
18 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Trait-oriented programming in Java 8

Publisher:

Published version:

DOI:10.1145/2647508.2647520

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM Digital Library

This is the author's manuscript

This version is available http://hdl.handle.net/2318/150562 since 2017-11-26T15:13:42Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Viviana Bono; Enrico Mensa; Marco Naddeo. Trait-oriented programming in
Java 8, in: 2014 International Conference on Principles and Practices of
Programming on the Java Platform Virtual Machines, Languages and Tools,
PPPJ '14, Cracow, Poland, September 23-26, 2014, ACM Digital Library,
2014, 9781450329262, pp: 181-186.

The publisher's version is available at:
http://dl.acm.org/citation.cfm?doid=2647508.2647520

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/150562

Trait-oriented Programming in Java 8 ∗

Viviana Bono Enrico Mensa Marco Naddeo
University of Torino, Italy

{bono,naddeo}@di.unito.it, enrico.mensa@gmail.com

Abstract
Java 8 was released recently. Along with lambda expressions, a new
language construct is introduced: default methods in interfaces.
The intent of this feature is to allow interfaces to be extended
over time preserving backward compatibility. In this paper, we
show a possible, different use of these interfaces: we introduce
a trait-oriented programming style based on an interface-as-trait
idea, with the aim of improving code modularity. Starting from the
most common operators on traits, we introduce some programming
patterns mimicking such operators and discuss this approach.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.2 [Language Classi-
fications]: Object-oriented languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.2.13 [Reusable
Software]: Reuse models

General Terms Design, Languages

Keywords Java 8, Default method, Trait, Programming Pattern,
Code Modularity

1. Introduction
From the point of view of the language constructs, the most promi-
nent addition in Java 8 is the lambda-expression construct, that
comes along with an apparently secondary construct, that is, the de-
fault method (aka virtual extension method, aka defender method)
in interfaces. The primary intent of this feature is to allow interfaces
to be extended over time preserving backward compatibility. These
features of Java 8 are described in the proposal JEP 126 (JDK En-
hancement Proposal 126) Lambda Expressions & Virtual Exten-
sions Methods [9]. JEP 126 is a follower of the Project Lambda,
that corresponds to JSR 335 (Java Specification Request 335) [16].

A default method is a virtual method that specifies a concrete
implementation within an interface: if any class implementing the
interface will override the method, the more specific implementa-
tion will be executed. But if the default method is not overridden,
then the default implementation in the interface will be executed.

∗ Partially supported by MIUR PRIN Project CINA Prot. 2010LHT4KM
and Ateneo/CSP Project SALT. Authors listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ ’14, September 23 - 26 2014, Cracow, Poland.
Copyright c© 2014 ACM 978-1-4503-2837-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/2647508.2647520

In previous Java releases, interfaces were to provide multiple
type inheritance, in contrast to the class-based single implemen-
tation inheritance. Java 8 interfaces, instead, introduce a form of
multiple implementation inheritance, too. Therefore, they are sim-
ilar to traits [10], which are sets of methods. 1 Java 8 interfaces,
then, can be exploited to introduce a trait-oriented programming
style. Note that we are not proposing a linguistic extension of Java
8 with traits, but programming patterns within Java 8, with the goal
of improving code modularity and, therefore, code reuse. Starting
from operators on traits [10], we introduce some Java 8 program-
ming patterns mimicking such operators and discuss this approach.

The paper is organized as follows: Section 2 illustrates briefly
the trait construct, Section 3 introduces Java 8 default methods,
Section 4 proposes the programming patterns inspired by the trait
operators, Section 5 makes some comparisons with related work
and draws some conclusions.

2. Traits in a nutshell
The possibility of composition and decomposition of code are im-
portant characteristics to care about in a programming language.
Let us point out some problems of (single and multiple) inheritance
concerning composability:

• Duplicated features. Single inheritance is the basic form of in-
heritance; by means of it we can reuse a whole class (and also
add some features); however, if it is necessary to use the features
of more than one class, some code must be duplicated.

• Inappropriate hierarchies. Instead of duplicating methods in the
lower classes, we can bring those methods up in the hierarchy;
however, this way we violate the semantics of the upper classes.

• Conflicting features. If we have multiple inheritance (as C++
does), a common problem is how to treat conflicts. Method
conflicts can be solved (for example, thanks to override), but
conflicting attributes are more problematic.

Traits are a possible solution to these problems. A trait is a “simple
conceptual model for structuring object-oriented programs” [10]
and it is a collection of methods. This is very important: traits
are statless, they cointain only methods, therefore every conflict
of state is avoided. Only method name conflicts must be dealt with,
explicitly, by the programmer.

Every trait can define required methods and required fields.
Required fields are indirectly modelled via required setter and
getter methods. A trait can be defined directly (by specifying its
methods) or by composing one or more traits. The composition is
performed by means of the following operators:

• Symmetric Sum: a new trait is defined by combining two or more
existing traits whose method sets are disjoint. In the case the sets
are not disjoint, conflicts arise.

1 This is pointed out in many places, see, for instance, [17].

• Override: a new trait is defined by adding method(s) to an
existing trait. If an already present method is added, the old
version is overridden. We will refer to this operator as “trait
override”, to distinguish it from Java override.

• Exclusion: a new trait is defined by excluding a method from an
existing trait.

• Alias: a new trait is defined by adding a second name to a
method from an existing trait. This is useful if the original name
was excluded after resolving a conflict. Note that, if a recursive
method is aliased, the recursive call will be done on the original
method.

These operators are from the original proposal [10]. Other opera-
tors were introduced in further works; a comprehensive list of op-
erators with relations among them can be found in [6].

The original definition of traits says that trait and class usages
are separated: the first ones are units of reuse, while the second ones
are generator of instances. A class can be specified by composing
a superclass with a set of traits and some glue methods (aka glue
code). Glue methods are written inside a class and make it possibile
the connection between different traits. An example of glue code
are the setter/getter methods.

Trait composition respects the following three rules [10]:

• Methods defined in a class itself take precedence over methods
provided by a trait. This allows glue methods defined in the class
to override methods with the same name provided by the traits.

• Flattening property: a non-overridden method in a trait has the
same semantics as if it were implemented directly in the class.

• Composition order is irrelevant. All the traits have the same
precedence, and hence conflicting trait methods must be explic-
itly disambiguated.

Method name conflicts can be resolved directly in classes by adding
appropriate glue methods which redefine the conflicting methods,
or with trait composition, thanks to the operators:

• with trait override, by adding one method with the same name,
which hides the previous implementations and may call whichever
of them (through aliases);

• with exclusion, by excluding all but one of the conflicting meth-
ods.

Note that the combination of exclusion and alias can be used also
to solve conflicts among required methods. In the case of accessor
methods, this conflict resolution helps solving field conflicts.

3. On default methods
The role of an interface up to Java 7 was to give a contract to the
user (that is, a type), but not to specify any detail of the contract it-
self (that is, the implementation). The main characteristic of default
methods (introduced by a keyword default) is that they are virtual
like all methods in Java, but they provide a default implementation
within an interface.

Java 8 method resolution is defined in [12] and its formalization
in a Featherweight-Java style [14] is in [13]. To summarize it, we
take the four (informal) rules about method linkage from [13]:

• A method defined in a type takes precedence over methods
defined in its supertypes.

• A method declaration (concrete or abstract) inherited from a
superclass takes precedence over a default inherited from an
interface.

• More specific default-providing interfaces take precedence over
less specific ones.

• If we are to link m() to a default method from an interface, there
must be a unique most specific default-providing interface to
link to, otherwise the compiler signals a conflict.

From these dispatch rules, we can extrapolate some examples of
behaviour that can help the reader to understand the default method
construct.

A first example. If the class that implements the interface using
default methods does not override those methods, the default im-
plementation provided in the interface will be executed.

interface A {
default void m()

{out.println ("Hi, I’m interface A");}
}
class B implements A {}
//doesn ’t override m

public class FirstDM {
public static void main(String [] args) {

B b = new B();
b.m();

}
}

The output will be: Hi, I’m interface A.

Classes always win. Class methods have the precedence over
default methods:

interface A {
default void m()

{out.println ("Hi, I’m interface A");}
}
class B implements A {

// overrides m
public void m()

{out.println ("Hi, I’m class B");}
}
public class SecondDM {

public static void main(String [] args) {
B b = new B();
b.m();

}
}

The output will be: Hi, I’m class B.

The most specific interface wins. If no class overrides a default
method, the default method with the most specific implementation
will be executed:

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}
interface B extends A {

default void m()
{out.println ("Hi I’m interface B");}

} //more specific because of the ’extends ’

class C implements A, B { }

public class ThirdDM {
public static void main(String [] args) {

C c = new C();
c.m();

}
}

The output will be: Hi I’m interface B.

Conflicts are not always avoidable. If a unique most specific
default-providing interface is not found, an error will occur:

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}

interface B {
default void m()

{out.println ("Hi I’m interface B");}
}

class C implements A, B { }

public class FourthDM {
public static void main(String [] args) {

C c = new C();
c.m();

}
}

The compiler says:

class C inherits unrelated defaults for m() from
types A and B - class C implements A, B { }

How to resolve conflicts. The construct X.super.m() can be
used, where X is one of the direct superinterfaces containing the
default method m():

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}
interface B {

default void m()
{out.println ("Hi I’m interface B");}

}
class C implements A, B {

//calls m in A
public void m()

{A.super.m();}
}
public class FifthDM {

public static void main(String [] args) {
C c = new C();
c.m();

}
}

The output will be: Hi I’m interface A.
Note that this new construct is just for resolving conflicts while

using default methods and not for a general purpose [12].

About abstract methods. We said that classes always win over
interfaces. This is true also when classes are abstract:

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}
abstract class B {

abstract void m();
}

class C extends B implements A { }

public class SixthDM {
public static void main(String [] args) {

C c = new C();
c.m();

}
}

The compiler says:

C is not abstract and does not override abstract
method m() in B - class C extends B implements A { }

This happens because the abstract declaration of m() in B takes
precedence over the default declaration in A.

4. A guide to trait-oriented programming
Java 8 interfaces play the role of traits, with default methods as
provided methods and abstract methods as required methods. We
will refer to an interface with this role with the term “trait” and we
introduce the convention that such an interface will be named with
a name starting with T or Trait. As within stateless traits, required
fields are encoded as required accessor (getter/setter) methods, that
is, as abstract methods, whose implementation will be provided as
glue code by the class implementing the traits.

We introduce now the programming patterns matching the trait
operators listed in Section 2, then we discuss briefly some draw-
backs related to return types in Java overrides.

Symmetric sum. This provides the fundamental feature of multi-
ple inheritance. With “symmetric” it is meant that all the addends
of a sum are peers, implying that, in the case of a conflict, it is up
to the developer to deal with it. The first example shows a case of a
sum without conflicts. We have three traits:

public interface TMouth {
default void makeASound ()

{out.println (" Yaaaawn ");}
default void eat(String s)

{out.println ("I’m eating "+s);}
}

public interface TEyes {
default void lookAround ()

{out.println ("I’m looking ");}
default void blink()

{out.println ("I’m blinking ");}
}

public interface TTail {
default void shakeTail () {

out.println ("Wuush , I’m shaking my tail .");
}

}

Then a new trait, TCat, puts together all the features previously
defined, and a class implements it:

public interface TCat
extends TEyes , TMouth , TTail {

default public void purr()
{out.println (" PuUurRrRr ");}

}

public class PersianCat implements TCat {
private String name;
public PersianCat(String n)

{this.name = n;}

public static void main(String [] args) {
PersianCat jacky = new PersianCat (" Jacky ");
jacky.eat("Meat ");

}
}

The output will be: I’m eating Meat.

Trait override. The override operator defines a new trait by
adding one or more methods to an existing trait:

public interface TraitA {
default void m()

{out.println ("I am m in TraitA ");}
}

public interface TraitB extends TraitA {
/** overrides TraitA , adding

a new feature **/

default void m2()
{out.println ("I am m2 in TraitB ");}

}

public class C implements TraitB {
public static void main(String [] args) {

C c = new C();
c.m();
c.m2();

}
}

Both methods m and m2 are callable, therefore the output will be:

I am m in TraitA
I am m2 in TraitB

Trait override can be used to solve conflicts. If we add a method
close() in both traits TMouth and TEyes (introduced above), we
get from the compiler:

error: interface TCat inherits unrelated defaults
for close() from types TEyes and TMouth - public
interface TCat

In the overriding version of close(), we use the construct
X.super.m():

public interface TCat
extends TEyes , TMouth , TTail {

/** Conflict resolution **/
default void close()

{TEyes.super.close ();}

default public void purr()
{out.println (" PuUurRrRr ");}

}

The method close() that will be executed is the one from the
TEyes trait. The close() method from the TMouth trait is not
lost, as it can be aliased. However, notice that the use of the
X.super.m() feature reduces the low coupling between TCat and
TEyes: if the close() method in TEyes changes (for example by
adding a parameter to it), also the close() method inside TCat
will have to change.

Exclusion. In [12], it was described the possibility to remove a
default method by using the default none keyword, but this has
not made its way in the official Java 8 release (dealing with negative
information is never easy). A proposal for an exclude programming
pattern, then, can use a well-know workaround, i.e., we can exclude
a method by redefining it with an empty body or by throwing an
exception. We prefer the second alternative. Consider this trait:

public interface TraitA {
default void m()

{out.println ("I am m in TraitA ");}
default void q()

{out.println ("I am q in TraitA ");}
}

If we want to exclude m(), we can do as follows:

public interface TraitB extends TraitA {
default void m() {

String s = "Method not understood ";
throw new UnsupportedOperationException(s);

}
}

public class C implements TraitB {
public static void main(String [] args){

C c = new C();

c.m();
c.q();

}
}

The first method call throws the exception. The second one would
print I am q in TraitA.

Note that this programming pattern works well with respect to
symmetric sum: if in all summed traits we have a method that we
want to exclude, then this pattern will exclude simultaneously all
upper method versions. However, we do not exclude the method for
real, we just make unavoidable the upper implementation by over-
riding it, therefore Java introspection can still detect the excluded
method: C.class.getMethod(’m’) still gets an answer.

Notice, however, that it is not possible to call in a new trait the
excluded TraitA version of the method m:

public interface TraitB1 extends TraitB {
/** It tries to rehabilitate the version

from TraitA , excluded by TraitB **/
default void m() {

TraitA.super.m(); //does not compile
}

}

If we try to compile the above code, we obtain an error: not an
enclosing class: TraitA - TraitA.super.m();.

Alias. The alias operator provides another, alternative, name for
referring to a certain method. Consider this trait:

public interface TraitA {
default void mOneA()

{out.println ("I’m mOneA in A");}
default void mTwoA()

{out.println ("I’m mTwoA in A");}
}

Now, in a new trait, we create an alias for mTwoA():

public interface TraitB extends TraitA {
/** Aliasing mTwoA () in

aliasMTwoA () **/
default void aliasMTwoA ()

{mTwoA ();}
}

public class MyB implements TraitB {
public static void main(String [] args) {

MyB mc = new MyB ();
mc.aliasMTwoA ();
mc.mTwoA ();

}
}

The output will be:

I’m mTwoA in A
I’m mTwoA in A

When applying the alias programming pattern, attention must
be paid to the alias name, as it is possible to override by mistake
another method of the upper trait.

On the return type of methods. In Java, the name of a method
is bound forever to its first introduction in terms of the return
type. This impacts, in particular, on the re-introduction of a method
name once this has been excluded, as our encoding of the exclusion
operator relies on Java override. We discuss this issue by means of
a pedagogical example. We want to develop a stack data structure
(this example is taken from [6]). First of all, we show a single
inheritance version:

public interface IStack {
/* Tells if the stack is empty */

public boolean isEmpty ();
/* Adds one item on the stack */
public void push(Object obj);
/* Removes and returns the first

object on the stack */
public Object pop();

}

public class Stack implements IStack {
List <Object > l;

public Stack ()
{ l = new LinkedList <Object >(); }

public boolean isEmpty ()
{ return l.isEmpty (); }

public void push(Object obj)
{ l.add(obj); }

public Object pop() {
if (! isEmpty ())

return l.remove(l.size () -1);
else

return null;
}

}

Now, suppose that we must use another interface:

public interface IStackAlt {
public boolean isEmpty ();
public void push(Object obj);
/* Removes the first object on the stack */
public void pop();
/* Returns the first object on the stack

(without removing it) */
public Object getTop ();

}

As we can see, this interface is different from IStack because
of two methods: pop() is now void, and we have an additional
method getTop(). We can implement this interface as follows:

public class StackAlt implements IStackAlt {
List <Object > l;

public StackAlt ()
{ l = new LinkedList <Object >(); }

public boolean isEmpty ()
{ return l.isEmpty (); }

public void push(Object obj)
{ l.add(obj); }

public void pop()
{ if (! isEmpty ()) l.remove(l.size () -1); }

public Object getTop ()
{ if (! isEmpty ()) return l.get(l.size () -1);

else return null; }
}

Notice that both methods isEmpty() and push() were already
implemented inside the Stack class and we had to re-implement
them inside the StackAlt class.

To switch to the trait-oriented approach, we introduce a TStack
trait that defines all common operations:

public interface TStack {
public List <Object > getStructure ();

default boolean isEmpty ()
{ return getStructure (). isEmpty (); }

default void push(Object obj)
{ getStructure ().add(obj); }

default Object pop() {
if (! isEmpty ()) {

int pos = getStructure (). size ()-1;
Object o = getStructure ().get(pos);

getStructure (). remove(pos);
return o;

}
return null;

}
}

Notice the abstract method getStructure(): it is a getter method
to access the stack structure, that will be implemented as a field in
a class, together with this method. The implementation of TStack
is as follows:

public class Stack implements TStack {
List <Object > l;
public Stack ()

{ l = new LinkedList <Object >(); }
/* Glue Code */
public List <Object > getStructure ()

{ return l; }
}

Note that we put some glue code to provide the previously men-
tioned getStructure() method.

Now, we want to introduce a new method getTop() and we
want to change the old pop() that was returning an Object into
a void version. The first goal is easy, we can use the trait over-
ride pattern, while we encounter some problems with the pop()
method:

public interface TStackAlt extends TStack {
/** We redefine pop simulating

the void return type **/
default Object pop() {

if (! isEmpty ()) {
int pos = getStructure (). size ()-1;
getStructure (). remove(pos);

}
return null;

}

/** We make the old pop still available
(optional) **/

default Object popTop () {
return TStack.super.pop ();

}
/** Trait Override **/
default Object getTop () {

if (! isEmpty ()) {
int pos = getStructure (). size ()-1;
return getStructure (). get(pos);

}
return null;

}
}

We did provide an ad-hoc solution, by returning null in the new
version of pop(). This is an implementing class:

public class StackAlt implements TStackAlt {
List <Object > l;
public StackAlt ()

{ l = new LinkedList <Object >(); }
/* Glue Code */
public List <Object > getStructure ()

{ return l; }
}

Notice that this solution preserves backward compatibility and
it can be applied in similar cases. With respect to the single-
inheritance version, the methods isEmpty() and push() are not
duplicated anymore, the class tree is clearer, we provided a new
pop() method with the new type but we also made the old one still
accessible. Another successful case is when the type of the new
version of the method is a subtype of the type of the old one, as

Java override is covariant. Any other cases involving uncomparable
types force the break of backward compatibility.

5. Related work and conclusions
Traits as in [10] have been fully implemented in Smalltalk-Pharo
[18]. A form of traits is present in PHP 5.4 [19]. The work [2]
presents a version of traits with state (however, at the best of our
knowledge, no satisfactory versions of stateful traits have been pro-
posed so far). In [6] and [21] there are two proposals for traits in
a Java-like language. The language XTRAITJ [3, 4] is a language
for pure trait-based programming, providing complete compatibil-
ity and interoperability with the JAVA type system.

Traits and mixins are related. Both exploits composition instead
of inheritance as a mechanism for software reuse and they are
alternatives to multiple inherintance. Mixins [1, 5, 7, 8, 11, 22]
are essentially subclasses parametric over their superclass, they can
define fields and are a form of linearized multiple inheritance.

Aspect-oriented programming [15] shares with traits and mixins
the goal of software reuse. However, their applications differ, as
trait and mixin are for organizing the code, while aspects contain
those parts of code that are cross-cutting concerns. While traits
and mixins have a more general application, the code composition
based on aspects is more fine-grained, as it is perfomed at the level
of methods and not at the level of the containers of the methods.

In [20] there are two proposals to model a mixin-based style in
Java 8, that is, a stateful approach. The first one exploits lambda
expressions to model the state but suffers from some problems
related to the runtime semantics of lambda expressions. The second
proposal relies on the virtual field pattern, which is nothing else
than the trait glue-code technique that we also exploit. However,
this proposal does not consider the trait operators in detail.

This paper offers a view on how default methods can be
exploited to promote and improve code modularization via an
interface-as-trait programming approach. To this aim, Java 8 in-
terfaces play, then, the role of traits, where abstract methods are the
required methods (including the field accessor methods), and de-
fault methods are the provided methods. We have described some
programming patterns inspired by the trait operators present in
[10]: symmetric sum (to form a new trait by composing two or
more existing traits), trait override (to form a new trait by adding
methods to an existing trait), exclusion (to form a new trait by
deleting a method from an existing trait), alias (to form a new trait
to give a method an alternative name). The symmetric sum might
introduce conflicts among method names, that must be solved with
the use of trait override and exclusion.

As our interfaces-as-traits are stateless and accessor methods
are the only (indirect) way to specify fields in traits, our approach
imposes a restriction on visibility of fields. However, this is exactly
how it works within stateless traits [10].

At the best of our knowledge, our proposal is the first one to
explore the possibilty of a trait-oriented programming style in Java
8. A direction to explore is making it possible to exclude default
methods (starting from [12], where it was described a default
none keyword). Moreover, we believe our work could be also the
base for reflecting about which form of traits (or even mixins) might
be good as a language construct in future releases of Java.

It would be also interesting to refactor a large-scale, real-world
example by applying our patterns and then use appropriate metrics
(e.g., LOC) to measure the before- and after-factorization perfor-
mances, in order to assess the degree of code modularity.

Acknowledgments
The authors would like to thank the anonymous referees.

References
[1] D. Ancona, G. Lagorio, and E. Zucca. Jam — a smooth extension of

Java with mixins. In Proc. ECOOP ’00, volume 1850 of LNCS, pages
145–178. Springer-Verlag, 2000.

[2] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts.
Stateful traits and their formalization. Computer Lan-
guages, Systems and Structures, 34(2-3):83–108, 2008.
http://dx.doi.org/10.1016/j.cl.2007.05.003.

[3] L. Bettini and F. Damiani. Pure trait-based program-
ming on the Java platform. In PPPJ. ACM, 2013.
http://doi.acm.org/10.1145/2500828.2500835.

[4] L. Bettini and F. Damiani. Generic Traits
for the Java Platform. In PPPJ. ACM, 2014.
http://dx.doi.org/10.1145/2647508.2647518.

[5] V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and
Mixins. In Proc. ECOOP ’99, volume 1628 of LNCS, pages 43–66.
Springer-Verlag, 1999.

[6] V. Bono, F. Damiani, and E. Giachino. On traits and types in a Java-
like setting. In G. Ausiello, J. Karhumki, G. Mauri, and C.-H. L.
Ong, editors, IFIP TCS, volume 273 of IFIP, pages 367–382. Springer,
2008.

[7] V. Bono, J. Kusmierek, and M. Mulatero. Magda: A new language for
modularity. In ECOOP, pages 560–588, 2012.

[8] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity
and Multiple Inheritance. PhD thesis, The University of Utah, 1992.

[9] J. D. Darcy. JEP 126: Lambda Expressions & Virtual Extension
Methods. http://openjdk.java.net/jeps/126.

[10] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 28, no. 2:331–388,
2006.

[11] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syn-
tax and Semantics of Java, pages 241–269. Springer-Verlag, 1999.
http://dl.acm.org/citation.cfm?id=645580.658808.

[12] B. Goetz. Interface evolution via virtual extensions meth-
ods. http://cr.openjdk.java.net/∼briangoetz/lambda/
Defender%20Methods%20v4.pdf, June 2011.

[13] B. Goetz and R. Field. Featherweight Defenders: A
formal model for virtual extension methods in Java.
http://cr.openjdk.java.net/∼briangoetz/lambda/
featherweight-defenders.pdf, March 2012.

[14] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting started with AspectJ. Commun. ACM, 44(10):59–65,
2001.

[16] Lambda Expressions. Lambda Expressions for the Java Programming
Language. http://openjdk.java.net/projects/lambda/.

[17] A. C. Oliver. Love and hate for Java 8.
http://m.javaworld.com/javaworld/jw-07-2013/130725-
love-and-hate-for-java-8.html?mm ref=https://www.google.it.

[18] Pharo. http://www.pharo-project.org/home.
[19] PHP 5.4.0 Release Announcement.

http://php.net/releases/5 4 0.php.
[20] F. Sarradin. Java 8: Now you have mixins?

http://kerflyn.wordpress.com/2012/07/09/java-8-now-
you-have-mixins/.

[21] C. Smith and S. Drossopoulou. Chai: Traits for Java-like Lan-
guages. In Proc. ECOOP ’05, volume 3586 of LNCS, pages 453–478.
Springer-Verlag, 2005.

[22] The Scala Group. Scala Website. http://www.scala-lang.org/.

