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Abstract: Amorphous germanium carbides have been prepared by X-ray activated Chemical Vapor 
Deposition from germane/allene systems. The allene percentage and irradiation time (total dose) 
were correlated to the composition, the structural features, and the optical coefficients of the films, as 
studied by IR and UV-VIS spectroscopic techniques. The materials composition is found to change 
depending on both the allene percentage in the mixture and the irradiation time. IR spectroscopy 
results indicate that the solids consist of randomly bound networks of carbon and germanium atoms 
with hydrogen atoms terminating all the dangling bonds. Moreover, the elemental analysis results, 
the absence of both unsaturated bonds and CH3 groups into the solids and the absence of allene 
autocondensation reactions products, indicate that polymerization reactions leading to mixed species, 
containing Ge-C bonds, are favored. Eopt values around 3.5 eV have been found in most of the cases, 
and are correlated with C sp3-bonding configuration. The B1/2 value, related to the order degree, has 
been found to be dependent on solid composition, atoms distribution in the material and 
hydrogenation degree of carbon atoms. 

Keywords: germanium carbide; X-Ray activated CVD; optical properties; binary alloys; amorphous 
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1. Introduction 

The amorphous alloys, such as Si-C, Si-Ge and Ge-C are very important materials in current 
technologies and have stimulated a growing interest due to their electrical, optical and structural 
properties and their low cost compared with that of the crystalline form[1,2] making them suitable for 
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different applications. They can be prepared by several techniques: materials with composition, and 
hence properties, varying in a wide range are obtained changing the preparation method, the deposition 
conditions and/or the precursors [3–31]. 

In our laboratory, hydrogenated germanium carbides have been produced by X-ray activated - 
Chemical Vapor Deposition from germane/hydrocarbons systems [32–42] which is an innovative 
method to obtain materials from decomposition of gaseous reactants. Our previous results indicate that, 
by changing the hydrocarbon species mixed with germane or the hydrocarbon/germane molar ratio in 
the mixture, materials in a wide range of composition with different characteristics can be obtained. 
For GeH4/alkane mixtures, the percentage of carbon atoms in the solid increases with the number of 
carbon atoms in the reactant hydrocarbon molecule but it remains low even when an high hydrocarbon 
molar fraction in the irradiated mixture is employed. Moreover, an increase of hydrocarbon percentage 
in the mixture causes a decrease of the solid yield [32–35]. 

When irradiation of germane takes place in the presence of unsaturated hydrocarbons, the carbon 
incorporation in the solid during the polymerization reactions sharply increases [36–42] proportionally 
to the unsaturation degree of the hydrocarbon. Moreover, the bonding and the properties of the 
materials obtained by radiolysis of mixtures with hydrocarbons having a double bond [36–37] are 
different from those of the solids obtained using alkynes [38–42]. 

The solids yield increases if unsaturated hydrocarbons are employed. However, results obtained 
in previous works using ethene or ethyne [36–42] show that the composition—and hence the 
properties —of materials are closely affected by irradiation time. The composition of deposited 
material changes quickly during irradiation making difficult to obtain uniform films. 

Here we report the results of studies performed with the aim to obtain materials with constant 
composition and properties with respect to the irradiation time. Characterization of materials obtained 
at room temperature by X-ray activation of germane/allene mixtures with different hydrocarbon 
percentage and increasing irradiation dose is presented. 

2. Materials and Method 

The samples were obtained by X-ray activated Chemical Vapor Deposition technique, using a 
CPXT-320 tube by Gilardoni SpA, with a maximum output of 320 keV, as X-ray source. The absorbed 
dose rate of reactant species was about 5 × 103 Gy/h. The germane/allene mixtures were irradiated at 
room temperature in 365 mL Pyrex vessels, at a total pressure of 700 Torr, varying the total irradiation 
time between 1 and 5 hours. GeH4/C3H4 mixtures with 5, 10, 20, 30, 50 and 70% of allene have been 
irridiated. 

Allene (97% purity) and GeH4 monogermane were supplied by S.I.A.D. (Società Italiana 
Acetilene e Derivati) S.p.A. 

In the synthesis procedure, the vial bottom (with KBr pellets and quartz substrate discs) was 
positioned on the primary beam trajectory, so that both gaseous molecules and growing solids were 
activated by the main X-ray beam. 

The solid products were collected, weighted and their composition was determined by means of a 
Thermo Electron Corporation CHNS-O analyzer for Htotal and C content while the Ge content was 
calculated as the difference. 
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The products were examined by IR spectroscopy (KBr pellets) with a FTIR Bruker Equinox 55 
instrument equipped with a deconvolution program of overlapped peaks. The resolution was 2 cm−1. 
All spectra were recorded at room temperature. 

The UV-VIS spectra were obtained with a Perkin-Elmer Lambda 15 spectrophotometer from the 
material deposited on the quartz disk, using a clean quartz disk irradiated at the same dose as a 
reference. To avoid any possible oxidation by oxygen in the air all the analyses on solids were 
performed immediately after opening the vials. 

3. Results and Discussion 

GexC1-x:H alloys have been prepared by X-Ray Chemical Vapor Deposition (X-Ray CVD) from 
mixtures of GeH4 with allene. The effects of the C3H4 molar fraction in the irradiating mixture on the 
solid chemical composition and bonding configuration have been investigated. Samples obtained from 
radiolysis of mixtures containing 10, 30, 50 and 70% of allene were analyzed. Moreover, since the 
most evident changes of solids composition are observed if allene percentage lower than 30% is 
employed, materials obtained after 5 hours irradiation of mixtures with 5 and 20 allene percentage 
have also been investigated. The irradiation dose effect on the composition, the characteristics and the 
properties of the deposited solids, has also been verified performing experiments varying the 
irradiation time from 1 to 5 hours each step. 

From the irradiation of germane/allene mixtures, solid products were obtained, which deposited 
on the bottom of irradiated ampoules. Films were obtained when mixtures with 30% of allene were 
irradiated. Moreover, films were obtained from mixtures with lower or higher allene percentage for 
irradiation times higher than 1 hour, independently from the allene percentage, with the exception of 
the 5% allene mixture which leads to powders deposition after 5 hours irradiation. 

It is noteworthy to remind that previously performed experiments on germane alone [43–44] 

produced a black powder of an amorphous cross-linked polymer whereas at the doses used here, no 
solid product is formed from irradiation of allene alone. Moreover, a considerably lower quantity of 
solid is obtained when germane is irradiated alone even if the irradiation time is higher. The 
experimental results indicate that reactions between GeH4 and C3H4 are greatly favored with respect 
the self-condensations of the two precursors and indicate that the solids collected are not simple 
mixture of co-precipitated hydrogenated C-C or Ge-Ge polymers, but instead a network containing 
Ge-C bonds. At room temperature the solids are stable to the air and insoluble in the common organic 
solvents. The solids composition has been determined by elemental CHNS-O analysis for H and C 
content while the Ge content was calculated as the difference. 

In Figure 1, the yield percentage (calculated with respect the total precursors mass) of the solid 
phases obtained from irradiation of the different GeH4/C3H4 mixtures and after different irradiation 
time are reported. C and H contents are shown in Figures 2 and 3 as carbon molar fraction (defined as 
C/C+Ge) and hydrogenation degree (defined as the atomic ratio H/C+Ge), respectively. 
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Figure 1. Yield percentage of solids obtained from irradiation of GeH4/C3H4 
mixtures with different C3H4 percentage as a function of the irradiation time. 

 

Figure 2. Carbon molar fraction (C/C+Ge) ratio of solids obtained from GeH4/C3H4 

mixtures with different C3H4 percentage and after different irradiation time as a 
function of the irradiation time. 
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Figure 3. Hydrogenation degree (H/C+Ge) ratio of solids obtained from irradiation 
of GeH4/C3H4 mixtures with different C3H4 percentage as a function of the 
irradiation time. 
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cm−1 as evidenced in the insert of Figure 6. In Figure 6 the IR absorption spectrum of the solid 
deposited from irradiation of mixtures with 30% of allene, irradiated for 5 hours is compared with 
those of solids obtained, in previous works [37,39], from mixtures with 10% of ethyne and 15% of 
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Figure 4. IR spectra of the solids obtained from 5 h irradiation of GeH4/C3H4 

mixtures with different C3H4 percentage. 
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Figure 5. IR spectra of the solids obtained from 1 to 5 h irradiation of GeH4/C3H4 

mixtures with 30% of C3H4. 
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Figure 6. IR absorption spectra (between 3050–2750 cm−1), of the solids obtained 
from irradiation of mixtures with 10% of ethyne, 15% of ethene and 30% of allene, 
irradiated for 5 hours. In the insert, the deconvoluted signals of the solid obtained 
from irradiation of the of 30% of allene mixture, are reported as an example. 

The absence of CH3 bonding configuration is a remarkable feature and it is in agreement with the 
above mentioned stability to the air. In fact CH3 groups favor oxidation leading to less dense materials 
with inner surfaces or voids [48] which allow the oxygen penetration into the sample. 

Another feature in this spectrum zone is the absence of signals, at wavenumber higher than 
3000 cm−1, attributable to C-H stretching modes of grouping with unsaturated carbon, even if in the 
carbon precursor two unsaturations are present. 

The above considerations, the elemental analysis results and the absence of allene 
autocondensation reactions (as above reported) indicate that polymerization reactions leading to mixed 
species, containing Ge-C bonds, are favored. 

In the 2150–1900 cm−1 wave number region the samples exhibit a signal resulting from partially 
overlapped peaks (Figures 5 and 6). Three deconvoluted bands are obtained around 1990, 2020 and 
2050 cm−1, attributable to Ge–H bond stretching in the GeHn (n = 1–3) groups [40,43] but a univocal 
attribution is not possible. In fact in Ge-C:H alloys, a different number of neighbouring carbon atoms 
can be bound to Ge and the Ge-Hn stretching mode can be shifted as a consequence of the higher 
carbon electronegativity [37,45,54]. Therefore, as reported in a previous work [39], the band around 
2050 cm−1 can be attributed to GeH3, C2GeH2 or C3GeH; the band around 2020 cm−1 to GeC2GeH or 
GeCGeH2 and the band around 1990 cm−1 can be assigned to Ge2CGeH or Ge2GeH2: each 
deconvoluted band is a sum of contributions of different groups. 

In agreement with the above considerations the integrated absorption of deconvoluted signals 
does not exhibit a regular trend with increasing carbon content in the solids. Moreover, as it is evident 
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in Figure 4, a shift of the Ge-Hn stretching band to lower wave numbers is observed with increasing 
allene percentage. These findings indicate a variation of the contribution of the different groups to each 
signal. In fact, it must be considered that the Ge-C bonds formation is promoted by an higher 
hydrocarbon percentage; moreover, a change of the Ge atoms hydrogenation degree is expected 
considering the increase of both CHn (n = 1, 2) stretching band intensities, (Figure 4) and the 
∫νCH2/∫νCH ratio, shown in Figure 7. Therefore, less hydrogenated GexCyHz (x, y, z = 1–3) groups and 
with more C neighbouring atoms are favored. 

 

 

Figure 7. Ratio of the deconvoluted infrared stretching signals of hydrogenated 
carbon groups, ∫νCH2/∫νCH, of the solids obtained from 5 h irradiation of 
GeH4/C3H4 mixtures with different percentage of C3H4 as a function of carbon 
molar fraction. 

In the 1500–400 cm−1 range the interpretation of IR spectra is difficult due to the presence of 
many broad and partially overlapped bands (Figures 4 and 5). 

However, the GeCHn (n = 1, 2) and GeH2 bending modes [3,27,29], besides Ge-C stretching and 
Ge-H wagging modes, are generally found in the wave number region between 500 and 900 cm−1. 
Moreover, rocking vibrational modes of various skeletal group systems, such as Ge–H, Ge–C, and 
(CHm)n–C/Ge, are expected at 1200–400 cm−1 [3,6,40,49,55]. In particular, the sharp band at 570 cm−1 
can be attributed to the superimposed signals of Ge-C stretching and GeH wagging modes. The finding 
that the signal intensity increases with the solid carbon content, while a decreasing of Ge atoms 
hydrogenation degree is expected, as above reported, confirms the signal attribution and indicates an 
increase of Ge-C bonds. 

Optical properties 

One of the most important characteristics of these materials is the optical bandgap value (Eopt), i.e. 
the gap between the extended state in the valence and in the conduction band. The absorption spectrum 
in the ultraviolet-visible range is commonly used to obtain the Eopt value. 

For this reason, absorption measurements have been made at photon energies between 0.5 and 7 
eV for all the solids. The optical gap values have been obtained using the common procedure of   
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Tauc [56–57] from intercept with the x axis of the extrapolated linear part of the curve obtained by 
plotting (h)1/2 against the photon energy according to: 

(h)1/2 = B1/2(h-Eopt) 

where  is the absorption coefficient from spectrophotometric measurements, h the Planck's constant, 
 the photon frequency and Eopt is the optical band gap. 

These measurements also allow to obtain the B1/2 value (so-called Tauc slope) which is 
considered to be a measure of the randomness of the network. Large B1/2 values correspond to high 
order and imply the existence of wider tails of localized states in energy band structures [58,59]. 

 

 

Figure 8. Eopt value of the solids obtained from 1 to 5 hours irradiation of 
GeH4/C3H4 mixtures with different percentage of C3H4 is reported as a function of 
carbon molar fraction. In the insert only the gap values between 3.12 and 3.55 eV 
are shown to facilitate reading and examination. Note: colors are used to indicate 
allene percentage: black, red, orange, green, blue and fuchsia are used to indicate 5, 
10, 20, 30, 50 and 70 C3H4 percentage, respectively. ,○, ◊,  and □ are used to 
indicate the irradiation time from 1 to 5 hours, respectively. 
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results above reported and evidencing high hydrogen content and absence of any C-H stretching 
modes of grouping with unsaturated carbon. In fact, in a-GeC:H sp3 bonded alloys, the Ge-Ge bonds 
can be replaced by stronger Ge-C bonds or even stronger C-C bonds [60,61], leading to high Eopt 
values which increase with C content. For C/(C+Ge) values higher than 0.75, the Eopt is less 
influenced by the carbon molar fraction increase and values varying in a narrow range centered 
around 3.5 eV found. This is probably because for carbon molar fraction values higher than 0.75, the 
carbon incorporation affects the Ge-C and particularly the C-C bonds formation not so much as for 
lower values. This hypothesis is supported by IR results: in fact, the raise of Ge-C bond stretching 
signal (around 570 cm−1) observed if solids obtained with lower allene percentage (having lower 
C/(Ge+C) values) are compared, is sharper with respect to that observed when comparing materials 
from allene percentage higher than 20%. 
Moreover, it is interesting to note that Eopt values around 3.5 eV are found also starting from 
mixtures with very different allene percentage, thus indicating that the a-GeC:H obtained not only 
have close composition but also show very similar structural and optical properties. 

It is interesting to compare the results obtained from 1 to 5 hours irradiation of GeH4/C3H4 

mixtures with 10 and 30% of C3H4 (mixtures with 50 and 70% of C3H4 show similar trend to 30%). 
In Figures 9 and 10 the B1/2 value of solids, obtained from 1 to 5 hours irradiation of GeH4/C3H4 

mixtures with 10 and 30 % of C3H4, are reported as a function of carbon molar fraction, respectively. 
Figure 10 also reports the ∫νCH2/∫νCH ratio as a function of carbon molar fraction. 
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Figure 9. B1/2 value of solids obtained from 1 to 5 hours irradiation of GeH4/C3H4 

mixtures with 10% of C3H4 as a function of carbon molar fraction. 
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Figure 10. B1/2 value and ∫νCH2/∫νCH ratio of solids obtained from 1 to 5 hours 
irradiation of GeH4/C3H4 mixtures with 30% of C3H4 as a function of carbon molar 
fraction. 

To explain the different trend of B1/2 with carbon molar fraction, the very different nature of the 
material obtained from 10 and 30 allene percentage must be considered. In fact, the B1/2 value can be 
affected by composition, atoms distribution in the material and hydrogenation degree of carbon 
atoms. At low C3H4 percentage, the deposition probability of Ge-rich materials is higher and 
increases with irradiation time, as confirmed by composition results showing a reduction of carbon 
molar fraction (see Figure 2). As a consequence, amorphous germanium zones (a-Ge) can be formed 
in the solid matrix leading to lower Eopt and more disordered material and hence, lower B1/2

 value. A 
calculation of Ge-rich and C-rich zones percentage in the materials is not possible, but Raman results 
show, for solids obtained with lower C3H4 percentage, a weak signal due to amorphous germanium 
clusters, while the absence of sp2 C signals confirm the polymeric character of the material. 

For higher allene percentage the a-Ge zone are sharply reduced and the B1/2
 value mainly 

depends on hydrogen distribution. The ∫νCH2/∫νCH ratio increases with carbon content (figure 10) 
increasing the polymeric character of the material and the disorder degree [62] leading to lower B1/2 
values. 
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4. Conclusion 

GexC1-x:H alloys have been obtained by X-Ray Chemical Vapor Deposition from mixtures of 
GeH4 with C3H4. They can be considered a randomly bound network of carbon and germanium atoms 
with hydrogen atoms terminating all the dangling bonds. Moreover, the IR spectra indicate that the 
materials obtained from radiolysis only contain mono and dihydrocarbon groups while unsaturated 
hydrogenated carbon moieties are absent. This finding, the elemental analysis results and the absence 
of allene autocondensation reactions products indicate that polymerization reactions leading to mixed 
species, containing Ge-C bonds, are favored. 

It is remarkable that (except for allene lower than 20%) the solids exhibit composition and Eopt 
value varying in a narrow range even starting from mixtures with allene content ranging from 20 to 
70%. The high gap value can be attributed to C sp3-bonding configuration also favored by the high 
hydrogen solid content. The B1/2 value, related to the order degree, was found to be dependent on solid 
composition, atoms distribution in the material and hydrogenation degree of carbon atoms. 
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