
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Social Computing with JaCaMo+2COMM4JASON

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1567227 since 2016-06-28T08:35:16Z

Social Computing with 2COMM4JASON
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and
Roberto Micalizio

Università degli Studi di Torino, Dipartimento di Informatica
c.so Svizzera, 185 — Torino (Italy)
{matteo.baldoni,cristina.baroglio,federico.capuzzimati,roberto.micalizio}@unito.it

Abstract
Social Computing (SC) requires agents to reason seamlessly both on their social relationships
and on their goals, beliefs. We claim the need to explicitly represent the social state and social
relationships as resources, available to agents. We built a framework, based on JaCaMo, where
this vision is realized and SC is implemented through social commitments and commitment
protocols.

1998 ACM Subject Classification I.2.11 Artificial Intelligence, Distributed Artificial Intelligence,
Coherence & co-ordination; multiagent systems.

Keywords and phrases Social Computing, Agent Programming, Commitments and Goals, Agents
& Artifacts, JaCaMo

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 PROPOSAL AND MOTIVATION

Many systems, developed to support human users, require a transition from an individualistic
to a societal perspective. For instance, Socio-Technical Systems (STS) are large-scale, multi-
party, cross-organizational systems, which help stakeholders to interact and to use shared
resources [11]. Such systems perform a social computation which is the sum of the independent
contributions of autonomous, and heterogeneous, parties [10]. Traditional approaches to
software engineering do not fit the needs of such systems, because they do not help capturing
the social aspects of the computation, like the social relationships between the parties. The
way suggested by STS is to foresee a specific layer that contains the regulations that norm
the system behavior. This direction is followed by normative MAS, e.g. [7], which enrich
MASs by representing the norms that rule the system. However, such approaches lack proper
abstractions for capturing the social state, i.e. the set of relationships and dependencies
that are created and exist along the course of events, which are the foundations on which
the social behavior of the parties is established. Social relationships connect the interacting
parties, they have a normative value (in that they allow agents to have expectations on one
another), and they can be verified based just on the observable behavior of the agents. From
a Software Engineering perspective, the advantage of explicitly representing the social state
is to allow the realization of systems with a high degree of decoupling and of modularity of
their components, avoiding to “hard code” the logic of interaction inside the code of the
agents, whose executions are kept aligned by the social state itself.

Most of Multi-Agent frameworks and platforms do not explicitly account for the social
state. We propose an agent framework, 2COMM4JASON, that, instead, does so by explicitly
representing the social state through the social relationships and the rules that cause it
to evolve along the interaction. Agents and social relationships are first-class entities that
interact in a bi-directional manner. Social relationships are created by the execution of

© Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Roberto Micalizio;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Social Computing with 2COMM4JASON

interaction protocols and provide expectations on the agents’ behavior. On the other hand,
existing social relationships affect the decisions and the behaviors of the agents they involve.

Our proposal exploits the Agents&Artifacts (A&A) meta-model [8] and reifies the social
state as a set of resources, in a way that allows agents to seamlessly reason on them and
on their beliefs, goals, etc. Thus parties can dynamically recognize, accept, refuse rules and
relationships, as advised in [4]. Moreover, the social state, as a resource, can be used to
monitor the interaction. Social relationships are modeled as commitments and the rules that
cause the social state to evolve are modeled as commitment-based interaction protocols. The
framework builds upon the JaCaMo platform [2], and the Jason language is extended so to
allow reasoning on commitments.

2 2COMM4JASON

We model social relationships as commitments [9]: C(x, y, r, p) captures that the agent
x (debtor) commits to the agent y (creditor) to bring about the consequent condition p

when the antecedent condition r holds. Antecedent and consequent are conjunctions or
disjunctions of events and commitments. Debtors are expected to satisfy the engagements
they have taken – they are expected to behave so as to achieve the respective consequent
conditions. Commitments satisfy the requirement that [5] in a system made of autonomous
and heterogeneous actors, social relationships cannot but concern the observable behavior.
They also satisfy the requirement [4] of having a normative value, consequently providing
social expectations on the agents’ behavior. As a consequence, they can be used by agents in
their practical reasoning together with beliefs, intentions, and goals. A commitment-based
interaction protocol is a collection of actions, whose social effects are expressed in terms of
standard commitment operations (create, cancel, release, discharge, assign, delegate).

The framework is implemented based on JaCaMo [2], a platform integrating Jason (as
an agent programming language), CArtAgO (as a realization of A&A), and Moise (as a
support for realizing organizations). In JaCaMo a MAS is a Moise agent organization, which
involves a set of Jason agents, all working in shared distributed artifact-based environments,
programmed in CArtAgO. Environments are programmed as a dynamic set of artifacts,
possibly distributed among various nodes of a network, that are collected into workspaces.
They can be joined by agents at run-time and there agents can create, use, share artifacts
to support their activities. Artifacts are computational, programmable system resources,
that can be manipulated by agents. By focusing on an artifact, an agent registers to be
notified of events that are generated inside the artifact, e.g. when other agents execute
some action. Jason [3] implements in Java, and extends, the agent programming language
AgentSpeak(L). Jason agents have a BDI architecture: each has an own belief base, a set of
ground (first-order) atomic formulas, and a set of plans (plan library). It is possible to specify
achievement (‘!’) and test goals (‘?’). Agents can reason on their beliefs/goals and react to
events, amounting either to belief changes (occurred by sensing their environment) or to goal
changes. In JaCaMo, agent beliefs can also change due to the automatic propagation of the
effects of actions executed in the environment. Plans are activated by the creation/deletion
of some belief or goal.

We introduce commitments in Jason as terms of form: cc(debtor, creditor, antecedent,

consequent, status), where debtor and creditor are the identities of the involved agents, while
antecedent and consequent are the commitment conditions. Status is a further parameter
that we use to keep track of the commitment state (created, satisfied, violated, conditional,
detached, expired, pending, terminated). We introduced a class of artifacts that reify social

M. Baldoni et. al. 3

states. The belief bases of the agents focusing on such an artifact are aligned to the social
state of the ongoing interaction: any modification of the latter is propagated to the former by
the artifact itself by exploiting proper observable properties, that are added to or removed
from the artifact properties. The artifact is responsible for maintaining the social state
up-to-date, depending on the actions executed.

A protocol action is implemented as an artifact operation; its execution causes the update
of the social state. An agent can execute a protocol action if its role matches with the one to
which the action is associated. The check is transparent to the agent.

1 public c lass Cnp extends Pro t o c o lA r t i f a c t {
2 @OPERATION
3 @ROLE(name=" initiator ")
4 public void c fp (St r ing task) {
5 RoleId i n i t i a t o r =
6 getRoleIdByPlayerName (getOpUserName ()) ;
7 this . def ineObsProperty (" task " , task ,
8 i n i t i a t o r . getCanonicalName ()) ;
9 RoleId dest = new RoleId (" participant ") ;

10 createAllCommitments (new Commitment(i n i t i a t o r ,
11 dest , " propose " , " accept OR reject ")) ;
12 a s s e r tFac t (new Fact (" cfp " , i n i t i a t o r , task)) ;
13 } . . .

Agent plans can be triggered by events involving commitments. Commitments can
also be used inside a plan context or body. As a difference with beliefs, commitment
assertion/deletion can only occur through the artifact, after a modification of the social
state. For example, the plan +cc(d, c, ant, cons, s) : 〈context〉 ← 〈body〉 is triggered when
the commitment appears in the social state with the specified status. The plan may aim
at achieving a change of the status of the commitment (e.g. the debtor will satisfy the
consequent, the creditor will satisfy the antecedent and detach the commitment) or it may
allow the agent to react to the event (e.g. collecting information). Similarly for commitment
deletion. Commitments can also be used in contexts and in plans as test goals (?cc(. . .)) or
achievement goals (!cc(. . .)). Addition or deletion of such goals can, as well, be managed
by plans. For example, the plan +!cc(d, c, ant, cons, s) : 〈context〉 ← 〈body〉 is triggered
when the agent creates an achievement goal concerning a commitment. Consequently, the
agent will act upon the artifact to create the desired social relationship. After the execution
cc(d, c, ant, cons, s) will hold in the social state and will be projected onto the belief bases of
its parties.

This is an excerpt of Jason agent code for playing the role Initiator of the Contract Net
Protocol.

1 +!startCNP : true
2 <− makeArt i fact (" cnp " , " cnp . Cnp " , [] ,C) ;
3 f o cus (C) ; enact (" initiator ") .
4 +enacted (Id , " initiator " ,R_Id) : true
5 <− +enactment_id (R_Id) ;
6 ! cc (R_Id , " part " , " propose " ,
7 " (accept OR reject) " , " CONDITIONAL ") .
8 +! cc (My_R_Id, " part " , " propose " ,
9 " (accept OR reject) " , " CONDITIONAL ")

10 <− c fp (" task - one ") .
11 +cc (My_R_Id, " part " , " true " ,
12 " (accept OR reject) " , " DETACHED ")
13 : enactment_id (My_R_Id)
14 <− ! cc (My_R_Id, " part " , " true " ,
15 " (accept OR reject) " , " SATISFIED ") .
16 +! cc (My_R_Id, " part " , " true " ,
17 " (accept OR reject) " , " SATISFIED ")
18 : not eva luated
19 <− +evaluated ; . . . f i nd winner . . .
20 accept (Winner_R_Id) .
21 . . . a c t i on ’ reject ’ f o r a l l other proposa l s . . .
22 +cc (Participant_R_Id , My_R_Id, " true " ,
23 " (done OR failure) " , " DISCHARGED ")

4 Social Computing with 2COMM4JASON

24 : done (Result) <− // c o l l e c t r e s u l t s
25 +cc (Participant_R_Id , My_R_Id, " true " ,
26 " (done OR failure) " , " DISCHARGED ")
27 : f a i l u r e (Part_R_Id) <− true .

The agent playing this role creates the artifact that will be used for the interaction. The
initiator agent can, then, execute cfp. When enough proposals will be received, the initiator
agent evaluates them and decides which to accept and to reject. Accepting a proposal is an
action offered by the CNP artifact; it will update the social state according to the social
effects devised for the action.

Agent behaviour is defined based on the existing social relationships and not on the
process by which they are created. For instance, the initiator becomes active when the
commitments that involve it as a debtor, and which bind it to accept or reject the proposals,
are detached. It is not necessary to specify nor to manage, inside the agent, such things as
deadlines or counting the received proposals: the artifact is in charge of these aspects. Indeed,
the framework provides a strong decoupling between the design of the agents and the design
of the interaction, that builds on the decoupling between computation and coordination
done by coordination models, like tuple spaces: the protocol is not implemented inside the
agent code but it is a separate resource. Protocols can be updated separately from agents;
as a consequence, the system maintainability is increased and the autonomy of the agents
preserved. However, when an agent uses a protocol artifact, it accepts the commitments
that may involve it and the rules the artifact reifies. This allows the interacting parties
to perform practical reasoning based on expectations. Moreover, the artifact can act as a
monitor of the interaction because this occurs through its roles, and detect violations that it
can ascribe to the violators without agent introspection. Instead, in solutions that hard code
the interaction rules, the check necessarily requires agent introspection.

We mean to extend to richer norm expressions, e.g. to account for temporal constraints
[6, 1].

References

1 M. Baldoni, C. Baroglio, E. Marengo, and V. Patti, ‘Constitutive and Regulative Specific-
ations of Commitment Protocols: a Decoupled Approach’, ACM TIST, 4(2), 22:1–22:25,
(March 2013).

2 O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, ‘Multi-agent oriented
programming with JaCaMo’, Science of Computer Programming, 78(6), 747 – 761, (2013).

3 R. H. Bordini, J. Fred Hübner, and M. Wooldridge, Programming Multi-Agent Systems in
AgentSpeak Using Jason, John Wiley & Sons, 2007.

4 R. Conte, C. Castelfranchi, and F. Dignum, ‘Autonomous Norm Acceptance’, in ATAL,
volume 1555 of LNCS, pp. 99–112. Springer, (1998).

5 M. Dastani, D. Grossi, J.-J. Ch. Meyer, and N. A. M. Tinnemeier, ‘Normative Multi-agent
Programs and Their Logics’, in KRAMAS, volume 5605 of LNCS, pp. 16–31. Springer,
(2008).

6 E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P. Singh, ‘Commit-
ments with regulations: reasoning about safety and control in REGULA’, in AAMAS, pp.
467–474. IFAAMAS, (2011).

7 F. R. Meneguzzi and M. Luck, ‘Norm-based behaviour modification in BDI agents.’, in
AAMAS (1), pp. 177–184. IFAAMAS, (2009).

8 A. Omicini, A. Ricci, and M. Viroli, ‘Artifacts in the A&A meta-model for multi-agent
systems’, J. AAMAS, 17(3), 432–456, (2008).

M. Baldoni et. al. 5

9 M. P. Singh, ‘An ontology for commitments in multiagent systems’, Artif. Intell. Law, 7(1),
97–113, (1999).

10 M. P. Singh. Social computing: Principles, methods, and technologies, 2014. Invited talk
at the First Int. Workshop on Multiagent Foundations of Social Computing.

11 I. Sommerville, Software Engineering, Addison-Wesley, 9 edn., 2010.

	PROPOSAL AND MOTIVATION
	2COMM4JASON

