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A plan carried on in the real world may be affected by a number of unexpected events, plan
threats, which cause significant deviations between the intended behavior of the plan executor (i.e.,
the agent) and the observed one. These deviations are typically considered as action failures.

This paper addresses the problem of recovering from action failures caused by a specific class
of plan threats: faults in the functionalities of the agent. The problem is approached by exploiting
techniques of the Model-Based Diagnosis (MBD) for detecting failures (plan execution monitoring)
and for explaining these failures in terms of faulty functionalities (agent diagnosis). The recovery
process is modeled as a replanning problem aimed at fixing the faulty components identified by the
agent diagnosis. However, since the diagnosis is in general ambiguous (a failure may be explained
by alternative faults), the recovery has to deal with such an uncertainty. The paper advocates the
adoption of a conformant planner, which guarantees that the recovery plan, if it exists, is executable
no matter what the actual cause of the failure is.

The paper focuses on a single agent performing its own plan, however the proposed methodology
takes also into account that agents are typically situated into a multi-agent scenario and that
commitments between agents may exist. The repair strategy is therefore conceived to overcome the
causes of a failure while assuring the commitments an agent has agreed with other team members.

Key words: Model-Based Diagnosis, Plan Execution Monitoring, Conformant Planning

1. INTRODUCTION

An agent performing a plan in the real-world should be in charge of monitoring its environment
and the actual effects of its actions as they may fail for a number of reasons. In order to make the
phase of plan execution robust to failures, many strategies to plan repair have been recently proposed
(Gerevini and Serina, 2000; van der Krogt and de Weerdt, 2005a; Fox et al., 2006). The basic idea
of these approaches is that, during the plan execution, changes in the goals (e.g., new goals can be
added), or changes in the environment (e.g., a door expected to be open is actually closed) make
the current plan no longer adequate for achieving the desired goals. The plan execution is therefore
stopped, and a plan repair mechanism is activated to adjust the current plan to the situation actually
encountered at execution time.

As pointed out by Cushing and Kambhampati (2005), however, plan repair cannot assume that
execution failures are independent of the agent’s behavior; when such assumption is made, the agent
might repeat indefinitely the same error. For instance, let us consider the blocks world domain and
assume that an agent fails in picking a block up because of an error in calculating the movements
of its arm, in this case adapting the initial plan by introducing a new pick up action may resolve
the problem. However, if the same pick up action fails due to a fault in the agent’s arm, there will
be no advantage in trying to execute a pick up action again since the action would inevitably fail.
To overcome this situation, one should first remove the root causes of the failure (i.e., the fault in
the handling apparatus), and then attempt to repair the plan by inserting in the original plan a new
pick up action.

In this paper we intend to complement previous approaches to plan repair by taking into account
the problem of recovering from action failures caused by faults. To this end, we adopt Model-Based
Diagnosis (MBD) in order to detect action failures (plan execution monitoring) and to explain these
failures in terms of faulty functionalities (agent diagnosis).

Our idea, in fact, is that the first step for handling effectively an action failure consists in

iC 2011 The Authors. Journal Compilation
iC 2011 Wiley Periodicals, Inc.
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removing the root causes of the failure identified by the agent diagnosis, and restoring the nominal
conditions in the agent functionalities. After this fundamental step, either the agent resumes the
execution of the original plan from the same point where it was stopped; or, if required, a plan repair
mechanism is invoked to adjust the rest of the plan. In this paper, we will focus on the problem of
recovering from an action failure so that the execution of the original plan can be resumed.

One of the main challenges in pursuing this objective is that the agent diagnosis cannot be
anticipated; thus the recovery strategy must be based on a planner which synthesizes on-the-fly a
recovery plan, and whose goal consists in fixing the faulty functionalities mentioned by the agent
diagnosis. Moreover, the agent diagnosis is typically ambiguous (several faults can explain the same
action failure), thereby the planner synthesizing the recovery plan must be able to deal with such
ambiguity. To cope with these problems, we adopt a conformant planner as this kind of planners
is able to deal with ambiguous initial states, and assures that the recovery plan, when it exists, is
executable even though the actual cause of the failure is not precisely known.

Albeit the recovery strategy we propose is based on a single agent that can just change its
own plan, we also consider the problem from a wider point of view by situating the agent into a
multi-agent setting. When an agent shares its environment with other agents, it has to consider that
its recovery plan may interfere with the plans the other agents are carrying on. In this paper our
objective is to make the recovery process of an agent transparent to all the other agents. This means
that, on the one side the recovery cannot acquire new resources to avoid negotiations with other
agents; on the other side, the recovery must guarantee that the commitments an agent has already
agreed with other team members will be preserved. To model such a multi-agent setting, we adopt
the notion of Multi-Agent Plan (MAP) (Durfee, 2001), in which commitments and dependencies
among agents are explicitly modeled as precedence and causal links between action instances.

A further difficulty in dealing with a multi-agent scenario is that, when a recovery plan does not
exist (e.g., an agent cannot fix a fault on its own), the impaired agent can become a latent menace for
the other agents; for instance, an agent may lock indefinitely critical resources. We try to limit the
impact of unrecoverable faults by switching the goal of the recovery strategy from “fixing the faulty
functionalities” to “reaching a safe status”, that is, a state where the impaired agent does not hold
any resource. As we will see, the main advantage of the proposed approach is that the conformant
planner used for the synthesis of a recovery plan can also be used for the synthesis of a plan to the
safe status.
Organization The paper is organized as follows. The next section recalls some basic notions
about classical planning and multi-agent planning; these concepts are then exemplified in section
3 where we briefly introduce a multi-agent scenario that will be used to illustrate the proposed
methodology throughout the paper. Section 4 delineates the main control strategy that allows an
agent to coordinate with other teammates and to supervise the progress of its own local plan. The
following three sections, 5, 6, and 7, discuss the three activities involved in the control strategy:
the monitoring, the diagnosis and the recovery, respectively. In particular, the recovery relies on a
conformant planner, which is presented in section 8 where we also motivate why a recovery plan
must satisfy a so stringent requirement. In section 9 we go back to the example and show how the
control strategy actually intervenes during the execution of a multi-agent plan by detecting and
recovering from action failures. The effectiveness of the repair methodology is discussed in section
10, in which an extensive experimental analysis is presented. Finally, in section 11 the proposed
approach is compared with other relevant works in the literature.

2. BACKGROUND

In this section we briefly recall some basic notions on classical and multi-agent planning which
will be useful in the rest of the paper.
Classical Planning Classical planning is traditionally formalized in terms of propositional logics1.
According to Nebel (2000), in the propositional framework a system state s is modeled as a subset of

1See for instance the seminal works about STRIPS (Fikes and Nilsson, 1971), and more recently the
Planning Domain Definition Language (PDDL) (Ghallab et al., 1998; Fox and Long, 2003)
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literals in Σ, that is the set of all the propositional atoms modeling the domain at hand, each of which

may appear in its positive or negated form. A plan operator (i.e., an action instance) o ∈ 2Σ × 2Σ̂ is

defined by a set of preconditions pre ⊆ Σ and its effects eff ⊆ Σ̂; where Σ̂ is the set Σ augmented
with ⊥ (i.e., false) and ⊤ (i.e., true).

The application of an operator o to a state s is defined as App : 2Σ̂ × o→ 2Σ̂

App(s, o) =

{
(s− ¬eff (o)) ∪ eff (o), if s |= pre(o) and s 6|= ⊥ and eff (o) 6|= ⊥

{⊥}, otherwise.

Of course, actions are deterministic: when the preconditions pre(o) are satisfied s the effects eff (o)
are always achieved.

A planning problem is the tuple Π = 〈Σ, O, I,G〉 where:

- Σ is the set of propositional atoms, also called fact or fluent;

- O ⊆ 2Σ × 2Σ̂ is the set of available plan operators;
- I ⊆ Σ̂ is the initial state;
- G ⊆ Σ is the goal state.

Solving a planning problem requires to find a sequence of plan operators that when applied to the
initial state I reaches the goal state G.
Multi-Agent Planning A multi-agent plan (MAP) can be seen of as an extension of a Partial-
Order Plan (POP) (Weld, 1994) where deterministic actions, rather than being assigned to a single
agent, are distributed among a number of cooperating agents in a team T . Since agents share the
same environment, they also share the same set of critical resources RES; i.e. resources that can
only be accessed in mutual exclusion. A MAP has therefore to achieve the expected goals while
guaranteeing the consistent access to the resources. The formalism we adopt for modeling a MAP is
a simplified version of the formalism presented by Cox et al. (2005). In our view, a MAP instance P

is the tuple 〈T , RES,A,E,C,R〉, where:

- T is the team of agents; agents will be denoted by the letters i and j;2

- RES is the set of critical resources available in the environment; in this paper we assume that
all the resources are renewable: they can be locked and relinquished by an agent, but are never
consumed; for instance, renewable resources are tools, locations, objects, and so on;

- A is the set of the action instances the agents have to execute. Each action instance a ∈ A is
assigned to a specific agent i ∈ T ;

- E is a set of precedence links between actions: a precedence link a ≺ a′ in E indicates that a′ can
start only after the completion of action a;

- C is a set of causal links of the form cl : a
q
→ a′; the link cl states that the action a provides the

action a′ with the service q (q is an atom occurring both in the effects of a and in the preconditions
of a′);

- R is a set of precedence links specifically used to rule the access to the resources. Such a kind of
link has the form a ≺res a′, meaning that action a precedes a′ in the use of resource res ∈ RES.

While causal links model the exchange of services between agents, precedence links in R guarantee
the concurrency requirement (Roos and Witteveen, 2009), for which two actions a and a′, assigned
to different agents, cannot be executed at the same instant if they require the same resource res;
the two actions must be serialized by adding either a ≺res a′ or a′ ≺res a in R.
The goal G achieved by the MAP instance P consists of a conjunction of propositions that must
hold in the final state. In general, an agent is responsible for providing just a sub-goal and hence a
subset of the propositions mentioned in G.

The problem of synthesizing the MAP P is outside the scope of this paper, possible solutions
have been addressed in (Boutilier and Brafman, 2001; Jensen and Veloso, 2000; Cox et al., 2005).
Independently of how the MAP P has been built, we assume it satisfies the following properties:

2In principle, agents could be heterogeneous; i.e., two agents may have different actuators; but for the sake
of simplicity in the discussion, we will assume that all the agents are of the same type.
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go (AG, FROM, TO)

pre: place(FROM), place(TO), position(AG, FROM)

eff: position(AG, TO), ¬position(AG, FROM)

load (AG, FROM, OBJ)

pre: place(FROM), position(AG, FROM), at(OBJ, FROM), loaded(AG, empty)

eff: at(OBJ, AG), loaded(AG, OBJ), ¬at(OBJ, FROM), ¬loaded(AG, empty)

unload (AG, TO, OBJ)

pre: place(TO), position(AG, TO), at(OBJ, AG), loaded(AG, OBJ)

eff: at(OBJ, TO), loaded(AG, empty), ¬at(OBJ, AG), ¬loaded(AG, OBJ)

Figure 1. The set of action templates in the office domain.

- executable: the plan is deadlock free, and the concurrency requirement is satisfied;
- correct: all the domain-dependent constraints on the use of resources are satisfied, and the global
goal is actually reached if no unexpected event occurs during the plan execution.

Local plans In our approach, each agent has just a partial view of the multi-agent plan P ; in
particular, an agent i knows just its own local plan P i=〈Ai, Ei, Ci, T i

in, T
i
out, R

i
in, R

i
out〉: A

i, Ei and
Ci have the same meaning as A, E and C, respectively, restricted to actions assigned to agent i.
Thus Ei and Ci only contain links between actions in Ai. Whereas the sets T i

in, T
i
out, R

i
in, and Ri

out

contain links between actions of different agents. More precisely, T i
in is a set of incoming causal links

of the form a
q
→ a′ where a′ belongs to Ai and a is assigned to another agent j in T ; T i

out is a set of
outgoing causal links a

q
→ a′ where a ∈ Ai and a′ ∈ Aj (i 6= j). Similarly, Ri

in is a set of incoming
precedence links of the form a ≺res a′ where a′ belongs to Ai and a is assigned to another agent j

in the team; finally, Ri
out is a set of outgoing precedence links a ≺res a′ where a ∈ Ai and a′ ∈ Aj .

For the sake of simplicity, we assume that each local plan P i extracted from P is totally ordered,
and hence P i can be seen as the ordered sequence of actions [ai

0, a
i
1, . . . , a

i
n, a

i
∞]. Where, as usual,

ai
0 and ai

∞ are two pseudo actions modeling, respectively, the initial state and the sub-goal of the
local plan P i (Weld, 1994).

3. AN EXAMPLE

Let us consider a simple applicative scenario where two agents, A1 and A2, provide a delivery
service in an office. The task domain is modeled in propositional terms through the following set of
atoms:

- place: denotes the resources available in the environment. In our example, we are going to
consider an office with two desks, place(Desk1) and place(Desk2), a repository for the parcels,
place(Rep), and a parking area place(Parking). The repository and the two desks are critical
resources that can be accessed by no more than one agent at any time instant, while Parking is
not constrained and hence many agents can be simultaneously located in it;

- position: models the position of an agent, for instance position(A1, Rep) means that the agent
A1 is located within the repository;

- at: models the position of an object, namely the parcels the agents have to deliver to the desks;
for instance at(Pack1, Rep) means that the parcel Pack1 is stored into the repository Rep;

- loaded: indicates whether an agent is carrying an object or not, the atom loaded(A1, Pack1)

states that A1 is loaded with the parcel Pack1, whereas loaded(A1, empty) means that A1 is not
carrying any object.

Figure 1 shows some examples of action templates in our office domain. The go action template
models the movement of an agent from a place FROM to another place TO. While the load and unload

action templates describe how an agent can operate on a parcel. Of course, these templates need to
be instantiated w.r.t. concrete atoms in order to obtain an action instance that an agent can actually
perform.
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place(Desk1), place(Desk2), place(Rep), place(Parking)

position(A1,Rep), position (A2, Desk2)

loaded(A1, empty), loaded(A2, Pack2)

at(Pack1, Rep), at(Pack2, A2)

Figure 2. The atoms which are initially true.

load(Pack1, Rep) go(Rep, Desk1) unload(Pack1, Desk1) go(Desk1, Parking) ....

   
go(Desk2, Rep) unload(Pack2, Rep) go(Rep, Desk1) load(Pack1, Desk1) ...

Rep Desk1
at(Pack1,Desk1)

loaded(Pack1)

position(Desk1)

position(Rep) position(Desk1)

Agent A1’s plan

Agent A2’s plan

at(Pack1, Desk1)

at(Pack1,Rep)

position(Rep)

loaded(empty)

at(Pack2,A2)

position(Desk2)

loaded(Pack2)

loaded(empty)

at(Pack2,Rep)

a0

a∞

a1
1 a1

2 a1
3 a1

4

a2
1 a2

2 a2
3 a2

4

Figure 3. The MAP instance P assigned to the team of agents.

Let us assume that, as a general rule, agent A1 is in charge of delivering parcels to desks picking
them up from the repository; while agent A2 is in charge of collecting parcels from desks and taking
them back to the repository. In our specific case, we have that agent A1 is assigned to deliver parcel
Pack1 to Desk1 while agent A2 has to move the two parcels Pack1 and Pack2 back to the repository.
Of course, agent A2 expects to collect parcel Pack1 from Desk1, and hence agent A1 has to deliver
that parcel first.

The initial set of atoms is given in Figure 2: agent A1 is in the repository and it is empty, so it
is ready to load parcel Pack1; agent A1 is in Desk2 and already loaded with parcel Pack2. Figure 3
shows a portion of the multi-agent plan assigned to the two agents. For the sake of readability of the
picture, the action instances and atoms have been simplified by removing the agent identifier; it can
be easily determined by considering that all the actions of the same agent are encircled by a dashed
frame, and hence all the actions and atoms within the same frame refer to the corresponding agent.
For instance, the local plan assigned to agent A1 involves four actions: load Pack1 from Rep, move
from Rep to Desk1, unload Pack1 onto Desk1, and move from Desk1 to the parking area.

The multi-agent plan resembles a Directed Acyclic Graph (DAG) where nodes are action
instances and edges between nodes represent either causal or precedence dependencies between
actions. Precedence links ruling the access to the resources are labeled with the name of the resource
they refer to. For example, the link between a1

2 and a2
1 is labeled with the resource name Rep; it

means that Rep will be released by agent A1 after the execution of action a1
2, and it will be acquired

by agent A2 to perform action a2
1. Causal links are depicted as solid arrows and labeled with the

atom provided by one action to the other; e.g., the link between actions a1
3 and a2

4 means that the
atom at(Pack1, Desk1) will be provided by agent A1 to agent A2 as an effect of action a1

3. In this
case, the atom labeling a causal link resembles the concept of service exchanged between agents.
Since local plans are totally ordered, precedence links between two consecutive actions are omitted
for the sake of readability.

Let us assume that, during the plan execution phase, a fault affects the robotic arm of agent
A1 while it is performing action a1

1; as a consequence, parcel Pack1 has not been loaded on-board
the agent: the action has failed. If agent A1 is not controlling the execution of its local plan, it will
ignore the occurrence of the action failure and continue the execution of its local plan: the following
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go action is successfully carried out as the movement from Rep to Desk1 is not affected by the fault
in the robotic arm. However, as soon as agent A1 tries to perform action a1

3, it gets stuck since one of
the action preconditions (namely, the atom loaded(A1, Pack1)) is missing: agent A1 is in a deadlock
condition as it will wait indefinitely for a service that only the agent itself can provide. At the same
time, the resource Desk1 is locked and no other agent can access it; thus the fault in A1’s robotic
arm will propagate in the whole plan and will also affect the actions A2 is responsible for. Moreover,
even though the system is blocked, no recovery strategy is activated as no failure has been detected.

This simple example shows the necessity of detecting action failures as soon as possible and
properly reacting to them. The methodology we propose in this paper handles action failures in two
ways: first, it tries to recover from a failure by fixing the faulty components; second, when the faulty
components cannot be fixed, the methodology tries to reduce the impact of the failure by moving
the impaired agent into a “safe condition”, that is a condition where the agent does not hold any
resource and does not hinder other teammates.

4. DISTRIBUTED CONTROL STRATEGY

In a multi-agent setting, where the execution of a multi-agent plan is carried on in parallel by a
team of cooperating agents, it appears natural to adopt a distributed approach also for the control
of the plan execution. This means that each team member must be able to:

- Determine when the preconditions of the next action to perform are satisfied;
- Activate the execution of the next action;
- Determine the outcome of the last performed action;
- In case of non-nominal outcome, activate a strategy for recovering from the failure so that the
plan execution can be resumed.

To get these results, we propose a local control task consisting of three main activities:

- plan execution monitoring, corresponding to the fault detection phase in the MBD terminology,
tracks the status of the agent over time while the plan execution is in progress, and detects
deviations between the expected and the observed agent’s behavior. In this paper, such deviations
can only be due to non-observable faults affecting the agent’s functionalities;

- agent diagnosis, corresponding to the fault identification phase in MBD, explains the detected
action failures in terms of faults in the agent’s functionalities;

- action recovery aims at bringing the status of an agent back to its nominal conditions; the recovery
has to fix the components that have been qualified as faulty by the agent diagnosis. In this paper
we propose a local recovery strategy which only intervenes on the plan of the impaired agent while
it is completely transparent for all the other agents in the team.

Since agents execute their actions concurrently, they need to coordinate with one another in order
to avoid the violation of the constraints defined during the planning phase. Effective coordination
is obtained by exploiting the causal and precedence links in P . As pointed out by Decker and Li
(2000), in fact, coordination between agents i and j is required when i provides j with a service q.

This is explicitly modeled in our framework by a causal link cl : ai
h

q
→ a

j
k in C, which belongs both

to T i
out and to T

j
in as an effect of the decomposition of P . Therefore, on the one hand cl ∈ T i

out tells
agent i to send agent j a message about the service q as soon as the action ai

h has been completed;
on the other hand, cl ∈ T

j
in tells agent j that to perform action a

j
k a message about the service q has

to be received from agent i. Likewise, the consistent access to the resources is a form of coordination
which involves precedence links.
It follows that coordination among agents is only possible when the following requirement is satisfied.

Requirement 1: Observability requirement. Each agent observes (at least) the direct effects of the
actions it executes.

Note that this requirement must be satisfied even under the hypothesis that no fault can occur as the
plan execution is distributed and agents are not synchronized with one another. Moreover, since we
are interested in monitoring the plan execution even when something wrong occurs, we also assume:
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LocalControlLoop(P i)
00 t← 0
01 while there are actions in P i to be performed
02 ai

l ←nextAction(P i);
03 if preconditions of ai

l are satisfied
04 〈execute ai

l〉
05 obsi(t+ 1)← 〈 gather observations 〉
06 outcome ←Monitoring(ai

l, t, obs
i(t+ 1))

07 if outcome is nominal
08 mark ai

l as performed
09 else
10 Di ← Diagnosis(ai

l)
11 P i ← Recovery(P i, ai

l, D
i)

12 if P i is empty
13 〈stop execution〉
14 else 〈wait〉 /*some preconditions are not satisfied yet*/
15 t← t+ 1

Figure 4. The local control strategy.

Assumption 1: Determinable outcome. The amount of observations an agent receives are always
sufficient to determine the outcome of every action the agent performs.

This means that right after the execution of an action, the agent is able to determine whether the
action effects have been achieved or not. Intuitively, the outcome of an action can be either succeeded
or failed; this concept will be formalized in section 5 together with the process that leads an agent
to the detection of action failures.

The control strategy is sketched3 in Figure 4 showing the high-level steps followed by an agent
i while it is carrying on its local plan P i. Each iteration of the while loop takes care of the execution
of a single action: first, the agent determines its next action ai

l to be performed (line 02), then it
verifies whether the action preconditions are satisfied or not (line 03). Note that, since the plan P is
correct, and since an agent immediately discovers the failure of one of its own actions (Assumption
1), the preconditions of an action can be unsatisfied only when some services that other agents have
to provide are still missing. Thus, when action ai

l is not executable yet, the agent keeps waiting for
the missing services.
On the other hand, when the action preconditions are satisfied, action ai

l is actually performed in
the real world (line 04).

The outcome of an action is determined by the Monitoring activity (line 06) relying on the set
of observations received by the agent. When a non-nominal outcome is detected, the Diagnosis (line
10) is activated in order to explain such an outcome and to provide the Recovery strategy with useful
pieces of information. Recovery returns either a new local plan P i (overcoming the problems which
caused the non-nominal outcome) or an empty plan when the recovery strategy failed in finding a
solution. In this last case, the execution of the local plan P i is stopped. Of course, when the local
recovery fails in handling a failure, a global plan repair strategy might be activated, such an option,
however, is outside the scope of this paper.

Note that the while loop ends with the increment of the time t (line 15), this represents just a
local clock for the agent i, namely, the agents are not temporally synchronized with one another.

In the rest of the paper we will examine these three activities (monitoring, diagnosis and
recovery), providing for each of them a formalization in terms of Relational Algebra operators.

3In order to keep the algorithm simple, the interagent communication has been omitted.
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5. MONITORING THE EXECUTION OF A LOCAL PLAN

In this section we address the first step of the control loop previously discussed: the plan
execution monitoring. As sketched in section 4 the main objective of the monitoring task consists in
detecting discrepancies between the expected behavior of agent i and its actual, observed activity.

To reach this objective, the monitoring needs two types of action models. The first type is the
one used during the planning phase, where just the nominal evolution of an action is represented in
terms of preconditions and effects. These models are used by the monitoring to create expectations
about the correct agent’s behavior. The second type of models is an extended version of the previous
one which also includes anomalous evolutions of an action; that is, how an agent behaves when a
fault occurs during the execution of a given action. This second type of models is used to trace the
actual agent’s behavior. By comparing the expected to the actual agent’s behavior, the monitoring
task is able to detect discrepancies and hence action failures.

In the remainder of this section we first formalize the extended action models and then the
process that leads to the detection of action failures.

5.1. Agent Status

While the propositional language appears to be adequate during the planning phase (see Section
2), it becomes awkward to deal with when one has to consider the plan execution phase. Previous
works on plan diagnosis (Roos and Witteveen, 2009; de Jonge et al., 2009) have already shown that
a state-based description of the world, with non-Boolean status variables, is more effective as it is
easier to update when actions are actually performed, especially when unexpected deviations may
occur. In this subsection we introduce the notion of agent status as a set of (non-Boolean) status
variables; note that this representation is not in contrast with the propositional representation given
above, in fact it is always possible to map each propositional atom into one (or more) status variables,
and vice versa (Brenner and Nebel, 2009).

Given an agent i ∈ T , the status of agent i is modeled by a set of discrete status variables VARi;
for each variable v ∈ VARi, dom(v) denotes the finite domain of v. The set VARi is partitioned into
three subsets END i, ENV i and HLT i:

- END i maintains endogenous status variables modeling the internal state of agent i; for instance, in
the example sketched in section 3, endogenous variables are: position where dom(position)={Rep,
Desk1, Desk2, Parking}, and loaded where dom(loaded) = {Pack1, Pack2, empty}; the empty value
is added to model an agent which is not carrying any parcels.

- ENV i maintains variables concerning the environment where agent i operates, namely, the status
of the available resources. Let RES be the set of available resources, for each resource resk ∈ RES ,
ENV i includes a private variable resk,i whose domain is {in-use, not-in-use, unknown}: resk,i=in-
use indicates that resource resk is being used by agent i at the current time; resk,i=not-in-use
means that resource resk is assigned to agent i but it is not currently used; finally, resk,i=unknown
means that the agent i has no access to resource resk. As we discuss in Section 7, the distinction
between a resource in use, unused or unknown, is essential during the recovery phase to determine
the objective of a repairing plan.
Of course, since a resource variable is duplicated in as many copies as there are agents, maintaining
the consistency among all these copies could be an issue. In our approach, however, this issue
does not arise since conflicts for accessing the resources are solved at planning level. In fact, the
precedence links in R guarantee that, at each time t, a resource resk can only be used by a specific
agent i; thereby for any other agent j ∈ T \ {i} the status of the resk is unknown.
In the rest of the paper we will denote as AvRes(i , t) (available resources) the subset of resources
that agent i holds at time t; i.e., AvRes(i , t) ={resk ∈ RES |resk,i 6= unknown}.
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- HLT i is the set of variables modeling the health status of agent i. In fact, while in many
approaches to plan repair (see e.g., (Gerevini and Serina, 2000; van der Krogt and de Weerdt,
2005a)) plan deviations are due to unexpected changes in the environment; in our framework
plan deviations are caused by faults in some agent’s functionalities. For this reason, we associate
each agent functionality f with a variable vf ∈ HLT i modeling the current operative mode of f ;
dom(vf ) ={ok, abn1, . . . , abnn}, where ok denotes the nominal mode, while abn1, . . . , abnn denote
anomalous or degraded modes. For example, the agent’s arm is modeled via the variable hnd (i.e.,
handling functionality) whose domain is the set {ok, blocked}; while the agent’s battery is modeled
by the variable pwr whose domain is {ok, low, flat}.

It is important to note that, while the variables in END i and in ENV i can be mapped with the
propositional formalism previously discussed, the variables in HLT i have been added to capture the
possible occurrence of faults, which is an aspect not considered during the planning phase.

The status of agent i is therefore a complete assignment of values to the variables in VARi. It
is worth noting that the status of an agent evolves over time according to the actions it executes.
Thus, an agent status is a snapshot of the agent taken at a given step of the plan execution. As we
will see, the monitoring task has to consider consecutive agent states, so it is convenient to have a
copy of the variables in VARi labeled with the time instant they refer to. In the rest of the paper,
we denote as VARi

t the copies of the status variables encoding the status of agent i at time t.

5.2. Extended Action Models

The main purpose of an extended action model is to describe how an action can deviate from
its expected behavior when a subset of agent’s functionalities is not operating under the nominal
mode; we propose to represent these extended action models as relations:

Definition 1: The extended model of action ai
l is the tuple:

〈AVAR(ai
l), PRE (ai

l), EFF (ai
l), ∆(ai

l)〉, where:

- AVAR(ai
l) = {v1, . . . , vm} ⊆ VARi is the subset of active status variables; i.e., they are relevant

for capturing all the changes which may occur in the status of agent i during the execution of
action ai

l .
- PRE (ai

l) ⊆ dom(v1)× . . .× dom(vm), is the set of nominal preconditions of action ai
l.

- EFF (ai
l) ⊆ dom(v1)× . . .× dom(vm), is the set of nominal effects of ai

l.
- ∆(ai

l) ⊆ PRE (a i
l )× EFF (a i

l ) is the transition relation binding preconditions to effects.

All the passive variables in VARi \ AVAR(ai
l) are assumed to be persistent during the execution of

action ai
l.

Note that, since action ai
l is executed at a given time t, the transition relation ∆(ai

l) models the
changes in the agent status from time t (when the action starts) to time t+1 (when the action ends).
Hereafter ai

l(t) will denote that agent i started the execution of ai
l at time t; for readability, we will

omit the time whenever it is not strictly required.

Table 1. The extended model of action a1
2:go(Rep,Desk1) (a simplified version).

active variables at time t active variables at time t+1
pos loaded pwr engTmp pos loaded pwr engTmp

1 nominal Rep empty ok ok Desk1 empty ok ok
2 nominal Rep obj ok ok Desk1 obj ok ok
3 degraded Rep empty low ok Desk1 empty low ok
4 degraded Rep empty ok hot Desk1 empty ok hot
5 faulty Rep obj low ok Rep obj low ok
6 faulty Rep obj ok hot Rep obj ok hot
7 faulty Rep obj ok ok Rep obj low ok
8 faulty Rep obj ok ok Desk1 obj low ok
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Since not all the agent’s functionalities are typically required during the execution of action ai
l,

we highlight the subset of relevant functionalities through the following subset:

healthVar(ai
l)=HLT i ∩AVAR(ai

l)

the functionalities included in this set are essential for the successful completion of action ai
l; in fact:

Property 1: The outcome of action ai
l(t) is succeeded if and only if for each variable v ∈ healthVar(ai

l),
v assumes the value ok at time t.

Namely, when all the functionalities healthVar(ai
l) are nominal, action ai

l behaves deterministically
and its outcome is succeeded; whereas when at least one functionality is not nominal, the action
behaves non-deterministically and its outcome might be failed.
Running example. Let us consider the go action a1

2 of our running example. The template for
the nominal model of such an action is given in propositional terms in Figure 1; the corresponding
extended action model is sketched in Table 1 and it is represented as a relation; i.e., as a set of
tuples. The active variables mentioned in the extended model are: pos (i.e., position), loaded, pwr
(i.e., the power level of the battery) and engTmp (i.e., the temperature of the engine); these two last
variables are health status variables, and hence there are included in healthVar(a1

2).
Each row of the extended model represents a state transition relating the active variables at time t

to the same active variables at time t+1. The first two of them are nominal transition as they model
the expected effect of the go action when the agent is empty or is loaded, respectively. The third
and fourth rows model degraded conditions; that is, even though the agent is somehow impaired, it
can move from Rep to Desk1 when it is empty. However, in the same healthy conditions, the agent
cannot move when it is loaded with an object. The last four rows represent faulty transitions; in
particular, rows 7 and 8 show how the same fault in the battery (a drop from ok to low in the power
level), may have non deterministic impacts on the go action: the agent cannot even leave Rep (row
7); the agent moves to Desk1 as expected (row 8), but after this step it will not be able to move
anymore.

Note that the model in the table is very partial; as we will discuss in the experimental results
section, the action models actually used during our tests may include more than 100 state transitions,
and mention more than 20 active variables.

5.3. Fault Detection

Agent belief state. Requirement 1 guarantees that after the execution of an action at time t,
agent i receives at time t+1 a set of observations - denoted as obsi(t + 1) - that conveys pieces of
information about the action’s effects. Although we assume that observations are correct, they are
in general incomplete: an agent can just directly observe the status of its available resources, and
the value of a subset of variables in END i (i.e., not all the variables in END i are observed at each
time). Whereas variables in HLT i cannot be observed and their actual value can only be inferred. As
a consequence, the monitoring task cannot be so accurate to precisely estimate the current status of
agent i. In general, the monitoring is able to infer a belief state; i.e., a set of alternative agent’s states
which are all consistent with the received observations and hence are all possible. In the remainder
of the paper, Bi(t) will refer to the belief of agent i inferred at time t.
Estimating the agent belief state. The estimation process aims at predicting the status (i.e.,
the belief state) of agent i at time t+ 1 after the execution of action ai

l(t); it is formalized in terms
of the Relational Algebra operators as follows (see the Appendix for a short introduction about the
Relational Algebra operators).

Definition 2: Let Bi(t) be the belief state of agent i, and let ∆(ai
l(t)) be the transition relation of

action ai
l executed at time t; the agent belief state at time t+ 1 results from:

Bi(t+ 1) = projectionVARi

t+1
( selectionobsi(t+1) (Bi(t) join ∆(ai

l(t))))

Let us examine this expression in detail. The first step for estimating the new belief state is the join
operation between Bi(t) and ∆(ai

l(t)); this is the predictive step by means of which all the possible
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agent states at time t + 1 are estimated. More precisely, each tuple in ∆(ai
l(t)) can be thought

of as having the form 〈activeV ariablest, activeV ariablest+1〉, describing the transition from the
active variables at time t to the active variables at time t+1. The (natural) join operator compares
activeV ariablest to the current belief state Bi

t, and if Bi
t ⊢ activeV ariablest, the tuple is included

within the join result and brings the assignments in activeV ariablest+1 as an estimation of the next
agent status. Since all the variables which are not active are assumed persistent, the result of the
join operation is a new relation having the form 〈VARi

t,VARi
t+1〉; that is to say, a relation mapping

an agent state at time t (i.e., belonging to Bi
t) with a possible agent state at time t+1 (built by

means of the extended action model). Of course, such a relation might contain spurious estimates;
the selection over obsi(t+ 1) is therefore used to refine the result of the join operation by pruning
off all the estimates which are inconsistent with the agent’s observations. Finally, the belief state
Bi(t+ 1) results from the projection over the status variables of agent i at time t+ 1.

Under the assumption that the action model ∆(ai
l(t)) is correct and complete the following

property holds.

Property 2: Let Bi(t) be the belief state of agent i at time t, and let ŝ ∈ Bi(t) be the actual status
of the agent i at time t; given the extended action model ∆(ai

l(t)), the agent belief state Bi(t + 1)
inferred according to Definition 2 always includes the actual state ŝ′ of agent i at time t+1.

Proof. By contradiction, let us assume that the state ŝ′ does not belong to the belief state Bi(t+1);
this might happen for one of the following reasons:

(1) a state transition 〈ŝ, ŝ′〉 is missing in ∆(ai
l(t)), but this is against the assumption of correctness

and completeness of the action model;

(2) the state transition 〈ŝ, ŝ′〉 is included in ∆(ai
l(t)), but the actual state ŝ is not included in Bi(t),

but this is against the premises of the property;

(3) the state ŝ′ is correctly estimated via the join operator, but it is filtered out during the selection
operation which prunes off all the agent states inconsistent with the observations. But this is
against the assumption that the available observations, though incomplete, are correct.

Property 2 assures that the monitoring is correct as the actual status of an agent is always traced
during the plan execution.
Inference of an action outcome. To infer the outcome of an action we adopt a conservative
approach asserting that an action has outcome succeeded when the following condition holds:

Definition 3: Given the belief Bi(t + 1), the outcome of action ai
l(t) is succeeded if and only if

∀s ∈ Bi(t+ 1), s ⊢ eff (ai
l).

This condition states that action ai
l is successfully completed when the nominal effects of the action

hold in every state s belonging to the belief state inferred just after the execution of the action. This
means that we adopt a rather pessimistic approach, in fact it is sufficient that the action effects are
not satisfied in just one state in Bi(t+ 1) to conclude that action ai

l(t) has outcome failed. 4

The Monitoring Task After these premises, the monitoring task which is part of the control loop
introduced in Section 4 is summarized in the pseudo-code of Figure 5. The first step consists in the
estimation of the next belief state Bi(t+1) according to Definition 2 (line 00). To determine whether
the action outcome is succeeded or not, we build a temporary relation Temp as the join between
Bi(t+1) and the nominal action effects eff (ai

l) (line 01); Temp will keep the same states as Bi(t+1)
only if the nominal effects of ai

l are satisfied in every state of Bi(t + 1); therefore, when Temp is a
proper subset of Bi(t+1) we can conclude that the action outcome is failed (line 02); otherwise, the

4Definition 3 can be relaxed along the line discussed in (Micalizio and Torasso, 2008): whenever it is not
possible to certainly assert the successful or unsuccessful completion of an action, the action outcome remains
pending; observations received in the future will be used for discriminating between succeeded and failed.
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Monitoring(ai, t, obsi(t+ 1))
00 Bi(t+ 1)← projectionVARi

t+1
( selectionobsi(t+1) (Bi(t) join ∆(ai

l(t))))

01 Temp← Bi(t+ 1)join eff (ai
l)

02 if Temp ⊂ Bi(t+ 1) return outcome failed
03 else return outcome succeeded

Figure 5. The Monitoring task.

action outcome is succeeded (line 03).
See the Appendix for an analysis of the computational complexity of the monitoring task imple-
mented by means of the Ordered Binary Decision Diagrams (OBDDs).
Running example. Let us assume that agent A1 has successfully completed action a1

1, so it is now
located into the repository Rep and loaded with Pack1. The agent then executes the subsequent go
action to move from Rep to Desk1. To monitor this action, the agent exploits the model in Table
1, where the entries 2 and 5 through 8 play an active role in estimating the possible next status of
the agent. After the execution of the go action, the agent observes its current position and discovers
that it is located in Rep (pos=Rep), this observation is used to refine its belief state and the result is
showed in Table 2. It is easy to see that such a belief models an erroneous situation as the nominal
expected effect of action a1

2 is pos=Desk1, which is not satisfied in any state included into the belief.
Thus the agent concludes that the go action has failed.

6. AGENT DIAGNOSIS

In this section we describe the model-based approach adopted for diagnosing action failures;
before that, however, we recall some basic definition about Model-Based Diagnosis (MBD). Intu-
itively, MBD can be viewed as an interpretation process that, given a model of the system under
consideration and a set of observations about the system behavior, provides an indication of the
presence or absence of faults in the components of the system itself.
One of the first formal (logic-based) theories of diagnosis is the consistency-based diagnosis proposed
by Reiter (Reiter, 1987). In a consistency-based setting, the system to be diagnosed is described as
a triple 〈SD,COMPS,O〉 where:

- SD (system description) denotes a finite set of formulae in first-order predicate logic, specifying
only the system normal structure and behavior;

- COMPS (components) is the set of system components; each component c ∈ COMPS can be
qualified as behaving either abnormally ab(c), or nominally ¬ab(c);

- OBS is a finite set of logic formulae denoting the observations.

We have a diagnostic problem when the hypothesis that all the components in COMPS behave nom-
inally (HNOM =

⋃
c∈COMPS

{¬ab(c)}) is inconsistent with the system description and the available
observations. In other words, when SD∪OBS∪HNOM |= ⊥ we have detected an anomalous behavior
of the system. Solving a diagnostic task requires to find a subset D ⊆ COMPS of components that,
when qualified as abnormal, make the new hypothesis H={ab(c)|c ∈ D}∪{¬ab(c)|c ∈ COMPS \D}
consistent with the system description and the observations: SD ∪ H ∪ OBS 6|= ⊥. The subset
D is therefore a diagnosis since it identifies a subset of components whose anomalous behavior is
consistent with the observations.

Console and Torasso (Console et al., 1991; Console and Torasso, 1991) have introduced the
notion of abductive diagnosis by including within the system description not only the nominal states
of the system but also its abnormal states and the corresponding abnormal observations. Having

Table 2. The agent belief state at the time of the failure of action a1
2.

pos loaded pwr engTmp hnd
i1 Rep Pack1 ok high ok
i2 Rep Pack1 low ok ok
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such a kind of system description, the diagnostic inference aims at finding a subset of components
D such that:
(1) SD ∪H |= OBS and
(2) SD ∪H is consistent.
Where H is again the hypothesis {ab(c)|c ∈ D} ∪ {¬ab(c)|c ∈ COMPS \ D}. This means that in
the abductive diagnosis we are interested in identifying a subset of components whose anomalous
behavior is not only consistent with the observations, but explains them. Moreover, having explicit
fault models of the system components, it is also possible to identify the specific abnormal behaviors
affecting the impaired components.

Diagnosing action failures We show now how our framework matches to the MBD concepts
previously introduced. Since we are interested in detecting and diagnosing action failures as soon as
they occur, the model of an action corresponds to a portion of the system description to be used
during the diagnostic inferences. Moreover, since we aim at recovering from action failures by fixing
faults, we are interested in an action model which allows us to infer an abductive diagnosis: we do
not want just to know which components (i.e., agent’s functionalities) are faulty, but also in which
way.

The extended action model introduced in the previous section satisfies this requirement. In
particular, Property 1 states that the outcome of an action is succeeded if and only if all the
functionalities in healthVar behave nominally; otherwise, the action fails. This means that the
agent diagnosis must explain the failure of an action by singling out a functionality (or a set of
functionalities) which cannot be assumed to be nominal.

More formally, in our framework a diagnostic problem is the tuple

〈∆(ai
l(t)), healthVar(a

i
l),B

i(t), obsi(t+ 1)〉

where:
- ∆(ai

l(t)) is that portion of system description relevant for the diagnosis of action ai
l,

- healthVar(ai
l) is the set of agent’s functionalities which can be qualified as faulty,

- Bi(t) represents a piece of contextual information about the current status of agent i,
- obsi(t+ 1) is the set of available observations.
Solving such a diagnostic problem means finding a hypothesis Hi(t+1) (i.e., an assignment of values
to the variables in healthVar(ai

l) at time t+1), such that

Bi(t)
∼

∪ ∆(ai
l(t))

∼

∪ H
i(t+ 1) ⊢ obs

i(t+ 1) (1)

Where the symbol
∼

∪ means combined with. The agent diagnosis is obviously a subset Di of variables
in healthVar(ai

l) such that

Hi(t+ 1)={v ∈ Di|v 6= ok} ∪ {v ∈ healthVar(ai
l) \D

i|v = ok}

Namely, Di singles out a subset of functionalities which might have behaved erroneously during the
execution of action ai

l.

Since we are dealing with relations, symbol
∼

∪ in expression (1) corresponds to a join operator
between relations; moreover, the entailment (⊢) can be matched to the selection operator of the
Relational Algebra; expression (1) thus becomes:

selectionobsi(t+1)(B
i(t)join ∆(ai

l(t))join H
i(t+ 1)) (2)

that we have already met, though in a slightly different form, in Definition 2 where we have described
the process for estimating the next belief state Bi(t+1), which represents a synthesis of the estimation
process. This means that for inferring the agent diagnosis we have just to extract the hypothesis
Hi(t+ 1) from Bi(t+ 1):

Definition 4: Let ai
l(t) be an action whose outcome failed is detected within the belief state Bi(t+1),

the qualification hypothesis explaining such a failure is

Hi(t+ 1)=projectionhealthV ar(ai

l
)B

i(t+ 1)

From which the agent diagnosis results as Di={v ∈ healthV ar(ai
l)|v 6= ok in Hi(t+ 1)}
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Property 3: The agent diagnosis Di inferred according Definition 4 is correct as it always includes
the actual explanation for the action failure.

Proof. The proof directly follows from Property 2, which guarantees that the actual state ŝ′ of agent
i at time t+1 is included in Bi(t + 1). Since the agent diagnosis is inferred by projecting the belief
status Bi(t+1) over the health status variables of agent i, it follows that Di includes, among others,
the exact (anomalous) health status of agent i.

Running example. Given the failure of the go action a1
2, agent A1 infers a qualification hypothesis

by projecting the belief state in Table 2 over the variables in healthVar(go), namely, the variables
pwr and engTmp. Consequently, ambiguous agent diagnosis is the disjunction DA1 = {pwr = low
∨ engTmp = hot}; according to the extended action model in Table 1, in fact, it is sufficient that
either the battery (pwr) or the engine (engTmp) is in an anomalous mode, to prevent the agent from
moving when it is loaded with an object.

7. RECOVERING FROM ACTION FAILURES: THE MAIN STRATEGY

In this section we introduce the strategy we propose for recovering from an action failure. The
basic idea of this strategy, sketched in Figure 6, is that the agent first tries to self-repair its impaired
functionalities and then it resumes the plan execution from the same action where it was stopped.
Of course, the recovery builds up the results of the monitoring and diagnosis activities, so it takes
in input the failed action ai

l , the last inferred belief state Bi(t + 1), and the corresponding agent
diagnosis; the output consists of a recovery plan that brings agent i from its erroneous current
situation back to a nominal condition; when the recovery plan does not exist, an empty plan is
returned.

The strategy starts by determining the “healthy” agent state H, which represents the desired
situation where all the functionalities assumed to be faulty by the agent diagnosis have been fixed (line
00). Thus, in line 01, the recovered state R is synthesized as the conjunction of H and the nominal
preconditions of the failed action ai

l; R represents the situation from which the plan execution can
be resumed by trying again action ai

l. The subsequent step consists in the synthesis of a plan Pri

reaching the state R. When Pri exists, the plan repair strategy returns a recovery plan consisting
of two parts: first the plan segment Pri which fixes the faulty functionalities, and then the original
plan segment [ai

l, . . . , a
i
∞] (line 04).

On the other hand, when it is not possible to repair all the malfunctioning functionalities, the
agent cannot complete the plan segment [ai

l , . . . , a
i
∞] which is aborted. In this case, the strategy tries

to bring agent i into a safe status S ; i.e., a situation where the agent does not represent an obstacle
for the other teammates. Therefore, even though agent i cannot completely recover from its failure,
it can try to limit the impact of its failure in the whole system. If a plan Psi to the safe status exists,
Psi is returned to the control loop which is in charge of executing it (lines 06-09).

Finally, when also the plan to safe status does not exist, the repair strategy returns an empty
plan; in this case the agent interrupts the execution of its local plan avoiding further damages.

In the rest of this section we formalize the two planning problems that have to be solved in
order to achieve either the repaired status R or the safe status S . Next section will go into details
of the conformant planner we use to solve these planning problems and explain why we need such a
kind of planner.

7.1. Plan to R

The repaired status R is the conjunction of three conditions:
1) all the functionalities mentioned into Di have been fixed;
2) the preconditions of action ai

l are satisfied;
3) for any action in the segment [ai

l+1, . . . , a
i
∞], no open preconditions are left.

The first condition removes the causes of the failure of ai
l, while the second and the third ones assure

that the plan segment [ai
l , . . . , a

i
∞] is executable.

A plan Pri reaching R is called recovery plan and can be found by resolving the following planning
problem:
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Recovery(P i, ai
l,B

i(t+ 1), Di)
00 H← inferHealthyStatus(ai

l, D
i)

01 R← H ∧ pre(ai
l)

02 Pri ← 〈plan to R〉
03 if Pri is not empty
04 return P ∗i ← concatenate(Pri,[ai

l , . . . , a
i
∞])

05 else
06 S ← inferSafeStatus(ai

l, AvRes(i , t))
07 Psi ← 〈plan to S〉
08 if Psi is not empty
09 return Psi

10 else return ∅

Figure 6. The plan repair strategy.

Definition 5: The plan Pri=[ari0, . . . , ar
i
∞] achieving R is a solution of the planning problem

〈I,F ,A〉; where:

- I (initial state) corresponds to the agent belief state Bi(t+ 1) inferred at the time of the failure
of action ai

l(t);

- F (final state) coincides with R=(
∧

∀v∈Di v = ok) ∧ pre(ai
l) ∧ grantedServices(l);

- A = is the set of action models which can be used during the planning process.

Where grantedServices(l)= {q|q ∈ eff(ak), k < l, q ∈ pre(ah), h > l} are all those services achieved
by actions preceding ai

l and consumed by actions following ai
l; these services must be included in R

to avoid they are removed by some collateral effects of the recovery plan.
Note that A contains all the actions the agent can perform, including actions which restore

the nominal behavioral mode in the agent’s functionality. For example, a low charge in the battery
(pwr=low) is fixed by means of a recharge action whose effect is pwr=ok; similarly, a high tem-
perature in the engine (engTmp = hot) is mitigated by a refill of a coolant fluid whose effect is
engTmp=ok. In principle, these repairing actions could also be part of the original plan; for instance,
a recharge action could be planned after a number of actions so as to prevent the agent running out
of power. It is important to note, however, that some faults cannot be autonomously repaired by the
agent; for example, there is no repair action that can fix a blocked arm (hnd=blocked); these faults
can be repaired only by human intervention.

As mentioned earlier, when the plan Pri=[ari0, . . . , ar
i
∞] exists, the agent i yields its new local

plan P ∗i = [ari0, . . . , ar
i
∞]◦ [ai

l, . . . , a
i
∞]; where ◦ denotes the concatenation between two plans (i.e.,

the second plan can be executed just after the last action of the first plan has been completed).

Property 4: The plan P ∗i is feasible and executable.

Proof. Both plan segments [ari0, . . . , ar
i
∞] and [ai

l , . . . , a
i
∞] are feasible and executable on their own

as each of them has been produced by a specific planning step. Moreover, by construction, ari∞
corresponds to a state where both the preconditions ai

l and the grantedServices(l) are satisfied. It
follows that the whole plan P ∗i is feasible and executable.

7.2. Plan to S

The plan Pri may not exist as agent i could be unable to autonomously repair its faults. The
impaired agent, however, should not be left in the environment as it could become a latent menace for
the other team members; for instance, the agent could lock indefinitely critical resources preventing
others from acquiring them. For this reason, the repair strategy tries to move agent i into a safe
status S in which i releases all its resources. Also this step is modeled as a planning problem:

Definition 6: The plan Psi=[asi0, . . . , as
i
∞] achieving S is a solution of the plan problem 〈I,F ,A〉;

where:
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- I (initial state) corresponds to the agent belief state Bi(t+ 1) (as in the previous case);
- F (final state) is the safe status S =

∧
∀resk∈AvRes(i,t) resk,i = not-in-use;

- A is the set of action models which can be used during the planning process.

Since it is the result of a single planning phase, if the plan Psi exists, then it is also feasible and
executable. When plan Psi exists, it becomes the new local plan assigned to agent i; that is P ∗i =
Psi, and all the actions in the segment [ai

l, . . . , a
i
∞] are aborted.

8. A CONFORMANT PLANNER

The recovery strategy introduced in the previous section strongly relies on a planner in order to
synthesize either Pri or Psi; the recovery strategy, however, must satisfy the following demanding
requirements.

Requirement 2: Locality. The recovery strategy can only impose local changes in P i: no new resources
can be acquired for achieving either R or S .

The acquisition of a new resource would require an explicit synchronization with other agents and
hence the impact of the recovery strategy would affect, besides P i, also the local plans of some other
agents. This first requirement imposes that the planner can just exploit the resources AvRes(i, t),
already acquired by agent i at the time of the failure.

Requirement 3: Conformant Plan. Since the belief state Bi(t+1) is in general ambiguous (the actual
health status of the agent is not precisely known), the planning phase must produce a conformant
plan.

This requirement assures that when the repairing plan Pri exists, it is also executable, namely, the
agent can carry out that plan without the risk of getting stuck during the execution of the recovery
plan.

In the remainder of the paper, we will show how these two requirements shape the planner used
for the recovery purpose.

8.1. Refining action models

In order to integrate the planning phase within the control loop previously introduced, we
formalize a conformant planning algorithm based on the same Relational language we have so far
used to formalize the monitoring and the diagnostic activities. In other words, we want to use the
same action models envisaged for the monitoring purpose. These models, however, are too rich for
the planning purpose: an extended action model ∆(a) describes all the evolutions of action a taking
into account the possible occurrence of faults during its execution. From the repair point of view,
however, it is sufficient to restrict the action model ∆(a) to those transitions which are consistent
either with the agent diagnosis Di or with the nominal health status of the agent. In fact, on the one
hand action a could be performed under the unhealthy status assumed by Di. On the other hand,
the same action could be performed when the faulty functionalities have been fixed and the nominal
status has been restored.

Given an extended action model ∆(a), the corresponding refined model ∆̂(a) restricted by the
agent diagnosis Di is:

Definition 7: ∆̂(a) =

{
{∆(a) join pre(a)} ∪ {∆(a) join Di} if {∆(a) join Di} 6= ∅

∅ otherwise

∆̂(a) is a subset of ∆(a) and it is defined only when action a can be performed given the agent
diagnosis Di, in such a case it includes all the state transitions which are either nominal or consistent
with Di. Otherwise, the refined model is empty.
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Table 3. The model of action a1
2:go(Rep,Desk1) refined for the repair purpose.

active variables at time t active variables at time t+1
pos loaded pwr engTmp pos loaded pwr engTmp

1 nominal Rep empty ok ok Desk1 empty ok ok
2 nominal Rep obj ok ok Desk1 obj ok ok
3 degraded Rep empty low ok Desk1 empty low ok
4 degraded Rep empty ok hot Desk1 empty ok hot

An example of refined action model is given in Table 3 and refines the model of the go action
previously sketched in Table 1; it is easy to see that the refined model only contains the nominal
state transitions and the degraded state transitions which are consistent with the agent diagnosis
DA1 = {pwr=low ∨ engTmp=high}.

8.2. Conformant Planning: Preliminaries

The conformant planning algorithm we propose is based on the same predictive mechanism we
have already used during the monitoring phase, and hence on the notion of agent belief state. In the
following discussion, however, we consider the synthesis of a plan rather than the plan execution; thus,
when we mention an agent belief state, we will not intend a status estimation made after the actual
execution of an action, but an estimation made after the application (i.e., execution hypothesis) of
an action to a given state.
After this premise, we define a conformant action as follows:

Definition 8: An action a is conformant w.r.t. an agent belief state B iff its (refined) model ∆̂(a)
is applicable in every state s ∈ I

Applying an action a to an agent belief B yields the relation:

P = B join ∆̂(a) (3)

P is a set of state transitions of the form 〈s, s′〉 where s and s′ are agent states before and after the
application of a, respectively. The action a is conformant when each state s ∈ B matches with at
least a transition in ∆̂(a). Of course, when P is empty, action a is not applicable in B. In all the
intermediate conditions, where P is not empty but some states in B do not participate to the join,
the action is applicable but it is not conformant.

Definition 9: Given a plan candidate π=a0, . . . , ah, and an initial agent belief state I = B0, the
application of π to B0 is the relation Ph+1 = (((B0 join ∆̂(a0)) join ∆̂(a1)) . . .) join ∆̂(ah)

Ph+1 is a set of trajectories, each of which has the form 〈s0, s1, . . . , sh+1〉 where, except for s0 which
is an agent state in B0, each agent state sk+1 (k : 0..h) results by applying action ak to state sk.
The result of π is the agent belief state after the application of π to B0:

Bh+1 = projectionh+1Ph+1
5

For short, we will denote as π(B0) the agent belief state obtained by applying π to B0.
In the previous section we have said that the repair strategy has to solve the planning problem

〈I,F ,A〉, where the initial state I coincides with the agent belief Bi(t + 1) upon which the failure
of action ai

l has been detected; the final state F is either R or S ; and A is the set of action models
to be used.

Definition 10: The plan candidate π= a0, . . . , ah is a conformant solution for the planning problem
〈I,F ,A〉 iff:

5To simplify the notation, the predicate h+1 of the projection operator stands for VARi
h+1; i.e., the agent

status variables at the (h+1)-th step.
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- π(I) ⊢ F ; i.e., the goal F is satisfied in each state s ∈ π(I),
and

- a0, . . . , ah are all conformant action instances; i.e., each action ak is conformant w.r.t. the (inter-
mediate) agent belief state Bk extracted from Pk (k : 0..h).

To verify whether an intermediate action ak is conformant, it is sufficient to assess the following
property.

Property 5: ak is conformant iff Bk ∩ Bext
k = ∅.

Where Bk = projectionkPk, and B
ext
k = projectionkPk+1; namely, Bext

k is the agent belief state
at the k-th plan step (as Bk), but extracted from Pk+1 after the application of action ak.

Proof. By definition, action ak is conformant iff it is applicable in every state s ∈ Bk. If ak is not
conformant, there must exist at least one state s ∈ Bk where ak is not applicable; as a consequence
when the corresponding model ∆̂(ak) is joined with Bk, the state s does not participate to build the
relation Pk+1. Namely, the state s is missing in Bext

k . This means that s belongs to the dual set Bext
k ,

and hence when ak is not conformant, Bk ∩ Bext
k cannot be empty.

Now, let us assume that Bk ∩ Bext
k = ∅ holds and conclude that ak must be conformant. The

intersection between Bk and Bext
k can be empty only when Bk equals Bext

k ; this means that the

application of the refined model ∆̂(ak) to Bk preserved in Pk+1 each state s ∈ Bk. It follows that

∆̂(ak) has been applied in each state included in Bk, and hence ak is conformant.

8.3. Search for a conformant solution

The conformant planning algorithm we propose adopts a forward-chaining approach that from
the initial state I finds a plan reaching the goal state F . More precisely, the algorithm realizes a
breadth-first strategy which carries on all the plan candidates built at a given step.

To formalize this strategy we introduce the macro-operator Φ, defined as follows:

Definition 11: Φ =
⋃

a∈A
{∆̂(a) such that a is executable given the resources in AvRes(i , t)}.

In other words, Φ is a set of refined models which just includes the actions that agent i can perform
by exploiting the resources it already holds.

Our basic idea is to use Φ as a means for pruning the space of plan candidates looking for plans
whose actions are all included in Φ; in fact, the following property holds

Property 6: Given a planning problem Π : 〈I,F ,A〉, any conformant solution π for Π that satisfies
the locality requirement can only consist of actions in Φ.

Proof. By definition we have that: 1) Φ includes refined action models which are consistent with
the agent diagnosis, and this is a prerequisite for an action to be conformant; 2) Φ includes only the
actions that are executable given the set of resources the agent already holds.
Let us assume that there exists a conformant plan π including at least one action a whose model
is not in Φ. If π is conformant, action a must be executable given the agent diagnosis Di (i.e.,

∆̂(a) 6= ∅), and hence it has not been included into Φ as it uses resources outside AvRes(i , t),
it follows that π does not satisfies the locality requirement. On the other hand, if a just exploits
resources in AvRes(i , t), a has been discarded from Φ as its refined model ∆̂(a) is empty, but this
implies that π is not conformant against the initial hypothesis.

Relying on the previous property, and since I equals the initial belief state B0, we can generalize
expression (3) as follows

PSET0 = B0 join Φ (4)

PSET0 is a set of P relations and represents the set of all the plan candidates consisting of one
single action. (Of course, only those actions which are applicable in B0 are actually part of the set
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ConformantPlan(I,F ,A,AvRes(i, t), Di)
00 Φ← Build-Φ(A,AvRes(i, t), Di)
01 π ← ∅
02 PSET0 ← I
03 h← 0
04 solved←false
05 while not solved and h < MAXDEPTH
06 PSETh+1 ← PSETh join Φ
07 PSETh+1 ← PruneNotConformant(PSETh,PSETh+1)
08 if PSETh+1 is empty return ∅
09 solved← CheckGoal(PSETh+1,F)
10 if solved=true
11 π ←ExtractPlan(PSETh+1)
12 else h← h+ 1
13 return π

Figure 7. The high-level algorithm for the synthesis of a conformant plan.

PSET0.) We can further generalize expression (4) in order to model the space of the (conformant)
plan candidates incrementally built by applying Φ in succession:

PSETh+1 = PSETh join Φ (5)

PSETh+1 is the result of h+1 successive applications of Φ; it maintains all the plan candidates built
by extending one step longer the previous set of candidates PSETh.

Intuitively, our planning algorithm first extends the space of the plan candidates by applying Φ,
and then it verifies whether there exists a plan π ∈ PSETh+1 representing a conformant solution for
the problem at hand (Definition 10). Of course, since the algorithm goes forward, we need a constant
MAXDEPTH which limits the depth of the search and guarantees the termination of the algorithm.
In other words, MAXDEPTH represents the maximum number of times that it is possible to apply
Φ. If a solution is not found in less than MAXDEPTH steps, the plan search terminates with a
failure.

The high-level planning algorithm is showed in Figure 7; in the first five lines, some important
structures are initialized: Φ is set by invoking the Build-Φ function which operates according to
equation (11); the sought plan π is set to empty; PSET0 (the initial explored space) just includes
the initial state I; h, set to zero, counts the number of times Φ has been applied; finally, solved is a
Boolean flag set to false, if a conformant plan is found, this flag will be set to true and the search
will be stopped. After these preliminary steps, the algorithm loops until either a conformant solution
has been found or the number of iterations becomes greater than MAXDEPTH .

At each iteration, the algorithm builds a new set of plan candidates PSETh+1 by applying Φ
to the previous set PSETh (line 06); PSETh+1 is therefore refined by pruning off all those plan
candidates which are not conformant, function PruneNotConformant relies on Property 5 to achieve
this objective (line 07). Note that, after the invocation of function PruneNotConformant, PSETh+1

could become empty, this may happen when no conformant action exists, in that case the search is
stopped and an empty plan is returned (line 08).

When the space of plan candidates is not empty, function CheckGoal checks whether at least
one candidate π leads to the goal F ; more precisely, π leads to a state Bh+1 where the condition
Bh+1 ⊢ F is satisfied. If this is the case, the conformant plan π is extracted from PSETh+1 and the
flag solved is turned to true (lines 09-11). Conversely, h is incremented and the loop is repeated.

If a solution has not been found after MAXDEPTH iterations, the loop is stopped and an empty
plan is returned.

Note that, since the search proceeds in a breadth-first manner and keeps all the plan candidates
found at a given iteration, there is no need to backtrack. Of course, an efficient implementation of the
algorithm becomes a critical issue; since the sizes of the relations might be very huge, the operations
between relations might become computationally expensive. A possible way to mitigate the problem
consists in the adoption of symbolic formalisms for encoding the relations in a compact form. The
work by Darwiche and Marquis (2002) describes and compares with one another different method-
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ologies for compiling knowledge into symbolic representations. Relying on the results presented by
Darwiche and Marquis, we have adopted in our implementation the formalism of the Ordered Binary
Decision Diagrams (OBDDs). The computational cost of the algorithm implemented by means of
OBDD operators is discussed from an empirical point of view in Section 10; for a theoretical analysis
of its computational complexity, see the Appendix.

Theorem 1: Let h be the depth of the search space; when h < MAXDEPTH, the conformant
planning algorithm is correct and complete.

Proof. In this proof we demonstrate that:

- if it exists a plan π, having h steps, such that π(I) ⊢ F , then:
1) π is a solution,
2) π belongs to PSETh,
3) the algorithm finds it;

- otherwise, if PSETh becomes empty, then no conformant solution exists (even with a number of
steps greater than MAXDEPTH).

With Property 6 we have already shown that any conformant plan satisfying the locality
requirement, if it exists, is a sequence of action instances in Φ. Since Φ is finite and h limited
by MAXDEPTH, the space of plan candidates is finite too. We demonstrate that the planning
algorithm carries on an exhaustive search within this space and that it does not miss solutions. We
show this by induction:
Hypothesis: After h iterations PSETh maintains all the conformant plans satisfying the locality
requirement, each of these plan candidates has h actions.
Base Case: for h = 1 we have that PSET1, built as PSET0 join Φ, maintains all the conformant
plan candidates satisfying the locality requirement consisting of just one action. Since PSET0 equals
I the basic case is trivially satisfied (see equation 4).
Inductive step: We show that, at the (h + 1)-th iteration, the synthesis of PSETh+1 does not lose
solutions and keeps all the possible conformant plans:

(1) PSETh+1 = PSETh join Φ:

(a) for each plan candidate π ∈ PSETh the algorithm builds a set of new plan candidates

X[π] :
⋃

a∈Φ{π
′| π′ = π ◦ 〈a〉}

Namely, for each action a ∈ Φ, the algorithm gets a new plan candidate π′ by appending a

in π;
(b) PSETh+1 is the union of the sets of plan candidates X[π] for each π ∈ PSETh.

PSETh+1=
⋃

π∈PSETh
X[π]

Since a plan candidate with h+1 steps can only be obtained by appending an action to a plan
candidate with h steps, and since PSETh maintains all the (conformant) plan candidates of
length h (for the inductive hypothesis), PSETh+1 contains all the possible plan candidates
having h+1 steps, though some of them may not be conformant.

(2) The PruneNotConformant function prunes off from the PSETh+1 previously computed all the
plan candidates π′ which are not conformant; so after this step:

PSETh+1 = {π′ =π ◦ 〈a〉| π ∈ PSETh and a is conformant w.r.t. π(I)}.

Of course, PSETh+1 becomes empty when no plan π ∈ PSETh can be extended with any
conformant action, and hence no plan candidates with h+1 steps can be built. Otherwise, when
PSETh+1 is not empty, it maintains all and only the conformant plans of length h+1 obtained
by appending an action to a plan π ∈ PSETh.

(3) Finally, the algorithm looks for a plan reaching the goal; function CheckGoal returns true when
there exists a plan π ∈ PSETh+1 such that π(I) = F .
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We have therefore demonstrated that the algorithm performs an exhaustive search and that no
solution is lost: for h < MAXDEPTH, the algorithm is correct and complete.

The algorithm is not complete in general; when it terminates for h >= MAXDEPTH , we can
only assert that a solution with fewer than MAXDEPTH actions does not exist, but we cannot state
whether solutions involving a greater number of actions exist or not.

Corollary 1: When the algorithm terminates with success, the extracted solution π is optimal in
terms of number of applied actions.

In other words, no any other conformant plan reaching the goal with less actions than π exists; this
is a direct consequence of the exhaustive search the algorithm carries on.

Corollary 2: When the algorithm terminates with success, PSETh+1 maintains all the possible
optimal solutions with exactly h+1 actions.

In fact, the search carries on all the possible plan candidates found at a given step of the search. So
far we have not exploited this property as our current implementation returns the first conformant
solution that has been found. As future work we may consider to return the best plan w.r.t. some
preference criteria.

8.4. Advantages and limits of a conformant planner

Since the recovery strategy has to deal with ambiguous agent diagnoses, it has to exploit a
planner which is able to deal with belief states and non-deterministic actions. To cope with this
issue, in this paper we have proposed the adoption of a conformant planner, but there are other
kinds of planners that can deal with ambiguity as well. For instance, contingent planning (Peot
and Smith, 1992) is the problem of finding conditional plans given incomplete knowledge about the
initial world and uncertain action effects. The basic idea of conformant planning is to anticipate, at
planning time, all the possible contingencies that may arise during the plan execution phase; for each
contingency a contingent plan is inferred; sensing actions are thus used to identify the contingencies
at execution time. Thereby, a contingent plan is not a linear plan, as in the conformant case, but it
similar to a tree where the agent’s actions are interleaved with sensing actions. Contingent planning,
however, does not seem to fit adequately the needs of the recovery strategy we have discussed. First
of all, it is not easy in our scenario to anticipate all the possible contingencies. In fact, even though
the set of possible faults is finite, the same fault occurring in different contexts may have different
consequences 6. Thus, predicting all the possible combinations of faults and contextual conditions
in which those faults can occur may become unpractical. Moreover, contingent planning explicitly
requires that at execution time the sensing actions can observe the happening of contingencies; i.e.,
faults, which are typically not observable.

The choice of a conformant planner is therefore motivated not only by the need to deal with
ambiguity, but also by the lack of assumptions about the agent observability during the recovery
procedure. Conformant planning, however, has also some drawbacks; first of all, it is computationally
expensive (see the Appendix); in addition to that, the conformant requirement imposes a very
stringent constraint on the possible solutions, and it is easy to miss a recovery plan. The conformant
planner, in fact, tries to fix all the faults assumed by the agent diagnosis; therefore, it is sufficient
that one of them is non-recoverable to conclude that no recovery plan exists, even though the actual
fault is recoverable.

A possible way to mitigate this problem could be to consider preferred diagnoses rather than
all the plausible diagnoses. One could synthesize a recovery plan just taking into account the most
probable fault, and in that case a conformant planner would not even be required. Of course, the
solution obtained in this way would not have any guarantee neither about its executability nor about

6See for instance the action model in Table 1 where a low charge in the battery has different consequences
depending on the fact that the agent is carrying an object or not.



22 Computational Intelligence

its effectiveness in restoring the nominal conditions. In fact, even if a fault is more probable than
others, it may not be the actual fault. Another possible solution could be the adoption of active
diagnosis techniques to better identify the actual fault. In active diagnosis, the agent is required to
perform tests intended to confirm or disconfirm a fault. We leave this aspect of the recovery problem
for future research.

9. RUNNING EXAMPLE

In this section we show how to recover from the failure of action a1
2 that has been diagnosed as

DA1 = {pwr = low ∨ engTmp = hot}. First of all, we determine the recovered state R to be reached.
As discussed above, R must represent an agent state where the faulty functionalities mentioned in
the agent diagnosis have been fixed and the preconditions of a1

2 are satisfied (the agent is ready to
resume the execution of the original plan). It is easy to see that the recovered state R coincides with
the variable assignments: (pos=Rep; loaded=Pack1; pwr = ok; engTmp = ok); namely, the agent
is positioned in Rep, loaded with Pack1, and both the functionalities pwr and engTmp are in their
nominal mode ok.

After this step, the relation Φ is built by considering the set of resources currently available to
the agent, namely: {Rep, Desk1, Pack1, Parking}; agent A1 has the exclusive access to the first three
resources, while the last one is a non-constrained resource and hence it is always available to any
agent. It follows that Φ={go(A1,Rep,Parking); go(A1, Parking, Rep); go(A1, Rep, Desk1);
go(A1, Desk1, Rep); go(A1, Desk1, Parking); go(A1, Parking, Desk1); load(A1, Pack1, Rep);
unload(A1, Pack1, Rep); load(A1, Pack1, Desk1); unload(A1, Pack1, Desk1); recharge(A1);
refill(A1)}.

Note that Φ also includes the repairing actions (recharge and refill) which can be used to
fix the impaired functionalities; these actions can only be performed within the Parking area. As
an example of repair action, Table 4 shows the relational model for the recharge action; the first
entry of this table states that when the agent’s battery is already charged, recharge has no effect;
whereas the second one models the transition from the non-nominal low power to the nominal ok,
and hence the fault is fixed.

The result of the planning process is sketched in Figure 8 , which shows how the PSET is
incrementally built by successive applications of Φ starting from the initial agent belief I (see Table
2). For simplicity, the picture does not include in Φ the actions involving Desk1 as this resource
is not useful for the recovery purpose. In the picture, boxes represent agent belief states, whereas
ellipses represents the action instances included in Φ. An arrow from a box b to an ellipsis e indicates
that the action e is conformant w.r.t. b. An arrow from an ellipsis e to a box b indicates that the
application of e yields the new agent belief b.

Actions along a path of solid arrows form plans leading to the final state F , whereas actions
along paths of dashed arrows represent infinite plans looping on “do”/“undo” actions. Gray boxes
represent agent belief states along a conformant solution. From the picture it is apparent that two
alternative solutions have been found:

Solution 1

(1) unload(A1, Pack1, Rep)

(2) go(A1, Rep,Parking)

(3) recharge(A1)

(4) refill(A1)

(5) go(A1, Parking,Rep)

(6) load(A1, Pack1,Rep)

Solution 2

(1) unload(A1, Pack1, Rep)

(2) go(A1, Rep, Parking)

(3) refill(A1)

(4) recharge(A1)

(5) go(A1, Parking, Rep)

(6) load(A1, Pack1, Rep)

The two solutions just differ with each other for the order with which the repair actions are performed
within the parking area; our recovery strategy selects and returns one of them non-deterministically.

It is important to say that, for efficiency reasons, the conformant planner we have implemented
maintains a history of visited states so that infinite loops of do/undo actions can be pruned off from
the PSET structure speeding up the search.

As an alternative example, let us assume that agent A1 fails in loading Pack1; action a1
1
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Table 4. The refined model for repair action recharge(Parking).

active vars. at t active vars. at t+1
pos pwr pos pwr

Parking ok Parking ok
Parking low Parking ok

terminates with a non-nominal outcome and the possible explanation inferred by the diagnostic
analysis is DA1={hnd=blocked} (i.e., the handling functionality is out of order). Since no repair
action exists to fix the handling apparatus, such a fault cannot be autonomously repaired by agent
A1; this means that the first step of our recovery strategy fails. If the agent simply stopped its
activities, it would lock the repository preventing agent A2 from using it. To mitigate the effects of
such a failure, the conformant planner is invoked again with the aim of moving A1 into a safe status.
In this case, A1 is in its safe status when it is located in Parking. A conformant plan to the safe
status exists (except the handling functionality, all the other functionalities work properly), and this
plan consists of a single action: go(A1, Rep,Parking). The plan to safe status becomes the new A1’s
plan, which releases the repository; of course, the subgoal assigned to A1 can no longer be achieved
unless a global repair strategy is activated.

10. EXPERIMENTAL ANALYSIS

In this section we give an empirical evaluation of the control loop we propose, implemented by
exploiting the Ordered Binary Decision Diagrams (OBDDs) to efficiently encode the relations that
are used at different steps of the loop. See the Appendix for some insights on how the operators
of the Relational Algebra can be mapped into OBDDs operators, and for a computational analysis
from a theoretical point of view.

In our experiments7 we have (software) simulated a service-robot scenario where a team of
robotic agents offers a “mail delivery service” in an office block. Resources are parcels, clerks’ desks,
doors, and repositories of parcels. Resources are constrained: desks, doors and repositories can be
accessed by only one agent per time; at most one parcel can be put on a desk, whereas many parcels
can be stored within a repository.

We have simulated a fairly large environment involving: 7 offices, 14 desks (two per office), 18
parcels, 7 doors connecting each office with a corridor, and 2 repositories located into the corridor. A
parking area is also located into the corridor; this area is not constrained so many agents can move
there simultaneously; an agent can perform a repairing action only when it is located into a parking
area.

This environment is encoded within the status of an agent through 51 variables: 5 for the agent’s
health status, 7 for the agent’s endogenous status, and 39 for the environment where the agent
operates (these last variables are the private copies each agent keeps about the shared resources).

To test how good our approach scales up, we have considered four alternative scenarios including
from 2 to 8 agents. In each scenario we have simulated the execution of 40 MAPs, whose main
characteristics are reported in Table 5 (SCN2 stands for “scenario with two agents”, SCN4 for
“scenario with four agents”, and so on). Each plan requires the involved agents to move parcels from
a repository to a desk and vice versa. In most cases, an agent delivers a parcel to a desk and collects
another parcel from another desk into a different office.

Since a subgoal consists in delivering a parcel to a desk or in storing a parcel into a repository,
subgoals are achieved at different steps of the execution, not just at the end of the plan. Of course,
when agents execute their plans under nominal conditions, they achieve all their subgoals as the given
MAP is assumed to be correct; otherwise, the occurrence of a fault typically prevents the agents from

7The experimental data have been collected from a series of tests carried on a PC equipped with CPU:
Intel Core 2, 2.40Gh; RAM: 3,24 GB; Windows XP OS. Agents have been implemented as Java (JDK 1.6)
threads; coordination among agents has been realized by means of the exchange of XML messages. OBDDs
have been made available via the JavaBDD package (Whaley, 2007), which relies on the BuDDy library.
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Figure 8. The PSET structure built during the conformant planning process.

achieving some of the desired subgoals; as we will see, a fault may have a huge impact affecting not
only the agent where the fault occurs, but also other teammates. In the following analysis we use
the number of achieved subgoals as a measure both of the impact of a fault in the plan, and of the
effectiveness of the proposed repair strategy which tries to mitigate such an impact.

Table 6 reports relevant data about the execution of these plans under nominal conditions.
Under this hypothesis, no time has been spent in the attempt of recovering from an action failure;
thus we just show the average CPU time required by the monitoring phase in the four scenarios.
In fact the CPU time just depends on the sizes of the OBDDs encoding the relations mentioned in
Definition 2 (namely, the agent belief state and of the action model); while it does not depend on the
number of agents involved in the team. It is evident that the monitoring activity is carried out very
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Table 5. Main characteristics of the simulated plans (avg. values) in each scenario.

SCN2 SCN4 SCN6 SCN8

# actions (avg.) 140 312 308 444
# casual links (avg.) 430 846 818 1062
# subgoals (avg.) 43 114 99 148
# actions per agent (avg.) 70 78 51 56
# subgoals per agent (avg.) 22 28 17 19

Table 6. Monitoring under nominal conditions: CPU time and OBDD dimensions.

All four scenarios

CPU time [msec] action monitoring 11 ± 3 (avg.) 14 (max.)
CPU time [msec] local plan monitoring 1072 ± 260 (avg.) 1355 (max.)
# nodes within an agent belief 403 ± 20 (avg.) 635 (max.)
# states within an agent belief 11 ± 2 (avg.) 16 (max.)
# nodes within an action model 432 ± 82(avg.) 860 (max.)
# state transitions within an action model 70 ± 26 (avg.) 129 (max.)

efficiently: estimating the belief state after the execution of a single action is in the order of just ten
msec.; such a time must be compared to the actual time (in the order of seconds or even minutes)
that a robotic agent takes for completing an action in the real world (service robots typically move
very slowly especially when they share the environment with humans).

Concerning the recovery problem, a key parameter to be set is the MAXDEPTH constant.
Such a value must be chosen taking into account that if it is too low, one can lose solutions; whereas
if it is too high one could waste time looking for a solution that does not exist, moreover a too long
recovery plan may have a deleterious effect on the local plans of the other agents. In general, one
can adopt some domain-dependent heuristics to determine a reasonable value for MAXDEPTH .
For instance, in our experiment we have observed that, according to the disposition of doors and
resources, the longest round-trip from a resource to the parking area, including one repair action,
requires 15 actions; so we have set MAXDEPTH constant to 15.

In order to prove the effectiveness of our recovery strategy, we have perturbed each plan
by randomly injecting a fault in one agent’s functionality. Three typologies of faults have been
considered: repairable faults can autonomously be fixed by the agent through appropriate repair
actions; non-blocking faults cannot autonomously be repaired by the agent but the affected agent
may be able to move into a safe-status; finally, blocking faults have the worst impact as the affected
agent cannot even move into a safe-status. In our experiments we have assumed that the first type
of faults has a greater probability than the second one, which in turn is more probable than the last
one. The chart in Figure 9 shows the distribution of faults in the four scenarios.

The experimental evaluation has been conducted by comparing four alternative strategies. The
first strategy, the easiest one, is no-repair: the agent in trouble does not react to an action failure,
it just stops the execution of its local plan. The second strategy, called safe-status, aims at moving
the agent in trouble into a safe-status after the occurrence of an action failure. In the third strategy,
repair, the agent tries to repair its own plan by invoking the conformant re-planner, when the repair
process fails the agent stops the plan execution. The last strategy, the one proposed in this paper,
is a combination of the two previous strategies: first the agent tries to repair its plan, when this
step fails the agent tries to move into a safe-status; this strategy will be denoted as r+s (repair +
safe-status).

The efficiency of the different repair strategies has been measured by taking into account both
the CPU time and the memory occupation (in terms of number of OBDD nodes) for each of them
when applied in the four scenarios. Table 7 shows the CPU time spent by the conformant planner for
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Figure 9. The distribution of faults over the four scenarios.

Table 7. SCN2 - Repair costs: CPU time in ms (in brackets the number of cases).

repaired cases cases moved to safe status blocked cases

r+s 841 ± 129 [18 cases] 876 ± 138 [15 cases] 0 [7 cases]
repair 838 ± 128 [18 cases] - 0 [22 cases]
safe status - 112 ± 27 [33 cases] 0 [7 cases]
no-repair - - - [40 cases]

Table 8. SCN2 - Repair costs: OBDDs encoding Φ and PSET .

All four strategies

# nodes in Φ 6195 ± 697 (avg.) 7897 (max)
# actions in Φ 36 ± 5 (avg.) 58 (max)
CPU time to compute Φ [msec] 46 ±10 (avg.) 56 (max)

r+s
# nodes in PSET 288 ± 62 (avg.) 1351 (max)
# repairing plans found 6 ± 2 (max) 33 (max)
# repairing plan length 10 ± 3 (avg.) 14 (max)

synthesizing either a recovery plan or a plan to safe status in SCN2. This time has been calculated
according to the type of fault; e.g., r+s takes 841 msec (on average) when the case at hand is affected
by a repairable fault; the same strategy takes a bit longer when it has to recover from a non-blocking
fault as the conformant planner is invoked twice (first planning to R, and then planning to S). It
is worth noting that, when the fault is blocking, the strategy r+s does not waste time in a vain
search; this happens because the recovery strategy is driven by the agent diagnosis: it is sufficient
to include a blocking fault among the explanations to conclude that a conformant solution does not
exist. Note that the table also reports the number of cases in which each strategy has been activated
successfully: the r+s strategy successfully intervenes in all the 18 repairable faults in this set of cases.

Table 8 shows the cost of the four strategies from the point of view of the dimensions (in terms of
OBDD nodes) of two important structures: Φ and PSET . First of all, since Φ is built up by joining
refined action models, its dimension is independent of the actual strategy being used; moreover,
even though Φ is a complex structure including a significant number of action models, the CPU
time for computing it is almost negligible. The size of PSET , on the other hand, which maintains
the current set of plan candidates, depends on the strategy being used; for brevity we just show
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Table 9. SCN4 - Repair costs: CPU time in ms (in brackets the number of cases).

repaired cases cases moved to safe status blocked cases

r+s 841 ± 129 [18 cases] 876 ± 137 [15 cases] 0 [7 cases]
repair 750 ± 200 [18 cases] - 0 [22 cases]
safe status - 72 ± 25 [33 cases] 0 [7 cases]
no-repair - - - [40 cases]

Table 10. SCN4 - Repair costs: OBDDs encoding Φ and PSET .

All four strategies

# nodes in Φ 3945 ± 930 (avg.) 7932 (max)
# actions in Φ 27 ± 6 (avg.) 58 (max)
CPU time to compute Φ [msec] 46 ± 10 (avg.) 78 (max)

r+s
# nodes in PSET 177 ± 48 (avg.) 708 (max)
# repairing plans found 3 ± 1 (max) 14 (max)
# repairing plan length 10 ± 3 (avg.) 13 (max)

Table 11. SCN6 - Repair costs: CPU time in ms (in brackets the number of cases).

repaired cases cases moved to safe status blocked cases

r+s 1009± 130 [18 cases] 1053±135 [13 cases] 0 [9 cases]
repair 1007 ± 146 [18 cases] - 0 [22 cases]
safe status - 109 ± 34 [31 cases] 0 [9 cases]
no-repair - - - [40 cases]

Table 12. SCN6 - Repair costs: OBDDs encoding Φ and PSET .

All four strategies

# nodes in Φ 6125 ± 1107 (avg.) 10814 (max)
# actions in Φ 33± 7 (avg.) 70 (max)
CPU time to compute Φ [msec] 38 ± 6 (avg.) 93 (max)

r+s
# nodes in PSET 252 ± 53(avg.) 413 (max)
# repairing plans found 4 ± 1 (max) 7 (max)
# repairing plan length 9 ± 2 (avg.) 11 (max)

some characteristics of this structure for the r+s strategy, captured when a solution has been found
(i.e., when it gets the biggest size). Note that the dimension of PSET remains tractable in all the
four scenarios (see tables 10, 12 and 14); this is an empirical demonstration that the r+s strategy
is feasible in practice even though the theoretical computational cost of the conformant planner is
exponential in the length of the plan (see the Appendix).

The analysis of the repair strategies in scenarios SCN4, SCN6 and SCN8 is similar; the results
are showed in tables 9 through 14.

The effectiveness of the four strategies is synthesized in Figure 10, reporting the average number
of plan actions performed by the agents in the four scenarios, and in Figure 11, where the percentage
of achieved subgoals is showed. From the graphs it is apparent that r+s mitigates the harmful effects
of a fault more effectively than the other strategies; in fact with r+s is activated, the agents can
perform more actions of the original plan, and hence can achieve the greater number of subgoals.
The chart in Figure 11 makes evident how the impact of a fault is mitigated by r+s: when no-repair
is active, the percentage of achieved subgoals ranges from 40 to 63; this percentage rises to 71 / 84
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Table 13. SCN8 - Repair costs: CPU time in ms (in brackets the number of cases).

repaired cases cases moved to safe status blocked cases

r+s 1677 ± 45 [20 cases] 1765 ± 47 [11 cases] 0 [9 cases]
repair 1657 ± 35 [20 cases] - 0 [20 cases]
safe status - 217 ± 34 [31 cases] 0 [9 cases]
no-repair - - - [40 cases]

Table 14. SCN8 - Repair costs: OBDDs encoding Φ and PSET .

All four strategies

# nodes in Φ 9057 ± 1220 (avg.) 12426 (max)
# actions in Φ 37 ± 5 (avg.) 78 (max)
CPU time to compute Φ [msec] 46 ± 7 (avg.) 94 (max)

r+s
# nodes in PSET 413 ± 62 (avg.) 529 (max)
# repairing plans found 10 ± 2 (avg) 13 (max)
# repairing plan length 10 ± 3 (avg.) 14 (max)

Figure 10. The average number of performed actions in the four scenarios: comparison between
the repair strategies and the nominal situation.

when r+s is active.
Of course, r+s requires more CPU time than other strategies, but the difference with repair is very
small; safestatus is cheaper than r+s and repair but its effects are limited; finally, no-repair is the
cheapest, but, as expected, reaches the worst results.

From this analysis we can conclude that:

- the monitoring process can be considered on-line as it is sufficiently efficient to follow the actual
execution of an action performed by a robotic agent;

- both monitoring and repair are able to deal with environments involving a significant number of
resources;

- in the worst cases the repair strategy takes 1.6 sec. to find a repairing plan, this time is acceptable
in many domains involving mobile service-robots which, for safety requirements, typically move
very slowly;
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Figure 11. The percentage of achieved subgoals by the four repair strategies with the four scenarios.

- the number of actions within Φ (up to 78) demonstrates that the conformant planner is able to
deal with non-trivial planning problems.

11. RELATED WORKS

There are two main research areas related to the work presented in this paper: plan execution
monitoring and diagnosis and plan repair. The approach we have discussed, in fact, represents a first
step for the integration of plan execution and plan repair within a single model-based framework.
We start our discussion on related works by considering the plan repair area since the motivations
of this work stems from that area.

In addressing the plan repair problem, a fundamental question must be answered: what is the
best solution between synthesizing a new plan from scratch and adapting the existing (failed) plan?
Despite Nebel and Koehler (1995) have shown that plan adaptation represents a real advantage w.r.t.
plan from scratch only when it reuses as much of the original plan as possible, many researchers
believe that plan adaptation still deserves to be investigated and a number of plan adaptation
approaches have been proposed, see for example PRODIGY/ANALOGY (Veloso et al., 1995), SPA
(Hanks and Weld, 1995), PRIAR (Kambhampati and Hendler, 1992) , GPG (Gerevini and Serina,
2000).

The term plan adaptation comes from the case-based planning area, and refers to the process
of modifying an existing plan π to solve a new problem, which is similar to the one solved by
π; for instance, the old problem and the new one only differ for few facts in the initial and goal
states. Thus the original intent of plan adaptation is to solve a new planning problem rather than
repairing an existing plan (see e.g., Francis et al. (1995); Hanks and Weld (1995); Hammond (1986);
Kambhampati (1990)).

More recent works (e.g., van der Krogt and de Weerdt (2005a); Cushing and Kambhampati
(2005); Fox et al. (2006)) advocate that plan adaptation can be a viable means to get robust plan
execution in dynamic domains. These works, in fact, point out that plans are in general synthesized
by using abstract models of the worlds where they are going to be executed; since these abstract
models just approximate the real world, discrepancies between the expected status of the world (as
predicted by the models), and the actual one may be detected when a plan is actually executed. In
order to cope with the new, unexpected conditions, the old plan must be replaced by a new one (i.e.,
the old plan needs to be repaired).

van der Krogt and de Weerdt (2005a) propose a basic template for plan repair which includes
two basic steps: first, actions that prevent the achievement of the goal(s) are removed; and then,
actions that bring the agent closer to the goal(s) are introduced. The first phase is also called plan
unrefinement, whereas the second one is called plan refinement (see also Kambhampati (1997)).
Plan unrefinement is driven by a heuristic in order to find an appropriate portion of the plan to be
removed; whereas, plan refinement consists of a planning process that has to fill the gap left by the
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unrefinement step.
In the approach we have discussed we do not have an explicit phase of plan unrefinement.

However, the planning phase can implicitly realize this step by including into the repairing plan
actions which compensate the effects of actions that have already been executed. In the example
discussed in section 9, for instance, both the two repairing solutions start with an unload action
which compensate the effect of a previous load.

In Fox et al. (2006), the authors introduce the notion of plan stability as a metric to assess the
safeness of a repaired plan. In fact, when the repaired plan is close to the original one it is easier for
humans to understand the changes. Moreover, a plan is a means to communicate future intentions to
other agents and, to do this successfully, repaired plans should be as close as possible to the original
plan (Cushing et al., 2008; Cushing and Kambhampati, 2005).

Since an agent is typically situated in an environment shared with other agents, some authors
have addressed the problem of plan repair in a multi-agent setting. van der Krogt and de Weerdt
(2005b) discuss a planning methodology where self-interested agents achieve globally consistent local
plans by means of an iterative plan repair process. In their approach each agent infers a local plan
autonomously, during this process the agent can decide either to achieve a goal by itself or to ask
some other agent for it. When an agent accepts to achieve a goal for another agent, it has to change its
original plan in order to include among its goals the new one; its local plan is therefore adapted (i.e.,
repaired) to this end. The methodology is very interesting but introduces some assumptions which
make it unsuitable for our scenario; for example, it is assumed that agents cannot share resources
and that agents have a complete knowledge about its own problem. Both assumptions are acceptable
during a planning phase, but they are not in plan execution.

Another approach to multi-agent replanning is discussed in (Zhang et al., 2007); the authors
present a distributed refinement strategy to construct a graph plan fixing errors occurred during the
execution of a multi-agent plan; this work, however, does not take into account that failures may be
due to faults in the agent’s functionalities.

Extensions of Markov Decision Processes (MDPs) have also been proposed to solve the problem
of coordinating a team of agents. For example, Decentralized MDPs (Dec-MDPs) have been proposed
in (Bernstein et al., 2002) to model teams of agents that operate under collective observability.
Collective observability is a condition where, although each agent is unable to independently identify
the global world state, the union of all the observations received by the team members at a given
time yield a fully observed state. Other approaches are based on factored MDPs (Boutilier et al.,
2000; Guestrin et al., 2001; Guestrin and Gordon, 2002); while standard MDPs enumerate all the
possible states, factored MDPs take advantage of conditional independencies among state variables
and yield more compact state representations, and possibly more compact policies. Although these
approaches are mainly concerned with the planning problem in a multi-agent scenario, they could
also be adopted to solve the plan repair problem.

The literature on plan execution monitoring is very broad; seminal studies on this topic come
from the field of industrial control, where it is often referred to as the problem of fault detection and
isolation (FDI) (Pettersson, 2005). Since the end of 1970s, a number of monitoring methodologies
have been validated in industrial applications see (Chen and Patton, 1999; Gertler, 1998) for an
overview.

Roughly speaking, execution monitoring in robotics can be categorized into two main families
of approaches: model-based and model-free. In model-based approaches, a model of the system (robot
and environment) is used to generate expectations about the nominal behavior of the robot; these
expectations are subsequently compared to the available observations received during the actual
execution in order to detect discrepancies. Examples of architectures in this category include, among
others, the Remote Agent by Muscettola et al. (1998), the LAAS proposal (Alami et al., 1998)
and ROUGE (Haigh and Veloso, 1998). Model-free approaches, on the other hand, do not use
predictive models, but pattern recognition mechanisms in order to learn on-line both nominal and
faulty behaviors (Pettersson et al., 2003, 2005). It is easy to see that the present paper falls into the
first category.

Most of the approaches in the literature assume that action failures are consequences of un-
expected environment conditions; in this paper we adopt a vision similar to the one discussed in
(Birnbaum et al., 1990), where the outcome of an action is related to the health status of the agent
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performing it. A non nominal action outcome is therefore explained in terms of domain-dependent
threats which have affected the health status of the agent. In our work, plan threats are faults in the
agent’s functionalities; the proposed extended action models capture the relation between the agent
health status and action outcomes.

The work by Birnbaum et al. has been recently extended to the multi-agent scenario. To the best
of our knowledge, however, only a few approaches tackle plan execution monitoring and diagnosis
in a multi-agent scenario. In (Roos and Witteveen, 2009) the authors consider the multi-agent plan
as the system to be diagnosed, and hence they introduce the notion of plan diagnosis as the subset
of actions whose failure is consistent with the anomalous observed behavior of the system; thus this
work just focuses on the detection of abnormal actions. In (de Jonge et al., 2009) the same authors
complement plan diagnosis with the notion of secondary diagnosis. More precisely, while the plan
diagnosis is the primary diagnosis identifying the failed actions; the secondary diagnosis explains
why those actions have failed. Roos et al. distinguish three possible secondary plan diagnoses: agent
diagnosis (faults in the agent’s functionalities), equipment diagnosis (faults in the resources used by
the agents), and environment diagnosis (unexpected changes in the environment). To achieve this
result, the authors exploit action models which share some similarities with the extended models
we have proposed; in fact, their action models explicitly mention the functionalities and resources
required for the successful completion of the action; moreover, known faulty models of the agent’s
functionalities can be used to partially predict the next agent status.

At the current stage of development, the portion of our framework related to plan diagnosis is a
subset of the framework by Roos et al. But in this work we are more interested in the whole control
loop from detection to recovery, and we have considered here just the agent diagnosis to simplify
the discussion. Nonetheless, Roos et al. have opened some appealing research lines along which
our strategy could be extended. Indeed, we have started working on diagnosing failures caused by
unexpected changes in the environment, see (Micalizio and Torasso, 2008, 2009). From the recovery
point of view, however, the control strategy must still be extended to deal with unexpected exogenous
events. For instance, a new general strategy must be conceived to match an exogenous event with a
recovered state the affected agent should reach in order to recover from a failure.

A different notion of diagnosis is the one discussed in (Kalech and Kaminka, 2007) where the
authors introduce the social diagnosis to find out the cause of coordination failures. In their approach
the authors do not explicitly consider plans, they rather model a hierarchy of behaviors: each agent
selects independently from others the more appropriate behavior given its own beliefs. When an
agent selects a behavior which is not in accordance with the ones selected by its teammates, a
disagreement has been detected, and a diagnostic process is activated in order to determine its root
causes. In this case, the social diagnosis explains the disagreement by individuating portions of the
agents’ beliefs which are one another in conflict.

12. SUMMARY AND CONCLUSIONS

Cushing and Kambhampati (2005) have observed that, to repair a plan after the occurrence of
an action failure, one has to consider not only the unexpected changes occurred in the environment,
but also faults affecting the agent’s functionalities. In their opinion, thus, a repair strategy has to get
two results: on the one side it must adjust the original plan according to new environment conditions;
and on the other side, it must also fix (if possible) the agent’s faults.

The paper originates from this observation and represents an attempt of complementing previous
works on plan repair (see e.g., van der Krogt and de Weerdt (2005a); Fox et al. (2006)), which
typically assume that the agent is fault-free and that the causes of an action failure are due to the
environment. In this work we have focused on those situations where an action failure is due to
faults; and we have proposed a recovery strategy which aims at restoring a healthy status in the
agent’s functionalities.

The paper points out some important challenges one has to face to solve the problem of action
failure recovery. First of all, there is the need of detecting action failures and relating them to faults.
Since the nominal action models used during the planning phase are inadequate for this purpose, we
have introduced extended action models which allow a mapping between faults and action failures.
However, since faults may have non-deterministic effects, mapping an action failure with a fault is
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not a trivial task as a number of alternative explanations may be possible. To cope with this problem,
the paper adopts techniques from the Model-Based Diagnosis (MBD) for detecting and diagnosing
action failures. Finally, since faults and their contextual conditions are difficult to anticipate, it is not
possible to exploit precompiled recovery solutions; so the paper presents a recovery strategy, which
based on a conformant planner and driven by the agent diagnosis, synthesizes on-the-fly a recovery
plan fixing the (assumed) faulty functionalities.

The paper contributes to the plan repair area in a number of ways. First of all, it presents in a
formal way a unique framework where three main activities - monitoring, diagnosis, and recovery -
are integrated with one another within a closed loop of control. The framework has been discussed
in terms of relations and Relational Algebra operators between relations. This has two immediate
advantages: 1) it is easy to define extended action models with non-deterministic effects in terms
of relations; 2) the Relational Algebra is a general language so the control loop can be presented
independently of its actual implementation.

A further contribution of the paper is that the recovery strategy, albeit conceived for a single
agent, can successfully be adopted within a multi-agent setting. As noticed by Roth et al. (2007),
in fact, in many multi-agent domains agents operate independently of one another for long periods
and coordinate their actions in just few occasions. The basic idea of our strategy is to intervene in
the plan segments where an agent operates isolated from others; the recovery, however, preserves the
plan segments where the agent interacts with other team members. Therefore, when the recovery
terminates successfully, only the plan of the agent in trouble has been changed, and this change is
completely transparent to the other members of the team.
Limits of the framework and future developments The proposed local strategy is meant to be
a first attempt to overcome an action failure trying to change the plan of the impaired agent only;
when a recovery plan does not exist, the impaired agent tries to move into a safe status where it does
not represent a menace for other agents. It may be possible, however, that such a safe status is not
achievable or even missing; in that case the faulty agent gets stuck and locks a subset of resources
indefinitely. A possible way to overcome this limitation consists in complementing the local strategy
with a team-based strategy, where agents cooperate with one another to overcome a single failure.
In particular, in a team-based strategy agents would be able to acquire and release resources freely,
without the limitations imposed by locality requirement. This would help an agent to build a recovery
plan by acquiring new resources. Moreover, when a recovery plan does not exist, the faulty agent
could coordinate with the other teammates in order to move from place to place without locking
resources indefinitely. In other words, the safe status of a faulty agent would not be a place where it
can isolate itself, but a property or a high-level goal supported by a form of continual planning.

The work by van der Krogt and de Weerdt (2005b) discusses an interesting approach to plan
repair in a multi-agent scenario where agents negotiate goals and services, however, the work in-
troduces some assumptions which make the approach not directly applicable in our scenario. For
instance, the authors assume that the problems of all the agents are mutually distinct, meaning
that agents cannot use the same resources. Of course, this assumption can be hardly applied in
a service-robots scenario, where resources are actually shared and agents are typically involved in
conflicts/negotiations for accessing them. An interesting research line is to extend the framework by
van der Krogt et al. in order to relax their assumptions and meet our scenario.

Another possible extension is about the agent diagnosis. In the current solution the recovery
mechanism tries to find a plan fixing all the faults assumed by the agent diagnosis, which in general
is ambiguous. Thereby some of the repairing actions included within the recovery plan are not really
necessary. Redundant repairing actions may represent an issue especially when they are expensive
and time consuming. A possible solution to mitigate the problem could be the adoption of “active
diagnosis” techniques to refine the ambiguous agent diagnosis. The basic idea of active diagnosis is
to perform a number of actions intended to test the agent’s functionalities assumed to be faulty: test
actions are therefore used to confirm or disconfirm the hypotheses made by the agent diagnosis. Of
course, active diagnosis techniques do not guarantee to precisely identify the actual fault affecting
an agent, but they can significantly reduce the ambiguity of the agent diagnosis, and hence reduce
the number of redundant repairing actions in the recovery plan.
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APPENDIX Relational Algebra Operators

This appendix summarizes some basic notions about relations and operators of the Relational
Algebra.
A relation R consists of a schema Rσ and of a set of contained tuples Rτ . The schema is an ordered
list of attributes, or variables, Rσ=〈v1, . . . , vn〉, where each variable vi (i : 1..n) has a finite domain
dom(vi). Each tuple t = 〈d1, . . . , dn〉 in Rτ represents an assignment of values to the variables in the
relation schema such that di ∈ dom(vi) for each i : 1..n (namely, t ∈ dom(v1)× . . .× dom(vn)).
The Relational Algebra operators we are interested in are:

- union: given two relations R and S defined over the same set of attributes (Rσ equals Sσ); the
union R∪S is a new relation T , defined on the same set of attributes as R and S, containing all the
tuples of R and all the tuples of S without duplicates; formally: Tσ=Rσ=Sσ, and Tτ = Rτ ∪ Sτ .

- intersection: given two relations R and S defined over the same set of attributes; the intersection
R ∩ S is a new relation T , having the same schema as R and S, and containing the tuples which
belong both to R and to S: Tτ = Rτ ∩ Sτ . Of course, T might result to be empty.

- difference: given two relations R and S defined over the same set of attributes; the difference R−S

is a new relation T , having the same schema as R and S, and containing the tuples which belong
to R but which do not appear in S: Tτ = Rτ − Sτ .

- Cartesian product: given two relations R and S defined over schemas which are one another
disjointed (Rσ ∩ Sσ = ∅), the Cartesian product R × S is a new relation T such that:

1. Tσ=Rσ ∪ Sσ

2. Tτ = Rτ × Sτ= {t is a tuple in Tτ such that t = t1 ∪ t2, ∀ t1 ∈ Rτ ,∀ t2 ∈ Sτ}: each tuple in R

is combined with each tuple in S, the result is stored in T.

- selection: given a relation R and a predicate ρ, the selection selectionρR is a new relation T

such that:

1. T has the same schema as R
2. each tuple in Tτ satisfies the predicate ρ

ρ is defined over (a subset of) the schema variables and typically represents a restriction of the
domains of these variables.

- projection: given a relation R and a subset γ ⊆ Rσ of variables , projectionγR is a new relation
T such that:
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1. Tσ = γ

2. Tτ is the projection of Rτ over the variables in γ: all the variables which are not in γ are
discarded, duplicated tuples are removed.

- join: in the paper we only utilize the natural-join operator, which is a specific case of join, for
brevity however we use the generic term join. Let R and S be two relations such that Rσ ∩Sσ 6= ∅
(the two relations share a subset of variables); let ω be such a subset of shared variables. The
(natural) join operation, denoted as R join S, is the new relation T defined as:

1. Tσ=Rσ ∪ Sσ (without duplication of variables)
2. Tτ = {t is a tuple | t = t1 ∪ t2, ∀ t1 ∈ Rτ , ∀ t2 ∈ Sτ , such that ∀v ∈ ω, t1(v) = t2(v)}

The natural join combines a tuple t1 in R with a tuple t2 in S only when the two tuples are related
to each other as they assign the same values to the shared variables in ω.

APPENDIX Computational Analysis

In this work we have presented in a declarative manner a methodology to control the execution
of a plan by integrating model-based diagnosis and conformant planning. Both these activities have
been formalized in terms of relations and operations between relations.
The computational complexity of the proposed algorithms strongly depends on how efficiently these
relations are handled; any operation on relations, in fact, can easily become a bottleneck. Before
addressing the computational analysis, it is therefore necessary to briefly discuss how the algorithms
have been implemented.

Basic concepts on OBDDs

We have adopted the formalism of the Ordered Binary Decision Diagrams (OBDDs) (Bryant
(1986)) to symbolically, and hence compactly, encode the relations involved by the control strategy.
OBDDs are a well-known mathematical tool, which compactly encode complex Boolean functions
as rooted directed acyclic graphs having only two leaves: zero (i.e., false) and one (i.e., true). While
OBDDs have initially been developed to test hardware failures, they are becoming widely used in
many areas of the Artificial Intelligence for efficiently representing and manipulating large state
spaces (see for instance, diagnosis of component-based systems (Torta and Torasso (2007)), and
different kind of planning (Cimatti and Roveri (2000); Jensen and Veloso (2000))). Some basic
operators on OBDDs are reported in Table 15 (see also Bryant (1986)). In the table, the Boolean
function f is represented by a reduced function graph G containing |G| vertices, and similarly for
the functions f1 and f2. The meaning of these operators is as follows:

- the reduce operator gets the canonical form of a Boolean function f ; i.e., given a specific variables
ordering, the reduce operator gets a graph G whose size is minimal

- the binary logical operations between two Boolean functions f1 and f2 is realized by the apply
operator working on the graphs G1 and G2, respectively encoding the two functions. The compu-
tational complexity in the worst case is the product of the sizes (i.e., number of vertices) of the
two graphs.

- the restrict operator substitutes a constant b to a variable xi in time almost linear in the number
of vertices.

Table 15. OBDD operators and their complexity.

operator result time size

Reduce(f) G reduced to canonical form O(|G| · log |G|) |G|
Apply(op, f1, f2) f1〈op〉f2 O(|G1| · |G2|) 6 |G1|+ |G2|
Restrict(xi, b, f) f |xi=b O(|G| · log |G|) 6 |G|
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The adoption of the OBDDs is not a per se panacea; since the computational complexity of the
OBDDs operators depends on the sizes of the involved OBDDs, it is important to get minimal-size
OBDDs. However, the size of an OBDD depends on the variable ordering chosen during the reduce
operation, a wrong variable ordering may result in an exponential growth of the OBDD size. It
has been demonstrated that finding an optimal variable ordering minimizing the size of an OBDD
is a NP-hard problem. Heuristics are typically used to cope with this issue; for instance, many
approaches keep close variables which depend on one another (Jensen and Veloso (1999); Torta and
Torasso (2007)).

The problem of how translating a relation into an OBDDs has been addressed in previous works
(Bryant (1992); Lhoták and Hendren (2004)). In this paper we just give some hints on how to solve
it. First of all, we observe that any n-ary relation R can be encoded as a Boolean function fR:

f(d1, . . . , dn) =

{
1 if 〈d1, . . . , dn〉 ∈ R[τ ]

0 otherwise

For instance, given the belief state in Table 2, the corresponding Boolean function is defined as
fbelief : dom(pos)×dom(loaded)×dom(pwr)×dom(engTmp)×dom(hnd)→ {0, 1}, and it assumes
the value 1 only for the two combinations of values reported in the table, namely, 〈 Rep, Pack1, ok,
high, ok 〉 and 〈 Rep, Pack1, low, ok, ok 〉; the function is 0 for any other combination of values. By
means of a proper renaming of variables, also the relations representing action models (which report
the same status variables at two consecutive time instants) can be translated into Boolean functions.
For instance, the extended model of action go (see Table 1) is modeled by the Boolean function
fgo : dom(pos)× dom(loaded)× dom(pwr)× dom(engTmp)×

dom(posNxt)× dom(loadedNxt)× dom(pwrNxt)× dom(engTmpNxt)→ {0, 1}.
As in the previous case, the function fgo assumes the value true for each combination of values
corresponding to an entry of Table 1, false in any other case.
Note that we have heuristically chosen the variable ordering {pos, posNxt, loaded, loadedNxt . . .}
in order to obtain an OBDD Ggo efficiently encoding the Boolean function fgo; in fact, the value of
a “next” variable will strongly depend on the value of the corresponding “current” variable.

Once we have translated each relation into a Boolean function, we can observe that each operator
of the Relational Algebra can be mapped to an operation (or a combination of operations) between
Boolean functions (see Lam et al. (2005)). Consider for example the predictive step of the monitoring
process, realized by a join operator between the current belief state and the action model, this step
is translated into the Boolean expression fbelief ∧ fgo.

Note also that some of the packages implementing OBDDs provide useful operators which
correspond to a sequence of Relational operations. For instance, natural join operations are frequently
followed by project operations to eliminate unnecessary attributes. The OBDD operation relprod,
provided by the BuDDy package Lind-Nielsen (2003), efficiently combines this sequence in a single
operation. Similarly, the select and project operations can be combined into a singlerestrict
operation between OBDDs (Lam et al., 2005).

Computational Analysis

In this section we discuss separately the computational complexity of the three main tasks
(monitoring, diagnosis and recovery) included within the proposed control strategy by taking into
account their OBDD-based implementation.

Plan Execution Monitoring. The main goal of the monitoring activity consists in estimating the
agent belief state Bi(t + 1) given the previous belief state Bi(t) and the extended model of action
ai
l(t). This process has been formalized in Definition 2. To assess the computational complexity of

such a process, we have first to consider how it is actually translated into OBDD operators. Let
Gbelief be the OBDD encoding Bi(t), Gaction be the OBDD encoding the model of action ai

l(t), and
Gobs be the OBDD encoding the available observations obsi(t+ 1); then the Relational expression

selectionobsi(t+1)(B
i(t)join ∆(ai

l(t)) (6)
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is translated into the following expression on OBDDs:

Gint = apply(∧,Gobs, apply(∧,Gbelief , Gaction)) (7)

Where Gint is the intermediate OBDD resulting from the two subsequent apply operations. Relying
on Table 15, we can conclude that the complexity for getting Gint is

O(|Gbelief | · |Gaction| · |Gobs|) (8)

The last relational operation to obtain the belief state Bi(t+1) is the projection over the status
variables in VARi

t+1 (i.e., the “next” variables ). To remove a variable v from an OBDD one can
exploit the restrict operation, in particular, one has to invoke the restrict operator for each value in
dom(v). The projection is therefore translated into a number of restrict operations over Gint, which
is proportional to the number of variables to be discarded (namely, the variables in VARi

t), and to
the cardinality of the variable domains. Let maxDomSize = argmaxv∈VARi |dom(v)| be the greatest
domain cardinality; the computational cost for the projecting Gint over VARi

t+1 is

O(maxDomSize · |VARi| · |Gint| log |Gint|) (9)

Although this computational result might not appear completely satisfactory, it is important to note
that it is an estimation of the very worst case. Bryant himself states that this theoretical complexity
is not so frequent in practice, and he conjectures that the actual complexity of an apply operation
between two OBDDs G1 and G2 is O(|G1|+ |G2|+ |G3|), where G3 is the resulting OBDD (Bryant,
1986). Indeed, the experimental results discussed in section 10 have shown that the monitoring
process is actually carried out very efficiently and that the size of the OBDDs encoding the agent
belief states and the action models are kept small.

Agent diagnosis. The inference of the agent diagnosis in Relational terms is given in Definition
4, it simply consists in a projection of the belief state Bi(t + 1) over the health status variables.
Let GnewBelief be the OBDD encoding such an agent belief state; the computational complexity for
projecting GnewBelief over the variables in healthVar(ai

l) is

O(maxDomSize · |VARi \ healthV ar(ai
l) | · |GnewBelief | log |GnewBelief |) (10)

In fact, also in this case the projection is translated into a number of restrict operations which is
proportional to the number of variables that must be removed and to the size of their domains.

Recovery. The recovery strategy is formalized in the algorithm of Figure 6; this algorithm first
determines which goal must be reached (either R or S), and then invokes the conformant planner
trying to find a plan getting the desired goal. It is easy to see that the real complexity of the recovery
process is in the solution of a conformant planning problem rather than in the recovery strategy itself;
for this reason, we will only examine the computational cost of the conformant planner.
The pseudo-code of the conformant planner is given in Figure 7. To analyze the computational
complexity of this algorithm, we focus our attention on those steps in which the size of the relations
grows or might represent an issue; in fact, these are the same steps where the OBDD implementation
might become inefficient.
In particular, there are two steps which deserve our attention. The first step we consider is

PSETh+1 ← PSETh join Φ (11)

which extends the plan candidates in PSETh one step longer by applying the Φ relation. Since
PSETh is built incrementally, we can unfold it as

PSETh ← PSETh−1 join Φ

PSETh−1 ← PSETh−2 join Φ

. . .

PSET1 ← PSET0 join Φ

Where PSET0 coincides with the initial state I.
As we have noticed earlier, the relational join is translated into an apply operation between OBDDs,
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it follows that expression (11) is translated into the following OBDD operation

GPSETh+1
= apply(∧,GPSETh

, GΦ) (12)

which in turn is unfolded as:

GPSETh
= apply(∧,GPSETh−1

, GΦ)

. . .

GPSET1 = apply(∧,GI , GΦ)

Where GΦ and GI are the OBDDs encoding the Φ relation and the initial state I, respectively; and
GPSETk

is the OBDD encoding PSETk (for k : 0..h+ 1).
The computational complexity for getting GPSETh+1

is therefore

O(|GI | · |GΦ|
h+1) (13)

The second critical step we consider is:

PSETh+1 ← PruneNotConformant(PSETh,PSETh+1) (14)

which discards from the new space of plan candidates all those candidates which are not conformant
plans. As we have shown, this result can be obtained by exploiting Property 5; namely, when Bh ∩
Bext

h = ∅ the plan candidate including Bh is a conformant plan as it is built by a sequence of h
conformant actions.
Thus, we have first to extract the agent belief state Bh from PSETh and Bext

h from PSETh+1.
A näıve implementation based on the restrict operation on OBDDs would be very inefficient, for
instance the computational cost for getting GBh

would be

O(maxDomSize · |VARi|h−1 · |GPSETh
| log |GPSETh

|) (15)

In fact, we have to remove h-1 times the status variables in VARi in order to obtain a single agent
belief state. The computational complexity for extracting Bext

h is similar.
To get a more efficient implementation, we have exploited the relprod operator made available by
the BuDDy package, this operator has the same complexity as the apply operation, but has the
advantage of existentially quantifying the variables we are not interested in, and hence pruning them
off from the final result. More precisely, we can obtain Bh as

GBh
= relprod(GPSETh

, GPSETh−1
) (16)

In fact all the variables mentioned in GPSETh−1
are removed from the final result; the cost of this

operation is O(|GPSETh
| · |GPSETh−1

|).
In a similar way we can obtain the OBDD GBext

t
from PSETh+1.

After this step, we have just to verify whether Bh ∩ Bext
h is equal to zero. The dual belief state Bext

h

is obtained in constant time as it is sufficient to invert the two special nodes 1 and 0 in GBext
t

.

The intersection between Bh and Bext
h is again implemented by means of an apply operator, so its

computational complexity in worst case tends to be the product of the sizes of the involved OBDDs.
Note that, as far as the agent belief states remain small, the cost of such an intersection is negligible
w.r.t. the cost for extracting Bh and Bext

h .
According to Property 5, if the intersection Bh ∩ Bext

h is not empty, it means that we have applied
a non-conformant action. Thus PSETh+1 must be refined by pruning off all the non-conformant
actions. This can be done by the following relprod operation

GPSETh+1
= relprod(GPSETh+1

, GBh
) (17)

Which discards from PSETh+1 all the plan candidates leading to Bh and has complexityO(|GPSETh+1
|·

|GBh
|). Also this operation is negligible w.r.t. the cost of extracting Bt and B

ext
t ; so we can conclude

that the computational cost of the PruneNotConformant step is dominated by

O(|GPSETh
| · |GPSETh−1

|) +O(|GPSETh+1
| · |GPSETh

|) ≈ O(2 · |GPSETh+1
| · |GPSETh

|) (18)

Substituting equation (13) in equation (18) we have that the computational complexity of the
conformant planner is dominated by

O(2 · |GI |
2 · |GΦ|

2(h+1)) (19)
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Again, this result might appear below the expectations, however, the experimental analysis we have
discussed in Section 10 demonstrate how such a worst case is quite infrequent in practical cases.
In particular, we have empirically demonstrated that the size of the PSETh structure does not
grow exponentially. This is a consequence of the fact that, each time the space of plan candidates is
extended, not all the actions in Φ can be actually applied as conformant actions, and hence the real
branching factor is well below |Φ|.

As a final remark about the conformant planner, it is easy to see that the worst situation the
algorithm may encounter is when it has to explore the whole space of plan candidates (limited by
h < MAXDEPTH) before returning an answer. This may happen when solutions with less than
MAXDEPTH do not exist, or when there exists at least a solution with exactly MAXDEPTH−1
actions. It must be noticed, however, that when a problem has no solution, we have experimentally
observed that the PSETh structure in many cases becomes empty in very few iterations of the
algorithm. This happens because the algorithm discovers that no action in Φ can be applied as
a conformant action. It follows that the hardest problems to be solved are those whose solutions
include a number of actions very close to MAXDEPTH.


