
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Baldoni, Matteo; Baroglio, Cristina; Capuzzimati, Federico. Programming
JADE and Jason agents based on social relationships using a uniform
approach, in: Proc. of the Second International Workshop on Multiagent
Foundations of Social Computing, MFSC 2015, IFAAMAS, 2015, pp: 1-17.

The publisher's version is available at:
http://www.lancaster.ac.uk/staff/chopraak/mfsc-2015/baldoni.pdf

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1520467

Programming JADE and Jason agents based on
social relationships using a uniform approach

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)

{matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

Abstract. Interaction is an essential feature in multiagent systems. De-
sign primitives are needed to explicitly model desired patterns. This work
presents 2COMM as a framework for defining social relations among
parties, represented by social commitments. Starting from the definition
of interaction protocols, 2COMM allows to decouple interaction design
from agent design, an advantage that simplifies agent programming, in-
dependently of the chosen agent platform. A comparison between real
implementations using 2COMM is provided for JADE and Jason agents.

Keywords: Social Commitments · Agents & Artifacts · Agent-Oriented Soft-
ware Engineering

1 Introduction and Motivation

Multi-Agent Systems (MAS) represent a preferred choice for building complex
systems, where the autonomy of each component represents a major require-
ment. Agent-oriented software engineers can choose from a substantial number
of agent platforms [16,9,14,3]. Tools like JADE [6], TuCSoN [18], DESIRE [10],
JaCaMo [8], all provide coordination mechanisms and communication infrastruc-
tures [9]; in our opinion, however, they lack of abstractions that allow a clear
and explicit modeling of interaction: the way in which agents interact is spread
across and “hard-coded” into agent implementations. A clear separation of the
agent specification from the coordination specification would have the advantage
of increasing agent decoupling as well as the decoupling of the agents from the
logic the rules their interaction.

To this aim, we propose to explicitly represent interaction patterns among
agents in terms of normatively defined social relationships; the normative charac-
terization is grounded on commitments, which feature a social and observational
semantics [21]; in order to represent the coordination requirements we propose
to rely on commitment-based protocols [23]. We also claim that the social rela-
tionships and commitment-based protocols should be integrated in the system in
the form of resources because this allows participants to dynamically recognize,
accept, manipulate, reason on them, and decide whether to conform to them.
This supplies a basis for coordination [13]. Furthermore, this work shows how

starting from interactions in building a system can be useful in programming
socially-responsive agents.

We rely on 2COMM [1] for building commitment-based protocols, in order to
decouple interaction from agent logic, in a way that is not bounded to an agent
platform. 2COMM is presented along with two connectors, one for JADE and
the other for JaCaMo. Connectors enable agents from different platforms to use
commitment protocols. When developing an agent that would play a role in a
protocol, social commitments that the agent has to handle constitute an outline
developers will follow; the result is a programming schema that make easier the
actual implementation of agents.

In order to reify the social relationships we rely on the Agents & Artifacts
meta-model (A&A) [22,17], which provides abstractions for environments and ar-
tifacts, that can be acted upon, observed, perceived, notified, and so on. 2COMM
adopts the abstraction of artifact to construct communication protocols that re-
alize a form of mediated, programmable communication, and in particular com-
mitment protocols to establish an interaction social state agents can use to take
decisions about their behaviour. Through 2COMM protocol artifacts, social rela-
tionships can be examined by the agents, as advised in [12], used (which entails
that agents accept the corresponding regulations), constructed, e.g., by nego-
tiation, specialized, composed, and so forth. Finally, 2COMM artifacts enable
the implementation of monitoring functionalities for verifying that the on-going
interactions respect the commitments and for detecting violations and violators.

Summarizing, this work proposes to introduce in MAS an explicit notion of
social relationships, captured as commitments (Section 2). Social relationships
are actual resources, implemented through artifacts, that are made available
to the agents, and are first-class entities of the model, as well as agents. The
framework 2COMM (Section 3) realizes the proposal based on an extension of
JaCaMo; we propose programming schemas for JADE and Jason agents. We
show the impact of the proposal on programming by means of an example (Sec-
tion 4) based on Contract Net Protocol (CNP), a FIPA standard protocol. The
example shows 1) practical advantages in terms of better code organization and
easier coding of agents interaction, and 2) how agent implementation is lead by
the interaction pattern, providing a cross-platform programming pattern.

2 Modeling Social Relationships

We propose to explicitly represent social relationships among the agents. By
social relationships we mean normatively defined relationships, between two or
more agents, resulting from the enactment of roles, and subject to social control.
Thus, we encode social relationships as commitments. A commitment [20] is rep-
resented with the notation C(x, y, r, p), capturing that the agent x commits to
the agent y to bring about the consequent condition p when the antecedent con-
dition r holds. Antecedent and consequent conditions generally are conjunctions
or disjunctions of events and commitments. When r equals >, we use the short
notation C(x, y, p) and the commitment is said to be active. Commitments have

a regulative nature, in that debtors are expected to behave so as to satisfy the
engagements they have taken. This practically means that an agent is expected
to behave so as to achieve the consequent conditions of the active commitments
of which it is the debtor.

We envisage both agents and social relationships as first-class entities that
interact in a bi-directional manner. Social relationships are created by the execu-
tion of interaction protocols and provide expectations on the agents’ behaviour.
It is, therefore, necessary to provide the agents the means to create, to manipu-
late, to observe, to monitor, to reason, and to deliberate on social relationships.
We do so by exploiting properly defined artifacts, that reify both interaction pro-
tocols, defined in terms of social relationships, and the sets of social relationships,
that are created during the protocols execution, available to agents as resources.

An artifact (A&A meta-model [22,17]) is a computational, programmable
system resource, that can be manipulated by agents, residing at the same ab-
straction level of the agent abstraction class. For their very nature, artifacts can
encode a mediated, programmable and observable means of communication and
coordination between agents. We interpret the fact that an agent uses an artifact
as its explicit acceptance, of the implications of the interaction protocol that the
artifact reifies. This allows the interacting parties to perform practical reasoning,
based on expectations: a debtors of a commitment is expected to behave so as to
satisfy the commitment consequent conditions; otherwise, a violation is raised.

A commitment-based protocol consists of a set of actions, whose semantics is
shared, and agreed upon, by all of the participants to the interaction [23,11]. The
semantics of the social actions is given in terms of commitment operations (as
usual for commitments, create, cancel, release, discharge, assign, and delegate).
The execution of commitment operations modifies the social state of the system,
which is shared by the interacting agents. As in [20], we postulate that discharge
is performed concurrently with the actions that lead to the given condition be-
ing satisfied and causes the commitment to not hold. Delegate and assign trans-
fer commitments respectively to a different debtor and to a different creditor
[20,23,11]. Commitment-based protocols provide a means of coordination, based
on the notification of social events, e.g. the creation of a commitment. Agents
use artifacts to coordinate and interact in a way that depends on the roles they
play and on their objectives. Such a decoupling avoids interaction logics to be
hard-coded in agent programs, a thing that would lead to an increasing develop-
ment efforts and a difficult maintenance of the system, especially in cross-firm
settings. Instead, relying on commitment-based protocols allows a modular def-
inition of components of the system and of how they interact, using the notion
of commitment to define the shape and the evolution of interaction patterns.

From an organizational perspective, a protocol is structured into a set of
roles. We assume that roles cannot live autonomously: they exist in the system in
view of the interaction. We follow the ontological model for roles proposed in [7],
and brought inside the object-oriented paradigm in [4,5], which is characterized
by three aspects: (1) Foundation: a role must always be associated with the
institution it belongs to and with its player; (2) Definitional dependence: the

definition of the role must be given inside the definition of the institution it
belongs to; (3) Institutional empowerment : the actions defined for the role in
the definition of the institution have access to the state of the institution and of
the other roles, thus, they are called powers; instead, the actions that a player
must offer for playing a role are called requirements. The agents that will be the
role players become able to perform protocol actions, that are powers offered by
a specific role and whose execution affect the social state. On the other hand,
they need to satisfy the related requirements: specifically, in order to play a role
an agent needs to have the capabilities of satisfying the related commitments –
capabilities which can be internal of the agent or supplied as powers as well.

3 2COMM: a Commitment-based infrastructure for
social relationships

We have claimed that an agent-based framework should satisfy two requirements:
1) Explicit representation of the social relationship; 2) Social relationships should
be first-class objects, which can be used for programming the agent behavior.
2COMM fulfills both requirements. Thanks to the social relationship abstraction,
2COMM enables an approach to agent programming that is not coupled to the
chosen agent platform.

Currently, 2COMM supports social relationship-based agent programming
for JADE and JaCaMo (i.e. Jason) agents. JADE supplies standard agent ser-
vices, i.e. message passing, distributed containers, naming and yellow pages ser-
vices, agent mobility. When needed, an agent can enact a protocol role, which
provides a set of operations by means of which agents participate in a mediated
interaction session. JaCaMo [8] is a platform integrating Jason (as an agent pro-
gramming language), CArtAgO and Moise (as a support to the realization of
organizations). Normative/organizational specification is expressed as a Moise
organization and translated into artifacts, that agents can decide to use.

We realize commitment-based interaction protocols by means of CArtAgO
[19] artifacts. The core of 2COMM is in charge for management, maintenance
and update of the social interaction state associated to each instance of a pro-
tocol artifact. CArtAgO provides a way to define and organize workspaces, that
are logical groups of artifacts, that can be joined by agents at runtime. The
environment is itself programmable and encapsulates services and functionali-
ties. An API allows programming artifacts, regardless of the agent programming
language or the agent framework used. This is possible by means of the agent
body metaphor: CArtAgO provides a native agent entity, which allows using the
framework as a complete MAS platform as well as it allows mapping the agents
of some platform onto the CArtAgO agents, which, in this way, becomes a kind
of “proxy” in the artifacts workspace. The former agent is the mind, that uses
the CArtAgO agent as a body, interacting with artifacts. An agent interacts with
an artifact by means of public operations, which can be equipped with guards:
conditions that must hold in order for operations to produce their effects.

Commitment management
extension

Jason Agent Platform

Observable Properties
socialState: SocialState

<< Artifact >>
ProtocolArtifact

Artifact Operations

create (commit: Commitment)
discharge (commit: Commitment)
cancel (commit: Commitment)
release (commit: Commitment)
assign (commit: Commitment, role: Role)
delegate (commit: Commitment, role: Role)
assertFact (fact: LogicalExpression)

commitments: Commitment [0…*]
facts: SocialFact [0…*]
context: ProtocolArtifact

SocialState

+ getFacts ()
+ getCommitments()
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment (commit: Commitment)
+ getContext()

creditor: RoleId
debtor: RoleId
antecedent: SocialFact [1…*]
consequent: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor()
+ setCreditor (role: Role)
+ getDebtor ()
+ setDebtor (role: Role)
+ getStatus ()
+ setStatus (status: enum)

roleId: RoleId
artId: ArtifactId
player: IPlayer

Role

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate ()
+ setPredicate (pred: String)
+ getArguments ()
+ setArguments (list: Object [1…*])
+ getFact ()

0…*

0…*

1…*

Observable Properties
enactedRoles: Role [1…*]
tset: TupleSet

<< Artifact >>
CommunicationArtifact

Artifact Operations
+ in(message: Object): void
+ out(): Object
+enact(roleName: String)
+deact(roleName: String)

Cartago A&A Platform

Agent

AgentId
AbstractTuple

Space

Artifact

1…*

- roleName: String
- myRole: Role
- type: int

RoleId

+ toString(): String

Moise Jade Agent Platform

ACLMessage

Agent

Behaviour

<<Interface>>
IPlayer

+getPlayerName(): String

+agentId: AgentId

JasonAgentPlayer

+getPlayerName(): String
+jadeBehaviour: Behaviour
+playerAgentID: AID

JadeAgentPlayer

+getPlayerName(): String

Fig. 1: Excerpt of the UML class diagram of 2COMM and connectors for JADE
and Jason.

2COMM is organized as follows. Protocol roles are provided by communica-
tion artifacts, that are implemented by means of CArtAgO. Each communication
artifact corresponds to a specific protocol enactment and maintains an own so-
cial state and an own communication state. Roles are linked to agents of the
specific platform, via connector classes that implements the IPlayer interface.
Figure 1 reports an excerpt of the 2COMM UML class diagram1. Let us get into
the depths of the implementation:

1 The source files of the system and examples are available at the URL http://di.

unito.it/2COMM.

http://di.unito.it/2COMM
http://di.unito.it/2COMM

– CommunicationArtifact (CA for short) provides the basic communication
operations in and out for allowing mediated communication. CA extends an
abstract version of the TupleSpace CArtAgO artifact: briefly, a blackboard
that agents use as a tuple-based coordination means. In and out are, then,
operations on the tuple space. CA also traces who is playing which role by
using the property enactedRoles.

– Class Role extends the CArtAgO class Agent, and contains the basic ma-
nipulation logic of CArtAgO artifacts. Thus, any specific role, extending
this super-type, will be able to perform operations on artifacts, whenever its
player will decide to do so. Role provides static methods for creating artifacts
and for enacting/deacting roles; the connector is in charge for linking agent
and protocol through an instance of requested role.

– The class CARole is an inner class of CA and extends the Role class. It
provides the send and receive primitives, implemented based on the in and
out primitives provided by CA, by which agents can exchange messages.

– ProtocolArtifact (PA for short) extends CA and allows modeling the so-
cial layer with the help of commitments. It maintains the state of the on-
going protocol interaction, via the property socialState, a store of social
facts and commitments, that is managed only by its container artifact. This
artifact implements the operations needed to manage commitments (create,
discharge, cancel, release, assign, delegate). PA realizes the commitment life-
cycle and for the assertion/retraction of facts. Operations on commitments
are realized as internal operations, that is, they are not invokable directly:
the protocol social actions will use them as primitives to modify the social
state. We refer to modifications occurred to the social state as social events.
Being an extension of CA, PA maintains two levels of interaction: the social
one (by commitments), and the communication one (by message exchange).

– The class PARole is an inner class of PA and extends the CARole class. It
provides the primitives for querying the social state, e.g. for asking the com-
mitments in which a certain agent is involved, and the primitives that allow
an agent to become, through its role, an observer of the events occurring in
the social state. For example, an agent can query the social state to verify
if it contains a commitment with a specific condition as consequent, via the
method existsCommitmentWithConsequent (InteractionStateElement el).
Alternatively, an agent can be notified about the occurrence of a social
event, provided that it implements the inner interface ProtocolObserver. Af-
terwards, it can start observing the social state. PARole also inherits the
communication primitives defined in CARole.

– The class SocialFact represents a fact of some relevance for the ongoing
interaction, that holds in the current state of interaction. A social fact is
asserted for tracking the execution of a protocol action. Actions can have
additional effects on the social state; in this case, corresponding social facts
are added to it.

– The class IPlayer is the interface between roles and players adopting them.
Currently 2COMM provides implementations for Jade (JadeBehaviourPlayer)
and Jason (JasonAgentPlayer).

In order to specify a commitment-based interaction protocol, it is necessary to
extend PA by defining the proper social and communicative actions as operations
on the artifact itself. Since we want agents to act on artifacts only through their
respective roles, when defining a protocol it is also necessary to create the roles.
We do so by creating as many extensions of PARole as protocol roles. These
extensions are realized as inner classes of the protocol: each such class will specify,
as methods, the powers of a role. Powers allow agents who play roles to actually
execute artifact operations. The typical schema will be:

1 public c lass MyProtoco lArt i fact
2 extends Pro to co lAr t i f a c t {
3 // . . .
4 stat ic {
5 addEnabledRole (" R o l e 1 " , Role1 . c lass) ;
6 addEnabledRole (" R o l e 2 " , Role2 . c lass) ;
7 // . . .
8 }
9 // MY PROTOCOL ARTIFACT OPERATIONS

10 @OPERATION
11 @ROLE(name=" r o l e N a m e ")
12 public void op1 (. . .) {
13 // prepare a message , i f needed ; in that case ,
14 send (message) ;
15 // modify the s o c i a l s tate ,
16 // e . g . c r ea t e commitment , update commitment
17 }
18 // . . .
19 // INNER CLASSES f o r ROLES
20 public c lass Role1 extends PARole {
21 public Role1 (Behaviour player , AID agent) {
22 super (" R o l e 1 " , p layer , agent) ;
23 }
24 // de f i n e s o c i a l a c t i on s f o r Role1
25 public void act ion1 (. . .) {
26 doAction (this . g e tA r t i f a c t I d () ,
27 new Op(" o p 1 " , . . . , getRoleId ())) ;
28 }
29 // . . .
30 }
31 public c lass Role2 extends PARole {
32 // . . .
33 }
34 // . . .
35 }

Protocol designers program the interaction protocol once. The resulting ar-
tifact can, then, be used in a JADE or in a JaCaMo context. Let us now briefly
illustrate general schemas for programming JADE and Jason agents.

3.1 JADE schema

Figure 2 sketches how the agent model reacts to a new social event occurrence.
For a JADE agent to play a role, one of its behaviours must implement the
method handleEvent, which receives the event just occurred in the social state.
The agent programmer will simply implement the logic for handling that event,
adding proper behaviour(s) to the agent’s behaviour repository. When scheduled,
the behaviour will be executed, and the event handled. The following is the
pseudo-code of an example implementation that agrees with the schema:

1 public c lass MyBehaviour extends
2 SomeJadeBehaviour implements ProtocolObserver {
3 [. . .]
4 public void act ion () {
5 Ar t i f a c t I d ar t = Role . c r e a t eA r t i f a c t
6 (myArtifactName , MyArtifact . c lass) ;
7 myRole = (SomeRole) (Role . enact
8 (MyArtifact .ROLE NAME, art ,
9 new JadeBehaviourPlayer (this , myAgent . getAID ()))) ;

10 myRole . s tar tObserv ing (this) ;
11 // add the i n i t i a l behaviour o f the agent

JADE Agent

2. activate behaviors according
to social events

Communication
State

Social
State

1. sense the social state

. . . .

<<interface>>
ProtocolObserver

+ handleEvent(SocialEvent
e, Object … args)

RoleBehaviour
+ handleEvent(SocialEvent e,
Object … args)

<<behaviour for event a >>
+ action()

<<behaviour for event b >>
+ action()

<<behaviour for event n >>
+ action()

Behaviour
Repository

3. schedule behavior
execution

Protocol Artifact

Fig. 2: 2COMM event handling schema for JADE agents.

12 }
13 public void handleEvent (Soc ia lEvent e ,
14 Object . . . args) {
15 SETemplate t = new SETemplate (
16 myRole . getRoleId ()) ;
17 SETemplate t2 = new SETemplate (
18 myRole . getRoleId ()) ;
19 t . iAmDebtor () . commitIsDetached ()
20 . consequentMatch (. . .) ;
21 t2 . iAmCreditor () . commitIsCondit ional ()
22 . antecedentMatch (. . .) ;
23 i f (t . match (e) {
24 myAgent . addBehaviour (. . .) ; // behaviour to handle the case
25 } else i f (t2 . match (e)) {
26 myAgent . addBehaviour (. . .) ; // behaviour to handle another case
27 } else
28 // . . . // behaviours f o r d i f f e r e n t ca se s
29 }
30 }
31 }

The basic schema, proposed for implementing a JADE behaviour, tracks how
to handle social events that a protocol artifact signals to an agent. Signaling
is performed through the handleEvent method, whose parameter contains the
social effects of the event (e.g. if a commitment is added or satisfied, if a social
fact is asserted, and such like). The implementation of handleEvent should con-
tain conditions related to the occurred event. In JADE, event-related behaviours
are added to the agent’s behaviour library when a certain condition holds (in
Jason, a plan will be triggered when a certain condition holds). If the social
event to be notified is a commitment, it is possible to further check specific
conditions of interest on it, including its state, the identity of its debtor and/or
creditor, the antecedent or consequent condition (lines 19-22). The agent will,
then, add appropriate behaviours to handle the detected situation. A template-
based matching mechanism for social events is provided (class SETemplate, lines
15–18) used by programmer in order to specify matching conditions. Each tem-

plate class method returns this, thus compacting the code for construction of
complex conditions simply using the standard method dot notation.

The handler represents the classical agent sense-plan-act cycle, rephrased
into “sense the social state”, “activate behaviors according to social events”,
“schedule behavior execution”. Notice that this mechanism represents an agent-
oriented declination of callbacks. The agent paradigm forbids to use pure method
invocation on the agent, that is autonomous by definition. Instead, the agent
designer provides a collection of behaviours in charge for handling the different,
possible evolutions of the social state, that are scheduled for execution when
the corresponding condition happens. For example, a specific behaviour can be
added when a new commitment is added, and the creditor of that commitment
is the agent; or when a social event is added to the social state. This way, an
intuitive and social-based programming schema is provided to agent developers.

3.2 Jason schema

JASON Agent

2. activate plans as intentions Communication
State

Social
State

1. sense the social state

. . . .

Update internal beliefs
according to social events

<<plan for event a >>

<<plan for event b >>

<<plan for event n >>

Intentions
Repository

3. schedule intention
execution

Protocol Artifact

Fig. 3: 2COMM event handling schema for Jason agents.

A Jason agent has the capability of performing reasoning cycles, that is,
the agent architecture performs a cycle of sense-plan-act, that allows agents to
evaluate which plans are triggered for execution each time an event occurs.This
is a difference with JADE, which, instead, provides the abstraction of agent only
as a set of behaviours with communication capabilities. For this reason it is
not required for Jason agents to foresee a specific processing of social events; in
facts, they can be modeled as regular Jason events, fired by the protocol artifact.
The adoption of artifacts that signal the occurrence of social events to focusing
agents allows plan specifications whose triggering events involve commitments,
as depicted in figure 3. Commitments can also be used inside a plan context or
body. As a difference with beliefs, commitment assertion/deletion can only occur

through the artifact, as a consequence of a modification of the social state. For
example, this is the case that deals with commitment addition:

+cc(debtor, creditor, antecedent, consequent, status) :
〈context〉 ← 〈body〉.

The plan is triggered when a commitment that unifies with the one on the
left hand side appears in the social state with the specified status. The syntax
is the standard for Jason plans. Debtor and Creditor are to be substituted by
the proper role names. The plan may be devised so as to achieve a change of
the status of the commitment (e.g.: the debtor will satisfy the consequent, the
creditor will satisfy the antecedent and so detach the commitment) or it may
be devised to allow the agent to do something as a reaction (e.g. collecting
information). A similar schema can be used in the case of commitment deletion
and in the case of addition (deletion) of social facts. Commitments can also
be used in contexts and in plans as test goals (?cc(. . .)) or achievement goals
(!cc(. . .)). Addition or deletion of such goals can, as well, be managed by plans.
For example:

+!cc(debtor, creditor, antecedent, consequent, status) :
〈context〉 ← 〈body〉.

The plan is triggered when the agent creates an achievement goal concerning
a commitment. Consequently, the agent will act upon the artifact so as to create
the desired social relationship. After the execution of the plan the commitment
cc(debtor, creditor, antecedent, consequent, status) will hold in the social state
and will have been projected onto the belief bases of each of the agents which
focused on the artifact.

4 Programming Agents on Social Relationships: an
example

2COMM protocols constitute an outline for building agents that entails a uni-
form implementation of agent social abilities among different platforms: how to
react to social events. We present a real implementation of the Contract Net
Protocol (CNP) [15], and how JADE and Jason agents can be implemented. We
adopt the following commitment-based CNP formulation:

cfp causes create(C(i, p, propose, accept ∨ reject))
accept causes none
reject causes release(C(p, i, accept, done ∨ failure))
propose causes create(C(p, i, accept, done ∨ failure))
refuse causes release(C(i, p, propose, accept ∨ reject))
done causes none
failure causes none

where i stands for the role Initiator, p for Participant, and none means that
the action execution just makes existing commitments progress (e.g. propose
detaches C(i, p, propose, accept ∨ reject)), if any involves it. Initiator supplies

its player the actions cfp (call for proposal), accept, and reject. The first allows
the initiator to ask participants for proposals for solving a task of interest. If
a proposal is chosen, action accept notifies the winner and all other proposals
are rejected. The role participant supplies its player the actions propose, refuse,
done, and failure. Action propose allows a participant to supply a solution for
a task, action refuse allows declining the invitation to send a proposal. If a
proposal is accepted, the winning participant is expected to execute the task
and either provide the result by means of the action done or communicate its
failure. Actions affect the social state, e.g., when an Initiator executes cfp, the
commitment C(i, p, propose, accept ∨ reject) is added to the social state. This
binds i to either accept or reject a proposal, if one is received.

1 public c lass Cnp extends Pro to co lAr t i f a c t {
2 private int numberMaxProposals = 10 ;
3 private int actua lProposa l s = 0 ;
4 // . . . other p ro toco l ope ra t i ons . . .
5 @OPERATION
6 @ROLE(name=" p a r t i c i p a n t ")
7 public void propose (St r ing prop , int cost ,
8 St r ing i n i t) {
9 Proposal p = new Proposal (prop , co s t) ;

10 RoleId pa r t i c i pan t =
11 getRoleIdByPlayerName (getOpUserName ()) ;
12 RoleId i n i t i a t o r =
13 getRoleIdByRoleCanonicalName (i n i t) ;
14 p . s e tRo le Id (pa r t i c i pan t) ;
15 RoleMessage propMessage = new RoleMessage (
16 par t i c ipant , i n i t i a t o r , ACLMessage .PROPOSE, proposa l) ;
17 send (propMessage) ;
18 def ineObsProperty (" p r o p o s a l " ,
19 p . getProposalContent () , p . getCost () ,
20 pa r t i c i p an t . getCanonicalName ()) ;
21 createCommitment (new Commitment(par t i c ipant ,
22 i n i t i a t o r , " a c c e p t " , " d o n e O R f a i l u r e ")) ;
23 a s s e r tFac t (new Fact (" p r o p o s e " , pa r t i c ipant ,
24 prop)) ;
25 ac tua lProposa l s++;
26 i f (ac tua lProposa l s == numberMaxProposals) {
27 RoleId groupPart i c ipant =
28 new RoleId (" p a r t i c i p a n t ") ;
29 createCommitment (new Commitment(i n i t i a t o r ,
30 groupPart ic ipant ,
31 " t r u e " , " a c c e p t O R r e j e c t ")) ;
32 }
33 // . . . other p ro toco l ope ra t i ons . . .
34 // Role c l a s s e s
35 public c lass I n i t i a t o r extends PARole {
36 // . . .
37 public void c fp (Task task) {
38 doAction (this . g e tA r t i f a c t I d () ,
39 new Op(" c f p " , task , getRoleId ())) ;
40 }
41 // . . .
42 }
43 public c lass Par t i c ipant extends PARole {
44 public void propose (Proposal proposal ,
45 RoleId proposa lSender) {
46 // . . .
47 }
48 // . . .
49 }
50 }

propose (line 7) is a social action. It is realized as a CArtAgO operation, in
fact it is decorated by the CArtAgO Java annotation @OPERATION, line 5. It
can be executed only by an agent playing the role participant. This is specified by
the 2COMM Java annotation @ROLE(name=“participant”), line 6. It asserts
social fact (line 23), that traces the proposal made by the participant; then, it
counts the received proposals and, when their number is sufficient, signals this
fact to the initiator by the creation of a commitment (line 21) towards the group
of participants. A message of performative PROPOSE (line 15) containing the
participant’s proposal is sent to the initiator.

The proposed CNP implementation remains the same independently from the
fact that it is used by a JADE or a Jason agents. 2COMM current version uses
role internal classes for JADE agents, while these are ignored if the enacting
agents are written in Jason. Let us now compare agents implementations to
highlight similarities and analogies. We will focus on the code for the Initiator
role, starting from a JADE agent.

Protocol designers can provide full support to JADE developers by imple-
menting behaviours that act as social event adapters, so an agent developer only
needs to provide behaviours for the events that are signaled by the artifact. A
clear advantage is an improved code reuse and modularization: the agent needs
to be able to react to social events, adopting corresponding behaviours, and,
therefore, the agent’s autonomy is not jeopardized by extending the adapter.
Here is a possible implementation for the Initiator adapter behaviour.

1 public abstract c lass In i t ia torAdapterBehav iour
2 extends OneShotBehaviour
3 implements ProtocolObserver {
4 public Str ing art i factName ;
5 protected I n i t i a t o r i n i t i a t o r ;
6 public abstract Behaviour
7 commitToAcceptOrRejectIfPropose () ;
8 public abstract Behaviour
9 satisfyCommitToAcceptOrReject () ;

10 public abstract Behaviour
11 ful f i l ledCommitToDoneOrFai lure () ;
12 public I n i t i a t o rBehav i ou r (St r ing art i factName){
13 this . art i factName = art i factName ;
14 }
15 public void act ion () {
16 Ar t i f a c t I d ar t = Role . c r e a t eA r t i f a c t (arti factName ,
17 CNPArtifact . c lass) ;
18 i n i t i a t o r = (I n i t i a t o r) (Role . enact (
19 CNPArtifact . INITIATOR ROLE, art , this ,
20 myAgent . getAID ())) ;
21 i n i t i a t o r . s tar tObserv ing (this) ;
22 myAgent . addBehaviour (
23 this . commitToAcceptOrRejectIfPropose ()) ;
24 }
25 public void handleEvent (Soc ia lEvent e ,
26 Object . . . args) {
27 SETemplate t = new SETemplate (i n i t i a t o r . getRoleId ()) ;
28 t . iAmDebtor () . commitIsDetached () ;
29 t . matchCreditor (CNPArtifact .PARTICIPANT ROLE) ;
30 t . matchConsequent (" a c c e p t O R r e j e c t ") ;
31 i f (t . match (e)) {
32 myAgent . addBehaviour (
33 satisfyCommitToAcceptOrReject ()) ;
34 } else {
35 t . matchConsequent (" d o n e O R f a i l u r e ") ;
36 i f (t . match (e))
37 myAgent . addBehaviour (
38 ful f i l ledCommitToDoneOrFai lure ()) ;
39 }
40 }}

After line 21, all events, occurring in the social state, are notified to the role
Initiator, which will handle them by executing handleEvent after a callback. The
above abstract behaviour is extended by the concrete behaviour of the agent that
plays the role Initiator. In particular, here we find the methods that create the
actual behaviours for managing the social events.

1 public c lass I n i t i a t o rAgen t extends Agent {
2 // . . .
3 public c lass In i t i a to rBehav iour Imp l
4 extends I n i t i a t o rBehav i ou r {
5 public f ina l Str ing ARTIFACT NAME = " C N P - 1 " ;
6 public In i t i a to rBehav iour Imp l () {
7 super (ARTIFACT NAME) ;
8 }
9 public Behaviour commitToAcceptOrRejectIfPropose (){

10 return new CommitToAcceptOrRejectIfPropose (
11 i n i t i a t o r) ;
12 }

13 public Behaviour satisfyCommitToAcceptOrReject (){
14 return new SatisfyCommitToAcceptOrReject (
15 i n i t i a t o r) ;
16 }
17 public Behaviour ful f i l ledCommitToDoneOrFai lure (){
18 return new Fulfi l ledCommitToDoneOrFailure (
19 i n i t i a t o r) ;
20 }
21 }
22 }

The agent logic is structured as a number of behaviours that are in charge
for handling the social events. When a social event is received, the adapter loads
the corresponding behaviour, that is scheduled for the execution. This is similar
to how a Jason agent is programmed, that is, a collection of plans that become
active when a trigger is satisfied. We describe the behaviour SatisfyCommit-
ToAcceptOrReject, which gathers proposals and selects the one to accept.

1 public c lass SatisfyCommitToAcceptOrReject
2 extends OneShotBehaviour {
3 I n i t i a t o r i n i t i a t o r = null ;
4 ArrayList<Proposal> proposa l s =
5 new ArrayList<Proposal >();
6 public SatisfyCommitToAcceptOrReject (
7 I n i t i a t o r i n i t i a t o r) {
8 super () ;
9 this . i n i t i a t o r = i n i t i a t o r ;

10 }
11 public void act ion () {
12 ArrayList<RoleMessage> propos =
13 i n i t i a t o r . r e c e i v eA l l (ACLMessage .PROPOSE) ;
14 for (RoleMessage p : propos) {
15 proposa l s . add ((Proposal) (p . getContents ())) ;
16 }
17 i n i t i a t o r . accept (proposa l s . get (0)) ;
18 for (int i = 1 ; i < proposa l s . s i z e () ; i++) {
19 i n i t i a t o r . r e j e c t (proposa l s . get (i)) ;
20 }
21 }
22 }

This implementation is analogous to how a Jason agent can be programmed
to react to the same commitment:

1
2 +cc (My Role Id , " p a r t i c i p a n t " , " t r u e " ,
3 " (a c c e p t O R r e j e c t) " , " D E T A C H E D ")
4 : enactment id (My Role Id) & not evaluated
5 <− +evaluated ;
6 . wait (2000) ;
7 . f inda l l (proposa l (Content , Cost , Id) ,
8 proposa l (Content , Cost , Id) , Proposa l s) ;
9 . min (Proposals , proposa l (Proposal , Cost , Winner Role Id)) ;

10 accept (Winner Role Id) .
11 . . . a c t i on ’ r e j e c t ’ f o r a l l other proposa l s . . .

We now report and comment excerpts of Jason agent code for the Initiator.

1 /* I n i t i a l goa l s */
2 ! startCNP .
3 /* Plans */
4 +!startCNP : true
5 <− makeArti fact (" c n p " , " c n p . C n p " , [] ,C) ;
6 focus (C) ;
7 enact (" i n i t i a t o r ") .
8 +enacted (Id , " i n i t i a t o r " , Ro le Id)
9 <− +enactment id (Role Id) ;

10 ! cc (Role Id , " p a r t i c i p a n t " , " p r o p o s e " ,
11 " (a c c e p t O R r e j e c t) " , " C O N D I T I O N A L ") .
12 +! cc (My Role Id , " p a r t i c i p a n t " , " p r o p o s e " ,
13 " (a c c e p t O R r e j e c t) " , " C O N D I T I O N A L ")
14 <− . print (" s e n d i n g c f p ") ;
15 . wait (2000) ;
16 c fp (" t a s k - o n e ") .
17 +cc (My Role Id , " p a r t i c i p a n t " , " t r u e " ,
18 " (a c c e p t O R r e j e c t) " , " D E T A C H E D ")
19 : enactment id (My Role Id) & not evaluated
20 <− +evaluated ;
21 . wait (2000) ;
22 . f inda l l (proposa l (Content , Cost , Id) ,
23 proposa l (Content , Cost , Id) , Proposa l s) ;

24 . min (Proposals , proposa l (Proposal , Cost , Winner Role Id)) ;
25 accept (Winner Role Id) .
26 . . . a c t i on ’ r e j e c t ’ f o r a l l other proposa l s . . .
27 +cc (Par t i c ipant Ro l e Id , My Role Id , " t r u e " ,
28 " (d o n e O R f a i l u r e) " , " D I S C H A R G E D ")
29 : done (Result)
30 <− . print (" T a s k r e s o l v e d : " , Result) .
31 +cc (Par t i c ipant Ro l e Id , My Role Id , " t r u e " ,
32 " (d o n e O R f a i l u r e) " , " D I S C H A R G E D ")
33 : f a i l u r e (Pa r t i c i pan t Ro l e Id)
34 <− . print (" T a s k f a i l e d b y " , P a r t i c i p a n t r o l e i d) .

!startCNP, line 2, is an initial goal, that is provided for beginning the inter-
action. In this implementation, the agent which plays the initiator role is in
charge for creating the artifact (makeArtifact(“cnp”,“cnp.Cnp”,[],C)) that will
be used for the interaction. The agent will, then, enact the role “initiator” (en-
act(“initiator”)); the artifact will notify the success of the operation by assert-
ing an enacted belief. Since the program contains the plan triggered by the
enacted belief, the initiator agent can, then, execute cfp. When enough partici-
pants will have committed to perform the task, in case their proposal is accepted
(cc(My Role Id, “participant”, “true”, “(accept OR reject”,“DETACHED”), the
initiator agent evaluates the proposals and decides which to accept (we omit the
reject case for sake of brevity).

Summarizing, a JADE agent leveraging 2COMM artifacts consists of a set of
behaviours aimed at accomplishing given social relationships: such behaviours
depend neither on when nor on how the social relationships of interest are cre-
ated inside the social state. These aspects are, in fact, encoded in the protocol
artifact that creates them based on the actions the agents perform. As a con-
sequence, modifying how or when a social relationship is created does not have
any impact on the agent implementation. Analogously for Jason agents, plans
are not affected by modifications made on protocol: it is possible to adapt the
interaction logic to different contexts without any impact on agents. Each plan
is defined as reaction to a social event, whose evolution is stated by the artifact.

The following table synthesizes a comparison among JADE and JaCaMo,
highlighting aspects that are improved or added by 2COMM.

JADE + 2COMM JaCaMo + 2COMM

Programmable communication channels X X X X

Notification of social relationships of interaction X X X X

Interaction/agent logic decoupling X X X X

Expected behaviours reasoning X X X X

Library of reusable patterns of interaction X X X X

Runtime interaction monitoring X X X X

Social-based Agent Programming Pattern X X X X

Norms and Obligations modeling X X X X

Table 1: Comparison among JADE, JaCaMo and 2COMM improvements.

5 Conclusions and Discussion

In this work, we have proposed 2COMM, an infrastructure for allowing actors
to behave following an accepted set of regulations, in a self-governance context.
2COMM integrates self-governance mechanisms by relying on the reification of
commitments and of commitment-based protocols. These are, at all respects, re-
sources that are made available to stakeholders and that are realized by means of
artifacts. 2COMM supports programming JADE and Jason agents, by following
a uniform approach. Recently, we developed on top of 2COMM a commitment-
based typing system [2] for JADE agents. Such typing includes a notion of com-
patibility, based on subtyping, which allows for the safe substitution of agents to
roles along an interaction that is ruled by a commitment-based protocol. Type
checking can be done dynamically when an agent enacts a role.

The proposal is characterized, on the one hand, by the flexibility and the
openness that are typical of MAS, and, on the other, by the modularity and the
compositionality that are typical requirements of the methodologies for design
and development. One of the strong points of the proposal is the decoupling
between the design of the agents and the design of the interaction, that builds
on the decoupling between computation and coordination done by coordination
models, like tuple spaces. This is a difference with respect to JADE or JaCaMo
where no decoupling occurs: a pattern of interaction is projected into a set of
JADE behaviours or Jason plans, one for each role. Binding the interaction to
ad-hoc behaviours/plans does not allow having a global view of the protocol and
complicates its maintenance.

Decoupling is an effect of explicitly representing social relationships as re-
sources: agent behaviour is, thus, defined based on the existing social relation-
ships and not on the process by which they are created. For instance, in CNP
the initiator becomes active when the commitments that involve it as a debtor,
and which bind it to accept or reject the proposals, are detached. It is not nec-
essary to specify nor to manage, inside the agent, such things as deadlines or
counting the received proposals: the artifact is in charge of these aspects. Testing
2COMM with Jason and JADE proved that programming agents starting from
their desired interaction can be a valuable starting point, that can be extended
towards a methodology useful for open and heterogeneous scenarios. We intend
to explore this direction by adding connectors for different agent platforms.

References

1. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. A commitment-
based infrastructure for programming socio-technical systems. ACM Transactions
on Internet Technology (TOIT), 14(4):23, 2014.

2. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Typing multi-agent
systems via commitments. In Fabiano Dalpiaz, Jürgen Dix, and M.Birna van
Riemsdijk, editors, Engineering Multi-Agent Systems, volume 8758 of Lecture Notes
in Computer Science, pages 388–405. Springer International Publishing, 2014.

3. Matteo Baldoni, Cristina Baroglio, Viviana Mascardi, Andrea Omicini, and Paolo
Torroni. Agents, multi-agent systems and declarative programming: What, when,
where, why, who, how? In 25 Years GULP, volume 6125 of Lecture Notes in
Computer Science, pages 204–230. Springer, 2010.

4. Matteo Baldoni, Guido Boella, and Leendert van der Torre. Modelling the Interac-
tion between Objects: Roles as Affordances. In J. Lang, F. Lin, and J. Wang, edi-
tors, Knowledge Science, Engineering and Management: First International Con-
ference, KSEM, volume 4092 of LNCS, pages 42–54, Guilin City, China, August
5-8 2006. Springer.

5. Matteo Baldoni, Guido Boella, and Leendert van der Torre. Interaction between
objects in powerjava. Journal of Object Technology, 6(2), 2007.

6. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - A Java Agent De-
velopment Framework. In Multi-Agent Programming: Languages, Platforms and
Applications, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 125–147. Springer, 2005.

7. Guido Boella and Leendert W. N. van der Torre. The ontological properties of so-
cial roles in multi-agent systems: definitional dependence, powers and roles playing
roles. Artificial Intelligence and Law, 15(3):201–221, 2007.

8. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming, 78(6):747 – 761, 2013.

9. Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni,
Jorge J. Gómez-Sanz, João Leite, Gregory M. P. O’Hare, Alexander Pokahr, and
Alessandro Ricci. A survey of programming languages and platforms for multi-
agent systems. Informatica (Slovenia), 30(1):33–44, 2006.

10. Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nick R. Jennings, and Jan
Treur. Desire: Modelling Multi-Agent Systems in a Compositional Formal Frame-
work. International Journal of Cooperative Information Systems, 06(01):67–94,
March 1997.

11. Amit K. Chopra. Commitment Alignment: Semantics, Patterns, and Decision Pro-
cedures for Distributed Computing. PhD thesis, North Carolina State University,
Raleigh, NC, 2009.

12. Amit K. Chopra and Munindar P. Singh. An Architecture for Multiagent Systems:
An Approach Based on Commitments. In Proc. of ProMAS, 2009.

13. Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Autonomous norm ac-
ceptance. In Intelligent Agents V, Agent Theories, Architectures, and Languages,
ATAL ’98, volume 1555 of Lecture Notes in Computer Science, pages 99–112.
Springer, 1998.

14. Michael Fisher, Rafael H. Bordini, Benjamin Hirsch, and Paolo Torroni. Compu-
tational logics and agents: A road map of current technologies and future trends.
Computational Intelligence, 23(1):61–91, 2007.

15. Foundation for Intelligent Physical Agents. FIPA Specifications, 2002.
http://www.fipa.org.

16. Viviana Mascardi, Maurizio Martelli, and Leon Sterling. Logic-based specification
languages for intelligent software agents. TPLP, 4(4):429–494, 2004.

17. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432–456, 2008.

18. Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model for mobile
information agents. In 1st International Workshop on Innovative Internet Infor-

mation Systems (IIIS’98), pages 177–187. IDI – NTNU, Trondheim (Norway), 8–9
June 1998.

19. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, 2011.

20. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97–113, 1999.

21. Munindar P. Singh. A social semantics for agent communication languages. In
Issues in Agent Communication, volume 1916 of LNCS, pages 31–45. Springer,
2000.

22. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems,
14(1):5–30, 2007.

23. P. Yolum and M. P. Singh. Commitment Machines. In Intelligent Agents VIII,
8th International Workshop, ATAL 2001, volume 2333 of LNCS, pages 235–247.
Springer, 2002.

	Programming JADE and Jason agents based on social relationships using a uniform approach

