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Abstract 24 

 25 

Ab initio calculations of thermo-elastic properties of beryl (Al4Be6Si12O36) have been carried out at 26 

the hybrid HF/DFT level, by using the B3LYP and WC1LYP Hamiltonians. Static geometries and 27 

vibrational frequencies were calculated at different values of the unit cell volume, to get static 28 

pressure and mode-γ Grüneisen’s parameters. Zero point and thermal pressures were calculated 29 

by following a standard statistical-thermodynamic approach, within the limit of the quasi-30 

harmonic approximation, and added to the static pressure at each volume, to get the total 31 

pressure (P) as a function of both temperature (T) and cell volume (V). The resulting P(V,T) curves 32 

were fitted by appropriate EoS’, to get bulk modulus (K0) and its derivative (K’), at different 33 

temperatures. The calculation successfully reproduced the available experimental data concerning 34 

compressibility at room temperature (the WC1LYP Hamiltonian provided K0 and K’ values of   35 

180.2Gpa and 4.0, respectively), and the low values observed for the thermal expansion 36 

coefficient. A zone-centre soft mode 𝑃6 𝑚𝑐𝑐⁄ → 𝑃1̅ phase transition was predicted to occur at a 37 

pressure of about 14 GPa; the reduction of the frequency of the soft vibrational mode, as the 38 

pressure is increased, and the similar behaviour of the majority of the low frequency modes, 39 

provided an explanation of the thermal behaviour of the crystal, which is consistent with the RUM 40 

model (Rigid Unit Model; Dove et al., 1995), where the negative contribution to thermal expansion 41 

is ascribed to a geometric effect connected to the tilting of rigid polyhedra in framework silicates.  42 

Keywords: thermal expansion, compressibility, bulk modulus, thermo-elastic properties, ab 43 

initio calculations, beryl.       44 

 45 

1. Introduction 46 

 47 

In the last few years, the increased availability of fast computational resources, at a relatively low 48 

cost, allowed the calculation of thermo-elastic and thermodynamics properties of minerals, by  49 

following a fully ab initio approach within a statistical-thermodynamics framework (see e.g. 50 
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Oganov et al., 2002 for an overview). The method can be applied to the determination of 51 

properties of minerals even at conditions of simultaneous very high pressure/high temperature, 52 

which are not easily attainable experimentally. In general, however, the reliability of the 53 

calculated results and, hence, their usefulness for geophysical modelling of the Earth’s crust and 54 

mantle, depends upon details concerning (i) the specific type of quantum-mechanical calculation 55 

chosen (e.g., pure DFT or hybrid HF/DFT Hamiltonian; exchange and correlation DFT functionals; 56 

basis sets; pseudo-potentials employed in connection with plane-waves basis sets, etc…); (ii) the 57 

range of validity of various approximations employed, like the quasi-harmonic one (Anderson, 58 

1995), to get phonons frequencies together with their volume and temperature dependence [see 59 

also Oganov and Dorogokupets (2004) for an account of intrinsic anharmonic effects evaluated at 60 

the quantum-mechanical level, by a perturbative approach], and (iii) the consideration of phonon 61 

dispersion.  62 

The present work discusses an application of the whole algorithm, within the limit of the 63 

quasi-harmonic approximation (Anderson, 1995), to the determination of the (volume) thermal 64 

expansion and compressibility, and their temperature/pressure dependence, of beryl 65 

(Al4Be6Si12O36, space group P6/mcc, Z=1; Deer et al., 1992): a framework silicate according to the 66 

Zoltai’s classification (Zoltai, 1960), having a moderate structural complexity. Two different hybrid 67 

HF/DFT Hamiltonians (that is, containing both an exact non-local Hartree-Fock correction to the 68 

DFT exchange functionals) were used to get structures, static energies and frequencies at different 69 

cell volumes, namely (i) the well known B3LYP Hamiltonian (Becke, 1993; Koch and Holthausen, 70 

2000), and (ii) a relatively recent hybrid formulation (WC1LYP), due to Wu and Cohen (2006) for 71 

the exchange part, and Lee et al. (1988) for the correlation part.  See Prencipe and Nestola (2005) 72 

for a discussion about the role of the exact non-local Hartree-Fock exchange correction, in 73 

calculations of structure and compressibility in silicates (beryl, in particular). The WC1LYP 74 
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Hamiltonian seems to perform slightly better than B3LYP, but it is not yet tested on a sufficiently 75 

large class of minerals; see Demichelis et al. (2009) for applications to pyrope, forsterite, α-quartz 76 

and corundum. B3LYP calculations proved to be highly successful in a number of other cases, 77 

either concerning the derivation of thermodynamics properties of minerals within a quantum-78 

statistic framework (α, β and γ polymorphs of Mg2SiO4, Ottonello et al., 2008; stishovite, Ottonello 79 

et al., 2009; Anhydrous B phase, Mg14Si5O24, Ottonello et al., 2010), or the interpretation and 80 

assignment of infrared and Raman experimental spectra (see, for instance: calcite, Prencipe et al., 81 

2004; beryl, Prencipe et al., 2006; lizardite, Prencipe et al., 2009, and references therein). 82 

As beryl is concerned, at the B3LYP level the very satisfactory agreement between 83 

calculated and experimental vibrational frequencies, at room pressure, has already been 84 

demonstrated (Prencipe et al., 2006), and its high pressure properties at the static limit were also 85 

investigated in a number of works (Prencipe, 2002; Prencipe and Nestola, 2005, 2007) within the 86 

framework of the Quantum Theory of Atoms in Molecules and Crystals (QTAIMC; Bader, 1994). 87 

The mineral consists of sixfold rings of Si-centred tetrahedra stacked along the [001] sixfold 88 

symmetry axis, which are interconnected by Be-centred tetrahedra and Al-centred octahedra. 89 

Beryl is quoted among those minerals having a low or negative thermal expansion coefficient 90 

(Morosin, 1972; Schlenker et al., 1977; Hochella and Brown, 1986; Fey, 1995), together with 91 

cordierite and indialite (Mg4Al8Si10O36) which have similar structures. Such peculiar thermal 92 

expansion of beryl has been the subject of investigations focussing on (i) thermodynamic 93 

properties and their relations with thermal expansion (Schlenker et al., 1977; Pilati et al., 1997); (ii) 94 

thermal behaviour of bonds (Hochella and Brown, 1986), and (iii) geometric effects related to 95 

tilting of rigid polyhedra leading to negative contributions to the thermal expansion; the latter is 96 

the Rigid Unit Model (RUM), concerning the thermal behaviour of framework silicates (Dove et al., 97 

1995; Welche et al., 1998;  Heine et al., 1999). Experimental values of thermal expansion, 98 
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compressibility and heat capacity were successfully reproduced by the present calculations. Also, a 99 

𝑃6/𝑚𝑐𝑐 →  𝑃1̅ soft mode phase transition was predicted to occur at a pressure of about 14GPa, 100 

at room temperature. At least in part, the behaviour of thermal expansion and compressibility of 101 

beryl was found to be related to the existence of such a soft mode, being it associated to a 102 

negative Grüneisen’s parameter; however, as already observed by Welche et al. (1998) in the case 103 

of β-quartz, the majority of low frequency modes provides a negative contribution to thermal 104 

expansion, which is balanced by positive contributions from the high frequency modes. 105 

Consistently with the RUM model of Dove et al. (1995), the low frequency modes, having negative 106 

Grüneisen’s parameters, resulted to be describable as rigid tilting of polyhedra, so that a 107 

geometric effect determining the low value of thermal expansion could be invoked, according to 108 

Heine et al. (1999). 109 

The very successful reproduction of thermo-elastic properties by the method here 110 

discussed, coupled with the use of the WC1LYP Hamiltonian (Wu and Cohen, 2006), makes the 111 

latter suitable for analogous calculations concerning minerals existing in the Earth’s mantle, at 112 

simultaneous high pressure/high temperature conditions.  113 

  114 

2. Computational details 115 

 116 

Geometry optimizations, energy calculations at the static limit (no zero point and thermal 117 

energies), and vibrational frequencies at the Γ point, for a set of different unit cell volumes, were 118 

calculated by means of the CRYSTAL06 program (Dovesi et al. 2006), by using two different hybrid 119 

HF/DFT Hamiltonians: B3LYP (Becke, 1993) and WC1LYP (Wu and Cohen, 2006). Details about the 120 

procedure which has been followed, and the computational parameters employed are provided in  121 

Appendix.  122 

Total pressures, bulk moduli, thermal expansion and specific heat were obtained in the 123 

limit of the quasi-harmonic approximation (Anderson, 1995), through the evaluation of the unit 124 
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cell volume dependence of the frequencies of the vibrational normal modes (mode-γ Grüneisen’s 125 

parameters) at the Γ point. Dispersion effects in the phonon spectra at various pressures were not 126 

taken into account as the large volume of the unit cell makes it impossible the required calculation 127 

of the vibrational frequencies in the case of super-cells, due to limitation of the available 128 

computational resources. On the other hand, the Grüneisen’s parameters corresponding to the 129 

zone-centre vibrational modes, can reasonably be considered representative of the whole set of 130 

parameters, due to their large number which depends upon the number of atoms in the unit cell. 131 

Indeed, as demonstrated by other Authors (Ottonello et al., 2008, 2009, 2010), highly reliable 132 

estimations of thermo-elastic and thermodynamics quantities can be obtained by neglecting 133 

dispersion effects, even in case of systems having relatively small unit cells. This is consistent with 134 

the general observation that thermodynamic properties, which are obtained as averages over the 135 

relevant quantities at the atomic level, can reliably be derived even without a detailed knowledge 136 

of the phonon density of state (Kieffer, 1979a). For the same reasons, LO/TO splitting of the IR 137 

active modes was not taken into account (see discussion in Ottonello et al., 2008).  138 

Intrinsic anharmonic effects (Oganov and Dorogokupets, 2004) were not taken into 139 

account, throught they could play a role in determining  frequencies and Grüneisen’s parameters 140 

of the lower frequency modes, especially at very high temperature. At the not exceedingly high 141 

temperatures of our calculation (1000K), and at high pressures, they are however expected to be 142 

small  (Oganov and Dorogokupets, 2004). See the last section of the present paper for an 143 

evaluation of the relative importance of anharmonic terms of the potential, with reference to a 144 

few key modes of the beryl structure.   145 

A correction to the specific heat at zero pressure was done in order to take into account 146 

the contributions from the three acoustic branches of the phonon spectrum. In this case, a 147 

Kieffer’s model was employed (limited to the acoustic branches only), where a sinusoidal 148 
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dispersion relation is assumed to exist between the wavelengths and the frequencies of the 149 

acoustic modes (Kieffer, 1979a; Kieffer, 1979b, Ottonello et al., 2010). The maximum frequencies 150 

of the transversal and longitudinal acoustic waves (that is, the frequencies at the borders of the 151 

Brillouin zone) were estimated from the calculated values of the elastic and compliances 152 

constants, following a method described in Ottonello et al. (2010). The elastic constants were 153 

obtained by using a development version of the CRYSTAL code. Details on the latter procedure, 154 

together with those concerning the formalism employed to derive thermo-elastic properties from 155 

vibrational frequencies (following Anderson, 1995) are given below. 156 

 157 

2.1 Pressures 158 

 159 

The total pressure (P) at each cell volume (V) and temperature (T) is given by the expression: 160 

 161 

𝑷(𝑽, 𝑻) = − (
𝝏𝑬𝒔𝒕

𝝏𝑽
) +

𝒉

𝟐𝑽
∑ 𝜸𝒋𝒋 𝝂𝒋 +

𝒉

𝑽
∑ 𝒏𝒋(𝝂𝒋, 𝑻)𝜸𝒋𝝂𝒋𝒋     (1)    162 

 163 

𝒏𝒋(𝝂𝒋, 𝑻) =
𝟏

e
𝒉𝝂𝒋 𝒌𝑻⁄

−𝟏
        (2)   164 

       165 

where h and k are respectively the Planck’s and Boltzmann’s constants; Est is the static energy 166 

calculated by CRYSTAL at a given cell volume; νj is the frequency of the jth vibrational normal 167 

mode; nj(νj,T) is the number of phonons of frequency νj, at the temperature T (or, from a different 168 

point of view, the excitation level of the corresponding normal mode). Equation (2) follows directly 169 

from the Bose-Einstein statistics applied to the phonon gas; γj is the Grüneisen’s parameter, 170 

defined by the expression: 171 

 172 

 𝛾𝑗 = −
𝜕 ln 𝜈𝑗

𝜕 ln 𝑉
= −

𝑉

𝜈𝑗

𝜕𝜈𝑗

𝜕𝑉
       (3) 173 

 174 
 175 
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Actually, the γ here defined is the mode-γ Grüneisen’s parameter, whereas, more properly γ 176 

(thermal Grüneisen’s parameter) is defined as: γ = (∂P/∂U)V (Grüneisen, 1912); for short, in the 177 

following the mode-γ parameter will simply be indicated with γ.  178 

Such parameters were estimated by the analytical derivatives with respect to V, at the static 179 

equilibrium cell volume (𝑉𝑠𝑡
0 ), of quadratic polynomials fitting the numerically determined γj(V) 180 

curves. The sums in equation (1) run on all the vibrational modes at the Γ point (k=0) of the 181 

reciprocal space. The first term on the right hand of equation (1) is the static pressure Pst(V); the 182 

second term is the zero point pressure Pzp(V) and the third one is the thermal pressure Pth(V,T). 183 

The sum Path(V)=Pst(V)+Pzp(V) is here named athermal pressure, whereas the sum 184 

Pvib(V,T)=Pzp(V)+Pth(V,T) is named vibrational pressure. 185 

Static pressures were determined by interpolating the Est(V) curve by either (i) a volume 186 

integrated 3rd order Birch-Murnaghan equation of state (Vint-BM3), or (ii) Legendre’s polynomials 187 

up the 3rd or 4th-order (L3 and L4, respectively), to get static pressures as derivatives of the 188 

resulting analytical curves. Zero points and thermal pressures were obtained either by (i) direct 189 

application of equations (1) and (2), or (ii) numerical derivative, with respect to V, of the (molar) 190 

Helmholtz Fzp(V) and Fth(V,T) functions, where:  191 

 𝐹𝑧𝑝(𝑉) = 𝑈𝑧𝑝(𝑉) = 1
2⁄ 𝒩0 ∑ ℎ𝜈𝑗𝑗        (4.1) 192 

 𝐹𝑡ℎ(𝑉, 𝑇) = 𝑈𝑡ℎ − 𝑇𝑆 = 𝒩0 ∑ 𝑛𝑗(𝜈𝑗 , 𝑇)ℎ𝜈𝑗 − 𝑇𝑆𝑗      (4.2) 193 

𝑆(𝑉, 𝑇) =  𝒩0𝑘 ∑ [𝑛𝑗(𝜈𝑗 , 𝑇)
ℎ𝜈𝑗

𝑘𝑇
− ln(1 − e−ℎ𝜈𝑗 𝑘𝑇⁄ )]𝑗     (4.3) 194 

 195 

and 𝒩0 is the Avogadro’s number. Thought the methods (i) and (ii) of getting zero point and 196 

thermal pressures are formally identical, in general the resulting values might depend upon the 197 

detailed implementations of both, by making use of fittings and/or numerical derivatives which 198 
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could differ in accuracy. Moreover, method (i)  implicitly assumes the constancy of the Grüneisen’s 199 

parameters as the cell volume is reduced in a finite interval; in the present case, such assumption 200 

is not strictly valid for all the normal modes, and a check of the possible differences in the results 201 

obtained by applying the two different methods was required.   202 

 203 

 204 

2.2 Equation of State 205 

 206 

The equation of state (EoS) has been determined by several methods differing in the way static, 207 

zero point and thermal pressures were obtained. As already explained in the section above, the 208 

static contribution to the pressure (which does not depend on T) must be derived from the Est(V) 209 

static energy curve calculated by CRYSTAL. Static pressures were then added to zero point and 210 

thermal pressures, to get total P(V,T) curves which were subsequently fitted by appropriate EoS’s. 211 

In this respect, the notation employed below is composed by two symbols, the first one referring 212 

to the way static pressure contributions have been calculated, and the second one indicating the 213 

type of EoS used to fit the total P(V,T) curve. Precisely: (i) BM3-BM3 and BM3-BM4 notations 214 

respectively indicate (second symbol) that 3rd or 4th-order Birch-Murnaghan EoS’ have been used 215 

to fit the total P(V,T) pressure as a function of V, at a fixed T, whereas a Vint-BM3 (referring to the 216 

first symbol in the notation) has been used to get static pressures only; (ii) L3-BM3, L3-BM4, L4-217 

BM3 and L4-BM4 notations indicate that static pressures were evaluated through L3 or L4 218 

Legendre polynomial fittings; (iii) BM3-BD, L3-BD and L4-BD notations indicate that the bulk 219 

modulus at a given cell volume (pressure) and temperature has been calculated by a numerical 220 

derivative, with respect to V, of the P(V,T) curve at the corresponding volume, and that static 221 

pressures were obtained by the Vint-BM3, L3 or L4 fittings, respectively. Finally (iv) a Vint-BM3t 222 

notation indicates that a volume integrated BM3 EoS has been used to fit the total (static + zero 223 

point + thermal) Helmholtz free energy as a function of V (one fit only, at each temperature).  224 
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 225 

2.3 Thermal expansion 226 

 227 

The thermal expansion coefficient at any given cell volume (pressure), as a function of T, has been 228 

obtained either by (i) numerical derivative of the total pressure with respect to the temperature, 229 

according to the expression: 230 

 231 

𝛼𝑇 =
1

𝐾𝑇
(

𝜕𝑃

𝜕𝑇
)

𝑇
         (5) 232 

 233 

where KT is the bulk modulus estimated at the given pressure (cell volume) and temperature, or 234 

(ii) direct evaluation of the αTKT product (Anderson, 1995): 235 

 236 

𝛼𝑇𝐾𝑇 =
𝒩0𝑘

𝑉
∑ 𝛾𝑗eℎ𝜈𝑗 𝑘𝑇⁄

𝑗 (
ℎ𝜈𝑗 𝑘𝑇⁄

e
ℎ𝜈𝑗 𝑘𝑇⁄

−1
)

2

      (6) 237 

 238 

 239 

 240 

2.4 Acustic phonon frequencies at the Brillouin zone border, and Kieffer’s model 241 

 242 

Average longitudinal (p) and transversal (s) acoustic phonon frequencies (�̅�𝑗, j=p,s) at the Brillouin 243 

zone boundary were estimated through the relation (Kieffer, 1979b)   244 

 245 

�̅�𝑗 = v̅𝑗
1

2𝜋
(

6𝜋2𝒩0

𝑉
)

1 3⁄

        (7) 246 

 247 

where  v̅𝑗  is the corresponding average wave velocity. In turn, velocities were obtained through 248 

the well known relations  v̅𝑠 = (�̅�𝑉𝑅𝐻 𝜌⁄ )1 2⁄   and  v̅𝑝 = [(�̅�𝑉𝑅𝐻 +
4�̅�𝑉𝑅𝐻

3
) 𝜌⁄ ]

1 2⁄

, where ρ is the 249 

density, �̅�𝑉𝑅𝐻 and �̅�𝑉𝑅𝐻 are the Voigt and Reuss’ average of the bulk and shear moduli, 250 

respectively:  251 

 252 

�̅�𝑉𝑅𝐻 =  
1

2
(𝜇𝑉 + 𝜇𝑅);  �̅�𝑉𝑅𝐻 =

1

2
(𝐾𝑉 + 𝐾𝑅)     (8.1) 253 

 254 

𝜇𝑉 =
1

15
(𝑐′ − 𝑐′′ + 3𝑐′′′);  𝜇𝑅 = 15(4𝑠′ − 4𝑠′′ + 3𝑠′′′)   (8.2) 255 

 256 

𝐾𝑉 =  
1

9
(𝑐′ + 2𝑐′′);  𝐾𝑅 = (𝑠′ + 2𝑠′′)−1      (8.3) 257 
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 258 

and c’, c’’, c’’’, s’, s’’ s’’’ are respectively the sums over the elastic constants and compliances 259 

(c11+c22+c33), (c12+c13+c23), (c44+c55+c66), (s11+s22+s33), (s12+s13+s23) and (s44+s55+s66). The elastic and 260 

compliances tensors were calculated by using CRYSTAL as detailed in Appendix. 261 

 262 

The heat capacity at constant volume (CV), as a function of T, has been calculated at zero pressure 263 

through the formula (Ottonello et al., 2010) 264 

 265 

𝐶𝑉 = 3𝑘𝒩0 (
2

𝜋
)

3
∑ ∫

[arcsin(𝑋 𝑋𝑖⁄ )]2𝑋2e𝑋

(𝑋𝑖
2−𝑋2)

1 2⁄
(e𝑋−1)2

d𝑋 +
𝑋𝑖

0
3
𝑖=1  𝑘𝒩0 ∑ e𝑋𝑖 (

𝑋𝑖

e𝑋𝑖−1
)

2
3𝑛
𝑖=4              (9) 266 

 267 

where  𝑋𝑖 = ℎ𝜈𝑖 𝐾𝑇⁄ . In equation (9), the first sum runs over the three acoustic branches and, in 268 

our model, 𝜈1 = 𝜈2 = �̅�𝑠;  𝜈3 =  �̅�𝑝; the second sum runs over all the optic modes at the Γ point. 269 

 270 

The specific heat at constant pressure (CP) were calculated at zero pressure through the usual 271 

formula 272 

 273 

𝐶𝑃 = 𝐶𝑉 + 𝑇𝛼𝑇
2𝐾𝑇𝑉𝑇           (10) 274 

 275 

where  𝑉𝑇 is the cell volume at the temperature T. 276 

 277 

 278 

3.  Results and discussion 279 

 280 

3.1 Grüneisen’s parameters, zero point, thermal pressures and thermal expansion 281 

 282 

Equilibrium geometries, static energies and zone-centre vibrational frequencies (νj, j=1,3n-3; n=58 283 

is the number of atoms in the unit cell) were determined for sets of (i) 11 different cell volumes (V) 284 

ranging from 697 to 650Å3 (B3LYP Hamiltonian), and (ii) 9 different V’s in the [691, 650 Å3] range 285 

(WC1LYP Hamiltonian); details are provided in Appendix. For each normal mode, the Grüneisen’s 286 

parameter γj was determined. In the low frequency region of the vibrational spectrum (ranging 287 

from 100 to about 400 cm-1) the majority of the vibrational modes are associated to a negative 288 
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Grüneisen’s parameter, whereas for frequencies above 600 cm-1, all of such parameters are 289 

positive [see Figure (1)]. The average Grüneisen’s parameter (�̅�) is positive, and equal to 0.41 for 290 

both the B3LYP and WC1LYP Hamiltonians.  291 

 292 

Figure 1 293 

 294 

According to equation (1), modes having a negative γj produce a negative contribution to the 295 

vibrational pressure, however since �̅� is positive and the high frequencies modes have positive γj’s, 296 

the zero point pressure is positive and amount to 1.27 GPa at the static equilibrium cell volume 297 

(𝑉𝑠𝑡
0 ), where 𝑃𝑠𝑡 = (𝜕𝐸𝑠𝑡 𝜕𝑉)⁄

𝑉𝑠𝑡
0 = 0. At zero total pressure and at the athermal limit (T=0K, where 298 

the thermal pressure is zero) the static pressure must exactly counterbalance the zero point 299 

pressure (Pst+Pzp=0), so that Pst=-1.27 GPa; this corresponds to an athermal equilibrium volume 300 

(𝑉𝑎𝑡ℎ
0 ) larger than the static one: 𝑉𝑎𝑡ℎ

0  is equal to 697.46Å
3
 (𝑉𝑠𝑡

0 = 692.22) at the B3LYP level, and 301 

692.10Å3
 (𝑉𝑠𝑡

0 = 687.05) at the WC1LYP one.  302 

At higher temperatures, a phonon gas is produced inside the crystal which contributes a 303 

thermal pressure whose value depends by (i) the average number of phonons associated to each 304 

normal mode, (ii) the corresponding frequencies and (iii) the Grüneisen’s parameters [see 305 

equation (1)]. The Bose-Einstein distribution of phonons at three different temperatures (300, 600 306 

and 900K), and at zero total pressure, is shown in Figure (2):  307 

 308 

Figure 2 309 

 310 
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at room temperature (300K) no phonons exist corresponding to modes having frequencies higher 311 

than about 900 cm-1, so that the thermal pressure is mainly determined by the low frequencies 312 

phonons having negative γj’s [see Figure (3)].  313 

 314 

Figure 3 315 

 316 

At higher temperatures, the number of high frequency phonons increases and, since such phonons 317 

are associated to positive γj’s, an overall positive thermal pressure is produced. The static, zero 318 

point and thermal pressure contributions to the (zero) total pressure, as functions of temperature, 319 

are plotted in Figure (4): zero point pressure is almost constant along the [0, 1000K] interval (its 320 

little variation is due to the small thermal expansion of the cell volume, see below); thermal 321 

pressure decreases from 0 to about -0.1 GPa at 290K, and then starts to increase, reaching positive 322 

values at temperatures higher than 500K. To maintain the equilibrium with the (imposed) external 323 

pressure of 0GPa, the static pressure must mirror the behaviour of the thermal pressure (in fact, 324 

by neglecting the slight variation of Pzp with temperature, ΔPst = -ΔPth), that is: Pst increases by 325 

about 0.1 Gpa from 0 up to 290K, and decreases at higher temperatures.  326 

 327 

Figure 4 328 

 329 

The relative increase of the (negative) static pressure in the [0, 290K] interval is realized through a 330 

slight reduction of the cell volume, so that the estimated thermal expansion coefficient is negative 331 

at low temperatures. At higher temperatures, thermal expansion is positive but its magnitude 332 

remains however small, due to the negative contribution of the low frequency phonons to the 333 

thermal pressure.  334 
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 At higher total pressures, the low frequency modes having negative Grüneisen’s 335 

parameters decrease significantly their frequencies and, consequently, their negative 336 

contributions to the thermal pressure is enhanced due the large increment of the associated 337 

number of phonons. This results in thermal pressures that are negative even at relatively high 338 

temperatures, and negative thermal expansions are thus estimated up to temperatures well above 339 

the room one [about 500K at P=6 GPa]. Such behaviour is illustrated in Figures (5) and (6), 340 

reporting the isobaric curves (0, 3 and 6 GPa) of the 𝛼𝑇𝐾𝑇 product and of the thermal expansion 341 

coefficient 𝛼𝑇 in the [0, 1200K] temperature interval, as determined from equations (6) and (5), 342 

respectively. 343 

 344 

Figures 5 and 6  345 

 346 

 Thermal expansion coefficients evaluated through equations (5) or (6) are nearly identical; 347 

the B3LYP values (at zero total pressure) at 300, 600 and 900K are 1.0·10-6, 6.5·10-6 and           348 

9.0·10-6 K-1, respectively (the required KT values are from a BM3-BD fitting of data up to a Pmax of 349 

6GPa; see next section). WC1LYP values at the same temperatures are lower and, respectively,       350 

-0.7·10-6, 4.2·10-6 and 6.1·10-6 K-1. Experimental data were derived from the work of Morosin et al. 351 

(1972), by calculating cell volumes at different temperatures from the a and c lattice constants 352 

plotted in their graph (14 points in the [298, 873K] temperature range), and fitting the resulting 353 

V(T) set by using Legendre’s polynomials up to the 2nd order (higher order polynomials produced 354 

unphysical waving of the fitted V(T) curve, due to considerable noise in the experimental values); 355 

the subsequent derivation, with respect to T, of the V(T) curve, yielded αT values of 3.2·10-6, 356 

6.0·10-6 and 8.7·10-6 K-1 at 300, 600 and 900K respectively, in reasonable agreement with the 357 

calculated results. By limiting the fit of the experimental V(T) curve to a maximum temperature of 358 
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720K (11 points), yielded αT  values of 2.4·10-6 and 7.4·10-6 K-1 at 300 and 600K, respectively. The 359 

analysis of the Morosin’s data made by Schlenker et al. (1977) resulted in αT values of 2.1(0.4)·10-6, 360 

4.7(0.2)·10-6 and 7.3(0.4)·10-6 K-1, at 300, 600 and 900K, respectively (standard uncertainties in 361 

parentheses). The B3LYP calculated thermal expansion appears to be in closer agreement with the 362 

experimental data, than the WC1LYP one. However, the possible errors affecting the experiment 363 

must be stressed, especially in such a case of very low thermal expansion, whose estimation would 364 

require highly accurate and precise cell volume data, at each temperature, in order to reach a 365 

relatively low uncertainty.    366 

 367 

3.2 Bulk Modulus 368 

 369 

The values of the bulk modulus at zero pressure (K0) determined at the B3LYP level by using the 370 

various methods described in the computational details section, are reported in Table (1).  371 

 372 

Table 1 373 

 374 

The four columns under the Pmax=6GPa heading refer to the EoS’ determined by fitting the P(V,T) 375 

curves up to 6GPa (low pressure case, in what follow); the last four columns refer to fittings 376 

extended to the [0, 12GPa] pressure range (high pressure case). Static values are also reported [2nd 377 

and 6th columns in Table (1)] as determined (i) by fitting the Vint-BM3 EoS’ (BM3) to the Est(V) curve 378 

(these are identical with a Vint-BM3t calculation when the only contribution to the energy 379 

considered is the static one), or (ii) through the analytic second derivative, with respect to V and at 380 

the static equilibrium volume, of nth-order Legendre polynomials (L3 or L4) fitting the same curve.  381 

In the high pressure case, the L3, L5 and L6 fittings of the static energy curve have also been tried, 382 

in addition to the L4 one reported in Table (1): the values of the bulk moduli, at the static limit and 383 

at the various temperatures, were not significantly different from those obtained by the L4 fitting.   384 
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 Static bulk modulus has also been obtained as a by-product of the calculation of the elastic 385 

constants Cij (see the Appendix): its value of 179.4 GPa is in close agreement with the 386 

corresponding values of Table (1).  387 

As it clearly appears in Table (1), in the low pressure case no significant differences in the 388 

values of the bulk modulus emerge as a function of the algorithm employed to calculate it. In 389 

particular, the static bulk modulus has a value of about 178 GPa, and it decreases to about 172 390 

GPa at the athermal limit (due to the presence of zero point effects), and to 168 and 162 GPa, at 391 

300 and 600K, respectively (due to thermal effects). In the high pressure case, however, significant 392 

differences are observed among the BM3, BM4 and BD values at 300 and 600K (whereas static and 393 

athermal values are nearly identical). In particular, due to the effect of the behaviour of the 394 

thermal pressure with the temperature (see the previous section), at temperatures greater than 395 

zero the inadequacy of the BM3 EoS is evident: indeed the value of K0, when the Ptot(V,T) curve is 396 

fitted by a BM3 EoS, does not decrease with T, at variance with what could be expected [see BM3-397 

BM3, L4-BM3 and Vint-BM3t values, for the high pressure case, in Table (1)]. A FE-fE plot (Angel, 398 

2000), where  𝑓E = [(𝑉0 𝑉⁄ )2/3 − 1] 2⁄  is the Eulerian strain and 𝐹E = 𝑃 [3𝑓E(1 + 2𝑓E)5 2⁄ ]⁄  is the 399 

normalized pressure, is shown in Figure (7): apart the static and athermal cases where the linear 400 

and almost flat plots indicates the adequacy of a BM3 curve to fit the P(V) data (indeed, even a 2nd 401 

order EoS could describe the data), at higher temperatures the non linearity of the curves is 402 

evident, so that P(V,T) data cannot be fitted by a BM3 EoS.     403 

 404 

Figure 7 405 

 406 

A normal behaviour with temperature is observed when K0 is calculated either by (i) using a 407 

4th-order Birch-Murnaghan EoS to fit the Ptot(V,T) curve [BM3-BM4 or L4-BM4 cases in Table (1)], 408 
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or (ii) numerical derivation [BM3-BD and L4-BD cases in Table (1)]. Significant differences of the 409 

BM4 and BD bulk moduli at high temperatures, for the high pressure case, are also observed [see 410 

BM3-BM4 and BM3-BD, or L4-BM4 and L4-BD in Table (1)], which may reflect the inadequacy of 411 

the BM4 EoS to describe high P/T conditions. This is clearly seen in Figure (8), where KT(P) curves, 412 

directly calculated by numerical derivation of the P(V,T) curves, at fixed T (L4-BD or BM3-BD 413 

algorithms; we recall here that, in the L4-BD algorithm, the L4 fitting is limited to the Est(V) curve, 414 

to get the static pressure at each V), are plotted together with KT(P) point values determined by 415 

using the KT(0) (i.e. K0), 𝐾0
′ and 𝐾0

′′ parameters from L4-BM4 fittings, at the three different 416 

temperatures.  417 

 418 

Figure 8 419 

 420 

Indeed, even if at the athermal limit the bulk moduli obtained through the L4-BD and L4-BM4 421 

algorithms are identical all along the [0, 12GPa] pressure range [this fact can also be seen in Table 422 

(1)], at higher temperatures the shapes of the L4-BD curves (almost linear for P < 5 Gpa, and bent 423 

toward low values, at higher P, at least for the T=600K case) are definitely not well reproduced by 424 

the BM4-KT(P) based functions. Concerning the low pressure linear region, the slopes for 𝑃 → 0 425 

(𝐾0
′) of the three L4-BD functions reported in Figure (8) slightly decrease from 3.9, at the athermal 426 

limit, to 3.0 at 600K. Instead, the 𝐾0
′ values obtained by the L4-BM4 fittings increase strongly from 427 

4.0 at the athermal limit, to 6.8 at 300K, and 10.4 at 600K. Meanwhile, the  𝐾0
′′ values decrease 428 

from -0.05 GPa-1, at the athermal limit, to -0.93 and -2.2 GPa-1, at 300 and 600K respectively. The 429 

correlation among the K0, 𝐾0
′ and 𝐾0

′′  values of the BM4 fittings produces lower values of K0 than 430 

those from the BD calculations [Table (1)]. In the present case, therefore, the most reliable values 431 
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of the bulk moduli, at each temperature and pressure, are those obtained through the application 432 

of a Ln-BD (or a BM3-BD) algorithm. 433 

The last row of Table (1) reports the Vint-BM3t bulk moduli obtained by the Vint-BM3 fit of 434 

the total F(V,T) Helmholtz function. Such values are very close to the BM3-BM3 ones, at each 435 

temperature, and for the low and high pressure cases. Other EoS’s we tried to fit our P(V) data 436 

(e.g. Vinet’s EoS) gave results nearly identical to the BM3 ones.  437 

Similar trends of the bulk modulus behaviour as a function of temperature, pressure and 438 

maximum pressure of fitting were observed in the case of the WC1LYP Hamiltonian, as it can be 439 

seen from the results reported in Table (2). 440 

 441 

Table 2 442 

 443 

The WC1LYP K0 values are generally higher than the corresponding B3LYP ones by more than 10 444 

GPa. The experimental value of the bulk modulus measured by Prencipe and Nestola (2005) on 445 

P(V) data collected up to a pressure of 6 GPa, and fitted by a BM3 EoS, is also reported in Table (2): 446 

the agreement with the calculated datum is excellent, suggesting at least for this case, a very good 447 

performance of the WC1LYP Hamiltonian. 448 

Isobaric curves of the bulk modulus variation with temperature, at 0, 3, 6 and 9 GPa (L4-BD 449 

algorithm) are reported in Figure (9). Apart from the very low temperature region, such curves 450 

show negative and nearly constant slopes which increase in magnitude with the pressure; 451 

precisely, (𝜕𝐾𝑇/𝜕𝑇)𝑃 = -0.020, -0.022,  -0.028 and -0.048 GPa/K at 0, 3, 6 and 9 GPa, respectively.  452 

 453 

Figure 9 454 

 455 
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Such increase of the magnitude of the slope, at high pressure, is due to the enhanced negative 456 

contribution to the thermal pressure of the low frequency phonons; indeed this fact parallels what 457 

has been discussed above, concerning thermal expansion: as the low frequency modes are 458 

associated to negative Grüneisen’s parameters, their frequencies are reduced at high pressure, so 459 

that an increasingly large number on phonons is created, and a consequent increased negative 460 

contribution to the thermal pressure is produced.         461 

 462 

3.3 Heat capacity 463 

 464 

Constant volume and constant pressure (CP, at zero total pressure) specific heats were 465 

calculated by means of equations (9) and (10). The calculated (B3LYP Hamiltonian) CP(T) curve, in 466 

the [0, 1000K] temperature range and referring to the Al2Be3Si6O18 formula unit, is plotted in 467 

Figure (10) and reported in Table (3), together with the experimental values by Hemingway el al. 468 

(1986).   469 

 470 

Table 3 and Figure 10 471 

 472 

As it appears from the data shown in Table (3), no significant differences have been observed in 473 

the CP calculated at the B3LYP and WC1LYP levels. In Figure (10) circles refer to experimental data 474 

measured at temperature higher then the room one, whereas triangles refer to low temperature 475 

measurements on a sample that contains 0.72 H2O molecules pfu (on 36 oxygen atoms). Such 476 

water is presumably lost at high temperature and, in fact, Hemingway et al. (1986) provided two 477 

different tables of values of CP: one for the low temperature region, and another one for high 478 

temperatures. The calculated curve in the high temperature region compares quite well with the 479 

experimental data, even if some discrepancy is observed for temperatures higher than 900K; such 480 

discrepancy could possibly be due to the failure, at high T, of the quasi-harmonic approximation 481 



20 

 

used in our calculation, as well as to some problem in the experimental measurements as reported 482 

by Hemingway et al. (1986). Al low temperature, it is likely that the experimental CP contains a 483 

significant contribution from the vibrations of the water molecules inside the channels of the 484 

structure, which lead to higher CP values than those referring to the pure beryl. However, 485 

Hemingway et al. (1986) tried to correct for such an effect (and even for the presence of Cr3+ 486 

impurities in the sample) but, in spite of the correction, the value of CP remained relatively much 487 

higher than that expected at low temperature. The reason of such anomaly in the experimental 488 

low temperature CP was not identified (Hemingway et al., 1986), nor it is by looking at our 489 

calculated data [Table (3)] which confirms the somewhat low values that could be expected from 490 

Debye’s temperature based considerations, as discussed by Hemingway et al. (1986). 491 

 With the purpose of a comparison with the experimental data of Hemingway et al. (1986), 492 

a fit of the Cp versus T has been done, in the [200-1000K] temperature range, according to the 493 

expression: 494 

 495 

𝐶𝑝 = 𝑐1 + 𝑐2𝑇 + 𝑐3𝑇2 + 𝑐4𝑇−0.5 + 𝑐5𝑇−2 

 496 

 497 

The refined valued of the c1, c2, c3, c4 and c5 coefficients were respectively 1594.12, -0.4186, 498 

1.0819·10-4, -19331.40, 6.1187·106, in appropriate units (Cp is in J/mol·K and T is in K). The 499 

correspondent values of the same coefficients refined by Hemingway et al. (1986) were 1625.84,   500 

-0.4252, 1.2038·10-4, -20180.94, 6.8254·106. The range of T over which the experimental Cp’s were 501 

interpolated was [200, 1800K] (Hemingway et al., 1986); we have chosen a lower maximum 502 

temperature (1000K) due to the possible failure, at very high temperatures, of the quasi-harmonic 503 

approximation employed in our calculations.  504 

 505 

 506 

 507 
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3.4 Soft mode and the  𝑃6/𝑚𝑐𝑐 → 𝑃1̅ phase transition 508 

 509 

A zone-centre Eg soft mode was identified (at both the B3LYP and WC1LYP levels), whose 510 

frequency went to zero at a cell volume lower than 650Å3, corresponding to a static pressure 511 

higher than 14 GPa, starting from a value of 136 cm-1 at the static equilibrium cell volume [see 512 

Figure (11)].  513 

 514 

Figure 11 515 

 516 

This was the sign of a possible soft mode transition to a lower symmetry phase. By initially shifting 517 

the atoms of the unit cell along the two eigenvectors associated to this 2-dimensional Eg normal 518 

mode, a 𝑃1̅ space group symmetry resulted. By optimizing the geometry in such a space group, by 519 

keeping the cell volume fixed at values lower than 650Å3, triclinic structures were obtained, having 520 

static energies systematically lower than those resulting from the optimization, at the same cell 521 

volumes, in the P6/mcc space group [Table (4)].  522 

 523 

Table 4 524 

 525 

The stability field of the 𝑃1̅ phase, at temperatures higher than 0K, was not determined since it 526 

would require the calculation of the vibrational frequencies in 𝑃1̅: a too demanding task by 527 

considering the available computational resources.  528 

Geometry (cell parameters and fractional coordinates) resulting from the optimization at 529 

cell volumes of 630Å3, in the 𝑃1̅ symmetry, is provided as supplementary material. A full 530 

discussion concerning the geometry of such a phase will be presented in a subsequent paper 531 

together with results from experimental findings: preliminary single-crystal and powder diffraction 532 



22 

 

data collected at the ESR synchrotron facility, in Grenoble, showed that a symmetry reduction 533 

does indeed occur at pressures close to 14 GPa (Merlini; private communication). The 534 

interpretation of the experimental data is however difficult due to the possible presence of 535 

twinning. On the theoretical side, as geometry is concerned, it is here anticipated that the 536 

deviation from the hexagonal symmetry increases with the reduction of the unit cell volume. At a 537 

cell volume of 630Å3, the six independent lattice constants a, b, c, α, β and γ were respectively 538 

optimized to 9.061, 9.045, 8.881Å, 90.2°, 89.7° and 120.1°; at the same cell volume, a and c lattice 539 

constants of the hexagonal phase were 9.028 and 8.924 Å, respectively. Thus, apart from the 540 

changes in the unit cell angles, the transition to the triclinic system produces a contraction of the c 541 

axis length, whereas the a and b parameters are increased. Some details of the 𝑃1̅ structure, in 542 

particular concerning the ring of Si-centred tetrahedra, are represented in Figure (12): the unique 543 

Si site in P6/mcc splits in three sites Si1, Si2, Si3; likewise, the unique O1 atom in the hexagonal 544 

phase splits in the O1a, O1b and O1c inequivalent atoms. Polyhedra are tilted either around axes 545 

parallel to [001] [Figure (12a)] or around directions normal to it [Figure (12b)].  546 

 547 

Figure 12 548 

 549 

The Si-O1-Si angles are reduced from the value of 164.3° in P6/mcc, to 154.8° (Si1-O1a-Si3), 159.6° 550 

(Si2-O1b-Si1) and 160.4° (Si2-O1c-Si3) in 𝑃1̅; such reduction of the angle is accompanied by a 551 

parallel increase of the Si-O1 distances of about 0.01Å on average, in going from the hexagonal 552 

phase to the triclinic one; this is consistent with the increase of the a and b lattice constants, and 553 

the decrease of the c parameter (indeed, even in the hexagonal phase, the c axis appears to be 554 

more compressible than the other two axes). These modifications of the structure of beryl as it 555 

transforms to the triclinic phase are anticipated in the vibrational properties of the high symmetry 556 
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polymorph: by looking at the low frequencies normal modes which mainly involve the tilting of    557 

Si-centred tetrahedra (see animations at the web page 558 

http://www.personalweb.unito.it/mauro.prencipe/vibs/beryl/index.html,  559 

calculated for the hexagonal beryl at a cell volume of 650Å3, close to the phase transition) and 560 

examining the Si-O1 distances during the excursion of such low frequencies vibrations, it is seen 561 

that a significant lengthening of the average Si-O1 distance accompanies the tilting [Figure (13)].  562 

 563 

Figure 13 564 

 565 

It could be said that, for pressures lower than 14GPa (hexagonal phase), the increase of the 566 

repulsion among the nuclei due to the volume contraction (see the relevant discussion in Prencipe 567 

and Nestola, 2007) is dynamically partially compensated by vibrations along the low frequencies 568 

modes (the Eg soft mode in particular) which reduce the Si-O1-Si angles and increase the 569 

internuclear distances. Such reverse correlation between the Si-O-Si angle and Si-O bond length 570 

has also been observed in silicates, both in static calculations and experimental measurements, 571 

and interpreted within the framework of the QTAIMC theory (Bader, 1994; Prencipe, 2002; 572 

Prencipe and Nestola, 2007; Gibbs et al., 2009). As the cell volume decreases, the shortening of 573 

the interatomic distances (Si-O1 ones in particular: the shortest in the structure) increases the 574 

energy of the minima of the Born-Oppenheimer surface which correspond to the positions of the 575 

nuclei at the static equilibrium. Moreover, the lengthening of the average Si-O1 distance, as the   576 

Si-O1-Si angle decreases, is more pronounced at high pressures than at low ones: in fact, the 577 

nearly linear curves 𝑑〈Si-O1〉(〈Si-O1-Si〉) had slopes of -2.20·10-3 and -1.92·10-3 Å/degree at cell 578 

volumes of 650Å3 (high pressure) and 692Å3 (zero static pressure) respectively. In other words, the 579 

tilting of the Si-centred tetrahedra becomes less rigid as the pressure increases. Consequently, 580 

http://www.personalweb.unito.it/mauro.prencipe/vibs/beryl/index.html
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potential wells become shallower and vibrational frequencies are reduced (negative Grüneisen’s 581 

parameters). This fact can also be analyzed by considering the total pressure and its contributions: 582 

the energy required to statically compress the structure, and which is measured by the static 583 

pressure, is lowered by the dynamic distortion of the structure that moves along its low frequency 584 

normal modes; such lowering is measured by the zero point and thermal pressures, to which the 585 

latter modes contribute negatively. The (total) pressure required to compress the (hexagonal) 586 

beryl at a given volume is therefore lower than the (static) pressure that would be required to 587 

compress it statically. At pressures higher than 14GPa the dynamic distortion is frozen and the 588 

symmetry of beryl is reduced  to the 𝑃1̅ space group. 589 

 590 

4. Conclusive (general) remarks on thermal expansion 591 

 592 

As reported in the previous section, low frequency modes consist essentially of tilting of M-centre 593 

polyhedra (M=Si, Al, Be) associated to only minor variations of the M-O distances (as discussed 594 

above the latter ones are nevertheless determinant for the decrease of the vibrational frequencies 595 

as the pressure increases); in other words, such vibrations can be regarded as rigid unit modes 596 

(RUM) according to the definition given in Dove et al. (1995). Indeed the origin of negative or very 597 

low thermal expansion coefficients in some framework silicates has been interpreted within the 598 

RUM model, by invoking a geometrical effect of the tilting of rigid polyhedra, which acts in the 599 

direction of decreasing the cell volume as the temperature (amplitude of the vibrational motion) is 600 

increased. Such effect is generally compensated by normal anharmonic effects which, instead, 601 

produce a cell volume expansion as the temperature is increased (Welche et al., 1998; Heine et al., 602 

1999). The interpretation of the thermal expansion data proposed in the current work is not in 603 

contradiction with the geometrical RUM model: in fact, RUM’s are observed and they are 604 

associated to negative Grüneisen’s parameters (that is, they contribute negatively to the thermal 605 

expansion). Indeed, it is explicitly stated in Heine et al. (1999) that  “the Grüneisen theory as a 606 
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general formulation must be able to encompass the geometrical effect”, and a relation is 607 

proposed between 𝛾𝑟𝑒𝑑 [equal to (2𝜋𝜈)2𝛾] and 𝜂, the latter being a geometrical constant specific 608 

to the RUM mode, which determines the magnitude of the volume contraction as the temperature 609 

increases (Welche et al., 1998). However, whilst by following the approach of Welche et al. (1998), 610 

one could explain the sign of 𝛾𝑟𝑒𝑑 on the basis of the sign of 𝜂 (the variation of the frequency with 611 

the volume would be a consequence of the geometry of vibration), in our approach it is the sign of  612 

𝛾𝑟𝑒𝑑, ultimately due to the shape of the Born-Oppenheimer surface, that determines the sign of  𝜂 613 

and hence the geometry of vibration. It is also emphasised here that, in our opinion, such 614 

geometrical effect is just one type of anharmonicity. The distinction between geometrical and 615 

anharmonic effects in the terms discussed by Welche et al. (1998) and Heine et al. (1999) could be 616 

misleading in that it seems to attribute a component of thermal expansion (or contraction) to 617 

effects not related to the anharmonicity of the atomic interactions, whilst it is clear that thermal 618 

expansion (or contraction) is possible if and only if the Born-Oppenheimer’s surface deviates from 619 

the harmonic shape: if the surface were perfectly harmonic, the Grüneisen’s parameters would be 620 

zero, as well as the zero point and thermal pressures, and no thermal expansion would be 621 

observed (Ashcroft and Mermin, 1976; Born and Huang, 1954). 622 

Another issue concerning thermal expansion is related to the asymmetry of the interatomic 623 

potential. It is often said that normal thermal expansion in solids is ultimately due to the 624 

asymmetry of potential wells on the Born-Oppenheimer surface, whose minima are occupied by 625 

atoms (see for instance Miller et al., 2009). This view stems from considerations based on the 626 

simple quantum oscillator usually invoked to explain the behaviour of biatomic molecules. Indeed, 627 

in a biatomic molecule, the increase of bond length with temperature can be ascribed to the 628 

asymmetric shape of the interatomic potential leading to the well known asymmetric vibrational 629 

eigenfunctions of the anharmonic oscillator, whose average positions are progressively shifted to 630 
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values corresponding to higher interatomic distances, as the vibrational quantum number is 631 

increased; in this case, as excited vibrational energy levels are being populated by heating the 632 

molecular gas, the thermally averaged equilibrium distance of the nuclei is larger than the distance 633 

at T=0K, where the oscillator is at the fundamental level. Thus, bond lengthening can be directly 634 

view as an effect of the asymmetry of the potential which, in general, is just one type of 635 

anharmonicity (it is however here stressed that the thermal expansion of the gas, at constant 636 

pressure, is of course never interpreted as an effect of bond lengthening). By following this line of 637 

reasoning, an anharmonic but symmetric potential should not lead to any thermal expansion, 638 

since the eigenfunctions of such peculiar symmetric oscillator are symmetric with respect to the 639 

static equilibrium position. In a solid, if the shape of the Born-Oppenheimer surface around a 640 

minimum associated to the equilibrium position of the nuclei (q0), were hypothetically described 641 

by a potential of the form  V(q) = V(q0) + 1/2 k2 (q-q0)
2
 + k4(q-q0)

4  (where q is some normal 642 

coordinate, and q0=0 corresponds to the equilibrium position) symmetric eigenfunctions would 643 

result, that is: no thermal expansion, according to the model translated from the molecular 644 

experience. Even in this case, however, the corresponding frequencies would depend upon the 645 

volume, since the above potential is anharmonic by the presence of the quartic term; in turn, this 646 

would lead to Grüneisen’s parameters different from zero, and a non zero thermal expansion 647 

would result. It should be noted that, at variance with the zone-centre vibrational modes that 648 

could be asymmetric with respect to the q0 position, a symmetric V(q) potential should be 649 

characteristic of all the off-centre modes: this is obvious, for instance, in the zone-border case 650 

where, for any motion in the reference zero cell (e.g. a M-X bond lengthening) there is a motion,  651 

in an adjacent cell, which is exactly in anti-phase with the first one (a M-X bond shortening); when 652 

the sign of q is reversed, the M-X bond in the zero cell shortens, whereas the corresponding bond, 653 

in the adjacent cell, lengthens; this means that V does not depend upon the sign of q and, 654 
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therefore, it is symmetric. Thus, the argument concerning the role played by the asymmetry of the 655 

potential energy surface, in connection with the asymmetry of the resulting eigenfunctions, in 656 

determining the thermal expansion (negative or positive, as it may be) is, in general, not fully 657 

appropriate.  658 

Another objection that could be raised against such asymmetric-potential model of thermal 659 

expansion concerns the principle of conservation of energy: imagine a crystal at T=0K subjected to 660 

an external zero pressure; by heating such a crystal to a temperature T, it will generally expand. If 661 

such an expansion were exclusively due to the asymmetry of the vibrational eigenfunctions, after 662 

heating the (static) equilibrium positions of the nuclei would be unchanged with respect to those 663 

at T=0K: indeed, it is often said that the temperature affects the population of vibrational levels, 664 

but not the structure of the vibrational spectrum (position of the energy levels); in turns, this 665 

means that either static and zero point energies would be exactly the same as they were at 0K, as 666 

well as the corresponding pressures. Now, it can be said that (i) as a reaction to the temperature 667 

increase, the crystal expands in order to equilibrate its internal pressure with the external zero 668 

one, and (ii) by heating it at constant volume, phonons are created which contribute a thermal 669 

pressure according to what has been discussed in the sections above; therefore, if the nuclei did 670 

not change their equilibrium position at high T, the only way to equilibrate the external and 671 

internal pressures would be that of reducing the thermal pressure to zero. This is clearly a paradox 672 

since, if the Grüneisen’s parameters are different from zero, a zero thermal pressure would be 673 

possible only if no phonons existed in the crystal, even at a non zero temperature, in open 674 

contradiction with the Bose-Einstein statistics. Moreover, since no work is done in the expansion 675 

process (against the zero external pressure), all of the energy carried by phonons at a certain T 676 

(which would be equal to the energy provided during heating) would be lost and the energy-677 

conservation principle would be violated. 678 
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 Therefore, even if the asymmetry of the interatomic potential, and the consequent 679 

asymmetry of the vibrational eigenfunctions, cannot in general be ruled out [the asymmetry of the 680 

resulting vibrational eigenfunctions could be related to a component of what is generally termed 681 

intrinsic anharmonicity (Oganov and Dorogokupets, 2004) which could also contribute a fraction to 682 

the total thermal expansion], the reason of the thermal expansion must be searched in the 683 

anharmonicity of the potential, independently by its symmetry, through the effects it has on the 684 

thermal pressure via the Grüneisen’s parameters. Such effects are exactly those which are 685 

properly taken into account at the quasi-harmonic level. 686 

 In the present case of beryl, the calculation of the static energies as the structure is 687 

deformed along the normal coordinates corresponding to low frequency modes, gave perfectly 688 

symmetric curves about the respective equilibrium points even if, as discussed above, such modes 689 

are associated to large (and negative) Grüneisen’s parameters, and thus do contribute 690 

substantially to the thermal pressure and to the thermal expansion. For instance, a fit up to the 4th 691 

power of the (static) energy v.s. the normal coordinate q  associated to  the B1g mode at 72 cm-1, 692 

(cell volume equal to 650 Å3) gave k2, k3 and k4 values of 1.08·10-2 hartree/Å2, 3.39·10-5 hartree/Å3 
693 

and 3.23·10-3 hartree/Å4 respectively; in particular, the k3 value associated to the cubic term is 694 

much smaller than the values of both the quadratic (k2) and quartic (k4) coefficients. Indeed, the 695 

E(q) curve appears to be perfectly symmetric with respect to the origin (q=0). Similar calculations 696 

carried out for the normal modes corresponding to the A2g symmetric and A1u antisymmetric Si-O2 697 

stretching modes, at 1101 and 1217 cm-1 respectively, gave symmetric E(q) curves: k2, k3 and k4 698 

equal respectively to 2.56 hartree/Å2, 4.79·10-3 hartree/Å3 and 4.73·10-3 hartree/Å4, for the A2g 699 

mode, and 3.70 hartree/Å2, 4.68·10-6 hartree/Å3 and 0.249 hartree/Å4, for the A1u mode; it should 700 

be noted the much lower value of k3 for the A1u mode (anti-phase stretching of the two Si-O2 701 

bonds: for each SiO4 tetrahedron, one bond shortens and the other one lengthens), than the 702 
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corresponding value obtained for the A2g one (in-phase stretching of the two Si-O2 bonds). The A1g 703 

symmetric Al-O2, Be-O2 stretching mode at 667 cm-1 [Figure (14)] has a k3 value comparable in 704 

magnitude to the quartic coefficient (k2=0.998 hartree/Å2, k3=-9.14∙10-3 hartree/Å3, k4=1.16∙10-2 705 

hartree/Å4).  706 

 707 

Figure 14 708 

 709 

The curve appears to be reasonably well described by an harmonic fit [dotted line in Figure (14)] 710 

and the asymmetry is not evident, even if in this case the k3 value is higher than the values 711 

obtained for the other modes. The shift of the average q position from the equilibrium one (q=0) 712 

at the 6th excited vibrational level (which corresponds to the average number of phonons of that 713 

mode at T=900K), calculated by following the method of Viswanathan (1957), amount to 0.0005Å 714 

only. Therefore, on the whole it could be said that, at least in the case of beryl, the asymmetry of 715 

the E(q) plays very little or no role at all in determining the thermal expansion of the crystal. The 716 

observed structural changes with temperature should be an effect of the real shift of the 717 

equilibrium static positions of the nuclei, which determines variations of the total energy (both 718 

static and vibrational contributions) and entropy, driving the crystal toward the minimum free 719 

energy at given pressure and temperature. On the other hand, the condition  720 

 721 

𝑃 = − (
𝜕𝐹

𝜕𝑉
)

𝑇
= 0 

 722 

expressing the total pressure of the crystal in equilibrium with a zero external pressure, can 723 

obviously be read as the condition of minimum free energy at a given temperature.  724 



30 

 

The analysis of the effects of thermal expansion on the crystal energy can also be 725 

considered under a different point of view. Let 𝐸𝑡ℎ(𝜈, 𝑇) be the contribution to the thermal 726 

energy, at the temperature T, due to the vibrational mode at frequency 𝜈, that is: 727 

 728 

𝐸𝑡ℎ(𝜈, 𝑇) = 𝑛(𝜈, 𝑇) ∙ ℎ𝜈 
 729 

where 𝑛(𝜈, 𝑇) is the number of phonons having frequency 𝜈 at the temperature T [equation (2)]. 730 

The variation of 𝐸𝑡ℎ(𝜈, 𝑇) with the volume is given by the expression 731 

 732 

d𝐸𝑡ℎ(𝜈)

d𝑉
= 𝛾

𝐾𝑇

𝑉
𝐹(𝑦) 

 733 

where y  is the ratio hν/kT, γ  is the Grüneisen’s parameter and the F  function [plotted in figure 734 

(15)] is defined as 735 

 736 

𝐹(𝑦) = 𝑦
e𝑦(𝑦 − 1) + 1

(e𝑦 − 1)2
 

 737 

 738 

Figure 15 739 

 740 

The F(y) function is always positive and, if γ is positive too, the thermal energy increases as the 741 

volume increases (at constant T). This is due to the fact that, even if the energy per phonon 742 

decreases as the volume increases (because of the reduction of the frequency), the number of 743 

phonons increases. By taking into account the zero point energy contribution [𝐸𝑧𝑝(𝜈)], the volume 744 

derivative of the total vibrational energy of the single mode considered [𝐸𝑣𝑖𝑏(𝜈, 𝑇) = 𝐸𝑧𝑝(𝜈) +745 

𝐸𝑡ℎ(𝜈, 𝑇)] is: 746 

 747 
d𝐸𝑣𝑖𝑏

d𝑉
= 𝛾

𝐾𝑇

𝑉
𝐺(𝑦) 

 748 

where the G function is defined as: 749 
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 750 

𝐺(𝑦) = −
𝑦(sinh 𝑦 − 1)

2(cosh 𝑦 − 1)
 

 751 

Such G function is always negative and, consequently, as the cell volume increases (isothermically) 752 

the vibrational energy decreases due to a decrease of the zero point contribution which outweighs 753 

the thermal one. The vibrational energy lost during expansion, plus the energy provided by the 754 

environment to keep the temperature constant (if the expansion was adiabatic, the crystal would 755 

generally decrease its temperature with a reduction of the number of phonons), is transferred to 756 

the static lattice, to shift the nuclear positions against the static potential whose relative value 757 

increases as the crystal expands. 758 

 759 

Appendix   760 

 761 

Geometry optimizations, static energies and vibrational frequencies at the (static) equilibrium, and 762 

at fixed cell volumes, were performed by means of the ab initio CRYSTAL06 code (Dovesi et al., 763 

2006), which implements the Hartree-Fock and Kohn-Sham, Self Consistent Field (SCF) method for 764 

the study of periodic systems (Pisani et al., 1988), by using a Gaussian type basis set.  765 

 766 

Basis set,  Hamiltonian and computational parameters 767 

 768 

The basis set employed was already used for the calculation of the vibrational spectrum of beryl at 769 

zero pressure (basis set D2 in Prencipe et al., 2006); it consisted of a 6-31G* contraction for Be,  a 770 

88-31G* contraction for both Al and Si, and a 8-411G* contraction for O. 771 

The  B3LYP (Becke, 1993) and the WC1LYP (Wu and Cohen, 2006) Hamiltonians have been 772 

chosen which contain hybrid Hartree-Fock/Density-Functional exchange terms. B3LYP is one of the 773 

most suitable Hamiltonian for the ab initio calculation of the vibrational properties of molecules, 774 

as documented by Koch and Holthausen (2000), as well as for solid state calculations, where it has 775 

been shown to provide excellent results for geometries and vibrational frequencies, superior to 776 
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the one obtained by LDA- or GGA- type functionals (Pascale et al., 2004a; Prencipe et al., 2004; 777 

Pascale et al., 2005a; Pascale et al., 2005b; Prencipe et al., 2009). WC1LYP (Wu and Cohen, 2006) is 778 

a relatively new Hamiltonian not yet sufficiently tested on solids; in the present case, it appears to 779 

perform slightly better than B3LYP as geometry is concerned, and to provide vibrational 780 

frequencies nearly identical to those from the B3LYP calculations, consistently with the findings of 781 

Demichelis et al. (2009) on  pyrope (Mg3Al2Si3O12), forsterite (α-Mg2SiO4), α-quartz (α -SiO2) and 782 

corundum (α -Al2O3).  783 

The DFT exchange and correlation contributions to the total energy were evaluated by 784 

numerical integration, over the cell volume, of the appropriate functionals; a (75, 974)p grid has 785 

been used, where the notation (nr, n)p indicates a pruned grid with nr radial points and n 786 

angular points on the Lebedev surface in the most accurate integration region (see the ANGULAR 787 

keyword in the CRYSTAL06 user’s manual, Dovesi et al., 2006). Such a grid corresponds to 77420 788 

integration points in the unit cell at the equilibrium volume. The accuracy of the integration can be 789 

measured from the error in the integrated total electron density, which amounts to –3·10–4|e| for 790 

a total of 532 electrons. The thresholds controlling the accuracy of the calculation of Coulomb and 791 

exchange integrals have been set to 6 (ITOL1 to ITOL4) and 14 (ITOL5; Dovesi et al., 2006). The 792 

diagonalization of the Hamiltonian matrix was performed at 6 independent k vectors in the 793 

reciprocal space (Monkhorst net; Monkhorst and Pack, 1976) by setting to 3 the shrinking factor IS 794 

(Dovesi et al., 2006).  795 

 796 

Geometry,  point phonon frequencies and elastic constants 797 

 798 

Cell parameters and fractional coordinates were optimized by analytical gradient methods, as 799 

implemented in CRYSTAL06 (Civalleri et al., 2001; Dovesi et al., 2006). Geometry optimization was 800 

considered converged when each component of the gradient (TOLDEG parameter in CRYSTAL06) 801 

was smaller than 0.00001 hartree/bohr and displacements (TOLDEX) with respect to the previous 802 
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step were smaller than 0.00004 bohr. The volume ranges over which geometries were refined, and 803 

static energies calculated, were [703-650Å3] in the B3LYP case (12 different volume values; static 804 

equilibrium found at 692.22Å3), and [691-650Å3] in the WC1LYP one (9 volume values; static 805 

equilibrium at 686.74Å3). Results (cell volumes, cell parameters, optimized fractional coordinates 806 

and static energies) are provided as supplementary material (Tables S1a and S1b, for the B3LYP 807 

and WC1LYP cases, respectively). 808 

Vibrational frequencies and normal modes were calculated at different cell volumes, within 809 

the limit of the harmonic approximation, by diagonalizing a mass weighted Hessian matrix, whose 810 

elements are the second derivatives of the full potential of the crystal with respect to mass 811 

weighted atomic displacements (see Pascale et al., 2004b for details). The threshold for the 812 

convergence of the total energy, in the SCF cycles, was set to 10-10 hartree (TOLDEE parameter in 813 

CRYSTAL06). Results are provided as supplementary material (Tables S2a and S2b for the B3LYP 814 

and WC1LYP calculations, respectively). 815 

The elastic constants are the 2nd derivative of the energy with respect to the strain 816 

components. They were evaluated through a numerical differentiation of the analytical energy 817 

gradient with respect to the cell parameters, by imposing a certain amount of strain along the 818 

crystallographic direction corresponding to the component of the elastic tensor. Calculations were 819 

carried out by using an automatic scheme recently implemented in the CRYSTAL code (Perger et 820 

al., 2009). The calculated (B3LYP) values are provided in Table (5), together the experimental data 821 

of Yoon and Newnham (1973).  822 

 823 

Table 5 824 

 825 

The KV, KR [equation (8.3)] values were 179.9 and 179.4 GPa, respectively; the average value �̅�𝑉𝐻𝑅 826 
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[equation (8.1)] was 179.7 GPa. The shear moduli μV, μR and �̅�𝑉𝐻𝑅 [equations (8.2) and (8.1)] were 827 

79.1, 77.1 and 78.1 GPa, respectively. The calculated average longitudinal and transversal acustic 828 

waves (v̅𝑝 and v̅𝑠) were 10.50 and 5.51 Km/sec, respectively, which are very close to the 829 

experimental data of Yoon and Newnham (1973). Finally, the average longitudinal and transversal 830 

frequencies of the acoustic wave at the Brillouin zone boundary [νl and νs, equation (7)] were 831 

245.5 and 128.8 cm-1, respectively. 832 

 833 

 834 

  835 
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 948 

Captions to the Tables 949 

 950 

 951 

Table 1: Bulk modulus (GPa) at zero pressure calculated with the B3LYP Hamiltonian. The order (n) 952 

of the Legendre polynomials (Ln), used to fit the static curve, is 3 for Pmax=6GPa and 4 for 953 

Pmax=12GPa. See text for further details.  954 

 955 

Table 2: Bulk modulus (GPa) at zero pressure and 𝐾0
′ (in parentheses) calculated with WC1LYP 956 

Hamiltonian. The experimental data (Exp) are from Prencipe and Nestola (2005); the estimated 957 

error on the experimental K0 is 1 GPa. See text for further details.  958 

 959 

Table 3: Heat capacity at constant pressure (CP, at zero total pressure, J/mol K), at a selected set of 960 

temperatures (T, in K). Experimental data (EXP) are from Hemingway et al. (1986). Δ (in J/mol K) 961 

and Δ% are, respectively, the difference and the percentage difference between the experimental 962 

data and the B3LYP calculated ones.  963 

 964 

Table 4: Energies (in hartree) of the P6/mcc and 𝑃1̅ structures of beryl at unit cell volumes (V, in 965 

Å3)  lower than 650 Å3. Δ is the 𝑃1̅ - P6/mcc energy difference (in hartree). 966 

 967 

Table 5: Elastic constants (GPa) calculated at the B3LYP level, and experimental data from Yoon 968 

and Newnham (1973). The value of the bulk modulus (K0) derived from the elastic constants is also 969 

provided. 970 

  971 
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Captions to the Figures: 972 

 973 

Figure   1: Grüneisen’s parameters (γ) at zero pressure as a function of frequency (ν). 974 

 975 

Figure 2: Bose-Einstein distributions of phonons at 300, 600 and 900K, as a function of the 976 

frequency of the corresponding normal modes. 977 

 978 

Figure 3: Thermal pressure contribution of phonons, as a function of the frequency of the 979 

associated normal modes, at three different temperatures. 980 

 981 

Figure 4: Static, zero point and thermal pressure contributions to the (zero) total pressure, in the 982 

[0, 1000K] temperature range. The zero point pressure scale is reported on the right-hand axis; the 983 

static and thermal pressures scale is on the left-hand axis. 984 

 985 

Figure 5: 𝛼𝑇𝐾𝑇 product [isobaric curves, equation (6)] as a function of temperature, at 0, 3 and      986 

6 GPa. 987 

 988 

Figure 6: Thermal expansion coefficient αT  as a function of temperature, at 0, 3 and 6 GPa. 989 

 990 

Figure 7: FE-fE plot of the P(V) data (minimum volume: 650Å3) , at the static and athermal limits, 991 

300K and 600K. See text for details.  992 

 993 

Figure 8: Bulk modulus as a function of pressure, at different temperatures. See text for 994 

explanation. 995 

 996 

Figure 9: Bulk modulus as a function of temperature. Isobaric curves at 0, 3, 6 and 9 GPa. 997 
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 998 

Figure 10: Constant pressure specific heat as a function of temperature. 999 

 1000 

Figure 11: Pressure dependence of the lowest frequency normal modes. 1001 

 1002 

Figure 12: View of the 𝑃1̅ structure of beryl, along the [001] axis of the channel (a), and along a 1003 

direction normal to it (b). Light grey: Si-centred tetrahedra; grey: Be-centred tetrahedra; dark grey: 1004 

Al-centred octahedra.   1005 

 1006 

Figure 13: Average Si-O1 bond length (Å) versus average Si-O1-Si angle (degree) during the 1007 

excursion along one of the two eigenvectors associated to the Eg vibrational mode at 28 cm-1 (soft 1008 

mode; cell volume 650.00 Å3). Full circles are positioned at steps of  1 unit along the path, where 1009 

the unit corresponds to the maximum distance from the equilibrium reached when the oscillator is 1010 

in the first excited energy level (one phonon). The minimum excursion refers to the equilibrium 1011 

position; the maximum excursion corresponds to a path length of 5 units (about 20 phonons).   1012 

 1013 

Figure 14: Energy variations (E; hartree) along the normal mode associated to the symmetric Al-O2 1014 

stretching mode at 667 cm-1 (cell volume 650Å3). The q coordinate of the normal mode is 1015 

expressed in unit of qmax, the maximum classical amplitude of vibration at the fundamental energy 1016 

level (qmax=0.055Å). The positions of the fundamental level and of the first 5 excited ones is 1017 

shown. Black circles indicate the calculated actual energy values; dotted line is the harmonic curve 1018 

which best fits the data. The values of the M-O bond lengths, at the extremes of the considered 1019 

excursion and at the equilibrium, are also shown.  1020 

 1021 

Figure 15: Plot of the F(y) universal factor (adimensional) of the volume derivative  of the thermal 1022 

energy associated to a vibrational mode at frequency ν. The adimensional variable y is the ratio 1023 

hν/kT. (See text for details). 1024 


