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Abstract

A number of recent works have investigated the notion of “computational fields” as a means of coordinating systems
in distributed, dense and dynamic environments such as pervasive computing, sensor networks, and robot swarms. We
introduce a minimal core calculus meant to capture the key ingredients of languages that make use of computational
fields: functional composition of fields, functions over fields, evolution of fields over time, construction of fields of
values from neighbors, and restriction of a field computation to a sub-region of the network. We formalise a notion
of type soundness for the calculus that encompasses the concept of domain alignment, and present a sound static
type inference system. This calculus and its type inference system can act as a core for actual implementation of
coordination languages and models, as well as to pave the way towards formal analysis of properties concerning
expressiveness, self-stabilisation, topology independence, and relationships with the continuous space-time semantics
of spatial computations.

Key words: Computational field, Core calculus, Operational semantics, Spatial computing, Type inference system,
Type soundness

1. Introduction

In a world ever more densely saturated with computing devices, it is increasingly important to have effective tools
for developing coordination strategies that can govern collections of these devices [8]. The goals of such systems
are typically best expressed in terms of operations and behaviours over aggregates of devices, e.g., “send a tornado
warning to all phones in the forecast area,” or “activate all displays guiding me along a route towards the nearest group
of my friends.” The available models and programming languages for constructing distributed systems, however, have
generally operated at the level of individual devices and their interactions, thereby obfuscating the design process.
Effective models and programming languages are needed to allow the construction of distributed systems at the natural
level of aggregates of devices. These must also be associated with a global-to-local mapping that links the aggregate-
level specification to the operations and interactions of individual devices that are necessary to implement it.

Recently, approaches based on models of computation over continuous space and time have been introduced,
which promise to deliver aggregate programming capabilities for the broad class of spatial computers [10]: networks
of devices embedded in space, such that the difficulty of moving information between devices is strongly correlated
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with the physical distance between devices. Examples of spatial computers include sensor networks, robot swarms,
mobile ad-hoc networks, reconfigurable computing, emerging pervasive computing scenarios, and colonies of engi-
neered biological cells.

A large number of formal models, programming languages, and infrastructures have been created with the aim
of supporting computation over space-time, surveyed in [7]. Several of these are directly related to the field of coor-
dination models and languages, such as the pioneer model of TOTA [29], the (bio)chemical tuple-space model [47],
the στ-Linda model [50], and the pervasive ecosystems model in [52]. Their recurrent core idea is that through
a process of diffusion, recombination, and composition, information injected in one device (or a few devices) can
produce global, dynamically evolving computational fields—functions mapping each device to a structured value.
Such fields are aggregate-level distributed data structures which, due to the ongoing feedback loops that produce and
maintain them, are generally robust to changes in the underlying topology (e.g., due to faults, mobility, or openness)
and to unexpected interactions with the external environment. They are thus useful for implementing and composing
self-organising coordination patterns to adaptively regulate the behaviour of complex distributed systems [29, 47, 48].

A sound engineering methodology for space-time coordination systems will require more than just specification,
but also the ability to predict to a good extent the behaviour of computational fields from the underlying local interac-
tion rules—a problem currently solved only for a few particular cases (e.g., [6, 3]). This paper contributes to that goal
by:

1. Introducing the computation field calculus (CFC), a minimal core calculus meant to precisely capture a set
of key ingredients of programming languages supporting the creation of computational fields: composition of
fields, functions over fields, evolution of fields over time, construction of fields of values from neighbours, and
restriction of a field computation to a sub-region of the network.

2. Formalising a notion of type soundness for CFC that encompasses the concept of domain alignment (i.e.,
proper sharing of information between devices), and presenting a sound static type inference system supporting
polymorphism à la ML [17]. The main challenges in the design of the type system are to ensure domain
alignment (which is complicated by the fact that the same expression may be evaluated many times, even
recursively) and to support polymorphism à la ML without breaking domain alignment.

CFC is largely inspired by Proto [5, 33], the archetypal spatial computing language (and is in fact a much simpler
fragment of it). As with Proto, it is based on the idea of expressing aggregate system behaviour by a functional com-
position of operators that manipulate (evolve, combine, restrict) continuous fields. Critically, these specifications can
be also interpreted as local rules on individual devices, which are iteratively executed in asynchronous “computation
rounds”, comprising reception of all messages from neighbours, computing the local value of fields, and spreading
messages to neighbours. The operational semantics of the proposed calculus precisely models single device compu-
tation, which is ultimately responsible for all execution in the network. The distinguished interaction model of this
approach, which is formalised into a calculus in this paper, is based on representing state and message content in an
unified way as an annotated evaluation tree. Field construction, propagation, and restriction are then supported by
local evaluation “against” the evaluation trees received from neighbours. Not only is field calculus much simpler than
Proto (and thus a tractable target for analysis), but the proposed formalisation also goes beyond Proto (which is a
dynamically typed language) by introducing a static type inference system and a type soundness property that encom-
passes the notion of domain alignment, thereby enabling static analysis of the soundness and resilience properties of
field computations.

The work thus developed formalises key constructs of existing coordination languages or models targeting spatial
computing. As such, we believe that the calculus and its type inference system pave the way towards formal analysis
of key properties applicable to various coordination systems, concerning expressiveness, self-stabilisation, topology
independence, and relationships with the continuous space-time semantics of spatial computations.

The remainder of the paper is organised as follows: Section 2 describes the linguistic constructs of CFC and their
application to system coordination. Section 3 illustrates how single devices interpret the CFC constructs locally. Sec-
tion 4 illustrates some examples of programs to show the expressiveness of CFC. Section 5 formalises the operational
semantics of CFC. Section 6 illustrates some examples of ill-formed programs to motivate the design of the type
system. Section 7 presents the type inference system and its key properties (domain alignment and type soundness).
Section 8 briefly surveys the main elements of a toolchain that is under development and grounds on CFC. Finally,
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e ::= x
∣∣ l ∣∣ (o e)

∣∣ (d e)
∣∣ (rep x w e)

∣∣ (nbr e)
∣∣ (if e e e) expression

l ::= n
∣∣ b ∣∣ 〈l,l〉 local value

w ::= x
∣∣ l variable or local value

D ::= (def d(x) e) user-defined function declaration
P ::= D e program

Figure 1: CFC surface syntax

Section 9 discusses related work and Section 10 concludes by outlining possible directions for future work. The
appendix contains the proofs of the main results.

This manuscript is an extended version of the prior [49] with more thorough discussions throughout, a detailed
description of examples, a sound type inference system, the formal presentation and the proofs of the main results,
and discussion of their application in tool construction.1

2. Computational field mechanisms

Generalising the common notions of scalar and vector field in physics, a computational field is a map from every
computational device in a space to an arbitrary computational object. Examples of fields used in distributed situated
systems include temperature in a building as perceived by a sensor network (a scalar field), the best routes to get to
a location (a vector field), the area near an object of interest (a Boolean indicator field), or the people allowed access
to computational resources in particular areas (a set-valued field). With careful choice of operators for manipulating
fields, the aggregate and local views of a program can be kept coherent and each element of the aggregate-level
program can be implemented by simple, automatically generated local interaction rules [4]. Following this idea, in
this section we present a language to express such programs, identified based on the strengths and commonalities
across many different approaches to spatial computing reviewed in [7] (though we do not rule out the possibility that
others may be identified), and drawing particularly on the Proto [5, 33] implementations of these mechanisms.

We describe the selected mechanisms directly using the surface syntax of CFC, reported in Figure 1.2 We take
the global, aggregate-level viewpoint, considering the main syntactic element e as being a field expression, or simply
a field. Conceptually, evaluation of a field expression has hence to be seen as executed by the whole “computing
machine” formed by the entire set of networked devices. Practically, each device will work in aysnchronous rounds,
each time properly interpreting the whole field expression as will be detailed in the operational semantics given in
following sections. As a standard syntactic notation in calculi for object-oriented and functional languages [26], we
use the overbar notation to denote metavariables over lists, e.g., we let e range over lists of expressions, written
e1 e2 . . . en.

A basic expression can be a literal value l (also called local value), such as a floating point number, a Boolean,
or a pair—note most of the ideas of computational fields are agnostic to the structure of such values. According to
the global viewpoint, a literal field expression l actually represents the constant function mapping l to all nodes. A
basic expression can also be a variable x, which can be the formal parameter of a function or a store of information to
support stateful computations (see rep construct below).

Such basic expressions (values and variables) can be composed by the following five constructs. The first one is
functional composition, a natural means of manipulating fields as they are functions themselves: (o e1 e2 . . . en) is
the field obtained by composing together all the fields e1, e2, . . . , en by a built-in operator o (simply called operator).
Operators include standard mathematical ones (e.g. addition, sine), as well as sensors, actuators, and others described
below. Such operators are applied in a pointwise manner to all devices. For instance, if et is a field of Fahrenheit
temperatures, then the corresponding field of Celsius temperatures is naturally written (* (/ 5 9) (- et 32)).
Execution of built-in operators is context-dependent, i.e., it can be affected by the current state of the external world.

1In particular, Sections 4, 7, 8 and Appendix are new, and the rest of the text is expanded and updated as needed.
2The syntax in Figure 1 is indeed a subset of the syntax of the Proto language. Therefore, each CFC program is literally an executable

Proto program. Furthermore, no expressiveness is lost: field calculus only omits syntactic sugar and relegates a large collection of assumed API,
measurement, and summary functions to the semantically simple class of “built-in” operators. Any minor differences are due choices in which
built-in operators to implement and how they are implemented in the Proto instantiation at hand.
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For example, the 0-ary operator uid gives a field that maps each device to its unique device identifier, dt maps each
device to the time elapsed since its previous computation round, and nbr-range produces a “field of fields” that maps
each device to a table associating estimated distances to each neighbour (such a table being a field itself).

The second construct is function (definition and) call, which we use as abstraction tool and to sup-
port recursion: (d e1 e2 . . . en) is the field obtained as result of applying user-defined function d to the
fields e1, e2, . . . en. Such functions are declared with syntax (def d(x) e). For instance, given definition
(def convert (x) (* (/ 5 9) (- x 32))), expression (convert et) denotes the same field of Celsius tem-
peratures as above. Note that function definitions, along with the top-level expression, form a program P.

The third construct is time evolution, used to keep track of a changing state over time: (rep x w e) is initially the
field w (a local value or a variable) that is stored in the new variable x, and at each step in time is updated to a new field
as computed by e, based on the prior value of x. For instance, (rep x 0 (+ x 1)) is the (evolving) field counting
in each device how many rounds that device has computed. Similarly, (rep x 0 (+ x (dt))) is the field of time
passing, updated in each node as each new round is computed there.

The fourth construct is neighbourhood field construction, the mechanism by which information moves between de-
vices: (nbr e) observes the value of e across neighbours, producing a “field of fields” like for the result of nbr-range
described above. In particular, each device is mapped to a table associating each of its neighbors to that neighbour’s
value of e. As an example, consider three devices δ1,δ2,δ3, on which field e holds values 4, 5 and 6 respectively,
and that the neighbourhood relation is the least symmetric and reflexive relation in which δ1,δ2 and δ2,δ3 are neigh-
bours. In this case (nbr e) is a field mapping δ1 to (δ1 7→ 4,δ2 7→ 5), δ2 to (δ1 7→ 4,δ2 7→ 5,δ3 7→ 6) and δ3 to
(δ2 7→ 5,δ3 7→ 6). So, letting min-hood be the built-in operator that takes a neighbourhood field and returns its
minimum value, then (min-hood (nbr e)) is the field mapping each device to the minimum value perceived in its
neighbourhood, which would in this case be (δ1 7→ 4,δ2 7→ 4,δ3 7→ 5).

The last construct is domain restriction, a sort of distributed branch: (if e0 e1 e2) is the field obtained
by superimposing field e1 computed everywhere e0 is true and e2 everywhere e0 is false. As an example
(if efah et (convert et)) is the field of temperatures provided in Fahrenheit where the field efah is true (i.e.,
in the subdomain in which it maps to true) and in Celsius everywhere else. Restriction is the most subtle of the five
mechanisms, because it has the effect of preventing the unexpected spreading of computation to devices outside of the
domain to which a computation has been restricted, even within arbitrarily nested function calls, as will be clarified
in the following examples.

The CFC calculus is equipped with a type inference system which builds on the Hindley-Milner type system [17]
for ML-like functional languages. The rules of the type system (presented in Section 7) specify a type inference
algorithm (which is variant of the Hindley-Milner type inference algorithm [17]) that, given a function either fails (if
the function cannon be typed) or returns its principal type, i.e., a type such that all the types that can be assigned to
the function by the type inference rules can be obtained from the principal type by substituting:

• local type variables (ranged over by β ) with local types (like the type of Booleans bool, the type of numbers
num, and the types for pair values 〈bool,num〉, 〈〈num,num〉,bool〉,...); and

• type variables (ranged over by α) with types (i.e., either local types or field types of the form field(L) where
L is a local type).

We now present some examples for the sake of illustrating how these five key mechanisms can be combined to
implement useful spatial patterns. In the code of the examples presented through the paper, we use syntax coloring to
increase readability: grey for comments, red for field calculus keywords, blue for user-defined functions, and green for
built-in operators. The principal type of each function presented of the examples (as it would be inferred by the type
inference algorithm specified in Section 7) is given in the comment inserted after the list of the formal parameters. We
also use the following naming conventions for built-in operators: functions *-hood yield a local value l obtained by
aggregating over the field value φ in input (e.g., min-hood of principal type (field(β ))→ β returns the minimum
among all values in each neighbourhood); and functions pair (of principal type (β1,β2)→〈β1,β2〉), fst (of principal
type (〈β1,β2〉)→ β1), and snd (of principal type (〈β1,β2〉)→ β2) respectively create a pair of local values and access
a pair’s first and second component. Additionally, given a built-in operator o that takes n≥ 1 locals an returns a local,
the built-in operators o[*,...,*] are variants of o where one or more inputs are fields (as indicated in the bracket,
l for local or f for field), and the return value is a field, obtained by applying operator o in a point-wise manner. For
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instance, as = (of principal type (β ,β )→ bool) compares two locals returning a Boolean, =[f,f] (of principal type
(field(β ),field(β ))→ field(bool)) is the operator taking two field inputs and returns a Boolean field where
each element is the comparison of the corresponding elements in the inputs, and similarly =[f,l] (of principal type
(field(β ),β )→ field(bool)) takes a field and a local and returns a Boolean field where each element is the
comparison of the corresponding element of the field in input with the local.

(def gossip-min (source) ;; has type: (β ) → β

(rep d source (min-hood (nbr d))))

(def distance-to (source) ;; has type: (bool) → num

(rep d infinity (mux source 0 (min-hood (+[f,f] (nbr d) (nbr-range))))))

(def distance-obs-to (source obstacle) ;; has type: (bool,bool) → num

(if (not obstacle) (distance-to source) infinity))

We first exemplify how constructs rep and nbr can be nested to create a long-distance computation, to achieve
network-wide propagation processes. Function gossip-min takes a source field (the formal parameter source has
type β ) and produces a new field mapping each device to the minimum value that source initially takes. The rep
construct initially sets the output variable d (of type β ) at source (of type β ), and then iteratively updates the value
at each device with the minimum d available at any neighbour. Hence, gossip-min describes a process of gossiping
values until the minimum one converges throughout the network.

Similarly, function distance-to takes as its input a source field holding Boolean values (the formal parameter
source has type bool), and returns a new numerical field that maps each device to the estimated distance to the
nearest source node (function distance-to has return type num), i.e., to the nearest device where source is true.
This works as follows:

• d (of type num) is initially set to infinity in each node;

• operator mux (of principal type (bool,β ,β )→ β ) is a purely functional multiplexer (it computes all three
inputs, then uses the first input to choose whether to return the second or third);

• sources are set to distance 0;

• other devices use the triangle inequality: we retrieve the sum (by the operator +[f,f] of principal type
(field(num),field(num)) → field(num)) of neighbour’s distance value (nbr d) (of type field(num))
and the corresponding neighbour’s estimated distance (by the operator nbr-range of principal type () →
field(num)), and then take the minimum (by the operator min-hood) of the resulting values.

The field returned by distance-to is often also referred to as a gradient [29, 6, 47], and is a key building block for
many computations in mobile ad-hoc networks, such as finding routes to points of interest. There are many similar
variants with different purposes, most of which automatically repair themselves when either the sources or network
structure change.

The last definition exemplifies the use of construct if. It creates two different spatial domains: one where the
obstacles are located (field obstacle holds positive Boolean value) and one where they are not. In the former a
constant field with value infinity is computed; in the latter we compute the distance-to field. Since distance-to
is being computed in a restricted spatial domain, information cannot be spread via nbr through areas where there
are obstacles (semantics detailing the interaction of nbr and if are provided in Section 5). Hence, even though
distance-to is implemented without any awareness of obstacles, the computation is prevented from spreading
through areas where it should not, and the distance estimation as provided by distance-to is modulated in order to
take into account the need of circumventing obstacle areas.

Note that if works like a mux executed in a network where neighbouring relations between nodes that took different
branches are disabled—in the example above, it would be like separating the obstacle region from the rest of the
network.
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A number of coordination mechanisms can be constructed on the basis of the above examples, like the gradient-
based patterns discussed in [47, 52, 50], which find applications in many areas, including crowd steering in pervasive
computing. Examples of implementation of several of these coordination mechanisms are illustrated in Section 4.

3. From global to local viewpoint

The description of field constructs so far has focused on what we can call the global viewpoint, in which the com-
putation is considered as occurring on the overall computational fields distributed in the network. For the calculus to
be actually executed, however, each device has to perform a specific set of actions at particular times, including inter-
action with neighbours and local computations. The result of these local actions then produces the overall evolution
of computational fields. We call this description of the language in term of individual devices the local viewpoint, and
it is this view that we shall use for the operational semantics. Let us now begin with an informal presentation of the
peculiar aspects of that operational semantics, to aid in understanding the full formalisation presented in Section 5.

Following the approach considered in Proto [33] and many other distributed programming languages, devices
undergo computation in rounds. In each round, a device sleeps for some limited time, wakes up, gathers informa-
tion about messages received while sleeping, performs its actual field evaluation, and finally emits a message to all
neighbours with information about the outcome of computation, before going back to sleep.

Taking the local viewpoint, we may model a field computation by modeling the evaluation of a single device at
a single round, assuming the scheduling of such rounds across the network to be fair and non-synchronous—either
fully asynchronous or partially synchronous, meaning that devices cannot execute infinitely quickly. Assuming that
the main bottleneck in the system is communication rather than computation (which is frequently the case in wireless
communication networks), this model can be readily achieved by any collection of devices with internal clocks that
schedule execution of rounds at regular intervals. So long as the relative drift between clocks is bounded, execution
on such a system will be fair and partially synchronous.

To support the combination of field constructs, we design our operational semantics as follows. First, our func-
tional style of composition, definition, and calls fits well with a small-step evaluation semantics, in which we start
from the initial expression to evaluate and reduce it to a normal form representing the outcome of computation, in-
cluding the local value of the resulting field and the information to be spread to neighbours. In order to keep track of
the state of variables introduced by rep constructs, and values at nbr constructs to be exchanged with neighbours, we
take our computational state to be a dynamically produced evaluation tree. During a round of computation, such a tree
is incrementally decorated with partial results expressed as annotations of the form “·v” or superscripts “s”. These
decorations track the local outcome of evaluation and determine which subexpression will be next evaluated.

To illustrate our management of evaluation order and computational rounds, as well as the rep construct, let us
begin by considering expression (rep x 0 (+ x 1)) of type num (cf. Section 2). As this tree is evaluated according
to the operational semantics, it goes through a sequence of four top-level steps—a top level step corresponds to a rule
applied to the whole tree. A top-level step may involve nested steps—a nested step corresponds to a rule applied to a
subtree. We show these top-level steps informally by underlining in each top-level step the next portion of the tree to
be rewritten, by colouring the changes introduced by each rewrite in red,3 and by labelling each top-level step with the
names of rules of the operational semantics causing the top-level step and its nested steps. The rules may be ignored
at a first reading, and be considered later to understand the formal calculus in Section 5. The first computation round
goes as follows:

(rep x 0 (+ x 1))
[REP,CONG,VAR]−−−−−−−→ (rep x 0 (+ x·0 1))

[REP,CONG,VAL]−−−−−−−→ (rep x 0 (+ x·0 1·1)) [REP,CONG,OP]−−−−−−→
(rep x 0 (+ x·0 1·1)·1) [REP]−−→ (rep1 x 0 (+ x·0 1·1)·1)·1

Annotations are computed depth-first in the expression tree until eventually reaching the outer expression: we first
annotate variable x with its current (initial) value 0, then simply identically annotate value 1, then perform built-in
operation + causing annotation of its sub-tree with 1, and finally execute the rep construct, which records the result
value as a superscript to rep and as an annotation of the whole expression.

3They will appear grey in a non-colour print of the paper.
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Once the evaluation is complete, with the result value in the outer-most annotation, the whole evaluation tree will
be shipped as a message to neighbours, in order to support the semantics of nbr statements, which locally gather
values stored as annotations in neighbour’s evaluation trees. Pragmatically, of course, any implementation might
massively compress the tree, sending only enough information to support the semantics of nbr statements.

The subsequent round begins after an initialization that erases all non-superscript decorations. This second round
leads to evaluation tree (rep2 x 0 (+ x·1 1·1)·2)·2, the third one to (rep3 x 0 (+ x·2 1·1)·3)·3, and so on.

The main purpose of managing evaluation trees in this way is to support information exchange through the nbr

construct. Consider the expression (min-hood (nbr (t))) of type num (cf. Section 2), where t of principal type
()→ num is a 0-ary built-in operator that returns the temperature perceived in each device. If a device δ perceives
a temperature of 7 degrees Celsius, and executes its first computation round before its neighbours, then the result of
computation should clearly be 7. This is implemented by the following sequence of transitions:

(min-hood (nbr (t)))
[CONG,CONG,OP]−−−−−−−→ (min-hood (nbr (t)·7)) [CONG,NBR]−−−−−→

(min-hood (nbr (t)·7)·(δ 7→ 7))
[OP]−→ (min-hood (nbr (t)·7)·(δ 7→ 7))·7

We first enter the subexpression with the 0-ary operator t which yields 7. We then evaluate nbr to the field of
neighbour values, associating only δ to 7, written (δ 7→ 7). Finally, we evaluate unary operator min-hood, which
extracts the smallest element of the input field, which in this case is 7.

Construct nbr retrieves values from neighbours using the tree environment of the device δ , which models its store
of recent messages received from neighbours. The tree environment is a mapping Θ = (δ1 7→ e1, . . . ,δn 7→ en) created
at each round, from neighbours (δi) to their last-received evaluation tree (ei), which we call the neighbour tree of δi .
The evaluation of (nbr e), where e is evaluated to local value l, takes values from the tree environment to produce a
field (δ 7→ l,δ1 7→ l1, . . . ,δn 7→ ln), mapping δ to l and each neighbour δi to the corresponding local value li from
δi.

In the example above we assumed that none of the neighbours of δ had already completed a round of com-
putation, and that therefore Θ was empty and accordingly (nbr (t)) gave simply (δ 7→ 7). If we instead as-
sume that the first round of computation on the device δ takes place when the neighbours δ1 and δ2 have
completed exactly one round of computation, perceiving temperatures of 4 and 9 degrees respectively, then the
tree environment of δ would be (δ1 7→ e1,δ2 7→ e2), where e1 = (min-hood (nbr (t)·4)·(δ 7→ 4))·4 and e2 =
(min-hood (nbr (t)·9)·(δ 7→ 9))·9. The computation goes similarly, the only difference is that the evaluation of
(nbr (t)·7) now produces the field φ = (δ 7→ 7,δ1 7→ 4, δ2 7→ 9) and the final outcome of the computation round
on δ is the tree (min-hood (nbr (t)·7)·φ)·4.

More specifically, the extraction of values from neighbours is achieved by computing the local evaluation tree
“against” the set of its neighbour trees: when evaluation enters a subtree, in the tree environment Θ we correspondingly
enter the corresponding subtree (when it matches) on all of its neighbour trees. Although each node executes the same
program, the trees of two different nodes may not match. For instance, it may happen that on a node the left branch
of an if expressions is evaluated, while on another node the right branch is evaluated (an example illustrating this
situation is given in the last paragraph of this section). This process on neighbour trees is called alignment. So, in the
example above, sub-tree (nbr (t)·7) is recursively evaluated against the neighbour sub-trees

(δ1 7→ (nbr (t)·4) · (δ1 7→ 4),δ2 7→ (nbr (t)·9) · (δ2 7→ 9))

in which the neighbour values are immediately available as the outermost annotation of the argument of nbr. So, the
effect of an instance of nbr in a given position of the tree, is simply understood as gathering the annotations existing in
the same position of all neighbours’ evaluation trees—neighbours that actually have a value there are precisely called
the aligned neighbours.

One reason for using this structural alignment mechanism is to seamlessly handle the cases where nbr subtrees
could be nested at a deep level of the evaluation tree because of (possibly recursive) function calls. Assume the user-
defined function definition (def f (x) (min-hood (nbr x))) of principal type (β )→ β , and the main expression
(f (t)) of type num (recall that the built-in operator t has principal type ()→ num) whose expected behaviour is
then equivalent to our prior example (min-hood (nbr (t))). This expression would be handled by the following
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sequence of transitions:

(f (t))
[CONG,OP]−−−−→ (f (t)·7) [FUN,CONG,CONG,VAR]−−−−−−−−−−→ (f(min-hood (nbr x·7)) (t)·7) [FUN,CONG,NBR]−−−−−−−→

(f(min-hood (nbr x·7)·φ) (t)·7) [FUN,OP]−−−−→ (f(min-hood (nbr x·7)·φ) (t)·7)·4

After the function arguments are all evaluated, the second transition creates a superscript to function f, holding the
evaluation tree corresponding to its body. This gets evaluated as usual, and its resulting annotation 4 is transferred to
become the annotation of the function call. So, note that the evaluation tree is a dynamically expanding data struc-
ture because of such function superscripts being generated and navigated at each call, with alignment automatically
handling nbr construct, even for arbitrary recursive function call structures. Note that this mechanism also prevents
recursive calls from implying infinite evaluation trees, since only those calls that are actually made are annotated.

This management of memory trees also easily accommodates the semantics of restriction. An if subexpression is
evaluated by first evaluating its condition, then evaluating the selected branch, and finally erasing all decorations on the
non-taken branch, including superscripts. In this way, neighbour trees corresponding to devices that took a different
branch will be automatically discarded at alignment time, since entering the same subexpression is impossible because
of a bad match. For example, consider expression (if (c) (f (t)) 0), where operator c of type ()→ bool returns
a Boolean field that is true at δ and δ2, and false at δ1. Assuming again that first round of δ happens after first round
of δ1 and δ2, we have:

(if (c) (f (t)) 0)
[CONG,OP]−−−−→ (if (c)·true (f (t)) 0)→∗

(if (c)·true (f(min-hood (nbr x·7)·(δ 7→ 7,δ2 7→ 9)) (t)·7)·7 0)
[THEN]−−−→

(if (c)·true (f(min-hood (nbr x·7)·(δ 7→ 7,δ2 7→ 9)) (t)·7)·7 |0|)·7

The reason why the rep subexpression now yields field (δ 7→ 7,δ2 7→ 9) is that the neighbour tree of δ1 cannot be
aligned, for it has (c) annotated with false, which does not match. Hence, nbr will retrieve values only from the
aligned nodes that followed the same branch, avoiding interference from nodes residing in different regions of the
partition made by restriction. The erasure of the non-taken branch by operator |.| (0 trivially erases to 0 in this case)
is used to completely reinitialise computation there, since the node no longer belongs to the domain in which the
non-taken branch should be evaluated.

4. Application to self-organisation

A notable application of spatial computing languages, and of CFC, is to implement self-organising systems. In this
section we discuss various features of CFC with the goal of presenting its expressiveness, especially related to self-
organizing systems. Such self-organising systems have the property that they create coherent system-level patterns out
of the local interaction between individual system components. Often inspired by natural mechanisms and metaphors
[28, 59], self-organisation provides a means to create systems which spontaneously manifest properties of adaptivity
and robustness to environment changes of various kinds.

The CFC provides a terse means of expressing both individual self-organisation mechanisms and their composi-
tion to create robust and adaptive systems. Being able to express such mechanisms and systems using a well-suited
minimal calculus will render them more amenable to mathematical investigation. Critically, we expect that this will
enable the investigation of basis sets of self-organisation primitives, extending the approach in [23], and will enable
investigation of how adaptivity and robustness are affected when self-organisation mechanisms interact.

We illustrate the efficacy of field-calculus for expressing self-organising systems with three examples of increasing
complexity: Laplacian approximate consensus, adaptive distributed Voronoi partitioning, and a “channel” pattern for
distributed route computation.
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Figure 2: Laplacian consensus in a partially converged state, showing value on a color scale from 0 (blue) to 1 (red), deployed in a low-density
network with initially random values and topology (green) in evidence (left), and from initially all 0 on the left half and all 1 on the right half in a
high-density environment of 10,000 nodes (right). Simulation executed in MIT Proto [5, 33] on devices randomly distributed in 132x100 unit area
with communication radius 15, run to quiescence.

Example 4.1 (Laplacian approximate consensus). Many distributed applications use approximate consensus as a
building block for self-organising behavior, with examples spanning robot formation control [19], flocking and swarm-
ing [35], sensor fusion [56], modular robotics [57] and synchronisation [42]. Laplacian-based approaches are a com-
mon mechanism for distributed approximate consensus, in which each device finds a weighted local average of its
own current value with the values held by its neighbours. It can be implemented in CFC as:

(def laplacian-consensus (init epsilon) ;; has type: (num,num) → num

(rep val init

(+ val

(* epsilon

(sum-hood (-[f,l] (nbr val) val))))))

Each device tracks an estimated consensus value val, beginning with its own value init. At each round, this value is
incrementally averaged with the current values held by neighbours, using sum-hood (of type (field(num))→ num)
to sum the differences and multiplying by a small increment epsilon.

Figure 2 shows examples of Laplacian approximate consensus being computed. On the left, we show a low-
density view over a mesh network with initially random values: in this case, the consensus mechanism converges very
quickly. On the right, we apply the same field to a high-density network that more closely approximates continuous
space, on which convergence is much slower, per [20].
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Example 4.2 (Voronoi partitioning). Computing a Voronoi partition is an operation that is frequently useful in dis-
tributed systems. Given an initial set of “seed” devices, a Voronoi partition assigns each device to the partition of the
nearest seed (by some not necessarily Euclidean metric), effectively breaking the network up into “zones of influence”
around key elements. For example, in a mesh network with a few devices that serve as gateways to the more general
external network, a distributed Voronoi partition can be used to identify which gateway each device should use for
external communication. It can be realised in CFC as follows:

(def voronoi (seed id) ;; has type: (bool,num) → num

(snd

(rep partition

(pair infinity 0)

(mux seed

(pair 0 id)

(min-hood (nbr (pair (distance-to seed) (snd partition))))))))

The Voronoi partition provides a simple example of creating a self-organising system by modulating (i.e., functionally
combining) other self-organisation mechanisms, in this case the adaptive distance computation of the distance-to

function.
The pattern begins with the seed input, a Boolean-valued field that is true for those devices that are seeds of the

partition and false for all other devices (the formal parameter seed has type bool), and an id field associating each
device with a unique identifier (the formal parameter id has type num). The partition variable (of type 〈num,num〉)
then tracks a field of pairs (constructed by operator pair taking two numbers) containing the distance and identity
for the nearest identifier. Seeds provide a base case, being distance zero from themselves. The rest of the partition is
computed by lexicographic minimisation over the distance and identity pairs of each neighbour. Because this is based
in a feed-forward manner on the self-stabilising distance-to function, this pattern too is self-stabilising, and will
rapidly adapt to changes in the set of seeds or the structure of the network. Note operator snd extracts the second
element of a pair, which is used at the top level to extract the id of the nearest seed.

Figure 3 shows examples of a Voronoi partition being computed. On the left, we show a low-density view over a
mesh network, where it is essentially computing hop-count distances and produces a standard graph partition. On the
right, we apply the same field to a high-density network that more closely approximates continuous space. Here the
borders between regions in the network closely approximate the mathematical ideal of geometric shortest paths. This
comparison is also an illustration of how field calculus can serve as a bridge between continuous aggregate semantics
and discrete implementation.

Example 4.3 (The “channel’ pattern). Finally, to show a more complex example of self-organising mechanism
composition, we show a realisation of the so-called “channel” pattern (from [13]), which dynamically computes
distributed routes between regions of a network, and dynamically adapts to shape and changes of the network topol-
ogy. Examples of its use include long-range reliable communications, or advanced crowd steering applications in
pervasive computing [58, 51].
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Figure 3: Voronoi partition from seeds (large orange circles), indicating partition by color, deployed in a low-density network with topology (green)
in evidence (left), and in a high-density environment of 10,000 nodes (right). Simulation executed in MIT Proto [5, 33] on devices randomly
distributed in 132x100 unit area with communication radius 15, run to quiescence.

The “channel” is a Boolean field that is true for devices near the shortest route from a given (distributed) source
to a (distributed) destination. It can be realised as follows:

(def shortest-path (source destination) ;; has type: (bool,bool) → num

(rep path false (mux source true (any-hood (and[f,f]

(nbr path)

(=[l,f] (distance-to destination)

(nbr (min-hood (nbr (distance-to destination))))))))))

(def channel (source destination width) ;; has type: (bool,bool,num) → bool

(< (distance-to (shortest-path source destination)) width))

(def channel-avoiding-obstacles (obstacle source destination width)

;; has type: (bool,bool,bool,num) → bool

(if obstacle false (channel source destination width)))

The shortest-path function yields a field that is true only on devices in the shortest path between source and
destination. It is true initially on source and false everywhere else, and a device δ becomes part of the path (i.e., it
is mapped to true) if any of its neighbours (any-hood + nbr) is already in the path, and (by the built-in operator
and[f,f] of principal type (field(bool),field(bool))→ field(bool)) its neighbour with minimum distance to
destination is as distant as δ—built-in operator any-hood (of principal type (field(bool))→ bool) yields true only
if at least one of the elements of the field is true.

The channel function adds redundancy to a shortest-path route by using distance-to to select every device
within the desired channel width. The channel-avoiding-obstacles function then modulates the whole complex
of channel, shortest-path, and distance-to functions by using if to restrict the region where they are computed
to that portion of the space without obstacles.

Figure 4 shows obstacle-avoiding channels being computed. On the left, we show a low-density view over a
mesh network, in which the channel simply represents a point-to-point routing path. On the right, we apply the same
field to a high-density network that more closely approximates continuous space: by applying the channel field to
a distributed source, destination and obstacle we illustrate the way in which field computations can act as a bridge
between continuous aggregate semantics and discrete implementation through local interaction rules. An example
application of this structure is in the context of pervasive computing, to develop a steering service from people moving
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Figure 4: Channels (blue) route between source (orange) and destination (purple) around obstacles (pink), deployed in a low-density network with
topology (green) in evidence (left), and in a high-density environment of 10,000 nodes (right). Simulation executed in MIT Proto [5, 33] on devices
randomly distributed in 132x100 unit area with communication radius 15, run to quiescence.

in an articulated environment [47, 29]. The channel field can be used to enable all the devices (digital signs, peoples’
smartphones, obstacle sensors, crowd detection sensors, etc.) that aid in guiding people moving from a source to a
destination.

5. The computational field calculus

The surface syntax (Figure 1) and the mechanisms of CFC have been introduced and motivated in the previous
sections. This section presents a formalisation of the CFC operational semantics. The various aspects of the formal-
isation are set forth in Figure 5, described here in turn after few preliminaries. We let δ range over device unique
identifiers and φ over field values (mapping set of devices to local values). Given any meta-variable y we let ẙ range
over an element y or the null decoration (which in the calculus is ◦ when it has to be expressed, and blank otherwise).
The calculus is agnostic to the syntax of local values: we only assume they include at least device identifiers δ and
Boolean values—denoted by f (for false) and t (for true).

5.1. Runtime expression syntax
A runtime expression is the evaluation tree created out of a surface expression. It is similar to expressions in the

surface syntax (cf. Figure 1) with the following differences (see Figure 5):

(i) a (runtime) value v is either a local value l or a field value φ ;

(ii) a run-time expression e can be coupled (at any level of depth) with optional annotation v̊ representing the transient
side-effect of a computation;

(iii) constructs rep and function calls can have a superscript (s) representing the durable side-effect of a computation.

Note that, syntactically, surface syntax expressions can (and will) be used to denote runtime expressions with null
decorations in all annotations and superscripts. Conversely, the erasure operator | · | is used to turn a runtime expression
e (or an auxiliary rte a) to the surface expression |e| (resp. |a|) obtained by dropping all annotations and superscripts.

A field value φ can either be written as δ1 7→ l1, . . . ,δn 7→ ln or be shortened by notation δ 7→ l. Note that fields
are actually mappings, for which we introduce some syntactic conventions and operators. The domain of φ , which
is the set {δ1, ...,δn}, is denoted by dom(φ). The value li associated to a given device δi by field φ is retrieved
by notation φ(δi). Since a field can be seen as a list, we use the notation • for the empty field, and comma as list
concatenation operator: e.g. φ ,φ ′ is the field having both the mappings of φ and φ ′. We shall sometimes restrict
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Runtime expression syntax:
e ::= a·v̊ runtime expression (rte)

a ::= x
∣∣ l ∣∣ (nbr e)

∣∣ (if eee)
∣∣ (reps xwe)

∣∣ (ds e)
∣∣ (oe) auxiliary rte

v ::= l
∣∣ φ runtime value

s ::= å superscript

w ::= x
∣∣ l variable or local value

φ ::= δ 7→ l field value

Θ ::= δ 7→ e tree environment
Γ ::= x := v variable environment

Congruence contexts:
C ::= (nbr [])

∣∣ (ds e [] e)
∣∣ (o e [] e)

∣∣ (if [] e e)
∣∣ (if a·t [] e)

∣∣ (if a·f e [] )

Alignment contexts:
A ::= C

∣∣ (reps x w [])
∣∣ (d[] a·v)

Auxiliary functions:

πA(Θ,Θ′) = πA(Θ),πA(Θ
′)

πA(δ 7→ (A′[e])·v) = δ 7→ e if A′ :: A
πA(δ 7→ e) = • otherwise

s�a = a
s�◦= s

(nbr []) :: (nbr [])

(ds
′
e′1...e

′
i−1 [] e′i+1...e

′
n) :: (ds e1...ei−1 [] ei+1...en)

(o e′1...e
′
i−1 [] e′i+1...e

′
n) :: (o e1...ei−1 [] ei+1...en)

(if [] e′1 e′2)) :: (if [] e1 e2))
(if a′·t [] e′) :: (if a·t [] e)
(if a′·f e′ [] ) :: (if a·f e [] )
(reps

′
x w []) :: (reps x w [])

(d[] e′1...e
′
n) :: (d[] e1...en)

Reduction rules: [THEN]

δ ;Θ;Γ ` (if a·t a′·l e)→ (if a·t a′·l |e|)·l

[CONG] δ ;πC(Θ);Γ ` a→ e
δ ;Θ;Γ ` C[a]→ C[e]

[ELSE]

δ ;Θ;Γ ` (if a·f e a′·l)→ (if a·f |e| a′·l)·l

[LOCAL]

δ ;Θ;Γ ` l→ l·l
[NBR] π(nbr [])(Θ) = (δ 7→ a·l) φ = (δ 7→ l,ε(uid) 7→ l)

δ ;Θ;Γ ` (nbr a·l)→ (nbr a·l)·φ

[VAR]

δ ;Θ;Γ ` x→ x·Γ(x)|dom(Θ),ε(uid)

[REP] δ ;π
(repl̊1 x w [])

(Θ);Γ,(x := (Γ(w)� l̊1)) ` a→ a′·l̊2

δ ;Θ;Γ ` (repl̊1 x w a)→ (repl̊1�l̊2 x w a′·l̊2)·l̊2

[OP]

δ ;Θ;Γ ` (o a·v)→ (o a·v)·ε(o,v)
[FUN] δ ;π(d[] a·v)(Θ);(args(d) := v) ` (body(d)�s)→ a·v̊

δ ;Θ;Γ ` (ds a·v)→ (da a·v)·v̊

Figure 5: CFC operational semantics

the domain of a field φ to a given set of devices δ , which we denote as φ |
δ

. When restriction is applied to local
values it works as the identity function. A tree environment, Θ, maps devices to runtime expressions (namely, it keeps
neighbour trees); a variable environment, Γ, maps variables to runtime values. Since tree environments and variable
environments are also mappings, all the above conventions and operators will be used for them as well.

5.2. Congruence contexts and alignment contexts
The operational semantics uses congruence contexts, ranged over by C, to impose an order of evaluation of

subexpressions in an orthogonal way with respect to the actual semantic rules; and it uses alignment contexts, ranged
over by A, to properly navigate into evaluation trees. In particular, note that C is a subcase of A (see Figure 5).
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A context A is an auxiliary runtime expression with a hole []. As usual, we write A[e] to denote the runtime
expression obtained by filling the hole of A with the runtime expression e. If a given runtime expression e matches
C[e′], then e′ is the next subexpression of e where evaluation will occur, positioned in e as [] is positioned in C. The way
the syntax of congruence contexts C is structured constrains the operational semantics to evaluate the first argument
of if and then, depending on its outcome, the second or third, and to non-deterministically evaluate arguments
in function and operation calls. For instance, the runtime expression (* 1·1 (+ 2·2 3)) matches C′[e′] only by
C′ = (* 1·1 []) and e′ = (+ 2·2 3): this means that e′ contains the next subexpression to evaluate. The expression
e′, in turn, matches C′′[e′′] only by C′′ = (+ 2·2 []) and e′′ = 3. Therefore 3 is the next subexpression to evaluate
(becoming 3 ·3).

5.3. Auxiliary functions

The projection operator π implements the mechanism for synchronising navigation of an evaluation tree with
those of neighbour trees. Namely, πA(Θ) takes a tree environment Θ and extracts a new tree environment obtained
by discarding the trees that do not match the alignment context A (according to the alignment context matching
relation “::”) and extracting the corresponding subtree matching the hole in the remaining ones. As an example, given
Θ0 = ( δ1 7→ (if a·t e1 e2)·v1, δ2 7→ (if a′·f e3 e4)·v2 ) and A = (if a′·t [] e′2), we have πA(Θ0) = (δ1 7→ e1). In fact,
the evaluation tree for δ2 is discarded since it does not match A due to the label of first argument being f, while the
evaluation tree for δ1 matches and extracts e1.

The replacement operator � retains the right-hand side if this is not empty, otherwise it takes the left-hand side. It
is useful to handily update null decorations.

To take into account special constants, mathematical operations, usual abstract data types operations, and context-
dependent operators, we introduce a special auxiliary function ε , whose actual definition is abstracted away. This
is such that ε(o,v) computes the result of applying built-in operator o to values v in the current environment of the
device. In particular, we assume constant self gets evaluated to the current device identifier. The ε function also
encapsulates measurement variables such as nbr-range and dt and interactions with the external world via sensors
and actuators. In order not to escape the domain restricted by operator if, as discussed in Sections 2 and 3, for each
built-in operator o we assume that:

(i) ε(o,v1, · · · ,vn) is defined (i.e., its evaluation does not get stuck) only if all the field values in v1, . . . ,vn have the
same domain; and

(ii) if ε(o,v1, · · · ,vn) returns a field value φ and there is at least one field value vi in v1, . . . ,vn, then dom(φ) =
dom(vi).

5.4. Reduction rules

Following [26], we formulate the reduction relation by means of reduction rules (which may be applied at any
point in an expression) and congruence rules (which express the fact that if e→ e′ then (o e1 . . .ei−1 e ei+1 . . .en)→
(o e1 . . .ei−1 e′ ei+1 . . .en), and so on). The reduction relation is of the form δ ;Θ;Γ ` e→ e′ , to be read “expression
e reduces to expression e′ in one step”, where δ is the local device, Θ is the current tree environment and Γ is the
current store of variables (which is built incrementally in each reduction step by the congruence rules [REP] and [FUN]

when evaluation enters the third argument of a rep-expressions or the body of a function, respectively).
The reduction relation models the execution of a single computation round, computed as δ ;Θ;• ` a→∗ a′·v where:

δ is the local device; Θ is the set of evaluation trees produced by neighbours at their prior computation round; the
variable environment is empty (the main expression must not contain free variables); and a is the runtime expression
resulting from the computation of previous round with all the annotations (not superscripts) erased—at the very first
round a is simply the top-level surface expression. During computation steps the run-time expression will be decorated
with annotations, until one appears at the top level in the final runtime expression a′·v, where v represents the local
value of the computational field currently being computed. Some superscripts will be present at the end of the round,
for they represent the side-effect of computation on the evaluation tree that should be transferred to next round. In
particular, as already mentioned:

(i) the final runtime expression a′·v will be shipped to neighbours, replacing there the one previously sent;
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(ii) the runtime expression obtained from a′·v by dropping all annotations (not superscripts), denoted by init(a′·v), will
be used as starting point for the next round computation.

We now describe each reduction rule in turn. Computation rules have a common pattern: they compute a result
value v, which appears as top-level annotation—in the following we shall say that v is the “local result”. Rule [LO-

CAL] simply identically annotates a local value. Rule [VAR] looks at the value Γ(x) associated to x by the variable
environment, and (in case it is a field) restricts it to the set of currently aligned neighbours δ (plus the local device
ε(uid) = δ ). Rule [NBR] is the one actually gathering values from Θ: let l be the value locally computed, we extract
the corresponding values l from aligned neighbours δ , and use as local result the corresponding field δ 7→ l (adding
the local slot δ 7→ l). Rule [OP] computes the result of applying operator o to values v (done by function ε , which
gives semantics to operators), to be used as a local result. Rules [THEN] and [ELSE] handle condition branching: rule
[THEN] (resp. [ELSE]) uses the label of second (resp. third) argument as local result in case of positive (resp. negative)
condition, and erases the other branch (which may contain superscripts generated in the previous round).

Rule [CONG] can be understood as a compact representation for six different congruence rules, corresponding to
the 6 cases for the context C. While navigating the evaluation tree inside context C to identify the next evaluation
site a (which should be non-annotated), this rule contemporarily enters the same context into all slots of the tree
environment Θ, guaranteeing that the expression to evaluate is kept synchronised with the corresponding trees in Θ.
Note that rule [CONG] does not describe the congruence rules for rep-expressions and function applications. In fact,
the metavariable C does not range over contexts of the form (repl̊ x w []) and (d[] a ·v). The rationale for this choice is
that the corresponding rules, [REP] and [FUN], need to update the variable environment Γ by adding to Γ the rep-bound
variable x or by completely replacing Γ with the environment for the function formal parameters args(d), respectively.
Moreover, [REP] and [FUN] are not pure congruence rules: each of them encodes a congruence rule possibly followed
by a computation rule.4 Note that this encoding exploits the notation ẙ and the auxiliary function � defined above.

Rule [REP] handles evolution of a field. When the superscript l̊1 is null, the evaluation of the body of a rep-
expression is carried on in an environment that assigns to the rep-bound variable x the value of the variable or local
value w—with abuse of notation we indicate it as Γ(w): when w is a local value l we assume Γ(l) = l. When the
superscript l̊1 is a local value l1, the evaluation of the body of rep-expression is carried on in an environment that
assigns to the rep-bound variable x the value l1. If the reduction step performed (in the premise of the rule) on the
body of the rep-expression produces an evaluated runtime expression (i.e., if the annotation l̊2 is not null), then the
local result is propagated to the rep-expression (which becomes evaluated).

When the actual parameters of a function call are evaluated, rule [FUN] performs a reduction step on the function
body in an environment consisting of the proper association of formal parameters args(d) to values v: the (possibly
null) resulting annotation v̊ is transferred as local result. If the superscript s is null, replacement operator � guarantees
the function body is used instead.

6. Well-formedness

This section introduces the problem of well-formed specifications, and the need for a sound type system as devel-
oped in Section 7. A field expression is considered ill-formed if its evaluation (according to the operational semantics)
can at some point get stuck: a situation that in an actual execution would result in a run-time error. Correspondingly,
a function is ill-formed if its application to some argument forms a ill-formed expression, and a whole program is ill-
formed if its functions or main expression are ill-formed. The following examples clarify the key notion of ill-formed
functions.

Example 6.1. Function

(def wrong-channel-avoiding-obstacles (x src dst width) ;; can not be typed
(channel-avoiding-obstacles (nbr x) src dst width))

using the function channel-avoiding-obstacles, is ill-formed. This is due to the fact that the field value φ , which
is produced by (nbr x) and passed into channel-avoiding-obstacles, conflicts with its use as the first input

4When the annotation l̊2 in rule [REP] is not null, and when the annotation v̊ in rule [FUN] is not null.
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to if, which requires a Boolean value. Rules [THEN] and [ELSE] thus cannot be applied, and the evaluation cannot be
completed.

Example 6.2. The function

(def wrong-f-two (x) ;; can not be typed
(min-hood (min-hood (nbr (nbr x)))))

which tries to find the minimum value of x within two hops, is ill-formed. When the function is applied to a local
value, the body fails to evaluate because Rule [NBR] requires its input to be a local value, and thus cannot be applied
to the outer nbr. This prevents the need to communicate a field value whose size scales linearly with the number of
neighbours, which might be extremely burdensome. A well-formed alternative that produces the same computational
result as wrong-f-two is intended to is

(def right-f-two (x) ;; has type: (β ) → β

(min-hood (nbr (min-hood (nbr x)))))

This takes advantage of the commutative property of minimisation to break the minimisation into two stages, thus
avoiding the communication explosion of the ill-formed formulation.

Example 6.3. The function

(def wrong-nbr-if (x y z) ;; can not be typed
(min-hood (-[f,f] (if (sense 1) (nbr x) (nbr y)) (nbr z))))

is ill-formed. Its body will fail to evaluate on Rules [THEN] and [ELSE], since they require local values for the test and
returned values. This prevents conflicts between field domains, as in this case, where the field produced by (nbr z)

would contain all neighbours, while the field produced by the if expression would contain only a subset, leaving the
fields mismatched in domain at the subtraction. A correct alternative is

(def right-nbr-if (x y z) ;; has type: (num,num,num) → num

(min-hood (-[f,f] (nbr (if (sense 1) x y)) (nbr z))))

which conducts the test locally, ensuring that the domains of the two fields match.

7. Typing and properties

This section presents a type inference system, used to intercept ill-formed programs, as those shown in Section 6.
Technically, this type system is designed to guarantee the following two properties:

Domain Alignment The domain of every field value arising during the reduction of a well-typed expression consists
of the identifiers of the aligned neighbours and of the identifier of the uid device.

Type Soundness The reduction of a well-typed expression does not get stuck.

Note that domain alignment guarantees a proper handling of restriction which, in turn, is needed for type soundness.
Note as well that the type system does not guarantee that evaluation will complete: for example, an expression such
as (def nohalt (x) (nohalt (+ x 1))), which infinitely recurses, is well-typed with type (num)→ num.
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7.1. Typing rules for surface programs

The type system builds on the Hindley-Milner type system [17] for ML-like functional languages. Since the
type inference rules are syntax-directed, they straightforwardly specify a variant of the Hindley-Milner type inference
algorithm [17]. I.e., they specify an algorithm (not present here) that, given an expression e and type assumptions
for its free variables, either fails (if the expression cannon be typed under the given type assumptions) or returns its
principal type, i.e., a type such that all the types that can be assigned to e by the type inference rules can be obtained
from the principal type by substituting type variables with types.

Types are partitioned in two kinds: expression types (for expressions) and function types (for built-in operators
and user-defined functions). The former are further partitioned in two kinds: local types (for fields of local values,
e.g., that produced by if) and field types (for fields of field values, e.g., that produced by nbr). Moreover, in order to
support polymorphic use of built-in operators and user-defined functions, we consider also function type schemes.

The syntax of expression types, local types, field types, function types and function type schemes is given in Fig. 6
(top). An expression type E is either a type variable α , or a local type, or a field type. A local type L is either a local
type variable β , or the type of Booleans bool, or the type of numbers num, or the type of a pair value 〈L,L〉. A field
type Φ is the type field(L) of a field whose domain contains values of local type L.

A function type F is the type (E)→ E of a (possibly zero-arity) built-in operator or user-defined function. We
write FTV(F) to denote free type variables and the free local variables occurring in F. E.g., FTV((α,field(β ))→
〈α,β 〉) = α,β . Function type schemes, ranged over by FS, support typing polymorphic uses of built-in operators and
user defined-functions. Namely, each built-in operator or user-defined function f has a function type scheme ∀αβ .F,
where α and β are all the type variables and local type variables occurring in the type F, respectively. Each use of
f can be typed with any type obtained from ∀αβ .F by replacing the type variables α with types and the local type
variables β with local types.

Expression type environments, ranged over by X and written x : E, are used to collect type assumptions for
program variables (i.e., the formal parameters of the functions and the variables introduced by the rep-construct).
Type-scheme environments, ranged over by D and written d : FS, are used to collect the function-type schemes in-
ferred for the user-defined functions. The distinguished built-in type-scheme environment O associates a function-type
scheme to each built-in function o—Fig. 7 shows the local type schemes for the built-in functions used in the examples
presented through the paper.

The type infeence rules are given in Fig. 6 (bottom). The typing judgement for expressions is of the form
“D ;X ` e : E”, to be read: “e has type E under the (implicit) type scheme assumption O (for built-in operators),
the type-scheme assumptions D (for user-defined functions), and the expression type assumptions X (for the pro-
gram variables occurring in e), respectively”. As a standard syntax in type systems [26], given E = E1, . . . ,En and
e= e1, . . . ,en (n≥ 0), we write D ;X ` e : E as short for D ;X ` e1 : E1 · · · D ;X ` en : En.

Rule [ST-VAR] (for variables) lookups the type assumptions for x in X .
Rule [ST-LOCAL] (for local values) exploits the auxiliary function typeof, defined in Fig. 6 (middle).
Rule [ST-OP] (for built-in function application) and Rule [ST-FUN] (for user-defined function application) are standard.

They ensures that the function-type scheme ∀αβ .F associated to the built-in function or user-defined function name
being applied is instantiated by substituting the local type variables β with local types L and the type variables α with
(possibly non-local) types E.

Rule [ST-REP] (for rep-expressions) ensures that both the variable x, its initial value w and the body e have (the
same) local type. This prevents a device δ to store in x a field value φ (whose domain is by construction equal to
the subset of the neighbours of δ that are aligned—i.e., that have evaluated this rep-expession in their last evaluation
round) that may be reused in the next computation round of δ , when the set of aligned neighbours may be different
from the domain of φ (this would cause a domain alignment error).

Rule [ST-NBR] (for nbr-expressions) ensures that the body e of the expression has a local type. This prevents the
attempt to create a “field of fields” (i.e., a field that maps device identifies to fields values)—that would be ill-formed.

Rule [ST-IF] (for if-expressions) ensures that the condition e0 has type bool and the branches e1 and e2 have (the
same) local type. This prevents the if-expression to evaluate to a field value whose domain is different from the
subset of the neighbours of δ that are aligned—i.e., that have evaluated this if-expression in their last evaluation
round. For instance, the expression
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Expression types:
E ::= α

∣∣ L
∣∣ Φ expression type

L ::= β
∣∣ bool ∣∣ num ∣∣ 〈L,L〉 local type

Φ ::= field(L) field type
Function types and function type schemes:

F ::= (E)→ E function type

FS ::= ∀αβ .F function type scheme

Auxiliary function for typing values:
typeof(b) = bool

typeof(n) = num

typeof(〈l1,l2〉) = 〈typeof(l1), typeof(l2)〉

Surface expression typing: D ;X ` e : E

[ST-VAR]

D ;X ,x : E ` x : E
[ST-LOCAL] L = typeof(l)

D ;X ` l : L

[ST-OP] O(o) = ∀αβ .F (E)→ E = F[α := E][β := L] D ;X ` e : E
D ;X ` (o e) : E

[ST-FUN] D(d) = ∀αβ .F (E)→ E = F[α := E][β := L] D ;X ` e : E
D ;X ` (d e) : E

[ST-REP] D ;X ` w : L D ;X ,x : L ` e : L
D ;X ` (rep x w e) : L

[ST-NBR] D ;X ` e : L
D ;X ` (nbr e) : field(L)

[ST-IF] D ;X ` e0 : bool D ;X ` e1 : L D ;X ` e2 : L
D ;X ` (if e0 e1 e2) : L

Function typing: D ` D : FS
[ST-FUNCTION] D , d : ∀• .E→ E;x : E ` e : E αβ = FTV((E)→ E)

D ` (def d(x) e) : ∀αβ .(E)→ E

Program typing: ` P : L
[ST-PROGRAM]

D0 = •
Di = (def di( ) ) Di−1 ` Di : FSi Di = Di−1, di : FSi (i ∈ 1..n)
Dn; /0 ` e : L

` D1 · · ·Dn e : L

Figure 6: CFC: expression types, function types and function schemes; auxiliary function for typing values; and type inference rules for surface
expressions, function declarations, and programs

(min-hood (+[f,f] (if (o1) (nbr (o2)) (nbr (o3))) (nbr (o4))))
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Pure built-in function (independent from the current device and value-tree environment):
O(and[f,f]) = (field(bool),field(bool))→ field(bool)
O(any-hood) = (field(bool))→ bool

O(min-hood) = ∀β .(field(β ))→ β

O(mux) = ∀β .(bool,β ,β )→ β

O(pair) = ∀β1β2.(β1,β2)→ 〈β1,β2〉
O(snd) = ∀β1β2.(〈β1,β2〉)→ β2
O(sense) = (num)→ bool

O(sum-hood) = (field(num))→ num

O(+) = (num,num)→ num

O(+[f,l]) = (field(num),num)→ field(num)
O(-) = (num,num)→ num

O(-[f,f]) = (field(num),field(num))→ field(num)
O(*) = (num,num)→ num

O(/) = (num,num)→ num

O(=[l,f]) = ∀β .(β ,field(β ))→ field(β )

Non-pure built-in function (depend from the current device and value-tree environment):
O(dt) = ()→ num

O(nbr-range) = ()→ field(num)
O(uid) = ()→ num

Figure 7: CFC: function type schemes for the built-in functions used in the examples through the paper

(where o1 has type ()→ bool, and o2, o3, o4 have type ()→ num) is ill-typed. Its body will fail to type-check
because of type rule [ST-IF], and would cause a run time error, since evaluation rules [THEN] and [ELSE] require local
values to be produced by the evaluation of the branches of an if-expression. This prevents conflicts between field
domains, as in this case, where the field produced by (nbr (o4)) would contain all neighbours, while the field
produced by the if-expression would contain only a subset, leaving the fields mismatched in domain at the sum. A
correct alternative is

(min-hood (+[f,f] (nbr (if (o1) (o2) (o3))) (nbr (o4))))

which conducts the test locally, ensuring that the domains of the two fields match.
Function declaration typing (represented by judgement “D ` D : FS”) and program typing (represented by judge-

ment “` P : L”) are almost standard.5 We say that a program P is well-typed to mean that ` P : L holds for some local
type L.

Example 7.1. The CFC calculus captures all the examples presented through the paper. In particular, the type system
it able to type the examples of well-formed programs illustrated in Sections 2, 4 and 6, and it rejects the examples of
ill-formed programs illustrated in Section 6.

7.2. Domain alignment and type soundness

The state of the computation for a program P = De in a device δ is represented by a configuration, which is a
3-tuple 〈δ ,Θ,e〉 where δ < dom(Θ), |e|= e and, for all δ ′ ∈ dom(Θ), |Θ(δ ′)|= e.

A configuration 〈δ ,Θ,e〉

• is in normal form if δ ;Θ;• ` e 9; and

5To simplify he presentation, we have not considered the issue of typing mutually recursive user-defined functions. To extend the type system
in order to type mutually recursive user-defined function can be straightforwardly accomplished by exploiting standard techniques (see, e.g, [32]).
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• is final if e = a·v.

Note that if a configuration is final then it is in normal form. A final configuration represents the state of a device
when a round of computation has been successfully completed. A configuration that is in normal form and is not final
represents a computation that is stuck, i.e., it represents a runtime error.

The set of reachable tree environments and the set of reachable configurations for the program P= De in a device
δ (denoted by RTE(δ ,P) and RC(δ ,P), respectively) are the set of tree environments and the set of configurations
inductively defined by the following clauses, taking into account the iterative nature of computation rounds:

• (δ1 7→ e1, . . . ,δn 7→ en) ∈ RTE(δ ,P) (n ≥ 0) if δ < {δ1, ...,δn} and for all i ∈ 1..n there exists 〈δi,Θi,ei〉 ∈
RC(δi,P) (for some Θi) such that 〈δi,Θi,ei〉 is final.

• 〈δ ,Θ,e〉 ∈ RC(δ ,P) if Θ ∈ RTE(δ ,P) and

– either 〈δ ,Θ,e〉 is a configuration and δ ;Θ;• ` e→∗ e;

– or there exists 〈δ ,Θ′,e′〉 ∈ RC(δ ,P) (for some Θ′) such that 〈δ ,Θ′,e′〉 is final and δ ;Θ;• ` init(e′)→∗ e.

Reachable configurations like 〈δ ,Θ,e〉 and 〈δ ,Θ, init(e′)〉 are called initial configurations. In particular, configura-
tions like 〈δ ,Θ,e〉 are called bootstrap configurations. An initial configuration represents the state of a device that
is ready for starting a round of computation, and a bootstrap configuration may represent the state of a device that is
ready for starting its first round of computation (note that, if the main expression e does not contain rep-expressions,
if-expression and function calls, then any initial configuration is a bootstrap configuration). Therefore, reachable
configurations are the configurations that a device can assume when it start from a bootstrap configuration and inter-
acts only with devices that have started from a bootstrap configuration. I.e., reachable configurations are the possible
states of the devices in a network initially empty and such that whenever a new device appears it has a bootstrap
configuration.

We are now able to formally state the domain alignment and type soundness properties (cf. the explanation at the
beginning of Section 7).

Theorem 7.2 (Domain Alignment). For every well-typed program P and every device δ , if 〈δ ,Θ,e〉 ∈ RC(δ ,P) and
δ ;Θ;• ` e→ e′ (for some e′) then every subreduction δ ;Θ0;Γ ` e1→ e2 in the reduction δ ;Θ;• ` e→ e′ is such that
if e2 = a·φ then dom(φ) = dom(Θ0)∪{δ}.

Theorem 7.3 (Type Soundness). For every well-typed program P and every device δ , if 〈δ ,Θ,e〉 ∈ RC(δ ,P) and
δ ;Θ;• ` e 9, then 〈δ ,Θ,e〉 is final.

The proofs of Theorems 7.2 and 7.3 are given in Appendix A. The proofs are done by introducing a suitable notion
of typing for runtime expressions and configurations and showing that:

(i) the initial configuration of a well-typed program at the first round of computation is well typed (Lemmas A.2
and A.4);

(ii) the initial configuration of a well-typed program in all the subsequent rounds of computation is well typed (Lem-
mas A.3 and A.4);

(iii) the domain of every field value occurring in a well-typed configuration consists of the identifiers of the aligned
neighbours and of the identifier of the uid device (Lemma A.5);

(iv) reducing a well-typed configuration produces a well-typed configuration (Theorem A.6 - subject reduction); and

(v) if a non-evaluated configuration is well typed then some reduction rule is always applicable (Lemma A.7 and
Theorem A.8 - progress).
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8. Toolchain

The computational field calculus presented in this paper is the foundation of a toolchain under development for
spatial computers, encompassing (i) the Protelis Java-like language, (ii) various incarnations of the Protelis architec-
ture, including in the Alchemist simulator and as a management toolkit for distributed servers, and (iii) self-stabilising
“building block” libraries and higher-level programming APIs. This section presents a brief survey of these compo-
nents (summarising relevant results from [39, 45, 40]), with the goal of illustrating how the theory of computational
field calculus translates into practical impact for distributed applications.

8.1. Protelis Language

We have designed the Protelis language [39] as an implementation of the field calculus that is well-integrated with
Java and the JVM framework. On the one hand, it is consistent with the specification of the field calculus, and its
interpreter is based on the operational semantics described in this paper. On the other hand, it turns the field calculus
into a fully blown programming language, by providing access to the rich Java API (semantically, a collection of built-
in operators) as well as supporting mechanisms for first-class functions. In implementing Protelis, we have used the
Xtext language development framework [22], which also supports a language-specific Eclipse IDE plugin that eases
adoption and code writing by means of code highlighting, completion suggestions and compile-time error detection.
Our complete Protelis implementation is free and open source, available at http://protelis.github.io/.

Syntactically, Protelis adopts a set of modern Java conventions, including using functional notation f (e1, . . . ,en)
for function calls, infix notation for binary arithmetic and comparison operators, definition of local variables (using
a let construct), anonymous functions of the form (x1, . . . ,xn)->{b} applied to arguments by an apply construct, and
import of static methods from Java APIs to be used as built-in operators. As an example, a Laplacian consensus
function similar to that in Example 4.1, in which the epsilon value is selected randomly within a given range, could
be implemented as a function randomized-laplacian-consensus as follows:

import java.lang.Math.random; ;; importing ’random’ from Java

def consensus (init, f) { ;; finding a consensus for init, using correction function f
rep (val <- init) {

val + f.apply(sumHood(nbr{val} - val))

}

}

def randomized-laplacian-consensus (init, min, max) {

let epsilon = min + (max - min) * random(); ;; computing epsilon
consensus(init, (x) -> {epsilon * x}) ;; calling the general consensus function

}

8.2. Portable architecture

In addition to a language, the Protelis implementation also supplies a virtual machine architecture that links field
calculus with the pragmatics of communication, execution, and interfacing with hardware, operating system, and
other software [39]. This architecture is designed to make field calculus programs readily portable across simulation
environments and also various classes of real networked devices (following the same general pattern as was used for
the Proto VM [2]), since development and maintainability are greatly enhanced if the exact same code can used for
execution at different stages of development, testing, and deployment.

Under this architecture, Protelis programs are first mapped into a valid representation of field calculus semantics.
This is then executed by the Protelis interpreter at regular intervals, using abstract interfaces to communicate with
other devices and to interact with the contextual environment (e.g., accessing sensors and position information, sig-
nalling actions by other programs). These abstract interfaces may then be instantiated for particular device platforms
or simulations by setting when executions occur, how communication is implemented, and the methods used for ac-
cessing the environment. This architecture is implemented in Java, both to make it highly portable across JVM-based
systems and devices (including the increasing number of low cost embedded devices that support Java), and also to
exploit Java’s reflection mechanisms in order to allow transparent use of a large variety of useful libraries and APIs.
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To date, we have exercised this architecture through construction of two instantiations: one in the Alchemist
framework [38] for simulation of large-scale spatially-embedded networks such as sensor networks, swarm robots,
and pervasive computing scenarios; the other a daemon for coordinating management of networked services [16]. In
the Alchemist instantiation, simulations are configured using a simple scripting language, which specifies a Protelis
program as well as the collection of devices that will execute it, communication between those devices, and other
aspects of the environment to be simulated. The Alchemist event-driven simulation engine then handles execution
scheduling, message delivery, and updates to the environment tuple store. One of the key advantages in using Al-
chemist is its support for simulation of various realistic scenarios. For example, for indoor simulated environments,
Alchemist can load images of building plans to be used as the simulated environment, and embeds various realistic
movement models for people moving in those environments [25]. Complementarily, for outdoor simulated environ-
ments, it can load OpenStreetMap [24] data to be used as environment, GPS traces to place and move wearable devices
associated with pedestrians, and GraphHopper6 to support simulated movement of pedestrians. For instance, in [40]
these features have been used to study how crowd steering algorithms could work in a simulation driven by GPS trace
data collected at the 2013 Vienna City Marathon. The other instantiation applies Protelis to network service manage-
ment. Here, each Protelis device lives on a server in an enterprise network, and is tethered to the networked service it
is intended to manage by a service manager daemon. This daemon monitors the service, injecting information about
its status and known dependencies into the environment and maintaining a neighborhood by opening parallel commu-
nication links to its corresponding daemons on any other servers that the monitored service communicates with. This
can then be used for implementing service management applications, such as dependency-aware distributed recovery
from faults [16].

8.3. Self-stabilising building blocks and APIs

Being functional in nature, both field calculus and its Protelis implementation promote a compositional and in-
cremental approach to the construction of complex systems. As is typical software engineering practice, this can be
approached by creating layers of APIs (libraries of function definitions) that progressively hide low-level details and
provide programmers with powerful abstractions for structuring spatial computing systems, each uniformly seen as
a reusable collective behaviour working on computational fields. Here, the key value of field calculus is its coherent
semantics for the scoping and composition of distributed systems, which greatly simplifies the analysis of such APIs.
This approach, as discussed in [45, 9], can support construction of distributed “building blocks” with formally proven
resilience properties (which get transferred to the APIs and systems built on top) as well as creation of substitutable
components (with the same function but trading off performance in different ways).

As a first layer, one can define combinators that capture “safe” patterns in the interplay of field calculus constructs,
e.g., various ways in which nbr and rep combine to manage information across many hops in a network. Three useful
such “building blocks” have been identified that can be used to completely hide nbr and rep, called G, C and T [9]. G
is a “spreading” operation generalising broadcast: it executes the two tasks of computing shortest-path distances from
a source and according to a given metric, and propagating values along the gradient of the distance using a suitable
context-dependent accumulation function. Conversely, C is an “aggregation” operation: it accumulates information
coming from an input field by progressively combining values that flow “downhill” on a potential field, using a suitable
accumulation function. Finally, T is a “flexible timer” operator, making a pointwise value progressively decrease until
reaching a “floor” value.

These three “building blocks,” along with if and built-in operators, form a “sub-language” of self-stabilising
systems, such that any system implemented using them is guaranteed to recover from any transitory change occurring
in sensors and network topology [45]. On top of this, one can create various general-purpose or application-specific
APIs, e.g., for collective spreading (broadcast to advertise events, pathForecast to forecast obstacles along a given
direction, distanceBetween to compute and spread minimum distance between regions, partition to segregate
space), for collective aggregation (summarise to sum all values of a field in a region, average to compute mean
values), for time management (limitedMemory to hold a value until a deadline expires, lowPassFilter to smooth a
rapidly changing field) and so on. Based on such APIs, as shown in [9], simple composition can allow an engineer to
create complex applications, like e.g. for crowd management, in which spatial computing performed by smart devices

6http://graphhopper.com/
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in large events can be used to detect crowded areas, and to provide directions for dispersal or for steering to desired
destinations by circumventing dynamically forming crowds.

9. Related work

A large number of prior works present notions of computational fields; a thorough review may be found in [7].
Regarding the most similar: the Hood sensor network abstraction [54] and Butera’s “paintable computing” hard-
ware model [13] implement computational fields using only the local view, and thus do not ensure well-formed
domains. Similar local views appear in a number of other approaches to computing with computational fields, such
as TOTA [29], the chemical models in [47], and Meld [1]. A number of region-based approaches to sensor net-
work programming provide an explicit model of fields, but either do not ensure well-formed domains (e.g., Abstract
Regions [53]) or do provide well-formed domains (e.g., Regiment [34]) but not general computation. A number
of parallel computing models also explicitly consider computational fields, most notably StarLisp [27] and systolic
computing (e.g., [21, 41]). Both of these use a model of communication via parallel shifting of data on a structured
network, which could be implemented by chained neighbourhood operations in field calculus. The στ-Linda model
[50] proposes an extension of Linda with a few constructs for spreading tuples to form fields, and adopting a notion
of computation rounds very similar to the one we formalised. Similarly, the tiny calculus for fields in [43] has an
analogous function style (which is in fact inspired by Proto again), but aims at defining behaviourally tractable fields,
and hence it has much reduced expressiveness. More generally, while all of the key ingredients for programming
computational fields are supported in a number of different languages (see [7]), at present only Proto supports all
five that we found critical to include in the calculus. Critically, however, field calculus has been proven to be space-
time universal [11], meaning that it is guaranteed to be able to express anything that can be expressed by these other
computational field approaches. In some cases, this is straightforward (e.g., the στ-Linda model can be implemented
quite directly) while in others the relationship is more complex (e.g., the shift operators in StarLisp, which assume a
perfectly crystalline spatial structure, coherent orientation relations, and tight time synchronization)

A number of other formal calculi have also been developed for parallel computations in structured environments,
like 3π-calculus [14], Ambient calculus [15], and P-systems [37]: they all describe parallel computation over vari-
ously abstracted notions of space. As a key example, Milner’s Bigraphs [31] have been proposed as a formal model
to ground pervasive computing applications, focussing on handling a dynamic notion of topology and locality of in-
teractions. Most specifically, works such as [12, 30] take bigraphs a step further easing the encoding of context-aware
systems and deriving agent programs from BRS modelling. Although theoretically the Bigraphs model has sufficient
expressiveness to capture any computational behaviour occurring on a dynamiclly evolving networked system, it does
not capture the right abstractions to properly deal with computational fields—hence, expressing the examples we pro-
vided in this paper would be cumbersome. More generally, Bigraphs, and also the other calculi mentioned above,
hardly express the functional nature of field computations, and do not provide means to reason in terms of aggregate-
level descriptions of distributed behaviour. Correspondingly, they also lack the toolchain necessary to actually turn
high-level system specifications into concrete systems.

A core operational semantics for discrete execution of Proto programs was developed in [44]. Although closely
related to the present one, it was a preliminary attempt extremely limited in the types of computations it could rep-
resent, since it did not tackle the fully general problem of combining restriction, evolution, and recursive function
calls (i.e. dynamically expanding evaluation trees), which we have addressed through the idea of aligning annotated
evaluation trees. Based on [44], in [46] a full formalisation of discrete Proto was provided. This resulted in a rather
large semantics aimed at a faithful representation of every construct in Proto and of their execution by the platform—
e.g., including an intricate technique for optimising message size. The resulting model is then too complicated to
readily use in proving language properties. In contrast, the operational semantics of CFC is general enough to cover
all of Proto and many other spatial languages [7], and is compact enough to be a suitable basis for tackling interesting
properties.

The syntax of CFC is a subset of the syntax of Proto (which, being based on the syntax of the programming
language Lisp, is dynamically typed). We have defined a type inference system for CFC by building on the Hindley-
Milner type inference system [17] for ML-like functional languages. The difference w.r.t. standard Hindley-Milner
type inference is the distinction between local types and field types, which is crucial in order to guarantee domain
alignment. Since we aimed to define a minimal core calculus we have considered a minimal set of primitive types
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and type constructors (i.e., the types for booleans and numerical values, and pairs)—other primitive types and type
constructors can be straightforwardly added. Note that the CFC calculus captures all the examples presented through
the paper.

The type-soundness theorem (Theorem 7.3) is proved by using the standard technique of subject reduction and
progress [55]. However, the nature the operational semantics (which models the computation performed by a single
device at a single round of computation, which depends from the computation previously performed by the device’s
neighbours) introduced some challenging non-standard elements. For instance: the formalisation of the notion of
well-formed tree environment (c.f. Section A.1) for dealing with the fact that each round of computation depends
on the neighbour’s evaluation trees; the formalisation of the domain alignment property (Theorem 7.2) which is also
needed to prove type soundness (the proof of Theorem 7.3 uses the Lemma A.5); and the fact that the proof of
the progress theorem (Theorem A.8) relies on the subject-reduction theorem (namely the proof of Lemma A.7 uses
Theorem A.6)—this is due to fact that both the operational semantics rules [REP] and [FUN] encode a congruence rule
possibly followed by a computation rule (cf. the discussion at the end of Section 5.4).

10. Conclusion and future work

This paper presents for the first time a minimal calculus with a sound type system for spatial computing mod-
els. We believe that our notion of static type system guaranteeing domain alignment and type soundness bootstraps
investigations on other important properties.

• A first line of research concerns studying behavioural properties, identifying fragments of the calculus guaran-
teed to generate field computations with given properties. An initial work in this direction, as mentioned also
in Section 8, has been developed in [45], which identifies a fragment of CFC enjoying self-stabilisation, and
paving the way towards lightweight engineering of complex field computations. This work can be extended to
provide a larger fragment guaranteeing self-stabilisation, as well as addressing new properties, e.g., addressing
scale-independency of computations (programs that have a predictable conformation of aggregate-level behav-
ior independent on the topology/density/timing of devices), and addressing dynamic aspects that pertain how
quickly field computations repair to changes.

• A second line of research addresses the problem of universality and expressiveness. In [11] we proved CFC
to be space-time universal, i.e., that it can approximate any physically realizable program over continuous
or discrete space and time. This work can be extended in many ways to address important technical problems.
First, there is a need for deeper understanding of the relationship between continuous specifications and discrete
realizations. Second, it may be interesting to compare expressiveness of different fragments of the calculus,
also against similar formalisms adopting different primitives. In [18] we introduced an higher-order extension
of CFC. Higher-order supports code mobility and provides more expressiveness, however it opens new issues
related to type-soundness and domain alignment. In future work we would like to prove type-soundness and
domain alignment for higher-order CFC.

• A third line of investigation is more practical and addresses development of the toolchain discussed in Section 8.
As the Protelis language and a basic supporting platform have been bootstrapped, next steps include adding a
type inference system to Protelis along the lines of the contribution of the present paper, as well as extending
to automatically checking self-stabilisation and other properties, improve platform support to address scala-
bility and cloud-based techniques, and finally to build rich APIs for rapid and effective engineering of spatial
computing systems.

In the long term, we believe CFC will serve as an important step toward identifying an engineering methodology
for developing spatial computing and coordination systems able to make use of complex yet predictably well-behaved
self-organising mechanisms [36], both in today’s and in emergent distributed computing scenarios.
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A. Proofs of Theorems 7.2 and 7.3

We say that: an expression type is closed to mean that it does not contain type variables and local type variables;
and a typing judgement D ;X ` e : E is closed to mean that E is closed and all the expression types in the range of
X are closed.

In the following we consider a well-typed program P= Demain. The main expression emain of P is closed expression
and has a closed local type. Therefore, its typing derivation contains only closed typing judgements. In the following:
we write X ` e : E as short for the closed typing judgement D ;X ` e : E, where the type-scheme environment
D (which is univocally determined by D) is left implicit; and always consider closed expression types and closed
expression-type environments. Moreover, given closed function type F′, built in operator o,and a user-defined function
d we write F′ ∈F (o) and F′ ∈F (d) as short for

D(o) = ∀αβ .F and F′ = F[α := E][β := L] for some closed expression types E and closed local types L

and

D(d) = ∀αβ .F and F′ = F[α := E][β := L] for some closed expression types E and closed local types L,

respectively.

A.1. Typing runtime expressions and configurations
The following clause extends to the auxiliary function typeof, defined in Fig. 6 (middle), to field values:

typeof({δ1 7→ l1}, . . . ,{δn 7→ ln}) = field(L) if n≥ 1 and L = typeof(l1) = · · ·= typeof(ln).

The predicate valueHasType(δ ,Θ,v,E) checks whether the runtime value v is of type E w.r.t. the tree environment
Θ on device δ . It is defined by the following clauses:

valueHasType(δ ,Θ,l,L) = true, if typeof(l) = L
valueHasType(δ ,Θ,φ ,Φ) = true, if dom(φ) = dom(Θ),δ and typeof(φ) = Φ

valueHasType(δ ,Θ,v,E) = false, otherwise

Given a variable environment Γ and a type environment X we write valueHasType(δ ,Θ,Γ,X ) to mean that

dom(Γ) = dom(X ) and (for all x ∈ dom(Γ)) valueHasType(δ ,Θ,Γ(x),X (x)).

We introduce three type systems for runtime expressions, for typing: initial configurations, final configurations,
and (possibly non-initial and non-final) configurations, respectively (cf. Section 7.2).7

• The typing rules for final runtime expressions (judgement δuid; Θ; X `f a·v : E ) are reported in Figure 8.

• The typing rules for initial runtime expressions (judgement δuid; Θ; X `i a·◦ : E ) are reported in Figure 9.

• The typing rules for runtime expressions (judgement δuid; Θ; X `r e : E ) are reported in Figure 10. Note that
rules [R-FINAL] and [R-FUN-BODY] use the typing judgment for final runtime expressions in the premises, while rules
[R-COND], [R-THEN], [R-ELSE], [R-FUN-ARG] use the typing judgment for initial runtime expressions in the premises.

Given a subexpression e of emain such that X ` e : E, the set of well-formed tree environments for e in a device
δ , denoted by WFTE(δ ,e), is inductively defined as follows:

(δ1 7→ e1, . . . ,δn 7→ en) ∈WFTE(δ ,e) (n≥ 0) if δ < {δ1, ...,δn} and for all i ∈ 1..n

7Introducing specialized type systems for initial and final configurations simplifies the formulation of the type system for (possibly non-initial
and non-final) configuration.
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Final runtime-expression typing: δuid; Θ; X `f a·v : E

[F-VAR]

valueHasType(δ ,Θ,v,E)
δ ; Θ; (X ,x : E) `f x·v : E

[F-LOCAL]

valueHasType(δ ,Θ,l,L)
δ ; Θ; X `f l·l : L

[F-NBR]

δ ; π(nbr [])(Θ); X `f e : L valueHasType(δ ,Θ,φ ,Φ)

δ ; Θ; X `f (nbr e)·φ : Φ

[F-THEN]

δ ; π(if [] e1 e)(Θ); X `f a·t : bool
δ ; π(if a·t [] e)(Θ); X `f e1 : L X ` e : L

δ ; Θ; X `f (if a·t e1 e)·l : L
[F-ELSE]

δ ; π(if [] e e2)(Θ); X `f a·f : bool
X ` e : L δ ; π(if a·f e [])(Θ); X `f e2 : L

δ ; Θ; X `f (if a·f e e2)·l : L
[F-REP]

X (w) = L δ ; π(repl x w [])(Θ); X [x : L] `f e : L
δ ; Θ; X `f (rep

l x w e)·l : L
[F-OP]

E1 · · ·En→ E ∈F (o)
for all i ∈ 1..n : δ ; π(o e1...ei−1 [] ei+1...en)(Θ); X `f ei : Ei valueHasType(δ ,Θ,v,E)

δ ; Θ; X `f (o e1 · · ·en)·v : E
[F-FUN]

(def d(x1 · · ·xn) e) E1 · · ·En→ E ∈F (d)
(for all i ∈ 1..n) δ ; π(da e1...ei−1 [] ei+1...en)(Θ); X `f ei : Ei
δ ; π(d[] e1···en)

(Θ); X [x1 : E1, . . .xn : En] `f a·v : E valueHasType(δ ,Θ,v,E)
δ ; Θ; X `f (d

a e1 · · ·en)·v : E

Figure 8: Typing rules for final runtime expressions

– |ei|= e, and

– there exists Θi ∈WFTE(δi,e) such that δi; Θi; X `f ei : E;

We say that a configuration 〈δ ,Θ,e〉 such that |e|= emain and Θ ∈WFTE(δ ,emain) is

• a well-typed final configuration if δ ; Θ; • `f e : L;

• a well-typed initial configuration if δ ; Θ; • `i e : L; and

• a well-typed configuration if δ ; Θ; • `r e : L.

A.2. Auxiliary properties and proofs

The following lemma guarantees that the projection operator π (cf. Section 5.3) preserves well-formedness of tree
environments.

Lemma A.1 (Projection π preserves well-formedness of tree environments). Let e be a subexpression of emain. If
Θ ∈WFTE(δ ,e), |e|= e and e = (A[e′])·v̊ then πA(Θ) ∈WFTE(δ , |e′|).
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Initial runtime expression typing: δuid; Θ; X `i a·◦ : E

[I-VAR]

δ ; Θ; (X ,x : E) `i x·◦ : E

[I-LOCAL]

valueHasType(δ ,Θ,l,L)
δ ; Θ; X `i l·◦ : L

[I-NBR]

δ ; π(nbr [])(Θ); X `i a·◦ : L
δ ; Θ; X `i (nbr a·◦)·◦ : Φ

[I-THEN]

δ ; π(if [] a1·◦ e)(Θ); X `i a·◦ : bool
δ ; π(if a·t [] e)(Θ); X `i a1·◦ : L X ` e : L

δ ; Θ; X `i (if a·◦ a1·◦ e)·◦ : L
[I-ELSE]

δ ; π(if [] e a2·◦)(Θ); X `i a·◦ : bool
X ` e : L δ ; π(if a·f e [])(Θ); X `i a2·◦ : L

δ ; Θ; X `i (if a·◦ e a2·◦)·◦ : L
[I-REP]

X (w) = L δ ; π
(repl̊ x w [])

(Θ); X [x : L] `i a·◦ : L

δ ; Θ; X `i (rep
l̊ x w a·◦)·◦ : L

[I-OP]

E1 · · ·En→ E ∈F (o)
for all i ∈ 1..n : δ ; π(o e1...ei−1 [] ei+1...en)(Θ); X `i ei : Ei

δ ; Θ; X `i (o e1 · · ·en)·◦ : E
[I-FUN-NULL]

(def d(x1 · · ·xn) e) E1 · · ·En→ E ∈F (d)
(for all i ∈ 1..n) δ ; π(d◦ e1...ei−1 [] ei+1...en)(Θ); X `i ei : Ei

δ ; Θ; X `i (d
◦ e1 · · ·en)·◦ : E

[I-FUN]

(def d(x1 · · ·xn) e) E1 · · ·En→ E ∈F (d)
(for all i ∈ 1..n) δ ; π(da e1...ei−1 [] ei+1...en)(Θ); X `i ei : Ei
δ ; π(d[] e1···en)

(Θ); X [x1 : E1, . . .xn : En] `i a·◦ : E
δ ; Θ; X `i (d

a e1 · · ·en)·◦ : E

Figure 9: Typing rules for initial runtime expressions
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Runtime expression typing: δuid; Θ; X `r e : E

[R-FINAL]

δ ; Θ; X `f a·v : E
δ ; Θ; X `r a·v : E

[R-VAR]

δ ; Θ; (X ,x : E) `r x·◦ : E

[R-LOCAL]

valueHasType(δ ,Θ,l,L)
δ ; Θ; X `r l·◦ : L

[R-NBR]

δ ; π(nbr [])(Θ); X `r e : L
δ ; Θ; X `r (nbr e)·◦ : Φ

[R-COND]

δ ; π(if [] e1 e2)(Θ); X `r a·l̊ : bool
δ ; π(if a·t [] e2)(Θ); X `i e1 : L δ ; π(if a·f e1 [])(Θ); X `i e2 : L

δ ; Θ; X `r (if a·l̊ e1 e2)·◦ : L
[R-THEN]

δ ; π(if [] e1 e2)(Θ); X `r a·t : bool
δ ; π(if a·t [] e2)(Θ); X `r e1 : L δ ; π(if a·f e1 [])(Θ); X `i e2 : L

δ ; Θ; X `r (if a·t e1 e2)·◦ : L
[R-ELSE]

δ ; π(if [] e1 e2)(Θ); X `r a·f : bool
δ ; π(if a·t [] e2)(Θ); X `i e1 : L δ ; π(if a·f e1 [])(Θ); X `r e2 : L

δ ; Θ; X `r (if a·f e1 e2)·◦ : L
[R-REP]

X (w) = L δ ; π
(repl̊ x w [])

(Θ); X [x : L] `r a·◦ : L

δ ; Θ; X `r (rep
l̊ x w a·◦)·◦ : L

[R-OP]

E1 · · ·En→ E ∈F (o)
for all i ∈ 1..n : δ ; π(o e1...ei−1 [] ei+1...en)(Θ); X `r ei : Ei

δ ; Θ; X `r (o e1 · · ·en)·◦ : E
[R-FUN-NULL]

(def d(x1 · · ·xn) e) E1 · · ·En→ E ∈F (d)
(for all i ∈ 1..n) δ ; π(d◦ e1...ei−1 [] ei+1...en)(Θ); X `r ei : Ei

δ ; Θ; X `r (d
◦ e1 · · ·en)·◦ : E

[R-FUN-ARG]

(def d(x1 · · ·xn) e) E1 · · ·En→ E ∈F (d)
(for all i ∈ 1..n) δ ; π(da e1...ei−1 [] ei+1...en)(Θ); X `r ei : Ei
δ ; π(d[] e1···en)

(Θ); X [x1 : E1, . . .xn : En] `i a·◦ : E
δ ; Θ; X `r (d

a e1 · · ·en)·◦ : E
[R-FUN-BODY]

(def d(x1 · · ·xn) e) E1 · · ·En→ E ∈F (d)
(for all i ∈ 1..n) δ ; π(da e1...ei−1 [] ei+1...en)(Θ); X `f ei : Ei
δ ; π(d[] e1···en)

(Θ); X [x1 : E1, . . .xn : En] `r a·◦ : E
δ ; Θ; X `r (d

a e1 · · ·en)·◦ : E

Figure 10: Typing rules for runtime expressions
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PROOF. By induction on well-formed tree environments. The tree environment Θ must be of the form (δ1 7→
e1, . . . ,δn 7→ en) (n≥ 0) with (for all i ∈ 1..n) δ , δi, |ei|= e and (for some Θi ∈WFTE(δi,e)) δi; Θi; X `f ei : E.

Case n = 0. Immediate.

Case n≥ 1. Straightforward by induction, with a case analysis of the last rule used the derivations δi; Θi; X `f ei : E.
�

The following lemma guarantees that the initial configuration of a well-typed program (according to system ` in
Fig. 6) at the first round of computation is a well-typed initial configuration (according to system `i).

Lemma A.2 (From surface to initial-runtime typing). Let e be a subexpression of emain. If X ` e : E and Θ ∈
WFTE(δ ,e), then δ ; Θ; X `i e : E.

PROOF. By induction on a derivation of X ` e : E.

Cases [ST-VAR] and [ST-LOCAL]. Immediate by rules [I-VAR] and [I-LOCAL], respectively.

Case [ST-IF]. Straightforward by induction, using any of rules [I-THEN] and [I-ELSE].

Cases [ST-NBR], [ST-REP], [ST-OP] and [ST-FUN]. Straightforward by induction, using rules [I-NBR], [I-REP], [I-OP] and [I-FUN-

NULL], respectively.
�

The following lemma guarantees that the initial configuration of a well-typed program in all the subsequent rounds
of computation is a well-typed initial configuration (according to system `i).

Lemma A.3 (From final- to initial-runtime typing). Let e be a subexpression of emain. If Θ,Θ′ ∈WFTE(δ ,e), |e|=
e and δ ; Θ; X `f e : E then δ ; Θ′; X `i init(e) : E.

PROOF. By induction on a derivation of δ ; Θ; X `f e : E (using Lemma A.1). First observe that the expression e
must be of the form a·v (for some auxiliary rte a and value v) and recall that init(a·v) is the runtime expression obtained
from a·v by dropping all annotations (not superscripts).

Cases [F-VAR] and [F-LOCAL]. Immediate by rules [I-VAR] and [I-LOCAL], respectively.

Cases [F-NBR], [F-THEN], [F-ELSE], [F-REP],[F-OP] and [F-FUN]. Straightforward by induction, using rules [I-NBR], [I-THEN], [I-

ELSE], [I-REP], [I-OP] and [I-FUN], respectively.
�

The following lemma guarantees that a well-typed initial configuration (according to system `i) is a well-typed
configuration (according to system `r).

Lemma A.4 (From initial-runtime to runtime typing). Let e be a subexpression of emain. If Θ∈WFTE(δ ,e), |e|=
e and δ ; Θ; X `i e : E then δ ; Θ; X `r e : E.

PROOF. By induction on a derivation of δ ; Θ; X `i e : E (using Lemma A.1).

Cases [I-VAR] and [I-LOCAL]. Immediate by rules [R-VAR] and [R-LOCAL], respectively.

Cases [I-NBR], [I-THEN], [I-ELSE], [I-REP],[TI-OP], [I-FUN-NULL] and [I-FUN]. Straightforward by induction, using rules [R-

NBR], [R-THEN], [R-ELSE], [R-REP], [R-OP], [R-FUN-NULL] and [R-FUN-ARG], respectively.
�

The following lemma guarantees that the domain of every field value occurring in a well-typed configuration
consists of the identifiers of the aligned neighbours and of the identifier of the uid device.
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Lemma A.5 (Domain alignment). Let e be a subexpression of emain. Suppose Θ ∈ WFTE(δ ,e), |e| = e and
δ ; Θ; X `f e : E. If e = a·φ then dom(φ) = dom(Θ)∪{δ}.

PROOF. By induction on a derivation of δ ; Θ; X `f e : E (using Lemma A.1).

Cases [F-VAR] and [F-LOCAL]. Immediate.

Cases [F-NBR], [F-THEN], [F-ELSE], [F-REP],[F-OP] and [F-FUN]. Straightforward by induction.
�

The subject reduction theorem guarantees that reducing a well-typed configuration produces a well-typed config-
uration.

Theorem A.6 (Subject reduction). Let e be a subexpression of emain. If Θ ∈WFTE(δ ,e), |e|= e, δ ; Θ; X `r e : E,
valueHasType(δ ,Θ,Γ,X ) and δ ;Θ;Γ ` e→ e′, then |e′|= |e| and δ ; Θ; X `r e′ : E.

PROOF. By induction on a derivation of δ ;Θ;Γ ` e→ e′ with a case analysis of the reduction rule used.

Case [VAL]. e = l·◦, e′ = l·l and (by rule [R-LOCAL]) δ ; Θ; X `r l·◦ : L. Then by rules [F-LOCAL] and [R-FINAL] we have
δ ; Θ; X `r l·l : L.

Case [VAR]. e = x·◦, e′ = x·v (with v = Γ(x)|dom(Θ),δ ) and (by rule [R-VAR]) δ ; Θ; X `r x·◦ : E. Then by rules [F-VAR]

and [R-FINAL] we have δ ; Θ; X `r x·v : E.

Case [NBR]. e = (nbr a·l)·◦, e′ = (nbr a·l)·φ (with φ = (π(nbr [])(Θ),δ 7→ l)) and (by rule [R-NBR]) δ ; Θ; X `r e : Φ.
We have δ ; Θ; X `f a·l : L (which is the premise of rule [R-NBR]). Then by rules [F-NBR] and [R-FINAL] we have
δ ; Θ; X `r e′ : Φ.

Case [OP]. e = (o a·v)·◦, e′ = (o a·v)·v (with v = ε(o,v)) and (by rule [R-OP]) δ ; Θ; X `r e : E. We have

O(d) = E1 · · ·En→ E, and

for all i ∈ 1..n : δ ; π(o e1...ei−1 [] ei+1...en)(Θ); X `f ei : Ei and ei = ai·vi

(which are the premise of rule [R-OP]). Then by rules [F-OP] and [R-FINAL] we have δ ; Θ; X `r e′ : E.

Case [THEN]. e = (if a·t a′·l e2)·◦, e′ = (if a·t a′·l |e2|)·l and (by rule [R-THEN]) δ ; Θ; X `r e : L. We have

δ ; π(if [] a′·l e2)(Θ); X `f a·t : bool,

δ ; π(if a·t [] e2)(Θ); X `f a′·l : L, and

δ ; π(if a·f a′·l [])(Θ); X `i e2 : L

(which are the premise of rule [R-THEN]). Since |e2| is a well-typed source expression, we have X ` |e2| : L.
Then by rules [F-THEN] and [R-FINAL] we have δ ; Θ; X `r e′ : L.

Case [ELSE]. Similar to case [THEN] above.

Case [CONG]. By case analysis of the congruence context C used by rule [CONG] and of the typing rule used for deriving
the judgement δ ; Θ; X `r e : E.

Subcase (nbr []). Typing rule [R-NBR]. Straightforward by induction.

Subcase (ds e [] e). Either typing rule [R-FUN-NULL] (if s= ◦) or typing rule [R-FUN-ARG] (if s , ◦). Both cases are
straightforward by induction.

Subcase (o e [] e). Typing rule [R-OP]. Straightforward by induction.

Subcase (if [] e e). Typing rule [R-COND]. Straightforward by induction.

Subcase (if a·t [] e). Typing rule [R-THEN]. Straightforward by induction.
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Subcase (if a·f e [] ). Typing rule [R-ELSE]. Straightforward by induction.

Case [REP]. e = (repl̊1 x w a)·◦, e′ = (repl̊1�l̊2 x w a′·l̊2)·l̊2 and (by rule [R-REP]) δ ; Θ; X `r e : L. We have

X (w) = L, and

δ ; π
(repl̊1 x w [])

(Θ); X [x : L] `r a·◦ : L

(which are the premises of rule [R-REP]). By induction we have

δ ; π
(repl̊1 x w [])

(Θ); X [x : L] `r a′·l̊2 : L. (1)

We have two subcases.

Subcase l̊2 = ◦ Then, from (1) by rule [R-NBR], we have δ ; Θ; X `r e′ : L.

Subcase l̊2 = l2 Judgement (1) is derived by rule [R-FINAL] and we have
δ ; π

(repl̊1 x w [])
(Θ); X [x : L] `f a′·l2 : L (which is the premise of rule [R-FINAL]). Then by rules [F-REP] and

[R-FINAL] we have δ ; Θ; X `r e′ : L.

Case [FUN]. e = (ds a·v)·◦, e′ = (da a·v)·v̊, O(d) = E1 · · ·En→ E, (def d(x1 · · ·xn) e0), and

δ ; Θ; X `r e : E. (2)

We have two subcases.

Subcase s= ◦ Judgement (2) is derived by rule [R-FUN-NULL]. We have

(for all i ∈ 1..n:) δ ; π(d◦ e1...ei−1 [] ei+1...en)(Θ); X `r ei : Ei where ei = ai·vi (3)

(which are premises of rule [R-FUN-NULL]) and

(for all i ∈ 1..n:) δ ; π(d◦ e1...ei−1 [] ei+1...en)(Θ); X `f ei : Ei (4)

(since the premises of rule [R-FUN-NULL] must be derived by rule [R-FINAL]). Since |e0| is a well-typed source
expression we have X ` |e0| : E and (by Lemmas A.2 and A.4) δ ; Θ; X [x1 : E1, . . .xn : En] `r e0 : E. By
induction we have

δ ; Θ; X [x1 : E1, . . .xn : En] `r a·v̊ : E. (5)

We have two subcases.

Subcase v̊ = ◦ Then, from (3) and (5) by rule [R-FUN-BODY], we have δ ; Θ; X `r e′ : L.
Subcase v̊ = v Judgement (5) is derived by rule [R-FINAL] and we have

δ ; Θ; X [x1 : E1, . . .xn : En] `f a·v : E. (which is the premise of rule [R-FINAL]). Then, from this judge-
ment and (4), by rules [F-FUN] and [R-FINAL] we have δ ; Θ; X `r e′ : L.

Subcase s= a0 Judgement (2) is derived by rule [R-FUN-BODY]. We have

(for all i ∈ 1..n:) δ ; π(d◦ e1...ei−1 [] ei+1...en)(Θ); X `f ei : Ei where ei = ai·vi (6)

δ ; π(d[] e1···en)
(Θ); X [x1 : E1, . . .xn : En] `r a0·◦ : E

(which are premises of rule [R-FUN-BODY]). By induction we have

δ ; Θ; X [x1 : E1, . . .xn : En] `r a·v̊ : E. (7)

We have two subcases.

Subcase v̊ = ◦ Then, from (6) and (7) by rule [R-FUN-BODY], we have δ ; Θ; X `r e′ : L.

31



Subcase v̊ = v Judgement (7) above must have been derived by rule [R-FINAL] and we have
δ ; Θ; X [x1 : E1, . . .xn : En] `f a·v : E. (which is the premise of rule [R-FINAL]). Then from this judge-
ment and (6) by rules [F-FUN] and [R-FINAL] we have δ ; Θ; X `r e′ : L.

�

The progress theorem guarantees that if a non-final configuration is well typed then some reduction rule is appli-
cable. We first prove the following auxiliary lemma.

Lemma A.7 (Progress). Let e be a subexpression of emain. Suppose Θ ∈WFTE(δ ,e), |e|= e, δ ; Θ; X `r e : E and
valueHasType(δ ,Θ,Γ,X ).

1. If e = x·◦, then x ∈ dom(Γ).

2. If e = (nbr a·v)·◦ and π(nbr [])(Θ) = (δ 7→ a·v), then vv are local values.

3. If e = (ifa·ve1 e2)·◦, then v is a Boolean value.

4. If e = (ifa·ta′·ve)·◦, then v is a local value.

5. If e = (ifa·f ea′·v)·◦, then v is a local value.

6. If e = (rep◦ x x′ a)·◦, then x′ ∈ dom(Γ).

7. If e = (repl̊1 x w a)·◦ and δ ;π
(repl̊1 x w [])

(Θ);Γ,(x := (Γ(w)� l̊1)) ` a→ a′·v, then v is a local value.

8. If e = (o a·v)·◦, then exec(o,v) is defined.

9. If e = (ds a·v)·◦, then (def d(x) e) and ](x) = ](v).

PROOF.

1. Straightforward by inspecting rule [R-VAR].

2. Straightforward by inspecting rule [R-NBR], using the hypothesis Θ ∈WFTE(δ ,e).

3. Straightforward by inspecting rules [R-COND], [R-THEN] and [R-ELSE].

4. Straightforward by inspecting rule [R-THEN].

5. Straightforward by inspecting rule [R-ELSE].

6. Straightforward by inspecting rule [R-REP], using the hypothesis valueHasType(δ ,Θ,Γ,X ).

7. Straightforward by inspecting rule [R-REP], using Theorem A.6.

8. Straightforward by inspecting rule [R-OP], using Lemma A.5 (recall that ε(o,v1, · · · ,vn) is defined only if all the
field values in v1, . . . ,vn have the same domain, cf. end of Section 5.1).

9. Straightforward by inspecting rules [R-FUN-NULL], [R-FUN-ARG] and [R-FUN-BODY].
�

We can now prove the progress theorem.

Theorem A.8 (Progress). Let e be a subexpression of emain. If Θ ∈ WFTE(δ ,e), |e| = e, δ ; Θ; X `r e : E and
valueHasType(δ ,Θ,Γ,X ), then either e = a·v (for some a and v) or δ ;Θ;Γ ` e→.

PROOF. According to the rules in Figure 5, reduction gets stuck (i.e., it has reached a normal form that is not
evaluated) only when:
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1. In rule [VAR] a variable not in dom(Γ) is found.

2. In rule [NBR] an attempt to build an ill-formed field (i.e., a “field” that maps at least one device to a value that is
not a local value) is made.

3. The condition of an if-expression evaluated to a not Boolean value.

4. In rule [THEN] the condition of the left branch of the if-expression evaluated to a field value.

5. In rule [ELSE] the condition of the right branch of the if-expression evaluated to a field value.

6. The second argument of a rep-expression is a variable that is not in dom(Γ).

7. The third argument of a rep-expression evaluated to a field value.

8. In rule [OP] the operator o is not defined on values v (this includes the case when the number of the values v is
different from the number of arguments required by o).

9. The number of actual parameters of a function call is different from the number of formal parameters in the
definition of the function.

Therefore the proof is straightforward by Lemma A.7.
�

We are now able to prove the domain-alignment and type-soundness theorems.

Restatement of Theorem 7.2 (Domain alignment). For every well-typed program P and every device δ , if
〈δ ,Θ,e〉 ∈ RC(δ ,P) and δ ;Θ;• ` e→ e′ (for some e′) then every subreduction δ ;Θ0;Γ ` e1 → e2 in the reduction
δ ;Θ;• ` e→ e′ is such that if e2 = a·φ then dom(φ) = dom(Θ0)∪{δ}.

PROOF. Straightforward by Lemmas A.2, A.3 and A.5 and Theorem A.6.
�

Restatement of Theorem 7.3 (Type soundness). For every well-typed program P and every device δ , if
〈δ ,Θ,e〉 ∈ RC(δ ,P) and δ ;Θ;• ` e 9, then 〈δ ,Θ,e〉 is evaluated.

PROOF. Straightforward by Lemmas A.2, A.3, A.4 and Theorems A.6 and A.8.
�
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