding to the feature configurations {Base, Length, Resizeable}, {Base, Dy-
namic}, {Base, Length, Peekable}, {Base, Length, Resizeable, Peekable}, and {Base,
Length, Dynamic, Peekable}. Traits have been designed for factoring common meth-
ods of a set classes. In [6], a tool is presented for identifying the methods in a JAVA class
hierarchy that could be good candidates to be refactored in traits. The tool is an adap-
tation of the SMALLTALK analysis tool of [24] to a JAVA setting. Since DTP smoothly

integrates delta modules and traits mechanisms, it represents a promising approach for
extractive SPL development starting from a set of legacy JAVA applications.

6 Related Work

Schaefer et. al. [34] mention three approaches to support variability and code reuse on
the implementation level. The first is the annotative approach which marks the source
code in relation to the features of the product line. A prominent instances are condi-
tional compilation, frames [3] and CIDE [21]. The second is the compositional ap-
proach where product implementations are built by composing code fragments. Promi-
nent examples of the compositional approach are traits [35, 17], FOP [5, 2, 16, 1] and
aspect-oriented programming (AOP) [22]—see also the evaluation presented in [26].
Transformational implementation techniques constitute the third approach which can
be considered as an extension of the second and offer more flexible, modular implemen-
tation possibilities. Delta-oriented programming [31, 33, 32, 9] is an instance of trans-
formational programming. In this paper, we presented DTP, a novel approach to imple-
ment SPL variability by smoothly integrating the modularization mechanisms provided
by delta modules and traits, which overcomes some of the limitations of DOP w.r.t.
intra-product code reuse.

A comparison of DOP and FOP can be found in [33], and a comparison of DOP and
AOP can be found in [9]. Some related work on traits has been quoted in Sect.s 1-2.
Recently [10], we have investigated the use of pure trait-based programming to directly
implement SPLs. The main difference between the trait-only approach and DTP/DOP/-
FOP is that, in the former: (i) the artifact base consists of a well-formed program con-
sisting of the interfaces, traits and classes of all the products; and (ii) in order to gen-
erate a product is enough to select a subset of these artifacts. In [10], it is shown that
the trait composition operations provided by TRAITJ are not enough in order to flexibly
modeling inter-product variability alone. To overcome this limitation, a trait parameter-
ization mechanism is proposed. A parametric trait is a trait parameterized by interface
names and class names. It can be applied to interface names and class names to gen-
erate traits that can be composed to build other (possibly parametric) traits or classes.
The trait-only approach looks appealing because the code base has a simpler structure
and product generation is straightforward (cf. points (i) and (ii) above). But, the model-
ing of inter-product variability (which relies both on trait parameterization and on trait
composition operations) might be less evident. In the trait-only approach the sole mech-
anism for reusing interface definition code is interface extension, which is less flexible
than the interface-modify operation supported by DTP and DOP. In DTP, inter-product
variability is modeled by delta-modules. The trait parameterization mechanism in the
underlying trait language would provide additional flexibility.

7 Conclusion

We presented DTP, a novel approach to implement SPL variability by smoothly integrat-
ing the modularization mechanisms provided by delta modules and traits, and realized
it in the programming language DELTATRAITJ (which is currently under development)

and compared it with DOP by case studies. DTP overcomes some of the limitations
of DOP w.r.t. intra-product code reuse and represents a flexible approach for imple-
menting evolving SPLs (cf. Sect. 5). As unanticipated SPL evolution scenarios become
more common in long-living software systems, DTP is a promising approach for de-
creasing maintenance and development effort in the life cycle of these software systems
on the implementation level supporting evolution at coarser levels of abstraction, e.g.,
the architecture level. In previous work, we have developed type systems for trait-based
languages [12, 10, 8] and for DOP [9]. We are currently developing a type system for
DTP. We have also developed compositional proof systems for the verification of pure
traits [14] and for the verification of DOP SPLs of JAVA programs [18, 15]. In future
work, we would like to investigate compositional proof systems for DTP.

References

1. S. Apel, C. Kästner, A. Grösslinger, and C. Lengauer. Type safety for feature-oriented prod-
uct lines. Automated Software Engineering, 17(3):251–300, 2010.

2. S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement. In Proc. of GPCE 2008, pages 101–112.
ACM, 2008.

3. P. G. Bassett. Framing software reuse: lessons from the real world. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997.

4. D. Batory. Feature Models, Grammars, and Propositional Formulas. In Proc. of SPLC 2005,
volume 3714 of LNCS, pages 7–20. Springer, 2005.

5. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In Proc. of
ICSE 2003, pages 187–197. IEEE, 2003.

6. L. Bettini, V. Bono, and M. Naddeo. A trait based re-engineering technique for Java hierar-
chies. In Proc. of PPPJ, pages 149–158. ACM, 2008.

7. L. Bettini and F. Damiani. Pure trait-based programming on the java platform. In Proc. of
PPPJ 2013, pages 67–78, New York, NY, USA, 2013. ACM.

8. L. Bettini, F. Damiani, K. Geilmann, and J. Schäfer. Combining traits with boxes and owner-
ship types in a Java-like setting. Science of Computer Programming, 78(2):218–247, 2013.

9. L. Bettini, F. Damiani, and I. Schaefer. Compositional type checking of delta-oriented soft-
ware product lines. Acta Informatica, 50(2):77–122, 2013.

10. L. Bettini, F. Damiani, and I. Schaefer. Implementing type-safe software prod-
uct lines using parametric traits. Science of Computer Programming, 2013.
http://dx.doi.org/10.1016/j.scico.2013.07.016.

11. L. Bettini, F. Damiani, I. Schaefer, and F. Strocco. TraitRecordJ: A programming language
with traits and records. Science of Computer Programming, 78(5):521–541, 2013.

12. V. Bono, F. Damiani, and E. Giachino. On Traits and Types in a Java-like setting. In Proc.
of TCS (Track B), volume 273 of IFIP, pages 367–382. Springer, 2008.

13. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison
Wesley Longman, 2001.

14. F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer. Verifying traits: an in-
cremental proof system for fine-grained reuse. Formal Aspects of Computing, 2013.
http://dx.doi.org/10.1007/s00165-013-0278-3.

15. F. Damiani, O. Owe, J. Dovland, I. Schaefer, E. B. Johnsen, and I. C. Yu. A transformational
proof system for delta-oriented programming. In Proc. of SPLC - Volume 2, pages 53–60.
ACM, 2012.

16. B. Delaware, W. R. Cook, and D. Batory. A Machine-Checked Model of Safe Composition.
In Proc. of FOAL, pages 31–35. ACM, 2009.

17. S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A mechanism for
fine-grained reuse. ACM TOPLAS, 28(2):331–388, 2006.

18. R. Hähnle and I. Schaefer. A Liskov Principle for Delta-Oriented Programming. In Proc. of
ISoLA (1), volume 7609 of LNCS, pages 32–46. Springer, 2012.

19. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. ACM TOPLAS, 23(3):396–450, 2001.

20. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie Mellon Software
Engineering Institute, 1990.

21. C. Kastner and S. Apel. Type-checking software product lines - a formal approach. In Proc.
of ASE 2008, pages 258–267. IEEE, 2008.

22. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An Overview of
AspectJ. In Proc. of ECOOP 2001, volume 2072 of LNCS, pages 327–354. Springer, 2001.

23. C. Krueger. Eliminating the Adoption Barrier. IEEE Software, 19(4):29–31, 2002.
24. A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept analysis. In

Proc. ASE 2005, pages 66–75. IEEE Computer Society, 2005.
25. L. Liquori and A. Spiwack. Extending feathertrait java with interfaces. Theor. Comput. Sci.,

398(1-3):243–260, 2008.
26. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating support for features in advanced

modularization technologies. In Proc of. ECOOP 2005, volume 3586 of LNCS, pages 169–
194. Springer, 2005.

27. L. Mikhajlov and E. Sekerinski. A Study of the Fragile Base Class Problem. In Proc. of
ECOOP ’98, number 1445 in LNCS, pages 355–383. Springer, 1998.

28. O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. JOT (www.jot.fm), 5(4):129–148,
2006.

29. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer, 2005.

30. J. Reppy and A. Turon. Metaprogramming with traits. In Proc. of ECOOP 2007, volume
4609 of LNCS, pages 373–398. Springer, 2007.

31. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented Programming
of Software Product Lines. In Proc. of SPLC 2010, volume 6287 of LNCS, pages 77–91.
Springer, 2010.

32. I. Schaefer, L. Bettini, and F. Damiani. Compositional type-checking of delta-oriented pro-
gramming. In Proc. of AOSD 2011, pages 43–56. ACM, 2011.

33. I. Schaefer and F. Damiani. Pure Delta-oriented Programming. In Proc. of FOSD 2010,
pages 49–56. ACM, 2010.

34. I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck, A. Pathak, S. Tru-
jillo, and K. Villela. Software diversity: state of the art and perspectives. International
Journal on Software Tools for Technology Transfer, 14(5):477–495, 2012.

35. N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior.
In Proc. of ECOOP 2003, volume 2743 of LNCS, pages 248–274. Springer, 2003.

36. S. Schuster. Design Patterns in Feature-Oriented Programming. Bachelor’s thesis, TU Braun-
schweig, 2012.

37. S. Schuster and S. Schulze. Object-oriented design in feature-oriented programming. In
Proc. of FOSD 2012, pages 25–28. ACM, 2012.

38. C. Smith and S. Drossopoulou. Chai: Traits for Java-like languages. In Proc. of ECOOP
2005, volume 3586 of LNCS, pages 453–478. Springer, 2005.

	open-access-cover.pdf
	main

