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RESEARCH ARTICLE

Purines Regulate Adult Brain Subventricular
Zone Cell Functions: Contribution of

Reactive Astrocytes

Marta Boccazzi,1 Chiara Rolando,2 Maria P. Abbracchio,1 Annalisa Buffo,2

and Stefania CerutiAQ1 1

Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations
of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular
zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astro-
gliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine
50-O-(2-thiodiphosphate) (ADPbS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects
exerted by reactive astrocytes. In the absence of growth factors, ADPbS promoted proliferation and differentiation of SVZ
progenitors. Moreover, ADPbS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and
strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was
observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPbS, were shifted to normal medium.
In vivo, ADPbS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis,
and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and
led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed
in the GLAST::CreErt2; Rosa-YFP transgenic mice further demonstrated that ADPbS promoted proliferation of glutamate/
aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progeni-
tors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and
through the involvement of reactive astrocytes.

GLIA 2013;00:000–000
Key words: P2Y1 receptor, neurogenic niche, astrogliosis, adult neurogenesis

Introduction

Extracellular adenine (ATP and ADP) and uracil (UTP, UDP,

and UDP-sugars) nucleotides (eNTs) act as cell-to-cell sig-

nals in the central nervous system (CNS) through the activation

of seven ionotropic P2X (P2X1–7) and eight G protein-coupled

P2Y receptor subtypes (P2Y1,2,4,6,11,12,13,14; Abbracchio et al.,

2006). eNTs are involved in embryonic development and act as

co-transmitters in physiological processes (Ulrich et al., 2012).

Recently, a role for eNTs in controlling the functions of stem

cells in the subventricular zone (SVZ) of the adult brain has also

emerged, although available data are conflicting.

ADP-responsive P2Y1 receptor subtype (P2Y1R) func-

tion has been tested in vitro on SVZ neural stem cells

(NSCs) in the neurosphere assay. In this study, ADP or its

stable analog 50-O-(2-thiodiphosphate) (ADPbS) promoted

the proliferation of SVZ cells, but only when growth factor

(GF) concentrations were lowered to around 5 ng/ml (Mishra

et al., 2006). Conversely, an antiproliferative effect of various

View this article online at wileyonlinelibrary.com. DOI: 10.1002/glia.22614

Published online Month 00, 2013 in Wiley Online Library (wileyonlinelibrary.com). Received Sep 26, 2013, Accepted for publication Nov 21, 2013.

Address correspondence to Stefania Ceruti, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Universit�a degli Studi di Milano, via

Balzaretti, 9, 20133 Milan, Italy. E-mail: stefania.ceruti@unimi.it

From the 1Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Universit�a

degli Studi di Milano, Milan, Italy; 2Department of Neuroscience, Neuroscience Institute Cavalieri Ottolenghi (NICO), Universit�a degli Studi di Torino, Orbassano

(Turin), Italy.

Marta Boccazzi and Chiara Rolando contributed equally to this work

Maria P. Abbracchio, Annalisa Buffo, and Stefania Ceruti contributed equally to this work

VC 2013 Wiley Periodicals, Inc. 1

J_ID: z76 Customer A_ID: GLIA22614 Cadmus Art: GLIA22614 Ed. Ref. No.: 00273-2013.R1 Date: 2-December-13 Stage: Page: 1

ID: kasthuris Time: 14:13 I Path: N:/3b2/GLIA/Vol00000/130153/APPFile/JW-GLIA130153

mailto:stefania.ceruti@unimi.it
annalisabuffo
Callout
remove space



eNTs, including ADPbS, was observed at standard GF con-
centrations (around 20 ng/ml; Stafford et al., 2007). Activa-
tion of the P2Y1R also promoted SVZ cell differentiation
(Grimm et al., 2009) and migration (Grimm et al., 2010) in
vitro. In vivo, the contribution of eNTs in controlling SVZ
cell proliferation is poorly understood. In a recent study, ATP
(which nonselectively activates all the P2X and some P2Y
receptor subtypes) has been infused in the adult SVZ
(Suyama et al., 2012). Upon ATP administration, the prolif-
eration of transit-amplifying cells (type C cells) increased,
whereas no effect was observed on proliferation of either type
B stem cells or type A neuroblasts. A possible involvement of
the P2Y1R was hypothesized based on the inhibitory effect on
Mash11 type C cell proliferation exerted by the administra-
tion of the P2Y1R-selective antagonist 20-deoxy-N6-methyla-
denosine-30,50-bisphosphate (MRS2179) per se and by the
reduced number of type C cells in P2Y1R-KO mice (Suyama
et al., 2012). In line with that, ATP secretion by astrocytes
even at basal level can promote NSC proliferation in the
adult hippocampus through P2Y1R activation (Cao et al.,
2013). On contrary, activation of P2X7 receptor subtype with
the stable ATP analog 30-O-(4-benzoyl)benzoyl-ATP (Bz-
ATP) induced a concentration-dependent decrease in NSC
viability, suggesting a role for this receptor subtype in coun-
terbalancing the proliferation of NSCs during pathological
conditions, such as trauma, hypoxia/ischemia, and epilepsy,
and/or in turning down this response at later times after
injury (Delarasse et al., 2009; Messemer et al., 2013).

In this respect, in addition to their important physiologi-

cal actions, eNTs modulate brain functions in pathological con-

ditions, when their extracellular concentrations rise to

micromolar levels (Abbracchio et al., 2006). Under these condi-

tions, eNTs trigger and sustain reactive astrogliosis, the astro-

cytic reaction to brain trauma or ischemia (Abbracchio and

Ceruti, 2006), whose protective/detrimental double-edged

sword effect is still a matter of debate (Buffo et al., 2010). Acti-

vation of the ADP-responsive P2Y1R promotes astrogliosis and

modulates astrocytic secretion of a plethora of factors, includ-

ing cytokines/chemokines and GFs (Franke et al., 2012). These

molecules might act as autocrine/paracrine signals on surround-

ing cells, including SVZ NSCs and progenitors.

On the basis of these premises, to investigate the role of

purinergic signals in SVZ activation upon injury and to dis-

close possible effects specifically mediated by eNT-activated

astrocytes, in this article we exposed SVZ cells and astrocytes

to micromolar concentrations of ADPbS that recapitulate

pathological conditions.

By means of in vitro and in vivo pharmacological

manipulations combined with genetic fate mapping, we dem-

onstrate that not only purinoceptors directly influence adult

neurogenesis but that their activation on reactive astrocytes

can further participate in controlling the activity of SVZ pre-

cursors in pathological conditions.

Materials and Methods

Neurosphere Assay
C57BL/6 adult mice were killed by decapitation. Cells were isolated

from the SVZ and plated at low density (20,000 cells/ml), as described

in literature (Pastrana et al., 2011; Rolando et al., 2012). Primary neu-

rospheres were generated: (i) in neurosphere medium (containing 20

ng/ml EGF and bFGF each; Buffo et al., 2008), (ii) in neurosphere

medium 1 ADPbS (50 lM) or in conditioned media derived from

astrocytes cultured (iii) under control (ctr) condition, or (iv) in the

presence of ADPbS (50 lM, Sigma-Aldrich, Milan, Italy; see below).

This concentration of ADPbS was selected based on previous work

showing that: (i) it activates astrocytes in vitro reproducing features of

their response to lesion in vivo (Franke et al., 2012; Quintas et al.,

2011) and (ii) it modulates adult stem cell functions (Grimm et al.,

2009; Mishra et al., 2006; Stafford et al., 2007). In selected experi-

ments, the P2Y1-selective antagonist MRS2179 (50 lM, Sigma-

Aldrich) was added at the time of SVZ cell plating to the neurosphere

medium 1 ADPbS or to the conditioned medium derived from astro-

cytes cultured in the presence of ADPbS.

The number of generated neurospheres and their size were then

evaluated. For each condition, neurospheres included in five randomly

chosen optical fields at 103 magnification were analyzed under a Zeiss

Axiovert 8400 microscope (Carl Zeiss, Milan, Italy) equipped with a

CCD camera module. Neurosphere diameters were measured using

the ImageJ software (Research Service Branch, National Institutes of

Health, Bethesda, MD; http://rsb.info.nih.gov/ij/). In selected experi-

ments, primary neurospheres grown as indicated above were dissoci-

ated, and cells replated in control neurosphere medium irrespectively

of their original culturing condition to generate secondary neuro-

spheres. The number and size of secondary neurospheres were then

analyzed after 2 days in vitro (DIV). Alternatively, to test cell prolifera-

tion and differentiation, 7-day-old control secondary neurospheres

were allowed to adhere to the culturing substrate without dissociation,

and were grown for 7 additional days in neurosphere medium without

GFs and in the absence or presence of ADPbS (50 lM). Differentia-

tion to astrocytes or neurons was evaluated by immunocytochemistry

with the specific markers glial fibrillary acidic protein (GFAP) and

bIII-tubulin (bIII-tub), respectively, whereas cell number was eval-

uated by staining nuclei with the Hoechst33258 dye (see below).

Immunocytochemistry, Image Processing, and Data
Analysis
Adherent neurospheres were fixed in 4% paraformaldehyde and sub-

jected to immunocytochemistry, as previously described (Lecca et al.,

2008). Rabbit anti-GFAP (1:600, DAKO) and mouse anti-bIII-tub

(1:1,000; Promega, Milan, Italy) primary antibodies were used (o/n

at 4�C). Goat anti-rabbit or anti-mouse IgG conjugated with either

Alexa FluorVR 488 or 555 (1:600; Life Technologies, Milan, Italy; 1

h at room temperature, RT) were utilized as secondary antibodies.

Nuclear counterstaining was obtained by 20-min incubation with

the Hoechst33258 dye (1:10,000 in phosphate-buffered saline, PBS).

Coverslips were mounted in Dako Fluorescence Mounting Medium

(Dako Italia, Milan, Italy) and analyzed under a Zeiss Axiovert 8400

microscope (Carl Zeiss) equipped with a CCD camera module.
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To evaluate the intensity of staining, fluorescent images were cap-

tured from 10 randomly chosen optical fields/coverslip. As a direct

count of positive cells was technically not feasible, owing to their

high number and the low fluorescence signal at the 103 magnifica-

tion (which better allowed to gain a general view of the effect

exerted by the pharmacological treatment; see Fig. 2), we performed

a densitometric analysis of Hoechst33258, GFAP, and bIII-tub stain-

ing, after splitting the three fluorescence channels and converting the

fluorescent signals to gray-scale values. The mean gray value for each

optical field was then evaluated by the ImageJ software. Results rep-

resent the mean 6 SEM of data from three coverslips derived from

two independent experiments.

Primary Astrocytic Cultures
Primary astrocytic cortical cultures were obtained from P2 rats, as

previously described (Ceruti et al., 2009AQ2 ). Cultures were grown for

10–12 days in Dulbecco’s modified Eagle’s medium with 20% fetal

bovine serum (FBS; Euroclone, Milan, Italy). After removal of over-

laying oligodendrocytes and microglia by vigorous shaking of flasks,

astrocytes were kept in neurosphere medium (see above) in the

absence (named “medium Astro ctr”) or presence of ADPbS

(50 lM; named “medium Astro ADPbS”) for 3 additional days.

Medium was collected, filtered, and utilized for the neurosphere

assay or the cytokine array (see below).

Cytokine Array
The expression of cytokines, chemokines, and acute-phase inflamma-

tory proteins was determined in neurosphere media and in the con-

ditioned media from astrocytic cultures by means of the Proteome

ProfilerTM Rat Cytokine Array Panel A (R&D Systems, ItalyAQ3 ). The

array consists of nitrocellulose membranes spotted with antibodies

directed against the following 29 proteins (alternative names are

shown in parenthesis): CINC-1, CINC-2a/b, CINC-3, CNTF, Frac-

talkine, GM-CSF, sICAM-1 (CD54), IFN-c, IL-1a, IL-1b, IL-1ra,

IL-2, IL-3, IL-4, IL-6, IL-10, IL-13, IL-17, IP-10 (CXCL10), LIX,

L-Selectin, MIG (CXCL9), MIP-1a (CCL3), MIP-3a(CCL20),

RANTES (CCL5), Thymus Chemokine (CXCL7), TIMP-1,

TNF-a, and VEGF. The test was performed according to the manu-

facturer’s instructions. Briefly, aliquots of the different culture media

were mixed with a cocktail of biotinylated detection antibodies and

then incubated overnight at 4�C on separate nitrocellulose mem-

branes included in the array. This allowed the binding of any cyto-

kine/detection antibody complex to its cognate immobilized capture

antibody on the membrane. Following a wash to remove unbound

material, streptavidin–horseradish peroxidase solution was added to

the membrane for 30 min at room temperature. Detection of bound

complexes was then performed by ECL (GE HealthcareAQ4 ) and autora-

diography. The integrated optical density of each spot on the array

was quantified by the Image J software.

Animals, Surgical Procedures, and In Vivo
Treatments
Experiments were performed on C57BL/6 and GLAST::CreErt2;

Rosa-YFP (Mori et al., 2006; Rolando et al., 2012) adult mice

(2–4 months of age). The experimental plan was designed according

to the guidelines of the NIH, the European Community Council

(86/609/EEC), and the Italian laws for care and use of experimental

animals (DL116/92). It was also approved by the Italian Ministry of

Health and the Bioethical Committee of the University of Turin.

Surgical procedures and perfusions were carried out under deep gen-

eral anesthesia (ketamine, 100 mg/kg; Ketavet, Bayern, Leverkusen,

Germany; xylazine, 5 mg/kg; Rompun; Bayer, Milan, Italy).

GLAST::CreErt2; Rosa-YFP mice received tamoxifen dissolved in

corn oil to induce Cre activity and YFP reporter expression (one

administration of 5 mg each by oral gavage for 2 days) before start-

ing the pharmacological treatment with the ADP analog. Osmotic

minipumps (Alzet osmotic pumps 1007D) were implanted into the

left cerebral ventricle (coordinates relative to bregma: anterior, 0; lat-

eral, 1 mm; depth, 1.8 mm) to deliver ADPbS (100 lM in PBS;

Sigma-Aldrich) or vehicle. The concentration of ADPbS was chosen

based on literature data to reproduce the massive release of extracel-

lular nucleotides (eNTs) that is observed following traumatic or

ischemic brain injuries (Franke et al., 2012; Melani et al., 2005).

Animals were killed 7 days after minipump implantation.

To analyze cell proliferation, animals received two i.p. injec-

tions of the thymidine analog 5-bromo-20-deoxyuridine (BrdU;

Sigma-Aldrich; 50 mg/kg in saline/day) on the last 3 days of ADPbS

treatment. To facilitate discrimination of cell types in GLAST::-

CreErt2; Rosa-YFP mice, we restricted the analysis to a small pool

of cycling cells by injecting 5-ethynyl-20-deoxyuridine (EdU; Invitro-

gen; 50 mg/kg in saline i.p.; Ponti et al., 2013) to animals 2 h

before killing. In these experiments, EdU was chosen instead of

BrdU as its visualization follows a one-step procedure without DNA

denaturation, and was therefore more convenient for triple immuno-

staining (see below).

Immunohistochemistry, Image Processing, and Data
Analysis
For histological analysis, animals were anesthetized (see above) and

transcardially perfused with 4% paraformaldehyde in PBS. Brains

were collected, postfixed overnight, cryoprotected, cut coronally in

30-lm-thick slices, and stained according to the standard protocols

(Rolando et al., 2012). Incubation with primary antibodies (anti-

GFAP, 1:1,000, Dako; anti-doublecortin, DCX, 1:400, Santa Cruz

Biotechnologies; anti-GFP, 1:700, Invitrogen; anti-BrdU, 1:250,

Abcam; and anti-Mash1, 1:200, BD Pharmingen) was performed

overnight at 4�C in PBS with 1.5% normal serum and 0.25%

Triton-X 100. In the case of BrdU staining, slices were previously

treated with 2 N HCl for 20 min at 37�C, followed by 10 min in

0.1 M borate buffer (pH 8.5). Sections were then exposed (2 h, RT)

to secondary species-specific antibodies (all at 1:500 dilution) conju-

gated to Alexa FluorVR 488, 546, 649 (Life Technologies) or to Cy3

(Jackson ImmunoResearch Laboratories, West Grove, PA). Click-

ItTM EdU Cell Proliferation Assay Kit (Life Technologies) was uti-

lized to detect EdU incorporation, according to the manufacturer’s

instructions. Nuclei were counterstained with the Hoechst33258 dye

(1:10,000 in PBS; 200 at RT; Life Technologies). Stained sections

were mounted on microscope slides with Tris-glycerol supplemented

with 10% Mowiol (Calbiochem, LaJolla, CA) and analyzed either by

an E-800 Nikon microscope (Nikon, Melville, NY) equipped with a
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color CCD Camera or by a Leica TCS SP5 confocal microscope

(Leica Microsystems, Wetzlar, Germany). Quantifications were per-

formed by ImageJ or Neurolucida (MicroBrightfield, Colchester,

VT) software. Comparisons were made between hemispheres ipsilat-

eral to the infusion site of control (ctr) and treated animals (unless

differently stated). Analyses were performed on confocal images.

Data are derived from a minimum of 6 up to 23 sections from three

to four animals per experimental condition and/or time point.

Results are expressed as either the absolute number of positive cells

per section or per lateral wall (LW) length (which was similar in the

analyzed samples, i.e., ctr mice, 283.62 6 3.84 lm vs. ADPbS-

treated animals, 295.93 6 6.20 lm), as indicated in the figure

legends and in the Results section.

Statistical Analysis
Data were analyzed using the GraphPad Prism5 software. Differences

between experimental conditions were analyzed using either

unpaired, two-tailed Student’s t-test or one-way ANOVA followed

by the Tukey correction. P value <0.05 was considered as

significant.

Results

ADPbS Increases the Proliferation of SVZ
Precursors and Their Lineage Progression In Vitro
To examine the ability of ADPbS to modulate proliferation

and multipotency of SVZ cells, we performed the neurosphere

assay in the presence of standard concentrations of both bFGF

and EGF (20 ng/ml each; see Materials and Methods). After 7

DIV, the number and size of primary neurospheres were ana-

lyzed. Exposure to 50 lM ADPbS increased the neurosphere-

forming capacity of SVZ cells, as indicated by the expanded

number of spheres (Fig.F1 1A,A0,B). Yet, ADPbS stimulation

determined the generation of neurospheres with a reduced size

compared with controls (Fig. 1A,A0,C). Furthermore, the total

number of cells yielded after the dissociation of neurospheres

at 7 DIV decreased upon treatment (1,476,562 6 271,023 in

ctr cultures vs. 686,094 6 168,364 after exposure to ADPbS;

P < 0.05 Student’s t-test). These findings are in line with an

antiproliferative effect of ADPbS in the presence of regular

GFs concentration (see Introduction). Co-exposure to the

selective P2Y1R antagonist MRS2179 (50 lM) completely

abrogated ADPbS-induced effects on both neurosphere-

forming capacity and proliferation (Fig. 1A00,B,C), thus dem-

onstrating that the ADP analog is selectively activating the

P2Y1R.

To assess the effects of P2Y1R activation in the absence

of GFs and to examine the outcome of ADPbS exposure on

the lineage progression of SVZ cells, 7-day-old ctr secondary

neurospheres were plated without dissociation and grown for

7 additional days in a medium without GFs (see Materials

and Methods) in the absence or presence of ADPbS. The

expression of the neuronal and astrocytic markers bIII-tub

and GFAP, respectively, and the mean area of adhering neuro-

spheres were evaluated by immunocytochemistry, in parallel

with the staining of cell nuclei by the Hoechst33258 dye

(Fig. F22A,A0). Exposure to 50 lM ADPbS led to a moderate,

but significant increase in neurosphere area (121.11% 6

17.38% of ctr neurosphere area set to 100.00% 6 12.89%;

19–21 optical fields from three coverslips per condition; P <

0.05, Student’s t-test). A much higher increase in the mean

fluorescence value for Hoechst33258 staining was detected

after exposure to the purine analog (Fig. 2B,B0,E), meaning a

higher number of cell nuclei per area.

Interestingly, immunoreactivity for both GFAP and

bIII-tub clearly increased upon exposure to ADPbS (Fig. 2C–

D0). Although the increase in GFAP immunoreactivity was

proportional to the increased cell number (compare Fig. 2E

and 2F), bIII-tub staining in ADPbS-treated cultures

exceeded the labeling in ctr condition by twofold (Fig. 2G),

indicating a prominent effect of ADPbS on neuroblast pro-

duction. Therefore, in vitro results indicate that ADPbS pro-

motes neurosphere formation and stimulates the generation

of neurons and astrocytes.

FIGURE 1: ADPbS modulates neurosphere formation from the
SVZ in vitro. (A, A00) Representative micrographs showing 7-day-
old primary neurospheres (NS) generated under ctr condition (A)
in the presence of ADPbS alone (A0) or in combination with
MRS2179 (A00). Quantification of the number (B) and size (C) of
primary neurospheres generated under the various experimental
conditions (three replicates from two independent experiments;
*P < 0.05, **P < 0.01 and ***P < 0.001, one-way ANOVA fol-
lowed by Tukey post hoc analysis). Scale bars: 100 lm.
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Astrocytes Exposed to ADPbS Influence the
Generation of Neurospheres from SVZ Cells In
Vitro
Solid evidence demonstrates that exposure of astrocytes to nucleo-

tides in general, and to ADPbS in particular, induces reactive

astrogliosis (Abbracchio and Ceruti, 2006; Franke et al., 2012).

Reactive astrocytes release several mediators (see Introduction),

which could influence the functionality of surrounding cells such

as SVZ progenitors. To unveil the possible effects of ADPbS-

activated astroglia on neural progenitors, we assessed whether

astrocyte-conditioned media could modify neurosphere forma-

tion by SVZ cells. To this aim, we exposed primary astrocyte cul-

tures to conventional neurosphere medium (with GFs, see

Materials and Methods) with or without 50 lM ADPbS (see Fig.

F3 3A for experimental design). Both culture media were then col-

lected after 3 DIV and utilized to generate neurospheres as

described above. When SVZ progenitors were grown in medium

from control (Astro ctr) or ADPbS-treated astrocytes (Astro

ADPbS), no differences were found in either the number (num-
ber of generated neurospheres: 17.67 6 2.56 in Astro ctr
medium vs. 14.00 6 3.36 in Astro ADPbS medium, P > 0.05,
Student’s t-test) or the size of primary neurospheres at 7 DIV
(Fig. 3B). To exclude that the Astro ADPbS medium contained:
(i) residual ADPbS or (ii) adenine nucleotides released by acti-
vated astrocytes, which could influence SVZ cell properties, the
P2Y1 antagonist MRS2179 was added to Astro ADPbS medium
at the time of neurosphere generation. No significant differences
were found in the neurospheres formed in Astro ADPbS medium
or in Astro ADPbS 1 MRS2179 (Fig. 3B), thus ruling out a role
for eNTs in the conditioned medium from reactive astrocytes.

However, despite the generation of a similar number of

primary neurospheres in Astro ctr and Astro ADPbS media

compared with standard (formerly indicated as ctr) neuro-

sphere media (not shown), a significantly lower number of

cells was yielded from their dissociation. In fact, the total

number of cells was 1,476,563 6 271,023 from ctr neuro-

spheres vs. 157,400 6 36,603 and 132,500 6 46,199 from
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FIGURE 2: ADPbS stimulates neurosphere differentiation and proliferation. (A, A0) Immunofluorescence staining for bIII-tub (red) and
GFAP (green) of adherent undissociated neurospheres (NS) cultured in differentiating conditions in ctr medium (A) or in the presence of
ADPbS (A0). Nuclei were counterstained with the Hoechst33258 dye (blue). (B–D0) the green, red, and blue fluorescent channels in A and
A0 were separated and converted to gray scale for densitometric analysis, shown in (E) for Hoechst33258, in (F) for GFAP, and in (G) for
bIII-tub. Data are shown as the mean percentage 6 SEM of ctr values set to 100% (19–21 optical fields from at least three coverslips
per condition, *P < 0.05; **P < 0.01, unpaired Student’s t-test). Scale bars: 100 lm.
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neurospheres grown in Astro ctr and Astro ADPbS media,

respectively (P < 0.001 ctr neurospheres vs. Astro ctr and ctr

neurospheres vs. Astro ADPbS, Student’s t-test). Of further

interest, these numbers were also lower than those obtained

with exposure to ADPbS alone (686,094 6 168,364; P <

0.05 ADPbS vs. Astro ctr and ADPbS vs. Astro ADPbS, Stu-

dent’s t-test), suggesting a specific negative astrocyte-mediated

effect on precursor proliferation.

Primary neurospheres were then dissociated and replated

in ctr neurosphere medium, irrespectively of their initial

growing condition, to generate secondary neurospheres (Fig.

3A). Surprisingly, fully formed secondary neurospheres were

already generated at 2 DIV from cells derived from primary

neurospheres grown in Astro ADPbS medium (Fig. 3B0,C0).

Conversely, very small cell clusters were visible in cultures

derived from primary neurospheres grown in Astro ctr

medium (Fig. 3B0, compare Fig. 3C with 3C0) or in ctr and

ADPbS medium (Fig. 3B0). Numbers of neurospheres were

instead similar in all the tested conditions (not shown). These

findings suggest that ADPbS specifically acts on astrocytes by

promoting the release of mediator(s) capable to “prime” SVZ

precursors inducing them to proliferate. However, this prolif-

erative effect is possibly concomitantly inhibited by other

astrocyte-derived factor(s), so that only after their removal

from the culture medium the proliferation of SVZ cells is

intensively boosted. To identify possible mediators released in

the astrocyte-conditioned medium and responsible for the

above observed effects, we took advantage of the Proteome

ProfilerTM Antibody Array. This approach allows the simulta-

neous detection of 29 cytokines and chemokines in the tested

culture media (see Materials and Methods). In ctr and

ADPbS media, the concentrations of all the analyzed mole-

cules were below the detection limit of the array (not shown).

In both Astro ctr and Astro ADPbS media, CINC-2a/b,

CINC-3, IL-1a, IL-1b, IL-1ra, IL-2, IL-3, IL-4, IL-6, IL-13,

IL-17, CNTF, GM-CSF, TNF-a, Fractalkine, Thymus Che-

mokine, and IFN-c were not detected, but 12 of the 29

tested molecules were instead found (Fig. F44). Of these, only

IP-10, Rantes, and TIMP-1 concentrations did not change

between the two experimental conditions (Fig. 4C). Instead,

exposure to the nucleotide analog either significantly reduced

or increased astrocytic release of the majority of the other

detected mediators. Specifically, IL-10 and some molecules

involved in cell adhesion (like sICAM-1 or L-selectin) were

decreased, whereas chemoattractant chemokines and some

other cytokines involved in cell migration (CINC-1, MIP-1a,

and MIP-3a) were increased (Fig. 4A,B).

Thus, a combination of various secreted mediators, whose

release by astrocytes is modulated by ADPbS stimulation,

might account for the observed effects on SVZ cell properties.

The P2Y1R Agonist ADPbS Activates Both Niche
and Parenchymal Astrocytes and Increases the
Proliferation of SVZ Precursors In Vivo
Next, we aimed to translate in vivo our in vitro data, and to

address the role of P2Y1R in the regulation of adult neuro-

genesis in conditions comparable to those observed after brain
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FIGURE 3: ADPbS-treated astrocytes regulate the generation of
secondary neurospheres from SVZ precursors in vitro. (A) Schematic
representation of the experimental design (see text for details).
(B) Evaluation of the size of primary neurospheres (NS) generated in
the conditioned medium from ctr or ADPbS-treated astrocytes. In
selected experiments, the selective P2Y1R antagonist MRS2179 was
added to Astro ADPbS medium at the time of seeding of SVZ cells.
(B0) Evaluation of the size of secondary neurospheres generated in
fresh ctr medium from cells obtained by the dissociation of primary
neurospheres grown under the various experimental conditions (five
coverslips from two independent experiments; ***P < 0.001, one-
way ANOVA followed by Tukey post hoc analysis). Representative
micrographs are shown in C, C0. Scale bars: 100 lm. The cartoon
was produced thanks to “Servier Medical Art” (www.servier.com).

FIGURE 4: ADPbS modulates the release of various signaling
molecules from astrocytes in vitro. Relative expression of various
signaling molecules in conditioned medium derived from ctr or
ADPbS-treated astrocytes, as determined by an antibody array
(see Materials and Methods for details). A and B show molecules
whose extracellular concentration decreased or increased after
ADPbS exposure, respectively. C shows unchanged molecules.
Results are the mean of two independent analyses (**P < 0.01,
***P < 0.001, unpaired Student’s t-test).
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injury. Thus, ADPbS (100 lM) was chronically infused for 1

week into the cerebral ventricles of wild-type mice and cell

proliferation was monitored by BrdU administration during

the last 3 days (see Materials and Methods and Fig. F55A).

Incorporation of the thymidine analog was then evaluated by

immunohistochemistry together with the expression of cell-

specific markers for SVZ populations and parenchymal astro-

cytes (i.e., GFAP for astrocytes and type B precursor cells,

Mash1 for type C transit-amplifying cells, and DCX for type

A neuroblasts; Doetsch et al., 1997; Kim et al., 2011).

Notably, ADPbS infusion caused a significant GFAP

upregulation in both astrocytes of the brain parenchyma

(arrows in Fig. 5B0,C0 and insets B00,C00), confirming our in

vitro and literature data demonstrating a role for eNTs in

reactive astrogliosis (Franke et al., 2012), and in the neuro-

genic areas of the dorsal horn (DH) and LW (Fig. 5B,B0

and C,C0; quantification in D and E, respectively), where

GFAP also labels precursor cells. In parallel, a significant

expansion of DH area (Fig. 5F) and a thickening of the LW

(Fig. 5G) were observed, confirming a specific effect of

ADPbS on GFAP1 type B cells (i.e., stem cells and niche

astrocytes).

In line with these observations, ADPbS stimulation pro-

moted cell proliferation in the SVZ. A parallel significant

increase in BrdU incorporation was detected in the LW (Fig.

F66A,B). Namely, we observed an expansion of Mash11 type C

transit-amplifying cells (Fig. 6C,D), which also incorporated

more BrdU (Fig. 6E). Moreover, the total number of DCX1

neuroblasts and the fraction of DCX/BrdU double-positive

cells also significantly increased after ADPbS exposure (Fig.

6G–I). However, in either cell populations, the percentage of

proliferating cells (i.e., the number of cells double-positive for

both BrdU and the cell population-specific marker/the total

number of cells for each cell population 3 100) was not

increased by the nucleotide analog (Fig. 6F,J). This suggests

that ADPbS does not enhance the proliferation of either one

(or both) cell populations, but rather acts by stimulating the

proliferation of their parent precursors or by globally overacti-

vating all SVZ populations. Similar results were obtained in

the DH (not shown).

ADPbS Promotes the Generation of a Progeny of
Rapidly Dividing Cells from GLAST-Expressing Stem
Cells
Next, to verify whether ADPbS can foster the transition of

stem-like precursors toward transit-amplifying cells and neu-

roblasts, we took advantage of GLAST::CreERT2; Rosa-YFP

transgenic mice. In these animals, cells expressing GLAST

(i.e., SVZ type B cells and parenchymal astrocytes) and their

progeny are permanently labeled by the fluorescent protein

YFP upon Tamoxifen (Tam in Fig. F77A) administration. Ani-

mals chronically received either PBS or 100 lM ADPbS in

the lateral ventricle for 1 week (Fig. 7A). Two hours before

sacrifice, animals received a single administration of the
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FIGURE 5: A 7-day-long infusion of ADPbS increases GFAP immu-
nostaining in the SVZ and induces reactive astrogliosis in brain
parenchyma. (A) Experimental protocol (see Materials and Methods
for details). (B, B0, C, C0) Representative images of GFAP staining
(green) in the dorsal horn (DH) and lateral wall (LW) of ctr (B, C) and
ADPbS-treated animals (B0, C0). Significant reactive astrogliosis
induced by the nucleotide analog was evident in brain parenchyma
(arrows in B0, C0 and insets B00, C00). (D, E) Quantification of GFAP
immunostaining in the DH (D) and LW (E). Values represent the
mean fluorescence intensity of GFAP staining per section in arbi-
trary units. (F, G) Quantification of the DH area (F) and of LW thick-
ness (G), as delimited by the dashed lines in (B, B0) and (C, C0),
respectively. (***P < 0.001, Student’s t-test). Scale bars: 50 lm in
B–C0 and 150 lm in B00, C00. LV, lateral ventricle.
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thymidine analog EdU to label actively dividing cells. In line

with previous data, we detected an increased incorporation of

EdU upon exposure to the purine analog (Fig. 7B,C). More-

over, the number of YFP/EdU double-positive cells was

increased twofold (Fig. 7D), indicating that ADPbS treatment

expanded a population of GLAST1 cell-derived progenitors

in active proliferation. Although this population was for the

most composed of GFAP-negative progenitors (Fig. 7E),

likely including Mash11 and DCX1 cells (see above), expo-

sure to ADPbS also resulted in a twofold increase of actively

cycling YFP/EdU double-positive progenitors also expressing

GFAP along the ventricle (Fig. 7F,G). Furthermore, a small

but significant increase in the total number of YFP/GFAP

double-positive cells was detected after treatment (Fig. 7H).

These data indicate that ADPbS activates GFAP1 precursors

in the SVZ with a consequent expansion of their progeny.

Discussion

The main finding of our study is that the purinergic system pro-

motes proliferation and lineage progression of SVZ precursors
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FIGURE 6: A 7-day-long infusion of ADPbS stimulates the proliferation of SVZ cells and increases the number of Mash11 and DCX1

cells. (A, A0) Representative images of the LW from ctr (A) or ADPbS-treated animals (A0) immunolabeled for BrdU (red). (B) Quantifica-
tion of the total number of BrdU1 cells in the LW (**P < 0.01, unpaired Student’s t-test). (C, C0) Representative images of the LW from
ctr (C) or ADPbS-treated animals (C0) immunolabeled with anti-Mash1 (green) and anti-BrdU (red). (D–F) Quantification of Mash11 (D), of
Mash1-BrdU double-positive cells (E), and of the percentage of proliferating cells in the Mash11 population (F) (*P < 0.05, unpaired Stu-
dent’s t-test). (G, G0) Immunofluorescence images of DCX (green) and BrdU (red) staining in the LW of ctr (G) or ADPbS-treated animals
(G0). (H–J) Quantification of the total number of DCX1 (H), of DCX-BrdU double-positive cells (I), and of the percentage of proliferating
cells in the DCX1 population (J) (*P < 0.05, unpaired Student’s t-test). Scale bars: 50 lm. In all images nuclei were counterstained with
the Hoechst33258 dye (blue). LV, lateral ventricle.
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in vitro and in vivo, both directly acting on progenitors, and

indirectly through the involvement of reactive astrocytes. Thus,

eNTs act as local extrinsic factors regulating NSC functions,

particularly following traumatic or hypoxic events, when pro-

genitors are in contact with high concentrations of ATP and its

metabolites (i.e., ADP, sequentially followed by adenosine),

owing to the high activity of ATP-metabolizing ectonucleoti-

dases in neurogenic brain areas (Lin et al., 2007). The high

micromolar concentrations of extracellular ATP and its metabo-

lites under these pathological conditions (Abbracchio et al.,

2006) also contribute to induction and modulation of reactive

astrogliosis (Abbracchio and Ceruti, 2006). Thus, to clarify the

role of purinergic system on NSC behavior during brain injury,

we used experimental settings that reproduce in vivo and in vitro
a pathological environment. To this aim, we administered

ADPbS, a stable analog of the ATP metabolite ADP, instead of

ATP, which is highly instable and undergoes fast hydrolysis

(Dunwiddie et al., 1997).

NSCs grown in vitro in the presence of GFs, like EGF

and bFGF, and ADPbS display increased neurosphere-

forming capacity, partially in accordance with previous work,

where P2Y1R activation brings to increased neurosphere for-

mation (Mishra et al., 2006; Stafford et al., 2007). Moreover,

ADPbS promotes the formation of neurospheres with a

decreased diameter, suggesting that the interaction of puriner-

gic signals with EGF and bFGF reduces cell proliferation, as

already reported (Stafford et al., 2007). Notably, P2Y1R acti-

vation may cause different effects on NSC function that

appear dependent on culturing condition (i.e., GFs concentra-

tion and neurosphere passages) and may also reflect changes

over time in the intrinsic properties of cultured progenitors

(Mishra et al., 2006; Stafford et al., 2007). Moreover, expo-

sure to ADPbS under prodifferentiative in vitro conditions

(i.e., by removing GFs from culturing media) leads to stimu-

lation of neuronal and, to a lesser extent, astrocytic commit-

ment of NSCs. Altogether, in vitro findings show that
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FIGURE 7: ADPbS promotes the proliferation of rapidly dividing transit-amplifying cells and GFAP1 precursor cells (A) Experimental
design (see text for details). (B, B0) Immunofluorescence images of EdU incorporation (blue) and YFP (green) staining in the LW of ctr (B)
and ADPbS-treated animals (B0). (C, D) Quantification of the number of LW cells incorporating EdU (C) and also positive for YFP (D).
(E) Quantification of YFP-EdU double-positive cells, which do not express GFAP. (F, F0) Triple immunostaining (i.e., YFP, green; EdU,
blue; GFAP, red) in the LW of ctr (F) and ADPbS-treated animals (F0). Inset shows in detail GFAP/EdU double staining in the triple
labeled cells placed at the upper right corner of F0. (G, H) Quantification of YFP-EdU double-positive cells also expressing GFAP (G) and
of GFAP-YFP double-positive cells (H) (**P < 0.01, ***P < 0.001; unpaired Student’s t-test). Scale bars: 15 lm in B, B0 and 10 lm in F, F0.
LV, lateral ventricle.
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purinergic signaling can positively regulate neurosphere for-

mation and neurogenesis under defined culturing conditions.

The above in vitro effects were fully confirmed in vivo
by ADPbS i.c.v. infusion at micromolar concentrations

(100 lM), with a significant upregulation of GFAP expres-

sion in both brain parenchyma and SVZ, showing an

ADPbS-mediated activation of astrocytes not only at paren-

chymal sites (Franke et al., 2004, 2009) but also in the neu-

rogenic area (see also below). Moreover, BrdU incorporation

showed that P2Y1R activation stimulates cell proliferation,

consistent with a global stimulation of SVZ activity. In line

with these results, lineage analysis in GLAST::CreERT2;

Rosa-YFP mice exposed to ADPbS showed an increase of

both all GFAP/YFP double-positive cells and of the actively

cycling fraction. Furthermore, the immediate progeny of

GLAST1 precursors (i.e., Mash11 and DCX1 cells) was

also expanded. Altogether, these findings point to an effect of

activation of P2Y1R on GFAP1 type B cells leading to an

expansion of Mash11 and DCX1 populations.

By administering the natural agonist ATP for 3 days to

mice, Suyama et al. recently observed an increase in the num-

ber of both rapidly dividing BrdU1 cells and Mash11 type

C cells in the SVZ with no effects on GFAP1 type B cells

(Suyama et al., 2012). Differences in the agonist chosen

(ADPbS vs. ATP) and in protocols of administration (with a

7-day-long infusion in our study) could explain the differen-

ces in the results obtained. Moreover, apart from its fast rate

of hydrolysis in vivo with a half-life of hundreds of millisec-

onds (Dunwiddie et al., 1997), ATP can activate a wide vari-

ety of purinergic receptors, spanning from the seven P2X

ionic channels to some P2Y subtypes (mainly the P2Y2 and

P2Y4 receptors; Fischer and Krugel, 2007). In addition to

this, ATP is rapidly degraded first to ADP (which stimulates

the P2Y1, P2Y12, and P2Y13 receptors; Abbracchio et al.,

2006) and finally to adenosine, which activates the four types

of P1 adenosine receptors. Thus, the different effects exerted

by ATP may be related to a more complex pattern of receptor

activation with respect to ADPbS that is known as a selective

agonist at the P2Y1, P2Y12, and P2Y13 receptor subtypes and

to be relatively resistant to ectonucleotidase hydrolysis

(Ralevic and Burnstock, 1998).

Literature data suggest that the P2Y1R receptor is medi-

ating the effects of eNTs on both precursor cells and reactive

astrocytes (Franke et al., 2001; Suyama et al., 2012). This

was confirmed by the complete reversal of ADPbS-mediated

effects exerted by the P2Y1R receptor antagonist MRS2179 in

our in vitro experiments. Moreover, published data and RT-

PCR analysis showed that all the three SVZ cell populations

and primary astrocytes expressed the mRNA for this receptor

subtype (not shown; Fumagalli et al., 2003). Therefore, we

are confident that all the observed effects are related to the

activation of the P2Y1R. Nevertheless, at present, we cannot

completely exclude the contribution of the two additional

ADP-sensitive P2Y receptors (i.e., the P2Y12 and P2Y13),

whose mRNA was also detected in SVZ cells.

Our work also assessed the role of astrocyte reactivity

on SVZ cell functions. Reactive astrogliosis virtually occurs in

all injuries and pathologies and therefore likely affects NSC

activity and neurogenesis, although knowledge on this issue is

limited. Therefore, we exposed SVZ cells to conditioned

media from astrocytic cultures grown under ctr conditions or

in the presence of ADPbS, and found a negative effect of

both media on the expansion of primary neurospheres. Previ-

ous in vitro data showed a stimulatory action of cultured

astrocytes on the proliferation and neuronal differentiation of

NSCs based on both contact-mediated and secreted factors

(Barkho et al., 2006; Lim and Alvarez-Buylla, 1999; Song

et al., 2002). In another study, reactive astrocytes activated in

vitro by a mechanical insult were found to promote astroglio-

genesis from NSCs via released factors with no changes in

progenitor proliferation compared to nonactivated cultures

(Faijerson et al., 2006). Our findings unveil a previously

unknown inhibitory effect of astrocyte-derived soluble factors

on SVZ progenitor activities, in line with an inhibitory action

in vivo of reactive astrocytes on stem cell maintenance and

neuron production (Buffo et al., 2010; Larsson et al., 2004).

Astrocytes can release ATP already under basal condi-

tions, which in turn influences NSC function in the adult

hippocampus via P2Y1R (Cao et al., 2013). However, this

does not seem the case in our experimental setting, because

addition of the P2Y1R antagonist MRS2179 did not revert

the observed effects.

A complex pattern of soluble mediators is probably

involved in astrocyte-mediated inhibition of NSC functions.

Specifically, cytokines/chemokines and adhesion factors have

been proposed to control these cells, although their role is far

from being understood (Christie and Turnley, 2013). In this

respect, some interesting hints come from our analysis of

cytokine/chemokine/GFs content of conditioned media. IP-

10 (also known as CXCL10), TIMP-1, and Rantes were

absent in normal neurosphere medium and highly expressed

in ctr and ADPbS astrocyte medium at comparable levels,

and could therefore account, at least partially, for the

observed generalized inhibitory effect of astrocyte-conditioned

media on NSCs. So far, these signals have been implicated in

the control of differentiation or motility of immature neurons

or astrocytes, respectively (Lee et al., 2011; Park et al., 2009).

A few studies reported a role for these cues in NSCs specifica-

tion (e.g., IP-10 in combination with other cytokines; Barkho

et al., 2006) and increased motility upon damage (TIMP-1;

Ben-Hur et al., 2006; Rantes; Guan et al., 2008). However,

their function in SVZ cells remains to be thoroughly
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investigated. Cues with promigratory effects on SVZ cells

(CINC-1 and MIP-1a; Gordon et al., 2009) were also

detected in astrocyte media, with a slight increase after

ADPbS stimulation. By altering cell-to-cell interactions

required to sustain NSC activity, these signals, in combina-

tion with others and with GFs present in our experimental

setting, could lead to a generalized inhibition of NSC

properties.

In addition to this, a number of astrocyte-secreted mole-

cules, which are known to stimulate stem cell properties also

outside the brain (such as VEGF, IL-10, and LIX; Calvo

et al., 2011; Choong et al., 2004; Perez-Asensio et al., 2013;

Yang et al., 2009), and to be involved in cell adhesion (such

as sICAM-1, L-selectin, and MIG), were downregulated upon

exposure of astrocytes to ADPbS. Conversely, the astrocytic

release of molecules with chemoattractive and migration

properties was increased by ADPbS. Globally, these data are

in line with the prodifferentiative role exerted by the ADP

analog.

Interestingly, a significant enhancement in neurosphere

formation was detected when secondary neurospheres were

generated in standard medium from cells derived from pri-

mary neurospheres grown in the supernatant of astrocytes

exposed to ADPbS. This suggests that removal of inhibitory

mediators triggered upon exposure to the purine analog

boosted the proliferation of SVZ cells during secondary neu-

rosphere culturing. Alternatively, restoration of the stimula-

tory factors/pathways attenuated by the supernatant of

ADPbS-exposed astrocytes could trigger this proliferative

compensative response in secondary neurospheres.

We are currently working on this hypothesis, which sug-

gests that during acute phases after damage eNTs-mediated

reactive astrogliosis does not directly affect the proliferation

of SVZ progenitors, but rather modifies their intrinsic prop-

erties, leading to a boost toward neurogenesis at more later

stages when the concentrations of the various mediators

decline. In vivo, the situation is likely to be more complicated

owing to the presence of reactive microglia, whose functions

and properties can be profoundly affected by eNTs (Fumagalli

et al., 2011).

In conclusion, our results represent a significant step

forward the full understanding of the role of eNTs in control-

ling SVZ cell functions under pathological conditions and

help building the substrate for therapeutic strategies that limit

brain damage and promote tissue regeneration.
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