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the specific choice of the physical parameters (for S2 and S3 the t2/5 scaling is
recovered starting from t > 3 s). It should be noted also that the time behaviour of
the wave growth observed in the present study is different from the linear law (η∝ t)
usually found in wind-driven wave generation processes (Lin et al. 2008); the reason
is that our configuration differs from the standard problem of wind-driven waves.
The countercurrent air/water flow is characterized by the presence of two opposite
boundary layers generating waves in opposite directions and producing an almost
negligible streamwise surface velocity.

So far, we have considered the initial dynamics of the interface (t< 6 s in figure 2).
Whether the amplitude of the interface maintains a η∝ t2/5 law or not depends on the
interface deformability (interplay between gravity and surface tension). For

√
Fr/We<

2, capillary effects always dominate, and we do not observe significant changes from
the η∝ t2/5 growth rate (see S2 and S3 in figure 2). By contrast, for

√
Fr/We> 2 we

observe a stage of faster growth. This growth is exponential in time and is due to a
resonant mechanism between the interface elevation and the wave-induced fluctuations
of pressure and stress occurring for gravity waves (see Janssen 2004).

After a transient, ηrms attains an asymptotic value, indicating a saturation for the
growth of the interface amplitude (figure 2). This occurs when the hydrostatic pressure,
dynamic pressure and surface tension balance:

1p′rms +
1

We
∇ · n= 1

Fr
ηrms, (3.2)

where 1p′rms is the r.m.s. of the air/water pressure difference. Since the pressure
fluctuations in the water side (p′rms,L) are larger than those in the air side, 1p′rms'p′rms,L.
Equation (3.2) can be used to roughly estimate the asymptotic value of the interface
amplitude ηrms. Assuming that the curvature of the interface is ∇ · n ' −ηrms, i.e.
assuming a quasi-sinusoidal interface deformation, we obtain

ηrms ' Fr ·We
Fr+We

p′rms,L. (3.3)

Equation (3.3) requires the knowledge of p′rms,L, which can be easily obtained from
our simulations. The behaviour of p′rms,L as a function of the dimensionless vertical
coordinate z+ = zuτ/ν (interface-normal) is given in figure 3. The air/water interface
is located at z+= 170, and the dimensionless value of p′rms,L at the interface is p′rms,L=
3400 for

√
Fr/We= 2.03 (simulation S1), p′rms,L= 240 for

√
Fr/We= 1.93 (simulation

S2) and p′rms,L = 160 for
√

Fr/We = 1.4 (simulation S3). Hence, our estimate for the
dimensionless amplitude of the interface deformation ηrms is ηth

rms,S1 = 1 × 10−2 for√
Fr/We = 2.03 (simulation S1), ηth

rms,S2 = 5.2 × 10−4 for
√

Fr/We = 1.93 (simulation
S2) and ηth

rms,S3 = 2× 10−4 for
√

Fr/We= 1.4 (simulation S3).
The effect of the capillary term (We−1

∇ · n) turns out to be very important at the
beginning of the wave generation process (see the discussion on the wave generation
process in this section). It is also important in determining the structure of the
interface (generation of ripples of short wavelengths, see § 3.2). However, it is less
important in establishing the asymptotic value of the interface amplitude, where the
leading terms of the force balance at the interface (equation (3.2)) are the dynamic
pressure drop (1p′rms) and the hydrostatic pressure drop (Fr−1ηrms). Therefore, a
simplified expression for the interface amplitude is

ηth
rms,S ' Fr · p′rms,L. (3.4)
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FIGURE 4. Wavenumber spectra, E(kx)=
∫
η(kx, ky) dky, for simulations with

√
Fr/We=

2.03 (simulation S1, a),
√

Fr/We= 1.93 (simulation S2, b) and
√

Fr/We= 1.4 (simulation
S3, c). The insets show the temporal evolution of the energy spectrum at three different
time instants (and averaged over a time window 1T = 1 s): t= 1 s, –u–; t= 20 s, –p–;
t= 40 s, –q–.

occurring at a wavenumber of kx = kcap. For linear waves, kth
cap = 2π/λcap ' 300 m−1,

where we assume the capillary wavelength λcap =
√

4π2γ /(gρ) ' 2 × 10−2 m (see
Falcon, Laroche & Fauve 2007). This value, kth

cap ' 300 m−1, is indicated in figure 4.
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