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ABSTRACT
Federations among sets of Cloud Providers (CPs), whereby
a set of CPs agree to mutually use their own resources to run
the VMs of other CPs, are considered a promising solution
to the problem of reducing the energy cost. In this paper, we
address the problem of federation formation for a set of CPs,
whose solution is necessary to exploit the potential of cloud
federations for the reduction of the energy bill. We devise
a distributed algorithm, based on cooperative game theory,
that allows a set of CPs to cooperatively set up their feder-
ations in such a way that their individual profit is increased
with respect to the case in which they work in isolation, and
we show that, by using our algorithm and the proposed CPs’
utility function, they are able to self-organize into Nash-
stable federations and, by means of iterated executions, to
adapt themselves to environmental changes. Numerical re-
sults are presented to demonstrate the effectiveness of the
proposed algorithm.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; K.6.4 [Management of Comput-
ing and Information Systems]: System Manage-
ment

General Terms
Management,Performance

Keywords
Cloud Federation, Cooperative Game Theory, Coalition
Formation

1. INTRODUCTION
Many modern Internet services are implemented as

cloud applications consisting of a set of Virtual Ma-
chines (VMs) that are allocated and run on a physical
computing infrastructure managed by a virtualization
platform (e.g., Xen [11], VMware [4], etc.). These in-
frastructure are typically owned by a Cloud Provider
(CP) (e.g., Amazon AWS, Rackspace, Windows Azure,

etc.), and are located into a (set of possibly distributed)
data center(s).
One of the key issues that must be faced by a CP

is the reduction of its energy cost, that represents a
large fraction of the total cost of ownership for physical
computing infrastructures [33]. This cost is mainly due
to the consumption of the physical resources that must
be switched on to run the workload.
To reduce energy consumption, two techniques are

therefore possible for a CP: (a) to minimize the number
of hosts that are switched on by maximizing the num-
ber of VMs allocated on each physical resource (using
suitable resource management techniques [20, 6]), and
(b) to use resources that consume less energy.
Cloud federations [36], whereby a set of CPs agree

to mutually use their own resources to run the VMs of
other CPs, are considered to be a promising solution
for the reduction of energy costs [14] as they ease the
application of both techniques.
As a matter of fact, while each individual CP is bound

to its specific energy provider and to the physical in-
frastructure it owns, a set of federated CPs may enable
the usage of more flexible energy management strategies
that, by suitably relocating the workload towards CPs
that pay less for the energy, or that have more energy-
efficient resources, may reduce the energy bill for each
one of them.
In order to exploit the energy saving potential of

cloud federations, it is however necessary to address the
question concerning its formation. As a matter of fact,
it is unreasonable to assume that a CP unconditionally
joins a federation regardless of the benefits it receives,
while it is reasonable to expect that it joins a federation
only if this brings it a benefit.
In this paper, we address the problem of federation

formation for a set of CPs, and we devise an algorithm
that allows these CPs to decide whether to federate or
not on the basis of the profit they receive for doing so. In
our approach, each CP pays for the energy consumed by
each VM, whether it belongs to its own workload or to
the one of another CP, but receives a payoff (computed
as discussed later) for doing so.
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The algorithm we propose is based on cooperative
game theory [32, 34]. In particular, we rely on hedonic
games (see [12] for their definition) whereby each CP
bases its decision on its own preferences. Depending on
the specific operational conditions of each CP (i.e., the
resource requirements of its workload, its cost of energy,
the energy consumption of its physical machines, and
the revenue it obtains when running each VM on these
machines), different federations (each one consisting of
a subset of the CPs), or even no federation at all, may
be formed by the involved CPs. We call federation set
the set of distinct federations formed by a set of CPs.
The algorithm we propose computes the federation

set that results in the highest profit that can be achieved
by a set of autonomous and selfish CPs. This derives
from the fact that this algorithm ensures that all the
federations formed by groups of CPs are stable, that is
CPs have no incentive to leave the federation once they
decide to participate.
Unlike similar proposals (e.g., [26]), that rely on a

centralized architecture in which a trusted third party
computes the federation set, we adopt a distributed ap-
proach in which each CP autonomously and selfishly
makes its own decisions, and the best solution emerges
from these decisions without the need of synchronizing
them, or to resort to a trusted third party. In this way,
we avoid two drawbacks that affect existing proposals,
namely the difficulty of finding a third party that is
trusted by all the CPs, and the need to suspend the op-
erations of all the CPs when the federation set is being
computed.
The rest of this paper is organized as follows. In

Section 2, we describe the system under study, and pro-
vide some simple motivating example. In Section 3,
we present a cooperative game-theoretic model of the
system under study, and show stability conditions and
profit allocation strategies that provide the theoretical
foundation for the distributed coalition formation algo-
rithm, that is also presented in this section. In Sec-
tion 4, we present results from an experimental evalua-
tion to show the effectiveness of the proposed approach.
In Section 5, we provide a short overview of related
works. Finally, conclusions and an outlook on future
extensions are presented in Section 6.

2. PROBLEM FORMULATION
In this section, we first formally describe the problem

addressed in the paper (see Section 2.1), and then we
illustrate some issues that must be properly addressed
in order to properly solve it (see Section 2.2).

2.1 System Description
We consider a set of n CPs denoted byN =

{
1, 2, . . . , n

}
,

where each CP i is endowed with a set Hi of physical
hosts. We denote as H = H1 ∪H2 ∪ · · · ∪Hn the set of

all the hosts collectively belonging to the various CPs.
These hosts are grouped into a set G of host classes
according to their processor type and to the amount
of physical memory they provide; all the hosts in the
same class are homogeneous in terms of processor and
memory size. For any h ∈ H we denote by g(h) the
function that gives the host class of h (i.e., a function
g : H → G).
As discussed in [35], we assume that a host h con-

sumes Cmin
g(h) Watts when its CPU is in the idle state,

Cmax
g(h) Watts when its CPU is fully utilized, and

(
Cmin

g(h)+

f ·
(
Cmax

g(h)−Cmin
g(h)

))
when a fraction f ∈ [0, 1] of its CPU

capacity is used. This model, albeit simple, has been
shown to provide accurate estimates of power consump-
tion for different host types when running several bench-
marks representative of real-world applications [35].
Physical hosts run cloud workloads, consisting in a set

J = J1 ∪ J2 ∪ · · · ∪ Jn of VMs, where Ji denotes the
set of VMs that compose the workload of the i-th CP
(each VM contains the whole execution environment of
one or more applications).
As typically done by CPs, VMs are grouped into a

set Q of VM classes according to the computing ca-
pacity provided by their virtual processors, and to the
amount of physical memory they are equipped with; all
the VMs belonging to the same class provide the same
amount of computing capacity and of physical mem-
ory. For instance, Amazon’s EC2 [1] defines the Elas-
tic Compute Unit (ECU) as an abstract computing re-
source able to deliver a capacity equivalent to that of
a 1.2 GHz 2007 Xeon processor, and provides various
instance types (that are equivalent to our VM classes)
that differ among them in the number of ECUs and
in the amount of RAM they are equipped with. More
specifically, small, medium, and large, corresponding to
VM class 1, 2, and 3, respectively, provide 1 ECU and
1.7 GB of RAM, 2 ECUs and 3.7 GB of RAM, and 4
ECUs and 7.5 GB of RAM, respectively.
For any VM j ∈ J , we denote by q(j) the function

that gives its VM class (i.e., a function q : J → Q). Us-
ing this notation, for any j ∈ J we denote by CPU q(j)

and by RAM q(j) the amount of computing capacity and
of physical memory of VM j, respectively. As an exam-
ple, in the Amazon EC2 case we have that CPU 1 = 1
ECU and RAM 1 = 1.7 GB, while CPU 3 = 4 ECU and
RAM 3 = 7.5 GB.
When allocated on a physical host h, a VM j uses a

certain fraction Aq(j),g(h) of CPU capacity and a certain
fraction Mq(j),g(h) of physical memory. Aq(j),g(h) can be
determined by measuring, with a suitable benchmark
(e.g., GeekBench [2]), the computing capacity Capv de-
livered by the virtual processor of VMs in q(j) and the
capacity Capp delivered by the physical processor of
hosts in g(h), and then by dividing these quantities, i.e.,
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Aq(j),g(h) = Capv

Capp
. For instance, if Capv = 1, 000 and

Capp = 8, 000, then Aq(j),g(h) = 0.125. Mq(j),g(h) can

instead be computed asMq(j),g(h) =
⌈

RAM q(j)

RAM size of hosts in g(h)

⌉
.

Each CP i charges, for each VM j, a revenue rate
(that depends on the class q(j) of that VM) that spec-
ifies the amount of money that the VM owner must
correspond per unit of time. For instance, Amazon
charges 0.08 $/hour, 0.16 $/hour, and 0.32 $/hour for
small, medium, and large instances, respectively. Con-
sequently, CP i earns a global revenue rate that is given
by the sum of the revenue rates of individual VMs. To
run its workload, CP i incurs an energy cost quantified
by the energy cost rate (the amount of money that is
paid per unit of time), which is the energy cost resulting
from the allocation of (a subset of) the workload J on
its host set Hi that must be paid per unit of time (see
Section 3.3 for a discussion on the optimization tech-
nique we use to minimize it). We define the net profit
rate of CP i as the difference between its global revenue
rate (obtained for hosting a set of VMs) and its global
energy cost rate (that it incurs to run such VMs).
Our goal is to allocate all the VMs in J on the hosts

in H (independently from the corresponding CPs) in
such a way to maximize the net profit rate of each CP
i. This goal can be achieved by finding the smallest set
of hosts that are sufficient to accommodate the resource
shares of all the VMs in J such that the overall energy
consumption is minimized, and by providing a suitable
revenue for those CPs that host VMs belonging to other
CPs.

2.2 Issues in coalition formation
The most straightforward way to form a coalition1 is

to include in it all the CPs (the grand coalition). This
solution is certainly attractive because of its simplicity
and ease of implementation, and can bring significant
benefits to its participant.
To illustrate, let us consider three different CPs, named

CP1, CP2, and CP3, whose operational scenarios are
characterized by the values shown in Table 1, where
we report the characteristics of the host classes (Ta-
ble 1(a)), of the VM classes (Table 1(b)), and the re-
source shares of each VM class (Table 1(c)). Assume,
for the moment, that we have both a way to compute
the set of hosts that must be switched on to minimize
energy consumption (a suitable optimization problem
is presented in Section 3.3), and a profit distribution
rule that yields suitable revenues to CPs hosting exter-
nal VMs, so that the minimization of the energy con-
sumption within a federation of CPs corresponds to the
maximization of their net profit rates (such a rule is

1In this paper, the terms federation and coalition (which is
widely adopted in the game-theoretic community) are used
interchangeably.

Table 1: Operational scenarios of CP1, CP2, CP3

(a) Characteristics of host classes

Host Class CPU RAM Cmin/Cmax

(GB) (W)

1 2× Xeon 5130 16 86.7/274.9
2 Xeon X3220 32 143.0/518.4
3 2× Xeon 5160 64 490.1/1, 117.8

(b) Characteristics of VM classes
VM Class Processor #CPUs RAM

(GB)

1 AMD Opteron 144 1 1
2 AMD Opteron 144 2 2
3 AMD Opteron 144 4 4

(c)Per-VM physical resource shares
Host Class Class-1 VM Class-2 VM Class-3 VM

1 (0.20, 0.062500) (0.4, 0.12500) (0.8, 0.2500)
2 (0.15, 0.031250) (0.3, 0.06250) (0.6, 0.1250)
3 (0.10, 0.015625) (0.2, 0.03125) (0.3, 0.0625)

Table 2: Scenario 1 results
CP Powered-on Consumed Power Energy Cost

Hosts (kW) ($/hour)

(a) no federation among CPs

CP1 10 2.37 0.95
CP2 10 3.68 1.47
CP3 4 3.84 1.54

Total 24 9.89 3.96

(b) federation among all the CPs

CP1 30 7.12 2.85
CP2 0 0.00 0.00
CP3 0 0.00 0.00

Total 30 7.12 2.85

discussed in Section 3.1).
Now, let us consider a simple scenario (that we name

Scenario 1) in which each CP owns 30 hosts of a single
class, and in particular that CP1, CP2, and CP3 own
only class-1, class-2, and class-3 hosts, respectively; fur-
thermore, all the CPs have the same workload (in par-
ticular, each CP has to allocate 10 class-3 VMs) and
energy cost (0.4 $/kWh).
If each CP uses only its own resources and allocate its

own workload (i.e., no federation is formed), it achieves
the energy cost rate reported in Table 2(a), where also
the total cost rate is reported. If, conversely, they form
a grand coalition (i.e, they jointly perform a global
workload allocation using the union of their respective
host sets), their corresponding individual and overall
energy cost rates are reported in Table 2(b).
As can be seen from these results, the grand coali-

tion yields a smaller total cost rate of energy that, as
discussed before in Section 2.1, corresponds to a larger
net profit rates for the individual CPs. In particular,
the overall energy cost rate is reduced by 28% (from
3.96 $/hour to 2.85 $/hour), thanks to the fact that in
the federation case only the hosts belonging to CP1 are
used to run all the VMs.
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Table 3: Scenario 2 results
CP Powered-on Consumed Power Energy Cost

Hosts (kW) ($/hour)

(a) no federation among CPs

CP1 22 10.47 4.19
CP2 13 14.03 5.61
CP3 13 14.03 5.61

Total 48 38.53 15.41

(b) federation among all CPs

CP1 41 19.71 7.89
CP2 9 9.93 3.97
CP3 4 4.47 1.79

Total 54 34.11 13.65

(c) CP1 and CP2 federated among them, CP3 alone

CP1 42 20.20 8.08
CP2 0 0.00 0.00
CP3 13 14.03 5.61

Total 84 34.23 13.69

Given the benefits resulting from the grand coalition
in this example, it is natural to speculate whether the
problem of computing a federation set really arises in
practice.
Unfortunately, as shown below, there are cases when

the grand coalition does not represent the best solu-
tion for all the involved CPs. Indeed, consider another
scenario (that we name Scenario 2) where the charac-
teristics of the hosts and of the VMs are the same as
before (see Table 3), but the number and type of hosts
and VMs differ from those assumed in Scenario 1. In
particular, now CP1 owns 42 class-2 hosts and its work-
load consists in 65 class-2 VMs, while CP2 and CP3 own
41 class-3 hosts each and both have 61 class-2 VMs as
workload.
The individual and overall energy cost rates corre-

sponding to the optimal solution for the no federation
and the grand coalition cases are reported in Table 3(a)
and (b), respectively. Again, we observe a reduction of
the energy cost in the grand coalition case (seeTable 3(a)
and (b)), although this reduction is smaller than in the
Scenario 1 case (it amounts to 11.4%).
However, by looking at the results in Table 3(c), we

can observe that if CP1 and CP2 federate among them
and exclude CP3, their overall energy consumption rate
is smaller than in the case of the grand coalition, al-
though the overall cost involving all three CPs is higher.
As a matter of fact, in the grand coalition the joint cost
rate of CP1 and CP2 amounts to 7.89 + 3.97 = 11.86
$/hour, while in the sub-coalition case it amounts to
8.08 $/hour. This means that CP1 and CP2 have an in-
centive to leave the grand coalition (in case it has been
formed) and to form a federation including only them
or, said in game-theoretic words, the grand coalition is
unstable (we discuss this concept in Section 3).

This example shows that a more sophisticated solu-
tion than simply forming the grand coalition is neces-
sary in order to ensure stability and that, as a general
rule, the resulting federation set may include several
federations.

3. THE COOPERATIVE CP GAME
As illustrated in the previous section, a CP must con-

sider various factors before deciding whether to join or
not a federation. Among them, the most important
ones are:

• Stability : a federation is stable if none of its par-
ticipants finds that it is more profitable to leave it
(e.g., to stay alone or to join another federation)
rather than cooperating with the other ones.

• Fairness: when joining a federation, a CP expects
that the resulting profits are fairly divided among
participants. As unfair division leads to instability,
it is necessary to design an allocation method that
ensures fairness.

In this section, we model the problem of coalition for-
mation as a coalition formation cooperative game with
transferable utility [32, 34], where each CP cooperates
with the other ones in order to maximize its net profit
rate, and we present a distributed algorithm for solving
this problem.

3.1 Characterization
Given a set N = {1, 2, . . . , n} of CPs (henceforth also

referred to as the players), a coalition S ⊆ N represents
an agreement among the CPs in S to act as a single
entity (i.e., S is a federation of CPs). Specifically, in
this paper, a coalition S implies that the CPs belonging
to S perform a global allocation of their joint workload
JS by using as host set the union HS of their host sets.
In other words, the CPs of the coalition act as a single
CP with a load that is the composition of the loads and
with a host set that is a composition of the host sets of
the coalition.
A coalition S is associated with a revenue rate r

(
JS

)
and with an energy cost rate e

(
JS ,HS

)
. The revenue

rate of S is simply the sum of revenue rates of individual
VMs j ∈ JS , while e

(
JS ,HS

)
can be derived by mini-

mizing the energy cost resulting from the allocation of
the workload JS on the host set HS (we discuss this in
Section 3.3).
We model the system under study by using the most

common form of cooperative games, i.e., the character-
istic form [32], where the value of a coalition S depends
solely on the members of that coalition, with no depen-
dence on how the players in N \S are structured (where
N \ S denotes the set difference).
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Given the above definitions, for the system under
study we define the coalition value v(·) as:

v
(
S
)
=

∑
i∈S

∑
j∈Ji

ri
(
q(j)

)
− e

(
JS ,HS

)
(1)

where q(j) is the class of VM j (see Section 2.1).
The value v

(
S
)
must be divided, according to a given

rule, among the participants to S. The share xi(S)
of v

(
S
)
received by CP i is its payoff, and the vector

x(S) ∈ IR|N |, with each component xi(S) being the
payoff of CP i ∈ S, is the payoff allocation.
In our cooperative game, CPs seek to form coalitions

in order to increase their payoffs. As discussed at the
beginning of this section, payoffs should be fairly allo-
cated so that stable coalitions can form.
In order to ensure fairness in the division of payoffs,

we use the Shapley value [42], a solution method that
is based on the concept of marginal contribution. 2

In particular, the Shapley value of player i can be
defined as:

ϕi

(
v
)
=

∑
S⊆N\{i}

∣∣S∣∣!(n−
∣∣S| − 1

)
!

n!

(
v
(
S ∪{i}

)
−v

(
S
))
(2)

where the sum is over all subsets S not containing i.
It is important to note that since the Shapley value

for a player is based on the concept of the player’s
marginal contribution to a coalition (i.e., the change
in the worth of a coalition when the player joins to that
coalition), the larger is the contribution provided by a
player to the coalition, the higher is the payoff allocated
to it. This means that, in a given CP federation, some
“more-contributing”CP will be rewarded by other “less-
contributing” CPs to be enrolled in the federation.
Let us now discuss the stability. In game theory, a

typical way to guarantee stability is to ensure that the
allocation of payoffs falls in the so called core [32], that
can be intuitively defined as the set of payoff allocations
that guarantees that no group of players has an incen-
tive to leave the coalition N to form another coalition
S ⊂ N . It can be shown that a game with a non-empty
core contains allocations that can be voluntarily agreed
by all players and are thereby stable, while in a game
with an empty core, some players (or groups of players)
are better off when acting alone than when cooperating
all together (the grand coalition N ).
Unfortunately, it can be shown that the core of co-

operative CP game defined above can be empty (see
Section A for a formal proof of this statement).
To illustrate the effects of a game with an empty core,

we return to the Scenario 2 example of Section 2.2, and
we compute the coalition values and payoffs correspond-

2More specifically, we use the Aumann-Dréze value [8],
which is an extension of the Shapley value for games with
coalition structures.

maximize z = x0 + x1 + x2

subject to

x0 ≥ 6.21,

x1 ≥ 4.15,

x2 ≥ 4.15,

x0 + x1 ≥ 12.08,

x0 + x2 ≥ 12.08,

x1 + x2 ≥ 8.49,

x0 + x1 + x2 = 16.27,

x0 ≥ 0,

x1 ≥ 0,

x2 ≥ 0.

Figure 1: The optimization model to test the
emptiness of the core for the Scenario 2

Table 4: Scenario 2: Coalition values and payoffs

Coalition v(·) ϕi(v)

{1} 6.21 {6.21}
{2} 4.15 {4.15}
{3} 4.15 {4.15}

{1, 2} 12.08 {7.07, 5.01}
{1, 3} 12.08 {7.07, 5.01}
{2, 3} 8.49 {4.25, 4.25}

{1, 2, 3} 16.27 {7.31, 4.48, 4.48}

ing to all the federations that can be formed by the three
involved CPs. From these values, that are tabulated in
Table 4, we note that for the grand coalition we have
that ϕ1(v) + ϕ2(v) = 11.79, while for the smaller coali-
tion {1, 2} it results that v

(
{1, 2}

)
= 12.08. That is, for

CP1 and CP2, the coalition {1, 2} is more convenient
than the grand coalition, or, in other words, the grand
coalition is unstable. More formally, we can prove that,
for the Scenario 2, the core is empty by simply solving
the optimization problem shown in Figure 1, which di-
rectly derives from the definition of the core (e.g., see
[32]), to find one of the imputations (if any) inside the
core. This optimization problem is infeasible (i.e., it
does not exist any payoff vector (x0, x1, x2) that sat-
isfies the core conditions) and hence the core is empty.
These results thus confirm the intuition provided in Sec-
tion 2.2, i.e., that in some situations the grand coalition
may lead to instability.
It is important to note that, in general, the emptiness

of the core does not depend on the particular payoff
allocation strategy, but it is instead a peculiarity of the
game. In order to solve this problem, we have thus
to resort to a specific type of cooperative game, the so
called coalition formation cooperative game (see [7, 16,
34]) that, as shown later, achieves stability by forming
independent and disjoint smaller coalitions when the
grand coalition does not form (as in the Scenario 2 case
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discussed above).
More specifically, we consider a class of coalition for-

mation games known as hedonic games [12, 16]. Hedo-
nic games can be seen as special cases of cooperative
games where a player’s preferences over coalitions de-
pend only on the composition of his coalition. That is,
players prefer being in one coalition rather than in an-
other one purely based on who else is in the coalitions
they belong.
Let us reformulate our cooperative CP game as a he-

donic game. Given the set N = {1, 2, . . . , n} of play-
ers (i.e., CPs), we define a coalition partition as the
set Π = {S1,S2, . . . ,Sl} that partitions the CPs’ set N .
That is, for k = 1, . . . , l, each Sk ⊆ N is a disjoint coali-
tion such that

∪l
k=1 Sk = N and Sj ∩Sk = ∅ for j ̸= k.

Given a coalition partition Π, for any CP i ∈ N , we
denote by SΠ(i) the coalition Sk ∈ Π such that i ∈ Sk.
To set up the coalition formation process, we need to

define a preference relation so that each CP can order
and compare all the possible coalitions it belongs and
hence it can build preferences over them. Formally, for
any CP i ∈ N , a preference relation ⪰i is defined as a
complete, reflexive, and transitive binary relation over
the set of all coalitions that CP i can form (see [12]).
Specifically, for any CP i ∈ N and given S1,S2 ⊆ N ,
the notation S1 ⪰i S2 means that CP i prefers being a
member of S1 over S2 or at least i prefers both coalitions
equally. The strict counterpart of ⪰i is denoted by ≻i

and implies that i strictly prefers being a member of S1

over S2. Note that the definition of a preference rela-
tion is one of the peculiarities of the coalition formation
process. In general, this relation can be a function of
several parameters, such as the payoffs that the players
receive from each coalition, the approval of the coalition
members, and the players’ history, just to name a few.
In our coalition formation CP game, for any CP i ∈

N , we use the following preference relation:

S1 ⪰i S2 ⇐⇒ fi(S1) ≥ fi(S2) (4)

where S1,S2 ⊆ N are two coalitions containing CP i,
and fi(·) is a preference function, defined for any CP
i ∈ N and any coalition S containing i, such that:

fi(S) =

{
xi(S), if S /∈ h(i),

−∞, otherwise.
(5)

where xi(S) is the payoff received by CP i in S, and
h(i) is a history set where CP i stores the identity of
the coalition that it visited and left in the past. The
rationale behind the use of h(·) is to avoid that a CP
visit the same set of coalitions twice (a similar idea has
also been used in previously published work, such as in
[39, 40]). Thus, according to Eq. (5), each CP prefers
to join to the coalition that provides the larger payoff,
unless it has already been visited and left in the past.
The strictly counterpart ≻i of ⪰i is defined by replacing

Step 0: Initialization.
At time t = 0, the CPs are partitioned as:

Π0 =
{{

1
}
,
{
2
}
, . . . ,

{
n
}}

,

h(i) = ∅, ∀i ∈ N .

Step 1: Coalition Formation Stage I.
Given the current coalition partition Πc, each CP i investi-
gates possible hedonic shift operations, in order to look for
a coalition Sk ∈ Πc ∪ ∅ (if any) such that:

Sk ∪ {i} ≻i SΠc (i).

Step 2: Coalition Formation Stage II.
If such coalition Sk is found, CP i decides to perform the
hedonic shift rule to move to Sk:

1. CP i updates its history h(i) by adding SΠc (i).

2. CP i leaves its current coalition SΠc (i) and joins the
new coalition Sk.

3. Πc is updated:

Πc+1 =
(
Πc \

{
SΠc (i),Sk

})
∪
{
SΠc (i) \

{
i
}
,Sk ∪

{
i
}}

.

Otherwise, CP i remains in the same coalition so that:

Πc+1 = Πc

Step 3: Coalition Formation Stage III.
Repeat Step 1 and Step 2 until all CPs converge to a final
partition Πf .

Figure 2: The Distributed Coalition Formation
Algorithm

≥ with > in Eq. (4).

3.2 A Distributed Coalition Formation Algo-
rithm

We are now ready to define our distributed algorithm
for coalition formation that allows each player to decide
in a selfish way to which coalitions to join at any point
in time.
This algorithm is based on the following hedonic shift

rule (see [38]): given a coalition partition Π = {S1, . . . ,Sl}
on the setN and a preference relation ≻i, any CP i ∈ N
decides to leave its current coalition SΠ(i) and join an-
other coalition Sk ∈ Π∪∅ (with Sk ̸= SΠ(i)) if and only
if Sk ∪ {i} ≻i SΠ(i). The shift rule can be seen as a
selfish decision made by a CP to move from its current
coalition to a new one, regardless of the effects of this
move on the other CPs.
Whenever a CP i applies this rule, it updates its his-

tory set h(i) to store the coalition SΠ(i) it is leaving.
After the rule is applied, the partition Π changes into a
new partition Π′, such that:

Π′ =
(
Π \

{
SΠ(i),Sk

})
∪
{
SΠ(i) \

{
i
}
,Sk ∪

{
i
}}

(6)

Using the hedonic shift rule and the preference re-
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lation defined in Eq. (4) and Eq. (5), we construct a
distributed coalition formation algorithm, shown in Fig-
ure 2.
To implement the proposed algorithm in a real en-

vironment, a suitable approach must be taken. For a
centralized approach, CPs can rely to a central coordi-
nator, to which CPs communicate their decisions and
from which CPs obtain information to update their local
state. For what regards a distributed approach, suitable
techniques for neighbor discovering, communication and
synchronization must be used. To this end, well-known
algorithms exist in distributed and multi-agent systems
literature (e.g., see [15, 46]).
It is worth noting that the presented algorithm can

be executed at specific instants of time or when new
VM requests arrive to CPs, thus making our coalition
formation mechanism able to adapt to environmental
changes.
We now prove that our algorithm always converges

to a stable partition.

Proposition 1. Starting from any initial coalition
structure Π0, the proposed algorithm always converges
to a final partition Πf .

Proof. The coalition formation phase can be mapped
to a sequence of shift operations. That is, according
to the hedonic shift rule, every shift operation trans-
forms the current partition Πc into another partition
Πc+1. Thus, starting from the initial step, the algo-
rithms yields the following transformations:

Π0 → Π1 → · · · → Πc → Πc+1 (7)

where the symbol → denotes the application of a shift
operation. Every application of the shift rule generates
two possible cases: (a) Sk ̸= ∅, so it leads to a new coali-
tion partition, or (b) Sk = ∅, so it yields a previously
visited coalition partition with a non-cooperatively CP
(i.e., with a coalition of size 1). In the first case, the
number of transformations performed by the shift rule
is finite (at most, it is equal to the number of parti-
tions, that is the Bell number; see [37]), and hence the
sequence in Eq. (7) will always terminate and converge
to a final partition Πf . In the second case, starting
from the previously visited partition, at certain point
in time, the non-cooperative CP must either join a new
coalition and yield a new partition, or decide to remain
non-cooperative. From this, it follows that the number
of re-visited partitions will be limited, and thus, in all
the cases the coalition formation stage of the algorithm
will converge to a final partition Πf .

We address the stability of the final partition Πf by
using the concept of Nash-stability (see [12]). Intu-
itively, a partition Π is considered Nash-stable if no CP
has incentive to move from its current coalition SΠ(i)
to join a different coalition of Π, or to act alone. More

formally, a partition Π = {S1, . . . ,Sl} is Nash-stable if
∀i ∈ N , SΠ(i) ⪰i Sk ∪ {i} for all Sk ∈ Π ∪ ∅.
Let us show that the partition to which our algorithm

converges is Nash-stable.

Proposition 2. Any final partition Πf resulting from
the algorithm presented in Figure 2 is Nash-stable.

Proof. To show this, we use the proof by contradic-
tion technique. Assume that the final partition Πf is
not Nash-stable. Consequently, there exists a CP i ∈ N
and a coalition Sk ∈ Πf∪∅ such that Sk∪{i} ≻i SΠf

(i).
Then, CP i will perform a hedonic shift operation and
hence Πf → Π′

f . This contradicts the assumption that
Πf is the final outcome of our algorithm.

The Nash-stability also implies the so called individual-
stability (see [12]). A partition Π = {S1, . . . ,Sl} is
individually-stable if do not exist a player i ∈ N and
a coalition Sk ∈ Π ∪ ∅ such that Sk ∪ {i} ≻i SΠ(i) and
Sk ∪ {i} ⪰j Sk for all j ∈ Sk.
It is worth noting that Nash-stability only captures

the notion of stability with respect to movements of
single CPs (i.e., no CP has an incentive to unilaterally
deviate). However, it does not guarantee the stability
with respect to other aspects that are instead captured
by other stability concepts. For instance, the stability
with respect to movements of groups of CPs is captured
by the core-stability (see [12]), whereby no group of CPs
can collectively defect and form a new coalition where
each of them is better off. Unfortunately, the two sta-
bility concepts are not related each other, in general
(i.e., one stability concept does not necessarily imply
the other one). Moreover, there exist other stronger
stability concepts but unfortunately there is not war-
ranty that a satisfying partition does exist (e.g., see [9])
and the check for the existence is computationally hard
(e.g., see [10]). Finally, Nash-stability does not guaran-
tee the maximization of the overall net profit (e.g., the
social optimum in the game-theoretic jargon) [22]. De-
spite all of that, Nash-stability is generally considered
a reasonable trade-off.
Thus, we can conclude that our algorithm always con-

verges to a partition Πf which is both Nash-stable and
individually stable.

3.3 Computation of the Coalition Value
To use the game-theoretic model discussed in the pre-

vious section, we need a way to find (for a given coali-
tion) the optimal workload allocation (i.e., the alloca-
tion that minimizes the energy cost), that allows us to
compute the coalition value.
To this end, we define a Mixed Integer Linear Pro-

gram (MILP) modeling the problem of allocating a set
JS of VMs onto a set HS of hosts so that the hourly
energy cost is minimized.
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We base our MILP on the model described in [13],
that has been first revised to improve its computational
performance and then extended in order to incorporate
the heterogeneity of physical resources and the energy
cost.
The resulting optimization model is shown in Fig-

ure 3, where we use the same notation introduced in
Section 2.1,3 and we denote with o(i) the function that
is 1 if host i is powered on and 0 otherwise (i.e., a func-
tion o : H → {0, 1}), with Lk and Sk the power (in W)
consumed during the switch-on and switch-off opera-
tions of a host of class k, respectively, with Gi1,i2,v the
hourly cost (in $/hour) to migrate a VM of class v from
CP i1 to CP i2, with Ei the hourly cost (in $/Wh) of
the energy consumed by a host belonging to CP i, with
c(i) the function that gives the CP that owns host i (i.e,
a function c : H → N ), and with h(j) the function that
gives the host where VM j is allocated (i.e., a function
h : J → H).
In the optimization model we define, for any VM

j ∈ J and host i ∈ H, the following decision variables:
bji is a binary variable that is equal to 1 if VM j is
allocated to host i; αi is a real variable representing the
overall fraction of CPU assigned to all VMs allocated
on host i; pi is a binary variable that is equal to 1 if
host i is powered on. The objective function e

(
J ,H

)
(hereafter, e for short) represents, for a specific assign-
ment of decision variables, the hourly energy cost (in
$/hour) due to the power consumption induced by the
federation of CPs to host the given VMs.
The resulting VM allocation is bound to the following

constraints:

• Eq. (8b) imposes that each VM is hosted by ex-
actly one host;

• Eq. (8c) states that only hosts that are switched
on can have VMs allocated to them; the purpose of
these constraints is to avoid that a VM is allocated
to a host that will be powered off;

• Eq. (8d) ensures that (1) the CPU resource of a
powered-on host is not exceeded, and (2) that no
CPU resource is consumed on a host that will be
powered off;

• Eq. (8e) assures that (1) the RAM resource of a
powered-on host is not exceeded, (2) that VMs
hosted on that host receive their required amount
of RAM, and (3) that no RAM resource is con-
sumed on a host that will be powered off;

• Eq. (8f) states that all VMs must exactly obtain
the amount of CPU resource they require;

3To ease readability, we simplify it by denoting with J and
H the cloud workload and the host set, respectively (i.e., we
omit the dependence by S).

minimize e =
∑
i∈H

[
piC

min
g(i) + αi

(
Cmax

g(i) − Cmin
g(i)

)
+ pi(1− o(i))Lg(i) + (1− pi)o(i)Sg(i)

]
Ec(i)

+
∑
j∈J

bjiGc(h(j)),c(i),q(j) (8a)

subject to ∑
i∈H

bji = 1, j ∈ J , (8b)

∑
j∈J

bji ≤ |J |pi, i ∈ H, (8c)

αi ≤ pi, i ∈ H, (8d)∑
j∈J

bjiMq(j)g(i) ≤ pi, i ∈ H, (8e)

∑
j∈J

bjiAq(j)g(i) = αi, i ∈ H, (8f)

bji ∈ {0, 1}, j ∈ J , i ∈ H, (8g)

αi ∈
[
0, 1

]
, i ∈ H, (8h)

pi ∈ {0, 1}, i ∈ H. (8i)

Figure 3: The VM allocation optimization model

• Eq. (8g), Eq. (8h), and Eq. (8i) define the domain
of decision variables bji, αi, and pi, respectively.

As in [13], in order to keep into considerations QoS re-
quirements related to each class of VMs, we assumed
that each VM j exactly obtains the amount of CPU
CPU q(j) and RAM RAM q(j) as defined by its class q(j)
(see Section 2.1).

4. EXPERIMENTAL EVALUATION
To illustrate the effectiveness of our algorithm for

coalition formation, we perform a set of experiments
in which we compute the federation set for various sce-
narios including a population of distinct CPs.
In all scenarios, we consider 4 CPs, whose infrastruc-

tures are characterized as reported in Table 5, and we
use the same host classes, VM classes and VM shares
as the ones defined in Table 1. We also assume that

Table 5: Experimental evaluation – Configura-
tion of CPs

CP # Hosts
Class-1 Class-2 Class-3

CP1 40 0 0
CP2 0 40 0
CP3 0 0 40
CP4 15 15 10

all CPs use the same revenue rate policy, that is they
earn 0.08 $/hour for class-1 VMs, 0.16 $/hour for class-
2 VMs, and 0.32 $/hour for class-3 VMs. Furthermore,

8



without loss of generality, we also assume that the elec-
tricity price is the same for all CPs and it is equal to
0.4 $/kWh.
Starting from this configuration, we set up 400 sce-

narios that differ from each other in the workload of the
various CPs, in the power state of each host and in the
VM migration costs. Specifically, in each scenario the
workload of each CP is set by randomly generating the
number of VMs of each class as an integer number uni-
formly distributed in the [0, 20] interval. In addition, to
provide values to function o(·), we randomly generate
the power state (i.e., ON or OFF) of each host accord-
ing to a Bernoulli distribution with parameter 0.5. Fur-
thermore, the values for Lk and Sk, for each host class
k, are computed as the product of the electricity price,
the maximum power consumption and the time taken
to complete the switch-on or switch-off operation. This
switch-on/-off time is randomly generated for each host
class according to a Normal distribution with mean of
300 µsec and standard deviation (S.D.) of 50 µsec (e.g.,
see [27]). Finally, the VM migration costs Gc1,c2,k from
CP c1 to CP c2 for each VM class k are computed as the
product between the data transfer cost rate, the data
size to transfer and the time to migrate a VM of class k
from CP c1 to CP c2, and assuming that our algorithm
activates every 12 hours. The data transfer cost rate is
taken from the Amazon EC2 data transfer pricing [1]
and set to 0.001 $/GB. Furthermore, we suppose that
data are persistently transferred during the migration
time at a fixed data rate of 100 Mbit/sec for all CPs.
For what concerns the migration time, we assume that
it is randomly generated according to a Normal distri-
bution with mean of 277 sec and S.D. of 182 sec for VMs
of class 1, with mean of 554 sec and S.D of 364 sec for
VMs of class 2, and with mean of 1108 sec and S.D. of
728 sec for VMs of class 3 (e.g., see [5]). The migration
cost between hosts of the same CP is assumed to be
negligible.
For each one the above scenario, we compute the fed-

eration set of the involved CPs by using an ad-hoc sim-
ulator written in C++ and interfaced with CPLEX [3] to
solve the various instances of the optimization model of
Section 3.3.
In the rest of this section, we first present a summary

of the performance obtained by our algorithm over all
scenarios, and then, we illustrate its behavior by show-
ing its run trace for one of these scenarios.
In Figure 4, we compare the performance of each sce-

nario in terms of energy saving and net profit obtained
with our algorithm with respect to the no-federation
case (i.e., when CPs work in isolation). Specifically, the
figures show, for each scenario, the percentage of the
reduction of energy consumption (see Figure 4a) and of
the increment of net profit (see Figure 4b) that all CPs
obtain when they federate according to our algorithm
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Figure 4: Performance of our algorithm with re-
spect to the no-federation case

with respect to the case of working individually. As can
be seen from the figures, our algorithm, with respect
to always work non-cooperatively, allows the CPs to re-
duce the overall consumed energy from 11.3% to 33.6%
(with an average of 21.6%), and to increment the over-
all net profit from 5.1% to 20.1% (with an average of
10.5%).
We can also analyze the benefits provided by our algo-

rithm from the point of view of each CP. Results from
our experiments show that, from the CP perspective,
the formation of federations yielded by our algorithm is
always non-detrimental. Specifically, it results that, on
average, the net profit earned by CP1, CP2, CP3 and
CP4 increases by nearly 18.0%, 8.5%, 22.8% and 4.3%
with respect to the no-federation case, respectively.
Finally, to illustrate how our algorithm works, we

present the run trace for a single scenario, whose char-
acteristics are reported in Table 6. 4 We select this sce-
nario to illustrate the behavior of the algorithm when
there are multiple Nash-stable partitions. 5

For this investigation, we show in Table 7 all possible
partitions together with the value function v(·) of every
coalition inside each partition, and the corresponding
Shapley values. 6 From the table, we can see that there
are two Nash-stable coalitions, namely

{
1, 2, 3, 4

}
and{

{1, 3}, {2, 4}
}
. To arrive to one of these partitions,

4Due to lack of space, we only report the number of VMs.
5Note, our algorithm’s output is always a single partition.
6Note, our algorithm does not necessarily enumerate all of
such partitions.
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Table 6: Experimental results – Workload of
CPs in the case study

CP # VMs
Class-1 Class-2 Class-3

CP1 0 12 13
CP2 18 5 11
CP3 17 18 11
CP4 3 2 0

our algorithm works as follows. Starting from partition{
{1}, {2}, {3}, {4}

}
(i.e., every CP works individually),

there are two different sequences of hedonic shift rules:

• Sequence #1:
{
{1}, {2}, {3}, {4}

} 3−→
{
{1, 3}, {2}, {4}

} 2−→{
{1, 2, 3}, {4}

} 4−→
{
{1, 2, 3, 4}

}
• Sequence #2:

{
{1}, {2}, {3}, {4}

} 3−→
{
{1, 3}, {2}, {4}

} 2−→{
{1, 3}, {2, 4}

}
where the index on top of each arrow denotes the CP
that performs the corresponding hedonic shift rule.
Regardless what partition is finally selected, from the

third column of Table 7 we can also observe that, for
this scenario, the partition value improvement for both
Nash-stable partitions with respect to the non-cooperative
behavior (i.e., partition

{
{1}, {2}, {3}, {4}

}
) is about

10% for partition
{
{1, 3}, {2, 4}

}
and nearly 17% for

the grand-coalition.

5. RELATED WORKS
Recently, the concept of cloud federations [36, 29] has

been proposed as a way to provide individual CPs with
more flexibility when allocating on-demand workloads.
Existing work on cloud federations has been mainly fo-
cused on the development of architectural models for
federations [18], and of mechanisms providing specific
functionalities (e.g., workload management [31, 25], ac-
counting and billing [17], and pricing [23, 24, 28, 43]).
To the best of our knowledge, very little work has

been carried out to jointly tackle the problem of dy-
namically forming stable cloud federations for energy-
aware resource provisioning. Indeed, much of the exist-
ing work only focuses on a single aspect of the problem.
In [19], the design and implementation of a VM sched-
uler for a federation of CPs is presented. The scheduler,
in addition to manage resources that are local to each
CP, is able to decide when to rent resources from other
CPs, when to lease own idle resources to other CPs, and
when to turn on or off local physical resources. Unlike
our work, this work does not consider the problem of
forming stable CP federations. In [30], a cooperative
game-theoretic model for federation formation and VM
management is proposed. In this work, the federation
formation among CPs is analyzed using the concept of
network games, but the energy minimization problem
is not considered.

In [26], a profit-maximizing game-based mechanism
to enable dynamic cloud federation formation is pro-
posed. The dynamic federation formation problem is
modeled as a hedonic game (like our approach), and
the federations are computed by means of a merge-split
algorithm. There are several important differences be-
tween this and our works: (1) we focus on the stability
of individuals rather than of groups, (2) we propose a
decentralized algorithm, (3) we demonstrate the stabil-
ity of the obtained federations, and (4) we use the Shap-
ley value instead of the normalized Banzhaf value (as in
[26]), since the latter does not satisfy some important
properties [44].
In [41], the problem of sharing unused capacity in a

federation of CPs for VM spot market is formulated as a
non-cooperative repeated game. Specifically, by using a
Markov model to predict future non-spot workload, the
authors introduce a set of capacity sharing strategies
that maximize the federation’s long-term revenue and
propose a dynamic programming algorithm to find the
allocation rules needed to achieve it. Our work can
complement this approach by providing a solution to the
formation of CP federations for non-spot VM instances.

6. CONCLUSIONS AND FUTURE WORKS
This paper investigates a novel dynamic federation

scheme among a set of CPs. To this end, we propose
a cooperative game-theoretic framework to study the
federation formation problem, and a mathematical op-
timization model to allocate CP workload in an energy-
aware fashion, in order to reduce CP energy costs.
In the proposed scheme, we model the cooperation

among the CPs as a coalition game with transferable
utility and we devise a distributed hedonic shift algo-
rithm for coalition formation. With the proposed al-
gorithm, each CP individually decides whether to leave
the current coalition to join a different one according
to his preference, meanwhile improving the perceived
net profit. Furthermore, we prove that the proposed
algorithm converges to a Nash-stable partition which
determines the resulting coalition structure. Numerical
results show the effectiveness of our approach.
The future developments of this research is following

several directions. First of all, we would like to enhance
the coalition value function in order to account for pos-
sible request losses due to lack of physical resources.
Furthermore, we want to improve the game-theoretic
and optimization models in order to include costs in
terms of loss of revenues as well as other aspects like
the ones related to trustworthiness among CPs.
As a second direction, we plan to integrate the long-

term resource provisioning solution proposed in this pa-
per with other short-term and medium-term resource
management strategies (e.g., [6, 21]) to improve resource
utilization and meet application-level performance re-
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Table 7: Experimental results – Coalition values and Shapley values for all the 15 different partitions
of the case study

Π =
{
S1, . . . ,Sl

} {
v
(
S1

)
, . . . , v

(
Sl

)} ∑
Si∈Π v(Si)

{
ϕS1 , . . . , ϕSl

}
{{

1
}
,
{
2
}
,
{
3
}
,
{
4
}} {

4.28, 3.45, 3.84, 0.38
}

11.95
{{

4.28
}
,
{
3.45

}
,
{
3.84

}
,
{
0.38

}}{{
1, 2

}
,
{
3
}
,
{
4
}} {

8.22, 3.84, 0.38
}

12.44
{{

4.52, 3.70
}
,
{
3.84

}
,
{
0.38

}}{{
1, 3

}
,
{
2
}
,
{
4
}} {

9.59, 3.45, 0.38
}

13.42
{{

5.01, 4.57
}
,
{
3.45

}
,
{
0.38

}}{{
1
}
,
{
2, 3

}
,
{
4
}} {

4.28, 7.82, 0.38
}

12.48
{{

4.28
}
,
{
3.72, 4.10

}
,
{
0.38

}}{{
1, 4

}
,
{
2
}
,
{
3
}} {

4.69, 3.45, 3.84
}

11.98
{{

4.29, 0.40
}
,
{
3.45

}
,
{
3.84

}}{{
1
}
,
{
2, 4

}
,
{
3
}} {

4.28, 4.33, 3.84
}

12.45
{{

4.28
}
,
{
3.70, 0.63

}
,
{
3.84

}}{{
1
}
,
{
2
}
,
{
3, 4

}} {
4.28, 3.45, 5.43

}
13.16

{{
4.28

}
,
{
3.45

}
,
{
4.44, 0.99

}}{{
1, 2, 3

}
,
{
4
}} {

13.27, 0.38
}

13.65
{{

5.00, 3.70, 4.57
}
,
{
0.38

}}{{
1, 2, 4

}
,
{
3
}} {

8.69, 3.84
}

12.53
{{

4.39, 3.80, 0.50
}
,
{
3.84

}}{{
1, 2

}
,
{
3, 4

}} {
8.22, 5.43

}
13.65

{{
4.52, 3.70

}
,
{
4.44, 0.99

}}{{
1, 3, 4

}
,
{
2
}} {

10.01, 3.45
}

13.46
{{

4.63, 4.78, 0.60
}
,
{
3.45

}}{{
1, 3

}
,
{
2, 4

}} {
9.59, 4.33

}
13.92

{{
5.01, 4.57

}
,
{
3.70, 0.63

}}{{
1, 4

}
,
{
2, 3

}} {
4.69, 7.82

}
12.51

{{
4.29, 0.40

}
,
{
3.72, 4.10

}}{{
1
}
,
{
2, 3, 4

}} {
4.28, 8.88

}
13.16

{{
4.28

}
,
{
3.62, 4.36, 0.90

}}{
1, 2, 3, 4

} {
14.01

}
14.01

{
4.78, 3.78, 4.76, 0.68

}

quirements, and with techniques for incremental VM
migration (e.g., [45]).
Finally, we want to implement and validate the pro-

posed algorithm in a real testbed.
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[24] J. Künsemöller and H. Karl. A game-theoretical
approach to the benefits of cloud computing. In
Proc. of the 8th GECON, 2012.

[25] L. Larsson, D. Henriksson, and E. Elmroth.
Scheduling and Monitoring of Internally
Structured Services in Cloud Federations. In Proc.
of the 16th ISCC, 2011.

[26] L. Mashayekhy and D. Grosu. A coalitional
game-based mechanism for forming cloud
federations. In Proc. of 5th UCC, 2012.

[27] D. Meisner, B. T. Gold, and T. F. Wenisch.
PowerNap: Eliminating server idle power. In
Proc. of the 14th ASPLOS, 2009.

[28] M. Mihailescu and Y.-M. Teo. Dynamic Resource
Pricing on Federated Clouds. In Proc. of the 10th

CCGrid, 2010.
[29] R. Moreno-Vozmediano, R. Montero, and

I. Llorente. IaaS Cloud Architecture: From
Virtualized Data Centers to Federated Cloud
Infrastructure. Computer, 45(12):65–72, 2012.

[30] D. Niyato, Z. Kun, and P. Wang. Cooperative
virtual machine management for
multi-organization cloud computing environment.
In Proc. of the 5th VALUETOOLS, 2011.

[31] A. Nordal, A. Kvalnes, J. Hurley, and
D. Johansen. Balava: Federating Private and
Public Clouds. In Proc. of the 7th SERVICES,
2011.

[32] B. Peleg and P. Sudhölter. Introduction to the
Theory of Cooperative Games. Springer Berlin
Heidelberg, 2nd edition, 2007.

[33] T. E. S. Program. Report to Congress on server
and Data Center energy efficiency. Technical
report, U.S. EPA, Aug 2007.

[34] D. Ray. A Game-Theoretic Perspective on
Coalition Formation. The Lipsey Lectures. Oxford
University Press, 2007.

[35] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A
comparison of high-level full-system power
models. In Proc. of the HotPower, 2008.

[36] B. Rochwerger, D. Breitgand, A. Epstein,
D. Hadas, I. Loy, K. Nagin, J. Tordsson,
C. Ragusa, M. Villari, S. Clayman, E. Levy,
A. Maraschini, P. Massonet, H. Mu noz, and
G. Tofetti. RESERVOIR – When one cloud is not
enough. Computer, 44(2), 2011.

[37] G. Rota. The number of partitions of a set. Am
Math Mon, 71(5):498–504, 1964.

[38] W. Saad, Z. Han, T. Başar, M. Debbah, and
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Table 9: Values of v(·) for CPs coalitions

Coalitions S v
(
S
)

($/hour){
1
}

0.345{
2
}

0.095{
3
}

0.095{
1, 2

}
0.513{

1, 3
}

0.513{
2, 3

}
0.225{

1, 2, 3
}

0.623

APPENDIX
A. THE CORE OF THE COOPERATIVE CP

GAME CAN BE EMPTY
In this section, we present a more formal proof of the

possible emptiness of the core of the cooperative CP
game defined in Section 3.1. To do so, we use the proof
by construction technique, by providing an instance of
the game for which the core is empty.
In cooperative game theory, the Bondareva-Shapley

theorem provides the necessary and sufficient conditions
for the non-emptiness of the core solution concept [32].

Theorem A.1 (Bondareva-Shapley theorem).
Given a cooperative game ⟨N , v⟩, the core of ⟨N , v⟩ is
non-empty if and only if for every function α : 2N \
{∅} → [0, 1] where

∀i ∈ N :
∑

S∈2N : i∈S

α
(
S
)
= 1

the following condition holds:∑
S∈2N \{∅}

α
(
S
)
v
(
S
)
≤ v

(
N
)
. (9)

We now show that for the cooperative CP game there
exists at least one counterexample that violates the con-
ditions Eq. (9) of the Bondareva-Shapley theorem.
Let us consider a simple scenario consisting of the

same host and VM classes as defined in Section 2.2,
and of three CPs, whose characteristics are reported in
Table 8.
We build the cooperative CP game ⟨N , v⟩ where N =

{1, 2, 3} is the set of CPs and v(·) is the same charac-
teristic function defined in Eq. (1). In Table 9, we show
the enumeration of all possible CP coalitions for this
game along with their values. To compute the coalition
value we use the same revenue rate described in Sec-
tion 4, that is 0.08 $/hour for class-1 VMs, 0.16 $/hour
for class-2 VMs, and 0.32 $/hour for class-3 VMs.
Let us choose as function α(·) in A.1 the following

function:

α
(
S
)
=

 1
2 , S ∈

{{
1, 2

}
,
{
1, 3

}
,
{
2, 3

}}
,

0, otherwise.

If the core is non-empty, Eq. (9) would hold. However,
it results that:

v
(
{1, 2, 3}

)
<

1

2
·
(
v
(
{1, 2}

)
+ v

(
{1, 3}

)
+ v

(
{2, 3}

))
That is:

0.623 <
1

2
· (0.513 + 0.513 + 0.225),

0.623 < 0.625.

which clearly violates the conditions Eq. (9) of the Bondareva-
Shapley theorem and hence the core for this game is
empty.
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Table 8: Configuration of CPs

CP # Hosts # VMs Energy Cost
Class-1 Class-2 Class-3 Class-1 Class-2 Class-3 ($/kWh)

CP1 0 2 0 0 4 0 0.4
CP2 1 0 0 0 1 0 0.4
CP3 1 0 0 0 1 0 0.4
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