&953,%: UNIVERSITA
S v 13'”’1 DEGLI STUDI
| “ A]]Lr l O %ﬁ?ﬁﬁ% DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Polymorphic Types for Leak Detection in a Session-Oriented Functional Language

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/137479 since 2017-11-22T16:00:25Z
Publisher:
SPRINGER-VERLAG BERLIN
Published version:
DOI:10.1007/978-3-642-38592-6_7
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

27 April 2024

UNIVERSITA
DEGLI STUDI
DI TORINO

115 AperTO

Thisisthe author'sfinal version of the contribution published as:

Viviana Bono; Luca Padovani; Andrea Tosatto. Polymorphic Types for Leak
Detection in a Session-Oriented Functional Language, in: Proceedings of the
2013 IFIP Joint International Conference on Formal Techniques for
Distributed Systems, SPRINGER-VERLAG BERLIN, 2013,
9783642385919, pp: 83-98.

The publisher's version is available at:
http://link.springer.com/content/pdf/10.1007/978-3-642-38592-6_7

When citing, please refer to the published version.

Link to thisfull text:
http://hdl.handle.net/2318/137479

Thisfull text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Ingtitutional Repository

Polymorphic Types for Leak Detection
in a Session-Oriented Functional Language

Viviana Bono, Luca Padovani, and Andrea Tosatto

Dipartimento di Informatica, Universita di Torino, Italy

Abstract. Copyless message passing is a communication paradigm in
which only pointers are exchanged between sender and receiver processes.
Because of its nature, this paradigm requires that messages are treated
as linear resources. Yet, even linear type systems leave room for scenarios
where apparently well-typed programs may leak memory. In this work
we develop a polymorphic type system for leak-free copyless messaging in
a functional setting, where first-class functions can be used as messages.

1 Introduction

When communicating processes can access a shared address space, it is sensible
to consider a copyless form of communication whereby only pointers to mes-
sages (instead of the messages themselves) are copied from senders to receivers.
The Singularity Operating System [9/I0] is a notable example of system mak-
ing pervasive use of copyless communication. In Singularity, messages live in a
shared area called exchange heap that, for practical reasons, cannot be garbage
collected: data in this area must be explicitly allocated and deallocated. Mes-
sages travel through channels that are represented as pairs of peer endpoints:
a message sent over one endpoint is received from the corresponding peer. Be-
cause channel endpoints can be sent as messages, they are also allocated in the
exchange heap and explicitly managed.

Explicit memory management is a well-known source of hard-to-trace bugs.
For this reason, it calls for the development of static analysis techniques meant
to spot dangerous code. In [II2] we have developed a type system for a language
of processes that interact through copyless messaging: well-typed processes are
guaranteed to be free from memory faults, memory leaks, and communication
errors. The type system associates channel endpoints with endpoint types rem-
iniscent of session types [TI§]. The present work extends the results of [2] to a
language with first-class functions. For example,

g = AeArlet f, ¢ = receive ¢ in close ¢; (f z)

is a function that, when applied to a channel endpoint ¢ and a value z, trans-
forms z through a function received from c. The receive c application evaluates
to a pair consisting of the message received from ¢ and c itself, the let decon-
structs such pair and binds its components to the local variables f and ¢/, and

2 Viviana Bono, Luca Padovani, and Andrea Tosatto

close ¢ deallocates ¢’. The explicit re-binding of ¢ enables the type system to
keep track of resource allocation and to spot violations in the memory manage-
ment. Indeed, endpoints are linear resources that are consumed when used in
a function application (like ¢ and ¢’ in receive ¢ and close ¢’) and acquired
when obtained as result of a function application (like for f and ¢ returned by
receive). In addition, the re-binding allows to assign different types to the same
channel endpoint according to how the code uses it: the above function can be
typed with the assignments ¢ : ?(Int —o Int).end and ¢’ : end where the type of
¢ denotes the fact that it can be used for receiving a message of type Int — Int
(a linear function from integers to integers) and the type end of ¢ is the residual
of ¢’s type after receiving this message; end indicates that ¢’ can be deallocated.

In [2] it was observed that it is possible to write apparently correct code
that yields memory leaks, whereby an allocated region of the heap becomes
inaccessible. This phenomenon manifests itself in the program

let a,b = open unit in close (send b a)

which creates a new channel represented as the two peer endpoints ¢ and b and
sends b over its own peer a. This code fragment can be typed using the assignment
{a : Ty,b: S1} where Ty = 1S].end and S is the recursive type satisfying the
equation S7; = 7S5;.end. Note that in this code fragment every resource that is
acquired is also consumed. Yet, after the execution of this code only endpoint a
is actually deallocated, while endpoint b has become inaccessible because stored
within its own queue. In [2] we rule out code like this by restricting the values that
can be sent as messages depending on their type. The idea consists in looking
at types for estimating the length of the chains of pointers originating from
values with that type — we call such measure type weight — and then restricting
messages to values whose type has a bounded weight. For example, the queue of
an endpoint of type S; may contain a message of type S, therefore the weight
of S is unbounded, whereas the weight of T} is zero because a can only be used
for sending messages, so its queue will never contain a message.

It turns out that the same technique does not work “out of the box” in a
language with first-class functions. The problem is that arrow types only tell
us what a function accepts and produces, but not which other (heap-allocated)
values the function may use, while this information is essential for determining
the weight of an arrow type. To illustrate the issue, consider the code fragment

)

let a,b = open unit in close (send (g b) a)

which is a little twist from the previous one. According to the definition of g,
(g b) is a message that contains b. This code fragment can be typed with the
assignment {a : T5,b : So}, where 75 = !(Int —o Int).end and Sy = ?(Int —o
Int).end. As before, this closed code fragment yields a memory leak due to b
not being deallocated, but in this case the type Int —o Int of the message in S
does not provide much information: we only know that (g b) is a function that
may make use of a linear value, but the type of such linear value, which is key
in order to assess the weight of Int —o Int, is unknown. The solution we put

Polymorphic Types for Leak Detection in a Functional Language 3

forward consists in decorating linear arrow types with an explicit weight, as in
Int w—o Int, to keep track of this information. In the above example, the weight
of S5 should be strictly greater than w, because endpoint b carries messages of
type Int w—o Int. At the same time, w should not be smaller than the weight of
Sa, because (g b) contains b. From this train of thoughts, one infers that there is
no finite bound for w, and consequently that (g b) cannot be safely sent over a.

Polymorphism adds another dimension to the problem and forces us to con-
sider a more structured representation of type weights. For example, the function

forward = \z.\y.let m,z’ = receive z in (z/, send m y)

which forwards a message from an endpoint = to another endpoint y, can be given
the polymorphic type 7a.A — 'a.B w— A ® B. The issue is how to determine
the weight w, given that x occurs free in the function Ay --- and that it has the
partially specified type ?7a.A. The actual weight of ?a.A depends on the weight of
the types with which a and A are instantiated. In particular, it is the maximum
between the weight of A and the weight of a plus 1 (because the queue for x
may contain a value of type a). We keep track of this dependency by letting
w={a, A} + 1.

In the rest of the paper we formalize all the notions sketched so far. We
begin by defining syntax and reduction semantics of a core functional language
equipped with session-oriented communication primitives (Section . We also
provide a precise definition of “correct” programs as those that are free from
memory faults, memory leaks, and communication errors. We proceed by pre-
senting the type language (Section [3]), the type system and its soundness results
(Section [d]). Related work (Section [5)) and a few concluding remarks (Section [6])
end the main body of the paper. The Appendix contains additional technical
material and proofs of the results.

2 Language

The syntax of our language is described in Table [I] where we use the following
syntactic categories: x, y range over an infinite set of variables; p, q range over an
infinite set Pointers of pointers; u ranges over names, which are either variables
or pointers, and U, V over sets of names; F ranges over expressions and v over
values; we write v to denote queues, namely finite sequences of values; k ranges
over constants from the set {unit, fix, fork, open, close, send, receive}; P, @
range over processes; ji ranges over heaps. The sub-language of expressions is
almost standard, except for the let construct which deconstructs pairs and
binds their components to two variables. As usual, Az.E binds =z in E and
let z,y = E; in E5 binds and y in Fs, therefore, bound and free names
are defined in the usual way. We will sometimes write let x = F; in Fs in
place of let z,y = (E1,unit) in Es where y is some fresh variable. Processes
are parallel compositions of expressions, each expression representing a thread
of execution. We identify processes modulo commutativity and associativity of

4 Viviana Bono, Luca Padovani, and Andrea Tosatto

Table 1. Syntax of expressions, processes, values, and heaps.

E = Expression v on= Value
v (value) P (pointer)
| = (variable) | (constant)
| (E,E) (pair) | A\z.E (abstraction)
| EE (application) | (v,v) (pair)
| let z,y=F in E (pattern match)
o= Heap
P = Process 1%} (empty heap)
(E) (thread) | p—[a;9] (endpoint)
| P|P (composition) | w,p (composition)

I. We write fn(E) and fn(P) for denoting the set of free names occurring in E
and P.

In order to express the operational semantics of processes, we need an explicit
representation of heaps as finite maps from pointers to endpoint structures [p, 9],
which, in turn, are a pair containing a pointer and a queue of values, representing
the messages received at that endpoint. The set of pointers to allocated endpoint
structures is dom(u), and we assume that the composition 1, po is defined only
when dom(u1) Ndom(uz) = 0. A system is a pair 3 P of a heap p and a process
P.

Table [2] defines the reduction semantics of expressions and of systems. Ex-
pressions reduce according to a conventional call-by-value semantics extended
with pattern matching over pairs. Systems reduce as a consequence of expres-
sions that are evaluated in threads and of primitive functions forking new threads
and implementing the communication operations. Rule (R-THREAD) performs a
step of computation within a thread. The evaluation context £ [12J6] is an ex-
pression with a hole, denoted by [|, where computation in a thread happens
next. Evaluation contexts are defined by

Eu=[]|(EE)| (v,E)|EE |vE|let z,y=E in E|let x,y =v in &

and E[E] denotes the result of filling the hole in £ with the expression E.

Rule (R-PAR) singles out threads running in parallel. Rule (R-FOrk) spawns a
new thread. Rule (R-OPEN) creates a channel as a pair of peer endpoints, by allo-
cating two endpoint structures in the heap which point to each other and initially
have an empty queue (e denotes the empty sequence of values). Rule (R-SEND)
inserts a value v on the queue of the peer endpoint of p. Rule (R-RECEIVE) ex-
tracts the head value from the queue associated with the endpoint pointed to
by p. In both send and receive, the operation evaluates to the endpoint being
used for communication, which is thus available for further operations. In the
following we write = for the reflexive, transitive closure of — and we write
i3 P — if there exist no p’ and P’ such that usP — p' s P'.

In this work, as in [2], we focus on three properties of systems: we wish
every system to be fault free, where a fault is an attempt to use a pointer not

Polymorphic Types for Leak Detection in a Functional Language 5

Table 2. Reduction semantics of expressions and systems.

Reduction of expressions
(Az.E)v — E{v/z} fix(A\z.E) — E{fix(\z.E)/x}
let z,y = (v,w) in E —, E{v,w/z,y}
Reduction of systems

(R-THREAD)
E— FE
s (EIE]) — ns (E[E)

(R-FoRK)
13 (Elfork E]) — p3 (E[unit]) || (E)

(R-PAR)
s P — ' g Pl
w3 Pul| Py — ' 5 PL|| P2

(R-OPEN)
p§ (Elopen unit]) — p,p = [g;el,q > [pse] § (E[(p, D)

(R-SEND)
1P = [4;9Ql,q = [p; Q5 (E[send (v,p)]) — p,p = [q; Q],q = [p; Q'v] 5 (E[p])

(R-RECEIVE)
psp = [q5vQ] 3 (E[receive p]) — p,p > [a; Q] § (E[(v,p)])

corresponding to an allocated endpoint; we wish every system to be leak free,
where a leak is an endpoint that becomes unreachable because no reference to it
is directly or indirectly available to the processes in the system; finally, we wish
every system to avoid communication errors, by enjoying (a limited form of)
progress, meaning that no process in the system should get stuck while reading
messages from a non-empty queue. We conclude this section by making these
properties precise. In order to do so, we need to formalize the reachability of a
heap object with respect to a set of root pointers. Intuitively, a process P may
directly reach any object located at some pointer in the set fn(P) (we can think
of the pointers in fn(P) as of the local variables of the process stored in its stack);
from these pointers, the process may reach transitively other heap objects by
reading messages from the queue of the endpoints it can reach.

Definition 2.1 (reachable pointers). We say that p is reachable from q in
p (written p <, q) if q = [r;0vd’] € poand p € fn(v). We write <, for the
reflexive and transitive closure of <,. The pointers reachable from U in p are
defined as p-reach(U) = {p € Pointers | 3 € U: p <, q}.

We are now ready to define formally well-behaved processes.

Definition 2.2 (well-behaved process). We say that P is well behaved if
for every possible reduction @ § P = pu§Q the following properties hold:

1. dom(p) = p-reach(fn(Q)).

6 Viviana Bono, Luca Padovani, and Andrea Tosatto

Table 3. Syntax of types.

o n= Type Scheme T .= Endpoint Type
t (monomorphic type) end (termination)
| Va:p.o (polymorphic type) | A (variable)
| A (dualized variable)
t o= Type | 7t.T (input)
Unit (unit type) | 1T (output)
| a (variable) | rec AT (recursion)
| T (endpoint type)
| t®t (linear pair) w = ‘Weight
| t—t (function) eS) (unbounded weight)
| tw—t (linear function) | X+n (bounded weight)

2. if Q = Py || Py, then p-reach(fn(Py)) N p-reach(fn(Pz)) = 0.
3. ifQ=(E)||Q and p3(E) —>, then either E = unit, or E = E[receive p]
and q > [p;€] € u, or E = E[close p] and p — [q;€] € .

Conditions (1) and (2) ask for the absence of faults and leaks. In detail,
condition (1) states that every allocated pointer in the heap is reachable by one
process, and that every reachable pointer corresponds to an object allocated
in the heap. Condition (2) states that processes are isolated, namely that no
pointer is reachable from two or more processes. Since expressions of the form
close p are persistent (they do not reduce), this condition rules out memory
faults whereby the same endpoint is deallocated multiple times. Condition (3)
requires the absence of communication errors, namely that if 4§ @ is stuck (no
reduction is possible), then it is because every non-terminated process in @ is
waiting for a message on an endpoint having an empty queue. This configuration
corresponds to a genuine deadlock where every process in some set is waiting for
a message that is to be sent by another process in the same set. Condition (3)
also ensures the absence of so-called orphan messages: no message accumulates
in the queue of closed endpoints.

3 Types

Table [3] gives the syntax of types using the following syntactic categories: m, n
range over natural numbers; A, B, ... range over an infinite set of endpoint type
variables; a, b, ... range over an infinite set of value type variables; a, B range
over type variables, which are either endpoint or value type variables without
distinction; X, Y range over finite sets of type variables; p ranges over qualifiers,
which are elements of {any, fin}; w ranges over weights; t, s range over types;
o range over type schemes; T', S range over endpoint types.

Endpoint types denote pointers to channel endpoints; they are fairly standard
session types with input/output prefixes ?t/!¢, recursion, and a terminal state
end. Endpoint type variables A can occur in dualized form A, as in [4]. This is

Polymorphic Types for Leak Detection in a Functional Language 7

necessary for typing some functions, beside simplifying the definition of duality.
For simplicity we omit choices and branches; they can be added without posing
substantial problems. Types include the conventional constructs of functional
languages a la ML, comprising a Unit type (other data types can be added as
needed), linear functions, and linear pairs. The linear types are necessary to
denote objects (functions, pairs) that contain channel endpoints and that, for
this reason, must be owned and used linearly. In particular, the linear arrow
type t w—o s denotes a function whose body may contain pointers and has an
explicit decoration w determining its weight. A weight is a term representing the
length of a chain of pointers in the program heap. It can be either co, denoting
an unbound length, or X + n denoting a length that is bound by the weight
of the types that will instantiate the type variables in X plus the value of the
constant n. We will often write X instead of X + 0 and n instead of 0 + n.
Type schemes are almost standard, except that polymorphic type variables are
associated with a qualifier p: if the qualifier is any, then there is no constrain
as to which types may instantiate the type variable; if the qualifier is fin, then
only finite-weight types may instantiate the type variable. We will write ¢ for
denoting sequences tq,...,t, of types and we will often write V& :: p.t in place
of Vag :: p1 -+ -V, i1 py.t for some n.

A type is well formed if none of its endpoint type variables bound by a rec
occurs in a weight. For example, both Unit{A}—Unit and VA :: any.Unit{A}—o
Unit are well formed, but rec A.!(Unit {A}—o Unit).end is not. From now on
we implicitly assume to work with well-formed types.

The predicate lin(o) identifies linear types:

lin(a) lin(T) lin(t1 @ t2) lin(t; w—o t3) %
lin(Véa :: p.t)

We say that o is unlimited, notation un(o), if not lin(o). Note that a type variable
is always considered linear because it may be instantiated by a linear type. A
full-fledged type system might distinguish between linear and unlimited type
variables for better precision; we leave this as a straightforward extension for
the sake of simplicity.

There are three crucial notions regarding types that we need to define next,
namely duality, type weight, substitution. It turns out that these notions are mu-
tually dependent on one another and their formal definition requires a carefully
ordered sequence of intermediate steps that relies on type well formedness. Here
we only present the “final” definitions and highlight peculiarities and pitfalls of
each, while the detailed development can be found in the appendix.

Duality. Communication errors are prevented by associating peer endpoints with
dual endpoint types, so that when one endpoint type allows sending a message of
type t, the dual endpoint type allows receiving messages of type t and when one
endpoint should be closed the other endpoint should be closed as well. Roughly,
the dual of an endpoint type T, denoted by T, is obtained from T by swapping
?’s with !’s so that, for example, the dual of 7¢.!s.end is !t.7s.end. In practice,

8 Viviana Bono, Luca Padovani, and Andrea Tosatto

things are a little more complicated because of recursive behaviors. For example,
the dual of T = rec A.'A.end is not S = rec A.?7A.end. Indeed, in T the
recursion variable occurs within a prefix, denoting the fact that an endpoint of
type T' carries messages which have themselves type T'. That is, T'= !T.end. By
contrast, we have S = ?7S.end, hence from an endpoint of type S we can receive
another endpoint having type S. In fact, we have T = ?T.end # S.

The dual of an endpoint type is inductively defined by the equations:

~
Il

end = end EZZ ?t.
A

rec AT =rec AT{A/A} A= 't.

e [l

1.
1.

~
|

where T{A/A} denotes the endpoint type T" where free occurrences of A have
been replaced by its dualized form and free occurrences of A by A. For example,

we have rec A.'A.end = rec A.' A.end = rec A.?A.end.

Weight. The weight of a type (scheme) gives information about the length of
the chains of pointers originating from values having that type (scheme). For
example, the weight of end is 0, because the queue of an endpoint of type end
will never contain any message, hence no chains of pointers can originate from an
endpoint of this type. On the contrary, an endpoint of type ?end.end may contain
a pointer to another endpoint of type end, therefore its weight is 1. Because types
may contain type variables, in general the weight of a type depends on how these
type variables are instantiated. In order to compute the weight of a type, we must
be able to compare weights:

Definition 3.1 (weight order). We define the relation < over weights as the
least partial order such that w < oo and X +m <Y 4+n if X CY and m < n.

Observe that, if W is the set of all weights, then (W, <) is a complete lattice
with least element () 4+ 0 and greatest element co. In what follows we will use the
operators V and A to respectively compute the join and meet of possibly infinite
sets of weights.

Definition 3.2 (weight). Let | be the largest relation such that t | w implies
either

— w =00, or
— t="Unit ort=1%t; -ty ort=end ort= 11T, or
—t=aandw=(XU{a})+mn, or
—t=t1 ®ty and ty L w and ts | w, or
—t=?T andw=X+(n+1) and s} (X +n) and T | w, or
—t=t;w—oty and w' < w.
The weight of a type t, denoted ||t|, is defined as ||t| = At @-
Intuitively, the relation ¢ | w says that w is an upper bound for the length
of the chains of pointers originating from values of type ¢, and ||¢|| is the least of
such upperbounds. It is easy to see that every unlimited type has a null weight

Polymorphic Types for Leak Detection in a Functional Language 9

(a value with unlimited type cannot contain any pointer) and that, for instance,
laf] = {a} and ||t®s]| = ||t]|V]|s||- Also, endpoints with type end or !¢.T have null
weight because their queues must be empty (this property will be enforced by the
type system in Section [d]). However, we have that ||?a.end|| = {a} + 1 because
an endpoint of such type may contain a value of type a, so the length of the
longest chain of pointers originating from such an endpoint is 1 plus the length
of longest chain of pointers originating from a value with type that instantiates
a. In general, we have ||?t.T| = (||t|| + 1) V ||T]|. If we take the endpoint type
S; = rec A.7A.end from Section [1] we have ||S1]| = oo because S; has no finite
upperbound. Finally, note that ||A| = oo. This is because, in general, there is
no relationship between the weight of an endpoint type and that of its dual. For
instance, we have ||!Sj.end|| = 0 but ||!Si.end| = ||?S1.end|| = oco. It would
be possible to allow dualized type variables in the syntax of weights, but since
such variables occur seldom in types we leave this extension out of our formal
treatment and conservatively approximate their weight to oo.

Substitution. Intuitively, a substitution t{s/a} represents the type obtained by
replacing the occurrences of « in ¢ with s. This notion is standard, except for two
features that are specific of our type language. The first feature is the presence
of dualized endpoint type variables A. The idea is that, when A is replaced by an
endpoint type T, A is replaced by T, namely by the dual endpoint type of T that
we have just introduced. The second feature is the presence of type variables
in weights which decorate linear function types. In particular, a substitution
(t; w—o t2){s/a} may need to update w = X + n if @ € X. Formally, we define
a weight substitution operation w{w’/a} such that

(X\{a}h)vw)+n ifw=X+4+nandaeX
w otherwise

w{w'/a} of {

where we define a meta operator w+n such that co+n = oo and (X +m)+n =
X + (m +n). Then t{s/a} is defined in the standard way except that

AT/A =T and (tw—ots){s/a} = ti{s/a} w{|s|/a}— ta{s/a}

Finally, we generalize the notion of weight to type schemes so that [|Va :
pt] =V |[t{5/a}|. Note that we do not worry about instantiating f1in-qualified
type variables with infinite-weight types, since such type variables can be instan-
tiated with types having arbitrarily large weight anyway. Therefore, if the weight
of t depends in any way from one of the «;, the overall weight of the type scheme
will be 0o, no matter what.

We identify types modulo folding/unfolding of recursions. That is, rec A.T =
T{rec A.T/A} (we have already used this property in Definition [3.2)).

4 Type System

We give the types of the constants in Table[d] The types in the Lh.s. of the table
are unremarkable. The open primitive returns a pair of peer channel endpoints

10 Viviana Bono, Luca Padovani, and Andrea Tosatto

Table 4. Type of constants.

unit : Unit open : VA :: any.Unit — (A ® A)
fix :Va :: any.(a — a) > a close : end — Unit
fork : Unit — Unit send : Va :: finVA 1 any.(a ® 'a.A) — A
receive : Va :: finVA :: any.?7a.A — (a ® A)

when applied to the unit value. For this reason, the resulting type is a pair of
dual endpoint types. Because open is polymorphic, this can only be expressed
using a dualized endpoint type variable. Note how open is an example of resource-
producing function, accepting an unlimited value unit and returning a linear
pair. The close primitive accepts an endpoint provided that it has type end
and deallocates it. Being the converse of open, close is an example of resource-
consuming function, accepting a linear value and not returning it. The send and
receive constants implement the communication primitives: send accepts a
message of type a, an endpoint of type !'a.A that allows sending such a message,
and returns the same endpoint with the residual type A; receive accepts an
endpoint of type 7a.A, reads a message of type a from such an endpoint, and
returns the pair consisting of the received message and the endpoint with the
residual type A. Observe that, in both send and receive, the value type variable
a is qualified by fin, meaning that only values with finite-weight type can be sent
and received. On the contrary, no constraint is imposed on A. In the following
we write TypeOf(k) for the type scheme associated with k according to Table

Judgments of the type system depend on two finite maps: the type variable
environment ¥ = {«; :: p; }ier associates type variables with qualifiers, while the
name environment T = {u; : 0; }ier associates names with type schemes. In both
cases we use dom(-) for denoting the set of type variables/names for which there is
an association in the environment. We also write X, «v :: p (respectively, I',u : o)
to extend the environment whenever a ¢ dom(X) (respectively, u ¢ dom(I")).
Finally, we write T'|y for the restriction of I to the names in U. Because name
environments may contain linear entities (pointers) as well as unlimited ones, it
is convenient to define also a more flexible (partial) operator + for extending
them. As in [5], we let

r ifu:o0 €Tl and un(o)
F+u:c=<XT,u:o if u & dom(T")
undefined otherwise

and we extend + to pairs of environments I +I by induction on I'; in the natural
way. We write lin(T") if lin(T'(u)) for some v € dom(T") and un(T") otherwise.

Sometimes we will need to reason on the finiteness of a weight which contains
type variables. In such cases, we use the information contained in a type variable
environment for determining whether a weight is finite or not. More precisely,
we write X - X +n < oo whenever « :: fin € X for every a € X.

Polymorphic Types for Leak Detection in a Functional Language 11

Table 5. Typing rules for processes and expressions.

(T-THREAD) (T-PAR) (T-ConsT)
@0;T + E : Unit NeP Nk Py un(T) I+ TypeOf(k) =t
FF<E> F1+I‘2FP1||P2 Z;Fkk:t
(T-NAME) (T-LET 1)
un(T") ko>t YauphFE Yo,z Va: piti b By ta
STbu:obu:t Y+ Tk let x=Fq in By : o
(T-PAIR) (T-LET 2)
Vie{1,2} : L EE;: ts LBt ®te YiTo,x:t1,y:tab Fa:t
S+ (E17E2) 11 ® o Y+ Tekletz,y=F1 in Fa : t
(T-ARROW) (T-ArRrROW LIN)
LTz:tFE:s un() LTz:tbEE:rs Viyeggomm ITWI < w
STHFMN.E:t—s YT E:tw—os
(T-Arp) (T-Aprp LIN)
Z',rll_Eth—)S Z;rzl_Eglt Z;Fll—Elztwws Z;rzl_Eglt
Z;F1+F2|—E1E2:s z;r1+r2}—E1E2:S

A type scheme V& :: p.t denotes the family of types obtained from ¢ by
instantiating each type variable o; with a type whose weight respects the qualifier
p;- This is formally expressed by an instantiation relation X - o > t defined by
the rule

pi =fin = L ||s;]| < o0 (=17

I EVa:pt-t{s/a}

For example, if we consider once again the endpoint types 77 = rec A.!S;.end
and Sy = rec A.7A.end from Section[l]we have - TypeOf(send) > (17, ! T}.end) —
end because 77 has finite weight so it can instantiate the type variable a in
TypeOf(send). On the contrary, - TypeOf(send) % (Si,!Si.end) — end be-
cause ||S1]| = co. Therefore, it is forbidden to send endpoints of type Si.

The typing rules make use of two judgments, I' - P stating that the process
P is well typed in the name environment I', and ;T = E : ¢ stating that E is well
typed and has type ¢ in the type variable environment £ and name environment
I'. A judgment I' - P is well formed if dom(I") C Pointers and TI'(p) is a closed type
for every p € dom(T") and a judgment X;T" - E is well formed if all type variables
occurring free in I are in dom(X). Table 5| defines the typing rules for processes
and expressions. Rule (T-THREAD) and (T-PAR) say that a process is well typed
if so is each thread in it. Note that linear names are distributed linearly among
threads by definition of I} 4+ I';. Rule (T-ConsT) instantiates the type of a con-
stant, while rule (T-NaAME) retrieves and possibly instantiates the type of a name
from the name environment. In both rules the unused part of the name envi-
ronment must not contain linear resources. Rule (T-LET 1) is a linearity-aware

12 Viviana Bono, Luca Padovani, and Andrea Tosatto

version of the rule to have let-polymorphism ¢ la ML. The name environment is
split between F; and Es knowing that, if lin(¢1), then x must occur in Ey. Note
that, by well formedness of X, & :: p, none of the type variables in & can be in
dom(X) and hence can occur free in I;. Therefore, they can be safely generalized
when typing Fs. Overall, this treatment of universal polymorphism is borrowed
from [12]: generalization and instantiation are embedded, respectively, in rule
(T-LET 1), and in rules (T-Const) and (T-NaMmE). Rules (T-PAR) and (T-LET 2)
are, respectively, the construction and the de-construction (via pattern match-
ing) of linear pairs. Rules (T-Arrow) and (T-App) are the standard ways of
introducing and eliminating (unlimited) arrow types. The rule for arrow intro-
duction requires the side condition un(T"), meaning that the body of the function
does not make use of any pointer. Finally, rules (T-ArRrow LIN) and (T-APP LIN)
introduce and eliminate linear arrow types. In (T-ARrROW LIN), the weight w that
annotates the linear arrow is chosen in such a way that it is an upper bound for
the weights of the types of all names occurring in F.

Example 4.1. The following derivation, where we omit ¥ = a :: fin, A :: any, B

any and we let w = ||?7a.A|| = {a, A} +1, shows that the function forward defined
at the end of Section [1]is well typed.

A2 A y:la.B,m:atsend my: B

T:7a.AF receivex:a® A y:'aBm:a,2 : AF (2/;sendmy): AR B

x:7a.Ay:'a.BF let m,a’ = receive x in (¢/,send my) : AQ B

x:?a.AF dy.let m,2’ = receive x in (¢/,send my) : 'a.Bw—o A® B

F Az.\y.let m,a’ = receive z in (2/,send m y) : ?a.A = 'a.Bw— AR B

Note that w is the smallest weight allowable in this derivation. Therefore,
the obtained type is also the most precise and general one for forward. |

Ezxample 4.2. In a functional language, multi-argument functions are commonly
represented in curried form, whereby such functions accept their arguments
one at a time. On the contrary, the send constant is uncurried, because it ac-
cepts both its arguments at once in a pair. The curry combinator transforms
an uncurried binary function into its curried form and is defined as curry =
Af Az y.f (z,y). Below is the derivation showing that curry is well typed,
where we let X = a :: any, b :: any, c :: any.

Yixz:abFzxz:ia Ziy:bky:b
Lfi(a®b) = ck f:(a®b) = ¢ ixia,y:bk(x,y):a®b
Lf:(a®b) = criay: bk f(z,y):c
Lf:(a®b) »c,z:ab Xy.f (z,y):b{a}—oc
Lif:(a®b) = ck Az y.f (x,y):a—b{a}—c
LOEA Az y.f (z,y): ((a®b) = ¢) = a—b{a}—c

Polymorphic Types for Leak Detection in a Functional Language 13

Observe that the function returned by curry has type a — b{a}—oc, where the
linear arrow type has been decorated with the weight {a}. Indeed, the function
Ay.f (z,y) with this type has two free variables, f having an unlimited type with
null weight, and x having type a. We can now obtain the curried form of send
as curry send which can be given the polymorphic type Va :: £in.VA :: any.a —
ta. A {a}— A. []

Ezample 4.3. The curry function in Example[f.2]can only be applied to functions
with unlimited type. It makes sense to consider also a linear variant lcurry of
curry which has the same implementation of curry but can be used for currying
linear functions (observe that the definition of curry uses its first argument f
exactly once). Using a derivation very similar to that shown in Example
lcurry could be given the type

Va :: any.Vb :: any.Ve :: any.((a @ b) w—o¢) - aw— b (w V {a})—oc

except that this type depends on the weight w of the linear function being
curried. This means that, in principle, we actually need a whole family lcurry,,
of combinators, one for each possible weight of the linear function to be curried.
However, by combining polymorphism and explicit weight annotations in linear
arrow types, we can provide lcurry with the most general type. The idea is to
introduce another type variable, say d, which does not correspond to any actual
argument of the function, but which represents an arbitrary weight, and to let
w = {d}. This way we can give lcurry the type

Va :: any.Vb :: any.Ve :: any.Vd :: any.((a ® b) {d}— ¢) = a {d}—ob{a,d}—c

where we can instantiate d with a type having exactly the weight of the linear
function to be curried. For example, suppose we wish to apply lcurry to some
function f : (¢ ® b) n—o c. Then it is enough to instantiate the d variable in the
type of lcurry with the type T defined by

T —end TIm+U = 270™ eng
and obtain lcurry f: an— b ({a} + n)—o ¢ as expected. |

Properties. In order to show that every well-typed process is well behaved (Def-
inition we need, as usual, a subject reduction result showing that well-
typedness is preserved under reductions. Since in our language processes allocate
and modify the heap, we need to define a concept of well-typed heap just as we
have defined a concept of well-typed process. Intuitively, a heap p is well typed
with respect to an environment I if the endpoints allocated in y are consistent
with their type in I'. In particular, we want that whenever a message is inserted
into the queue of an endpoint, the type of the message is consistent with the type
of endpoint. To this aim, we define a function tail(7’,#) that, given an endpoint
type T and a sequence of types t of messages, computes the residual of T after

all the messages have been received:
tail(T7,3) = S
tail(7¢.T,t8) = S

tail(T,e) =T

14 Viviana Bono, Luca Padovani, and Andrea Tosatto

Note that tail(7, §) is undefined if § is not empty and 7' does not begin with
input actions: only endpoints whose type begins with input actions can have
messages in their queue. The weight of end and output endpoint types is zero
because of this property (Definition .

The notion of well-typed heap is relative to a pair Tp;T" of disjoint name
environments: the overall environment I, I" determines the type of all the ob-
jects allocated in the heap; the sub-environment I" distinguishes the roots of the
heap (the pointers that are not reachable from any other pointer) from the sub-
environment Iy of the pointers that are stored within other structures in the
heap and that are reachable from some root.

Definition 4.1 (well-typed heap). Let dom(I") Nndom(Ty) = . We say that u
is well typed in Ty; T, written To; T I u, if all of the following properties hold:

1. For every p— [q; 0] € p we have p — [q; @] € u and either 0 =¢ or w = €.

2. For every p — [q;0] € p we have tail(T,5) = S wherep : T € Iy, T and
T0lfn(us) | vi : 8; and ||s;|| < oo and q — [p;e] € pu then q: S € Ty, T.

3. dom(p) = dom(Ty, ") = p-reach(dom(T)).

4. For every U,V C dom(T") with UNV = () we have u-reach(U) N p-reach(V) = 0.

In words, condition (1) states that in any pair of peer endpoints, one queue is
always empty. This condition corresponds to half-duplex communication, whereby
it is not possible to send messages over one endpoint before all pending messages
from that endpoint have been read. Condition (2) states that the content of the
queue associated with an endpoint is consistent with the type of the endpoint,
that all messages in a queue have a type with finite weight, and that the residual
type of an endpoint after all of the enqueued messages are received is dual of the
type of its peer. Condition (3) states that all objects in the heap are reachable
from the roots. Since the root pointers will be distributed linearly among the
processes in the system, this means that there are no leaks. Finally, condition (4)
says that every object in the heap is reachable from exactly one root, ensuring
process isolation. Now we formalize the notion of well-typed system.

Definition 4.2 (well-typed system). We say that the system p§ P is well
typed under To; ', written Toy; T g P, if Tg;TIF pw and T F P.

We conclude this section by stating the two main results: well-typedness of
systems is preserved by reductions and well-typed processes are well behaved.
The proof of Theorem relies on the finite-weight restriction on the type of
messages for ensuring that no cycles are generated in the heap.

Theorem 4.1 (subject reduction). Let Ip;T'F ps P and pg P — p' 5 P'.
Then T T = ' § P for some T and T,

Theorem 4.2 (soundness). If+ P then P is well behaved.

Polymorphic Types for Leak Detection in a Functional Language 15

5 Related Work

This work is the convergence point of several lines of research, including the
study and development of Singularity OS [9I0], the formalization of copyless
messaging as a communication paradigm [12], the development of type systems
for session-oriented functional languages [0], and polymorphic session types [4].
The fact that a linear type system is insufficient for preventing memory leaks in
copyless messaging was first pointed out in [IIT1]. In particular, in [I] and later
in [2] we have put forward the idea of type weight as the characteristic quantity
that allows us to discriminate between safe and unsafe messages. The main limit
of the notion of type weight in [II2] is that it is defined for endpoint types only,
for which the weight is entirely determined by the structure of types. In this work
we have shown that this is not always the case. Our motivation for studying the
extension of the technique developed in [12] to a functional language is twofold:
first of all, [6] already presents an elegant type system for such a language, even
though [6] does not consider explicit memory management. Second, the Sing?
programming language used for the development of Singularity OS includes fea-
tures such as first-class and anonymous functions, which are commonly found
in functional languages. In this setting, the idea of having functions as messages
turns out to be a natural one. Another major difference between the present
work and [6] is that we develop a truly polymorphic type system in the style
of [I2], while [6] only considers monomorphic types except for communication
primitives which benefit from a form of ad hoc polymorphism. In this sense,
the present work constitutes also a smooth extension of the type system in [6]
with ML-style polymorphism. Interestingly, the polymorphic type of the open
primitive crucially relies on dualized endpoint type variables, which were intro-
duced in [] for totally different reasons. Note also that [6] introduces a notion
of “size” for session types that may be easily confused with out notion of type
weight. In [6], the size estimates the maximum number of enqueued messages
in an endpoint and it is used for efficient, static allocation of endpoints with
finite-size type. Our weights are unrelated to the size of queues and concern the
length of chains of pointers involving queues.

6 Conclusions and Future Work

The type language we have developed is a relatively simple variant of that re-
quired for ML-style functional languages. Many features that are practically rel-
evant can be added without posing substantial issues. For instance, it is feasible
to devise a subtyping relation it in the style of [6] whereby unlimited functions
can be used in place of linear ones (t — s < ¢t w—o s). Subtyping can also take
into account weights, in the sense that it is safe to use a “lighter” function where
a “heavier” function is expected (t w—o s < tw'—o s if w < w'). It is also easy
to equip endpoint types with the dual constructs 7' S and T'+ S for denoting
internal and external choices driven by boolean values.

The finite-weight restriction on the type of messages prevents the formation
of cycles in the heap. In the context of Singularity OS, this restriction seems

16 Viviana Bono, Luca Padovani, and Andrea Tosatto

to be reasonable since objects allocated in the exchange heap are managed by
means of reference counting which cannot handle cyclic structures.

The type system we have presented (Table [5)) is not syntax-directed and
therefore leaves room for a fair amount of “guessing”, in particular with respect
to the introduction of type variables in types and weights. An open question is
whether it is feasible to devise a fully automated type and weight inference algo-
rithm that is capable of inferring the most general type of arbitrary expressions.

Acknowledgments. This work has been partially supported by MIUR PRIN 2010-
2011 CINA. The authors are grateful to the anonymous referees for their com-
ments.

References

1. V. Bono, C. Messa, and L. Padovani. Typing Copyless Message Passing. In Pro-
ceedings of ESOP’11, LNCS 6602, pages 57-76. Springer, 2011.

2. V. Bono and L. Padovani. Typing Copyless Message Passing. Logical Methods in
Computer Science, 8:1-50, 2012.

3. V. Bono, L. Padovani, and A. Tosatto. Polymorphic Types for Leak Detection in a
Session-Oriented Functional Language, 2013. Available at http://www.di.unito.
it/~padovani/Papers/BonoPadovaniTosatto13.pdf.

4. S. Gay. Bounded Polymorphism in Session Types. Mathematical Structures in
Computer Science, 18(5):895-930, 2008.

5. S. Gay and M. Hole. Subtyping for Session Types in the m-calculus. Acta Infor-
matica, 42(2-3):191-225, 2005.

6. S. Gay and V. T. Vasconcelos. Linear Type Theory for Asynchronous Session
Types. Journal of Functional Programming, 20(01):19-50, 2010.

7. K. Honda. Types for Dyadic Interaction. In Proceedings of CONCUR’93, LNCS
715, pages 509-523. Springer, 1993.

8. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type
Disciplines for Structured Communication-based Programming. In Proceedings
of ESOP’98, LNCS 1381, pages 122-138. Springer, 1998.

9. G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fahndrich, C. Hawblitzel,
O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill.
An Overview of the Singularity Project. Technical Report MSR-TR-2005-135,
Microsoft Research, 2005.

10. G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack. SIGOPS
Operating Systems Review, 41:37-49, April 2007.

11. J. Villard. Heaps and Hops. PhD thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France, 2011.

12. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38-94, 1994.

http://www.di.unito.it/~padovani/Papers/BonoPadovaniTosatto13.pdf
http://www.di.unito.it/~padovani/Papers/BonoPadovaniTosatto13.pdf

Polymorphic Types for Leak Detection in a Functional Language 17

A Supplement to Section

In this section we develop the formal definitions of duality, weight, and substitu-
tion that we have informally sketched in Section

1.

We begin by defining a restricted type substitution operation ¢t{A/A} which
replaces an endpoint type variable A with its dualized version A whenever
A does not occur in any weight in ¢. This notion of substitution is almost
standard, except that

A{AJ/A} = A

that is, dualizing an already dualized endpoint type variable yields the non-
dualized type variable.

With this definition in place, it is possible to formalize the notion of duality
that we have presented in full in Section

Relying on duality, we are now able to give a more general definition of type
substitution operation, ¢t{T/A}, which replaces the free occurrences of A in
t with T'. Again, this operation is defined provided that A does not occur in
the weights of ¢. Its definition is standard, except for the equation

A{T/A} =T

where an occurrence of the dualized type variable A is replaced by the dual
of T'. Note that this notion of substitution is a conservative extension of the
one we have given a few lines above.

The more general notion of substitution allows us to define the unfolding of
a recursive endpoint type rec A.T as the endpoint type obtained from 7" by
replacing the free occurrences of A with the whole term rec A.T'. In particu-
lar, from now on we will identify (endpoint) types modulo folding/unfolding
of recursions, taking in effect an equirecursive viewpoint of types, and letting

rec AT =T{rec A.T/A}

Note that, by the well-formedness condition on types, the A variable cannot
occur in weights of T', therefore T{rec A.T/A} is always defined.

With the equirecursive notion of type equality, we can now define the notion
of weight as by Definition [3.2] In particular, the notion of equality in that
definition makes implicit use of unfoldings for exposing the topmost proper
constructor of a type, using the contractivity condition.

Having defined weights, we can finalize substitution as by Section [3] Once
again, this final notion of substitution is a conservative extension of the
previous ones.

18 Viviana Bono, Luca Padovani, and Andrea Tosatto

B Metatheory

Proposition B.1. The relation u-reach is a closure, that is, given U,V C Pointers,

— p-reach(U) D U (extensiveness);
— if U C V then u-reach(U) C u-reach(V) (monotonicity);
— p-reach(u-reach(U)) = u-reach(U) (idempotence).

Proof. Follows immediately from Definition O
Proposition B.2. |[t{5/a}| < ||Va :: p.t]|.
Proof. A direct consequence of the definition of weight for type schemes. O

Definition B.1. We define quasi values either values, or the expressions of the
form fix v. They are ranged over by e.

Lemma B.1. Let L;T'Fe:t. Then ||[T'(u)|| < ||t|| for every u € dom(T).

Proof. By induction on the derivation of ;T I e : ¢ and by cases on the last rule
applied. We omit trivial cases and we recall that unlimited types always have a
null weight.

— (T-NaMme) Thene=pand '=T",p: T and t = T and un(T"). We conclude
because un(I") implies ||T'(u)|| = 0 for every u € dom(T").

— (T-Pair) Then e = (vy,vg) and T'=Ty + Ty and t = (t1,t2) and X; T F v, : ¢
for ¢ € {1,2}. By induction hypothesis we obtain ||I3(w)|| < ||| for every
i €{1,2} and u € dom(T;). We conclude ||T'(u)|| < ||¢]] = max{||t1]], |[t2]l}-

— (T-Arrow LIN) Then e = Az.F and t = t; w—oty and L; T,z : t; - E : t5 and
IT(w)]] < w for every u € dom(T"). We conclude by observing that ||¢]| = w.

O

Lemma B.2. IfT'Fe:t, then un(t) = un(l).
Proof. By a case analysis on the type rules. a

Lemma B.3 (instantiation). Let X,a :: p;T'F E : t and ftv(5) C dom(X) and
pi =Tfin= X F |s;|| < co. Then L;T{5/a} F E : t{§/a}.

Proof. By induction on the derivation of £, & :: p;T + E : t. a

Lemma B.4 (weakening). If 5;TF E : t and X, « :: p, with a & dom(X), is
well formed and un(T"), then L, :: p;T+T"F E : t.

Proof. By induction on the derivation of L;T'+ E : ¢.

O
Lemma B.5 (free names in expressions). Let X; T+ E : t, then: (i) fn(E) C
dom(T); and (ii) if u : o belongs to T' and lin(o) holds, then u € fn(E).

Proof. By induction on the derivation of ;T'+ FE : ¢.

O

Polymorphic Types for Leak Detection in a Functional Language 19

Lemma B.6 (free names in processes). Let I' = P, then: (i) fn(P) C
dom(T"); and (ii) if u : o belongs to T' and lin(o) holds, then u € fn(P).

Proof. By induction on the derivation of I' - P. ad

Definition B.2. We say that ' is ground if and only if dom(T") C Pointers and
I'(u) is closed for all u € dom(T).

Lemma B.7 (substitution). If
—Xazp;hkFe:t, and
— Lilg,z:Va:pt-FE:s, and
— Iy + Ty is defined, and
— Iy is ground,

then ;T + To - E{e/x} : s.

Proof. By a case analysis on expressions. We show the most interesting cases,
the other being similar and/or simpler.

— E = k. By applying rule (T-ConsT) backward we infer:

un(ly, z : Va = p.t) T+ TypeOf(k) > s
Yilh,x:Va:pthk:s

We only need to prove that un(T; +T3) holds, in particular that un(I';) holds.
We can infer from un(ly, x : V& :: p.t) that un(Va :: p.t), which implies un(¢),
therefore, by application of Lemma we conclude that un(T'7) holds.

— E =y # x. By applying rule (T-NamEe) backward we infer:

un(To, z : Va :: p.t) IFVB it - s
Lo,z :Vaupty:V3upgt by:s

This case is similar to the previous case.
— E = z. By applying rule (T-NawmEg) backward we infer:

un(Ty) IEVa:ptss
Yilh,x:Vau:ptbao:s

From X - Va :: p.t = s we know it exists a set of types 7 such that we can
apply Lemma on L, & :: p;h ke t, obtaining X;Ty e : s (T} is not
affected by the substitution because for all u € dom(I), T'1(u) is closed).
Being un(ly), we can apply Lemma obtaining ;T + T Fe: s.

— E =1let y= F; in F,. By applying rule (T-LeT 1) backward we infer:

(A) B)
Z,B::ﬁ';r{FElztl Z;FQ’,y:VB::ﬁ’.tlkEg:s
Yh,x:Va:ptk-lety=Fy in Fs: s

20

Viviana Bono, Luca Padovani, and Andrea Tosatto

By application of the Lemma we can choose /3 such that 3N a = () and
%, B :: p is well formed. We must take in account three sub-cases:

1. un(Va :: p.t),

2. lin(V& :: p.t) and z in By,

3. lin(V& :: p.t) and z in Es.
We prove sub-case (1). We deduce (by Lemma [B.5):

N =T, z:Va:pt; To=T x:Va:pt; T]+Ts=Ts,x:Va:pt

By applying Lemmato YSauphkFe:t,weget L ,5,/3’ oM ke:
t. We then apply the induction hypothesis to (A), obtaining BT+
I b Ey{e/z} : t1 because T + Ty is defined since Iy C Ty and Ty + T is
defined by hypothesis. We apply the induction hypothesis to (B), obtaining
LN+ T,y B pt)F Ex{e/x}y:s; v+ (T, y: B p.ty) is defined since
I C Ty, I 4+ Ty is defined and dom(Ty) C Pointers by hypothesis. Then, by
applying (T-LET 1) we obtain:

LB T+ T - E{e/z} : t LT+ (T, y: B ptr) b Ex{e/a): s

LTk let y = Ey{e/z} in Eo{e/x} : s
The thesis is proved because I} + T = T (see above), and Ty +T = Ty holds

since un(Vé& :: p.t) = un(t) = un(l) by Lemma
53):

We prove sub-case (2). We deduce (by Lemma
M =T ,z:Ya:pt; Th=T, T1+T,="Tyx:Va:pt

By applying Lemmato Yauplh et weget X o ﬁ,B s ke
t. We then apply the induction hypothesis to (A), obtaining LB T+
I+ Ey{e/z} : t1 because Iy + Ty is defined since I'Y C Ty and Ty + I is
defined by hypothesis. Then, by applying (T-LET 1) we obtain:

LB T+ T - E{e/z} : ty LTy :Bupti-FEycs
Y;THlet y=Ei{e/z} in Ey : s

The thesis is proved because T + T =T (see above).
We prove sub-case (3). We deduce (by Lemma [B.5)):

N=T, Th=TY,z:VYa:pt; T]+T="Tyx:Va:pt
By applying Lemmato SauplikFe:t,weget L /3,5 s ke
t. We then apply the induction hypothesis to (B), obtaining Z; Ty 4 (I, y :
B plir) b Ex{efx} r s Ty + (T4 ,y 2 B plty) is defined since Ty C Ty,
I + Iy is defined and dom(I';) C Pointers by hypothesis. Then, by applying
(T-LET 1) we obtain:

LB p NEE :t L+ (Y, y: B pt1) F Ex{e/x} : s
YTk let y = Fp in Ex{e/x} : s

Polymorphic Types for Leak Detection in a Functional Language 21

The thesis is proved because 'y + T =T (see above).
— E = (F1, FEy). We must take in account three cases:
1. un(Va :: p.t),
2. lin(Va& :: p.t) and z in Eq,
3. lin(Véa :: p.t) and = in Es.
We prove case (2), the other being similar.

(A) (B)
L, x:VaupthEy s LTV EEy: s
YTy, :Va:ptb (B, Ey): s

where s = s’ ® s”. By application of the induction hypothesis we obtain
LTS+ Ty F Ey{e/z} : s'. To obtain the thesis, we can then apply rule
(T-Pair) by observing that (Ey1{e/x}, E2) = (E1, E2){e/x} holds by defini-
tion of substitution, moreover I, + I} = Ts.
— FE = M\y.E;. We must consider two cases, one for non-linear functions, the
other for linear functions.
1. (T-ARROW).
(A)
Lilg,x:Va:ptyy:s'HFEy:s” un(lp, z : Va = p.t)
Yilg,x:Vaupth E:s
where s = s’ — s”. We apply the inductive hypothesis on (A), obtaining
LT+ Th,y:s'E Ei{e/xz}: 8" (T1 + T,y : s is defined, since dom(Ty) C
Pointers), and rule (T-ArRrow) obtaining Z;Ty + Iy F Ay.Eqy{e/x} : s,
since the rule’s side condition un(Iy 4+ Ty) is verified since un(Va :: p.t) =

un(t) = un(T) by Lemma [B:2]

2. (T-ArroOw LIN).

(A)

Lih,x:Vau:pty: s+ FE s Vuedom(ry,avarp) (T2, 2 Va pt)(u)]| < w

YSilg,x:Va:ptHE:s
where s = s’w—os”. We apply the inductive hypothesis on (A), obtaining
LT+ Th,y:s'E Ei{e/xz}: 8" (T1 + T,y : s is defined, since dom(Ty) C
Pointers), and rule (T-ArRROW LIN), obtaining X; 1 +To F Ay . E1{e/x} : s,
since the rule’s side condition \/,, c gom(r, +ry) [T +T2)(w)|| < w is verified
thanks to Proposition and Lemma @
O

Lemma B.8 (subject reduction for expressions). If L;T'F E : t and T is
ground and E —, E’, then ;T = E’ : t.

Proof. By a case analysis on the structure of F.

— E=(Ax.E)v.
From the hypothesis we know that X;T F (Az.E')v : t and (Az.E")v —,
E'{v/z}. We must consider two cases.

22

Viviana Bono, Luca Padovani, and Andrea Tosatto

e Unlimited case:

Lh,z:sHE:t un(Ty)
LhEAzE):s—t ihhtwo:s
(A Bt

where 7 + Ty = TI'. We can apply Lemma because the following
conditions hold:
x* LT, x:sHE t;
*x LilhFo:s;
* [5 is ground since I'y; C T and T' is ground by hypothesis.
We then obtain ;T - E'{v/x} : 1.
e Linear case:

(T-ARROW)
(T-App)

N,z:sHE :t Vuedomra IT1(w)] < w
(T-ArRrROW LIN) com (@)

(T-App LIN)

L F(Qz.E):sw—ot Lihto:s

LTEA.Ev:t
where T} + Iy = I'. We can apply Lemma [B.7] with the same conditions
of the unlimited case obtaining X; T+ E'{v/z} : t.

— E=fix(Az.E").

By hypothesis we know that ;T F fix(Az.E’) : ¢t and fix(Az.E') —,
E'{fix(Az.E")/xz}. Thus, we can reconstruct the following type derivation:

L F TypeOf(fix) = (t —>t) = ¢ un(Ty) Lh,x:tHE :t

un(ly)

(T-ConsT)
(T-App)

LN Ffix:(t—=>t) =t LhkF X E it —t

L+ Rk fix(Az.E') : ¢

Therefore, un(Ty) and un(T2) and '} 4+ 'y = I': that means that un(T") holds.
Since by hypothesis T is ground, then dom(I") C Pointers. As a consequence,
we deduce that I' = (). We can apply Lemma under the following condi-
tions:
e L0 E
o L0k fix(Ax.E') : t;
concluding that X; 0 - E'{fix(A\x.E')/x} : t.
E=1let z,y = (v,w) in F'.
We split the proof in two sub-cases depending on the last rule applied:
e (T-LET 2)
By hypothesis we know that ;T + let z,y = (v,) in E’ : t and
let z,y = (v,w) in B/ —, E'{v,w/z,y}.

L bFov:s LTV Fw: sy

LN E(v,w) 81 ® 89 Sl x:s1,y:89FE it
LTElet 2,y = (v,w) in E' : t

where I' = Iy + . By Lemma [B.7 we obtain ;T - E'{v,w/z, y}. given

that Ty + Ty =Ty and Iy + T, =T.

(T-PAIR)
(T-LET 2)

(T-ARROW)

Polymorphic Types for Leak Detection in a Functional Language 23

e (T-LET 1)
From the last rule applied we deduce that E = let z,y = (v, unit) in E’
where y is fresh. By hypothesis we know that £;T' - let x =v in F : ¢
and let x = v in E' —, F'{v/x}.

Sazphikbov:s S,z Va:pstHE

SiTFletx=vin E' : ¢
with ' =T} 4+ T5. The thesis follows by an application of Lemma as
in the previous cases, knowing that I'1 CT.

(T-LET 1)

O

Lemma B.9 (typability of subterms). Let D be a derivation of Z;T + E[E] :
t and dom(T") C Pointers, then there exist Ty, Ty and £, £ C X', such that
I +Ty =T and D has a subderivation D' concluding Z';T1 = E : s and the
position of D’ in D correspond to the position of the hole in £.

Proof. By induction on £. ad

Lemma B.10 (replacement). If:

D is a deriwvation of L;Ty + T F E[E] 1 ¢,

D’ is a subderivation of D concluding that X';To - E : s,

the position of D' in D correspond to the position of the hole in &,
XT3 E s,

It 4+ T3 is defined,

then £;Ty + Ty - E[E] : t.

SARSINCI

Proof. By induction on &. ad

Lemma B.11. Let (1) Ty;Tr, T Ik p wherelin(Tg), (2) T+ P and pgP — p/'sP’.
Then Ty Tr, TV Ik 1/ and T' = P’ for some T and T”.

Proof. By induction on the derivation of p§ P — p’ § P’ and by cases on the
last rule applied.

— (R-THREAD) In this case:

o P=(E[E));
o il =y
o P' = (E[E]).

From the hypothesis (1) we deduce that as a conseguence of the definition
of well-typed heap necessarely dom(T") C Pointers holds, otherwise the third
condition of Definition would be invalid. From the hypothesis (2) and
the rule (T-THREAD) we obtain that ;T F £[E] : ¢ holds. As a conseguence
of the application of Lemma, we know that Z';T F E : t/ where Iy CT.
Moreover, since 1 C T', dom(T") C Pointers holds and from the hypothesis
we know that £ —, E’, we can apply Lemma [B.§| concluding that £'; Ty
E’ : t'. Finally by application of Lemma and of the rule (T-THREAD)
we deduce that ;T F E[E’] : t holds. Since the memory p is left untouched
by the derivation, we conclude by taking Iy =T and " =T.

24

Viviana Bono, Luca Padovani, and Andrea Tosatto

(R-PAR) In this case:

o P= Pl || PQ;

o usP— 5P

e PP=P| P.
From the hypothesis (2) and the rule (T-PAR) we obtain

° F = F1 + FQ

o I P forie{1,2}
By induction hypothesis we deduce that there exists I} and I such that:

o T0; TR, T2, T IF s

o I P
Therefore, from the rule (T-Par) we obtain that '] + 'y F P’. We conclude
by taking " =T} + Is.
(R-Fork) In this case:

e P = (E[fork E);

oy =

o P/ = (Eunit]) || (E).
From the hypothesis (2) and the rule (T-THrREAD) we have that X;T F
E[fork E] : Unit. By Lemma and tule (T-Aprp) we deduce that:

[F1 + F2 = F,

e (rl) X;Ty F fork E : Unit;

e);)+ fork : Unit — Unit;

e ;[N F E:Unit.
Since from Table [4] and rule (T-ConsT) we know that (;() - unit : Unit
holds then X;(- unit : Unit (r2) still holds. We apply Lemma and
replace (rl) with (r2) in £ concluding that X;Ty F E[unit] : Unit. Finally,
by application of the rule (T-THREAD) we have that Z;Ty F (£[unit]) and
%Iy F (E). We conclude by applying the rule (T-Par) and by choosing
I"=T and I} = Ty.
(R-OPEN) In this case:

e P = (&|open unit]);

oy =p,p[g;el,q— [piel;

o P'=¢[(p,q)l.
Applying Lemma to hypothesis (2) we have:

e N+ 1 =T,

e Y: [- open unit : s.
By applying the rule (T-App) we discover that Ty = () and s = T ® T (see
the type scheme for the constant open defined in Table . We take I'] such
that the following conditions hold:

ol =p:Tq:T;

o I + 17 is defined.
By the application of the rule (T-PAIR) we obtain that ;T - (p,q) : T® T
holds. We proceed with the application of Lemma [B.10] replacing open unit
in £ with (p,q). We conclude choosing I" =T + I'; and I} = Ty. The proof
that T; Tr, T IF i/ is trivial since p and q have dual endpoint types.
(R-SEND) In this case:

o u=p"pr[q;w],q > [p;0];

Polymorphic Types for Leak Detection in a Functional Language 25

o P =([send (v,p)]);

o p=p",p[qw],q— [p;0'v];

.« P' = (£]p)).

From Lemma and hypothesis (2) we obtain:

° F1 + r2 = F,

e X;I F send (v,p) : s.

By application of the rules (T-App), (T-PaIr) and (T-ConsT) we have:

e =1{p:1s.T.

o 5] < o

o (t1) L;Ty Fsend : (s ® 's'.T) = T, with I = (J;

o (t2) LT Fuw:s;

o s="1T.

Since X;p : T+ p : T holds, we apply Lemmareplacing send (v,p) in &
with p and apply the rule (T-THrREAD). We choose " =Ty, p: T, T =p: T
and I}, =Ty 4+ T'Y". We prove the items of Definition [4.1] in order:

1. We have to show that @’ is empty. By absurd, we assume that it is false.
In order to let the reduction happen the type of p must begin with and
external choice (?) wich contradicts (t1).

Trivial as a conseguence of (t2) and the definition of tail.

3. We have to prove that dom(u') = p/-reach(dom(I'g, ")). The only inter-
esting fact to prove is that all the linear values occurring in v, namely
the pointers in dom(T}’), are still reachable in p’ from some root in I'g, T”.
Because v has been inserted into the queue associated with q, it is enough
to show that q is still reachable in p’. From the hypothesis (1) we know
that q <, qo for some qp : Ty € I'g,T". By definition of weight and from
the fact that ||s’| is finite we know that ||s’|| < ||To]||. Now, let r € fn(v)
and r <,/ r and let S be the type of r’. By Lemma we deduce that
IS]] < ||¢"||, hence ' is different from qo. We conclude qg € dom(T'g,T")
and r’ jp/ d0-

4. Straightforward.

(T-RECEIVE) In this case:

o u=p",pr[qvQl;

e P = (&[receive pl);

e pu=p",p—[qQl;

o« P'= (El(,p).

First of all we proceed by applying Lemma to hypothesis (2) obtaining:

[] F1 + rg = F,

e ;I Freceive p:s.

By application of the rules (T-AppP) and (T-Const) we deduce:

o (t1) L;Ty - receive: 's'.T — (s’ ®T), with T] = 0;

(t2) TypeOf(receive) = 1s'.T — (s @ T);

o LTV Fp: s T

o I+ T =Ty;

e s=(sT).

We choose v such that ;T F v : ¢ and p such that ;T + p : T. By
applying the rule (T-PaIr) we obtain that:

o

26 Viviana Bono, Luca Padovani, and Andrea Tosatto

e LT3k (v,p): 8 ®T;
o Iy=TY 4TV,
We proceed by applying Lemma [B.I0] and the rule (T-THREAD) replacing
receive p in £ with (v, p). The heap well-typedness follows by Deﬁnition
O

Theorem B.1 (Theorem |4.1)). Let To;T F g P and ps P — p' s P'. Then
T T B ' s P for some TS and .

Proof. Follows from Lemma by taking T'r = 0. O
Lemma B.12. Let Ip;TF p¢ (E) and p§(E) ——. Then, either

— E =unit, or
— E = &Jreceive pl, or
— E =¢&Jclose p).

Proof. By case analysis on F. a
Theorem B.2 (Theorem |4.2)). If - P then P is well-behaved.

Proof. Let @$ P — u§ P’ be a computation. From + P and observing that
the heap in the initial configuration is empty, we know that - @ ¢ P holds. From
Theorem we deduce that exists Iy, T such that Tp; ' F p g P’ (*). Following
Definition [2.2] we split the proof in three steps.

1. We show that dom(u) = p-reach(fv(P’)). From the fact that the system p§P’
is well-typed, we deduce that To;T I- p. Since dom(u) = p-reach(dom(T))
holds (by Definition[4.1]and Lemma[B.6), we have then that dom(T") = fv(P’)
holds, hence the thesis.

2. We prove that if P’ = Py || P2, then p-reach(fv(Py)) N p-reach(fv(P)) =
(. Let T = Py || P». By a backward application of the rule (T-PAR), we
deduce that there exists 'y, Iy such that Iy + Ty = T" and I; F P;. Since
Il 4+ Iy is defined, from the definition of context addition we can deduce
that dom(T|jin) + dom(T|in) = 0. By Definition and Lemma we
have fn(P;) = dom(T;) for ¢ € {1,2}. Finally, from (*) we conclude that
p-reach(fv(Py)) N p-reach(fv(Py)) = p-reach(dom(Py)) N p-reach(dom(Py)) =
p-reach(dom(T|iin)) N p-reach(dom(Tain)) = 0.

3. To prove the last condition of the well-behaved process definition we rewrite
P’ = (E) || P” and we assume that u§ (E) ——. By application of the rules
(T-Par) and (T-THREAD) we obtain that (;T7 F E : ¢ with I} C T'. We will
now examine the cases in which the evaluation is stuck and prove the specific
requirements for well-behaved process.

— (E = &|close p|). In this case we have to prove the absence of orphan
messages. That means that q — [p; €] € p must be valid. Since p € fvE,
we conclude that p € dom(T}). But, since Ty C T, we conclude that p €
dom(T"). From the hypothesis we know that the heap is well-typed, we can
then conclude that q — [p; Q] € u. To prove that Q = ¢ we will proceed
by absurd. We assume that Q # ¢, that means that @ = vy ... v, with
n > 0. From the hypothesis on the heap u we conclude that:

Polymorphic Types for Leak Detection in a Functional Language 27

o [o;THp:T;

o tail(7T, s1,...,8,) = S;
that implies that ¢ = ?7s.7”. But this is a contradiction because we assume
that the thread is blocked: as a consequence, we have that Q = ¢ is valid.
(E = unit). In this case we have to prove that the thread’s computation
is ended. Since I'1 + FE : t and F = unit, necessarily ¢ = Unit holds. A
thread’s computation is ended if there is no other condition in which the
system is well typed and for some T, I, = E : Unit and u. § (E) —.
The proof comes from Lemma
(E = E[receive p|). In this case we have to prove the absence of com-
munication errors. That means that the thread is blocked waiting for a
message and p — [q;¢] € p. As we have already done in the first case,
since p € fv(E), we conclude that p € dom(Ty) = p € dom(T"). Again,
from the hypothesis ,we know that the heap is well-typed, we can then
conclude that q — [p; Q] € u. To verify the absence of communication
errors we will proceed by absurd. We assume that Q # ¢; that means
that @ = vy --- v, with n > 0. If that condition is true, we have

o [);I"F p: ?t.T and the first message’s type is Ip; " F vy : t. That
is in contrast with the hypothesis that claims that the reduction is
stuck, so it leads to the absurd. Or,

o [o; ' p: 7t.T and the first message’s type is not Io; ' - vy : t. That
is in contrast with the condition of duality ensured by the hypothesis
of well-typedness of the heap.

As a consequence, we have necessarily that Q = ¢.

	Polymorphic Types for Leak Detection in a Session-Oriented Functional Language

