
17 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

2COMM: A Commitment-Based MAS Architecture

Publisher:

Published version:

DOI:10.1007/978-3-642-45343-4_3

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/145576 since 2016-06-27T23:12:16Z

This is the author’s final version of the contribution published as:

Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2COMM:
a commitment-based MAS architecture. In M. Cossentino, A. El Fallah
Seghrouchni, and M. Winikoff, editors, Proc. of the 1st International Work-
shop on Engineering Multi-Agent Systems, EMAS 2013, held in conjuction
with AAMAS 2013, pages 17-32, St. Paul, Minnesota, USA, May 2013.
ISBN: 978-3-642-45342-7, DOI: 10.1007/978-3-642-45343-4 3

The publisher’s version is available at:
http://dx.doi.org/10.1007/978-3-642-45343-4_3

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/145576

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

2COMM: A commitment-based MAS
architecture

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)

{matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

Abstract. Social expectations and social dependencies are a key char-
acteristic of interaction, which should be explicitly accounted for by the
agent platform, supporting the coordination of the involved autonomous
peers. To this aim, it is necessary to provide a normative characteriza-
tion of coordination and give a social meaning to the agents’ actions. We
focus on one of the best-known agent platforms, Jade, and show that
it is possible to account for the social layer of interaction by exploiting
commitment-based protocols, by modifying the Jade Methodology so as
to include the new features in a seamless way, and by relying on the
notion of artifact, along the direction outlined in the Mercurio proposal.

Keywords: Commitment-based Interaction Protocols, Agents & Artifacts Model,
JADE, JADE Methodology, Agent-Oriented Software Engineering

1 Introduction and Motivation

Interaction creates social expectations and dependencies in the involved partners
[38, 18, 34, 23]. These should be explicitly accounted for by the agent platform to
allow the coordination of autonomous entities. In order to create social expecta-
tions on the agents’ behavior, it is necessary to introduce a normative character-
ization of coordination and give a social meaning to their actions. An agent that
understands such a specification and that publicly accepts it (i.e. that declares it
will behave according to it) allows reasoning about its behavior [21]. This is the
key to the development of open environment systems, made of autonomous and
heterogeneous components. By not supplying such abstractions, current plat-
forms do not supply agents the means for observing or reasoning about such
meanings of interaction, and do not supply the designers the means to explicitly
express and characterize them when developing an interaction model.

One prominent example is JADE [10, 11], which is a well-established devel-
opment environment for multi-agent systems, FIPA-compliant and actually used
for industrial applications, and which notoriously does not provide of a social
and observational semantics. One of the aims of the Mercurio framework [4, 3]
is to fill this gap by introducing in JADE the means for exploiting commitments
and commitment-based protocols, which are well-known for featuring the social

and observational semantics [34, 35, 41], JADE lacks of. Our starting point for
introducing commitment-based protocols inside JADE is the JADE Methodol-
ogy [30]. This methodology is particularly interesting because it is intrinsically
agent-oriented and it is not the adaptation of an object-oriented methodology,
and it combines a top-down approach with a bottom-up one, possibly allowing
the integration with legacy, non agent-based systems. It concerns two of the four
main phases of the standard software development cycle: the analysis phase and
the design phase.

Following [4], we rely on a form of indirect communication among agents
that envisages the use of artifacts: commitment-based communication artifacts
implement interaction protocols as well as monitoring functionalities for the ver-
ification that the on-going interaction respects the protocol, for detecting viola-
tions and violators, and so forth. Artifacts, therefore, encode the social layer of
the multi-agent system: as a programmable communication channel an artifact
contains what in the terminology of commitment protocols is called “the social
state”, and captures it as an interaction session among the parties. Artifacts
also supply agents the social actions that are necessary to the interaction – that
is, actions that allow agents to enter into and to comply with commitments –
together with their social meaning and, as a consequence, they capture the co-
ordination rules of the protocol. The reification of commitment protocols allows
agents to act on them, e.g. to examine them (for instance, to decide whether to
play one of the foreseen roles), use them (which entails that they explicitly ac-
cept the corresponding regulation), negotiate their construction, specialize them,
and compose them. The advantage of relying on indirect communication is that
it allows more variegated ways of interacting, not hindering message exchange
when necessary.

In this paper we show that our proposal can be integrated seamlessly within
the JADE Methodology, simply by substituting the selection of JADE FIPA
protocols with the selection/construction of appropriate communication arti-
facts. We also use the methodology to show the differences between these two
alternatives with the help of an example from a financial setting.

Section 2 reports the relevant background, necessary to understand the pro-
posal. Section 3 is the core of the paper, containing the original proposal. Sec-
tion 4 applies the concepts to an illustrative example, from a financial setting.
A discussion also involving related works ends the paper.

2 Background

We briefly report the technical, methodological and theoretical background re-
quired for our work. We use the proposal in [4] as a high-level reference architec-
ture. In this work, the authors outline the basic ideas for an interaction-oriented
agent framework, grounding the social semantics of interaction on commitments,
and proposing the A&A (Agents and Artifacts) Metamodel as a means to obtain
a form of indirect, observable communication. Let us, then, explain the funda-
mental bricks to build our architecture, whose overview is reported in Figure 1.

JADE framework. JADE is a popular and industry adopted agent framework.
It offers to developers a Java middleware 100% FIPA-compliant (Foundation
for Intelligent Physical Agents, [1]) plus a set of command-line and graphical
tools, supporting development and debugging/testing activities. Its robustness
and well-proven reliability makes JADE a preferred choice in developing MAS.
It is currently used in many research and industrial projects jointly with its
most popular and promising extension, WADE [17]. A JADE-based system is
composed of one or more containers, each grouping a set of agents in a logical
node and representing a single JADE runtime. The overall set of containers is
called a platform, and can spread across various physical hosts. The resulting
architecture hides the underlying layer, allowing support for different low-level
frameworks (JEE, JSE, JME, etc.). The platform reference container is called
main container, and represents the entry point to the system. JADE provides
communication and infrastructure services, allowing agents, deployed in different
containers, to discover and interact with each other, in a transparent way from
the developer’s logical point of view.

Commitment Protocols. Agents share a social state that contains commitments
and other literals that are relevant to their interaction. A commitment C(x, y, r, p)
denotes a contractual relationship between a debtor x and a creditor y: x commits
to y to bring about the consequent condition p when the antecedent condition
r holds. A commitment, when active, functions as a directed obligation from a
debtor to a creditor. However, unlike a traditional obligation, a commitment may
be manipulated, e.g., delegated, assigned, or released [37]. Importantly, commit-
ments have a regulative value: the social expectation is that agents respect the
commitments which involve them and, in particular, the debtor is considered
responsible of realizing the consequent condition. Thus, the agents’ behavior is
affected by the commitments that are present in the social state. A commitment
protocol usually consists of a set of actions, whose semantics is shared (and
agreed upon) by all of the interacting agents [41, 40, 20]. The semantics of the
social actions is given in terms of operations which modify the social state by,
e.g., adding a new commitment, releasing another agent from some commitment,
satisfying a commitment, see [41].

CArtAgO. CArtAgO is a framework based on the A&A model. It extends the
agent programming paradigm with the first-class entity of artifact : a resource
that an agent can use, and that models working environments ([32]). In order to
properly model a MAS, CArtAgO proposes to explicitly model the environment
where pro-active agents live, work, act and communicate. It provides a way to
define and organize workspaces, logical groups of artifacts, that can be joined by
agents at runtime and where agents can create, use, share and compose artifacts
to support individual and collective, cooperative or antagonistic activities. The
environment is itself programmable as a dynamic first class abstraction, it is
an active part of a MAS, encapsulating services and functionalities. The A&A
model decouples the notion of agent from the notion of environment. The overall
engineering of the MAS results more flexible, easy to understand, modular and

reusable. CArtAgO provides an API to program artifacts that agents can use,
regardless of the agent programming language or the agent framework used. This
is possible by means of the agent body metaphor: CArtAgO provides a native
agent entity, which allows using the framework as a complete MAS platform as
well as it allows mapping the agents of some platform onto the CArtAgO agents,
which, in this way, becomes a kind of “proxy” in the artifacts workspace. The
developed agent is the mind, that uses the CArtAgO agent as a body, interacting
with artifacts and sensing the environment. An agent interacts with an artifact
by means of public operations. An operation can be equipped with a guard : a
condition that must hold so that the operation will produce its effects. It is not
an execution condition: when the guard does not hold the action is performed
anyhow but without consequences.

3 Reifying Commitment Protocols with Artifacts

Artifacts naturally lend themselves to provide a suitable means for realizing me-
diated communication channels among agents. To this aim, it is necessary to
encode inside the communication artifacts a normative characterization to the
actions it offers to agents and that allow them to interact. We propose to inter-
pret commitment protocols as environments, within which agents interact. The
public interface of artifacts allows agents to examine the encoded interaction
protocol. As a consequence, the act of using an artifact can be interpreted as
a declaration of acceptance of the coordination rules. This will generate social
expectations about the agent’s behavior and agrees with the characterization
of norms in [21]. Moreover, the fact that the behavior of agents on artifacts is
observable and that interactions only occur through artifacts, agrees with the
view that regulations can only concern observable behavior [22]. The resulting
programmable environment provides a flexible communication channel that is
suitable for realizing open systems. Notice that the use of a programming envi-
ronment does not mean that the social state will necessarily be centralized: an
artifact can be composed by a distributed network of artifacts.

Figure 1 sketches the way in which we propose to use CArtAgO so as to ac-
count also for social commitments inside JADE. We named this first realization
of the Mercurio architecture 2COMM (standing for “Communication & Com-
mitment”). 2COMM realizes mediated interaction by means of communication
artifacts, which, in our proposal, replace the JADE-based FIPA protocols and
which reify commitment-based protocols [4]. At the bottom level, the JADE
framework supplies standard agent services: message passing, distributed con-
tainers, naming and yellow pages services, agent mobility. When needed, an
agent can enact a certain protocol role, thus using a communication artifact by
CArtAgO. This provides a set of operations by means of which agents participate
in a mediated interaction session. Each artifact (protocol enactment) maintains
a social state, that is, a collection of social facts and commitments involving the
roles of the corresponding protocol, following Yolum and Singh’s commitment
protocol model [40].

Agent
1

Agent
2

Agent
3

Agent
4

CommitmentProtocol
ARTIFACT A

CommitmentProtocol
ARTIFACT B CommitmentProtocol

ARTIFACT C

Role x Role y
Role z

Role w
Role h Role nRole m

enacts

CARTAGO

JADE

SOCIAL STATES

Commitments
[1…*]

Social Facts
[0…*]

Commitments
[1…*]

Social Facts
[0…*]

Commitments
[1…*]

Social Facts
[0…*]

Fig. 1. A sketch of 2COMM.

3.1 Communication Artifact

We follow the ontological model for organizational roles proposed in [13, 14],
which is characterized by three aspects: (1) Foundation: a role must always be
associated with an institution it belongs to and with its player; (2) Definitional
dependence: the definition of the role must be given inside the definition of
the institution it belongs to; (3) Institutional empowerment : the actions defined
for the role in the definition of the institution have access to the state of the
institution and of the other roles, thus, they are called powers; instead, the
actions that a player must offer for playing a role are called requirements.

Communication artifacts realize a kind of mediated interaction that is guided
by commitment-based protocols. Figure 2 shows the UML schema of the super-
type of communication artifacts implementing specific interaction protocols (e.g.,
Contract Net, Net Bill, Brokering): the CommitmentCommunicationArtifact. We
call an instance of an artifact of type CommitmentCommunicationArtifact an
interaction session. It represents an on-going protocol interaction, with a specific
social state that is observable by the interacting agents, that play the protocol
roles. The CommitmentCommunicationArtifact presents an observable property,
enactedRoles, that is the collection of the roles of the protocol (definitional de-
pendence [13, 14]). Actions have a social effect only when they are executed by

Observable Properties
socialState: SocialState
enactedRoles: Role [1…*]

<< Artifact >>
CommitmentCommunicationArtifact

Artifact Operations
+ send(message: Message): void
+ receive(): Message

create (commit: Commitment)
discharge (commit: Commitment)
cancel (commit: Commitment)
release (commit: Commitment)
assign (commit: Commitment, role: Role)
delegate (commit: Commitment, role: Role)
assertFact (fact: LogicalExpression)

commitments: Commitment [0…*]
facts: SocialFact [0…*]
context:
 CommitmentCommunicationArtifact

SocialState

+ getFacts ()
+ getCommitments()
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment (commit: Commitment)
+ getContext()

creditor: Role
debtor: Role
antecedent: SocialFact [1…*]
consequent: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor()
+ setCreditor (role: Role)
+ getDebtor ()
+ setDebtor (role: Role)
+ getStatus ()
+ setStatus (status: enum)

id: RoleId
agent: AID
artid: ArtifactId

Role

+ createArtifact (artifactName: String,
artifactClass: Class<? extends
Artifact) : void
+ enact (roleName: String, artifact:
ArtifactID, agent: AID) : Role
+ deact (role: RoleId, artifact:
ArtifactID, agent: AID) : void

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate ()
+ setPredicate (pred: String)
+ getArguments ()
+ setArguments (list: Object [1…*])
+ getFact ()

*1

1

1
1

0…*

1
0…*

0…1

1…*

Fig. 2. The UML Class diagram for the core of 2COMM.

the role they are assigned to, but actions are not defined at this super level, rather
they are provided by the instantiations of the CommitmentCommunicationAr-
tifact, i.e. by artifacts implementing specific protocols. Each protocol action is
implemented as a public operation, which is associated to a role by means of an
operation guard (institutional empowerment [13, 14]): the guard checks who is
performing the operation; if the agent is not the one playing the right role, the
action simply has no effect, otherwise, the fact that the action was executed is
registered in the social state together with its meaning. An action can have some
additional guards, implementing context preconditions: this condition specifies

the context in which it makes sense that the action produces the described social
effect. An artifact can be monitored by an observer agent, that, following the
CArtAgO terminology, is focusing on that artifact, particularly on one or more
public properties. A change of one of these properties causes a signal, from the
artifact to the observer agents, about the property that changed: the agents per-
ceive the new artifact state. In particular, when the creation of a commitment,
involving an agent as a debtor, is signaled to it, this agent is expected to behave
so as to satisfy the commitment. The agent is free to decide how (and if) it will
handle the satisfaction of its commitments. Therefore, the requirement is that
an agent has the capability to behave so as to achieve the involved conditions
[13, 14]. An agent who does not show such capabilities is bound to violate its
commitments.

CommitmentCommunicationArtifact provides a property, tracking the iden-
tity of the agents actually playing the various role. Two operations are provided,
by class Role, in order to manage the association between an agent’s identity and
a role: enact and deact, by means of which an agent can explicitly assume/cease a
protocol role (foundation [13, 14]). After enacting a role, the use of the associated
operations on the artifact will have social consequences.

The communication artifact has an observable property, social state, that is
a set of zero or more elements of type Commitment or Social Fact. As we can
see in Figure 2, these structures are simple Java objects, representing the actual
social state. The artifact is responsible to manage the Social State structure,
i.e. the Commitments life-cycle, as well as the assertion or retraction of social
facts, via methods called on commitment and on social fact objects. For Commit-
ment management, we refer to the basic operations of commitment manipulation
[40]: create, discharge, cancel, release, assign, delegate. The operations regard-
ing the commitments life-cycle are implemented as artifact internal operations,
therefore, the agents cannot modify commitments explicitly. The communication
artifact exposes the social state, whose evolution is controlled by the agents via
the protocol-provided actions. Finally, communication artifacts provide service
operations, which can be performed only by the ArtifactManager Agent (see
below) for managing the protocol roles and the identities of their players.

When the social state property changes, due to the execution of a protocol
action (an artifact operation) on the communication artifact, all of the agents
using the artifact will be notified, allowing them to react (or not) to the evolution
of the interaction. This mechanism is a core part of the CArtAgO framework.

The ArtifactManager Agent plays the role of a Yellow Pages Agent for com-
munication artifacts, or, in other terms, of an artifact broker. It has a crucial
role: it is a “communication channel” broker, gathering requests for both focused
or broadcasting calls for interaction. As such, it provides a collection of utility
services. It supplies information about the interaction protocols (e.g. it provides
the XML describing a given protocol, it allows a search for a protocol, a list
of active communication channels, a list of interacting agents); it answers to
requests about the status of an existing interaction session; it notifies the sub-
scriber agents a particular session availability, and so on. Its main purpose is to

prepare the communication artifact among the interacting agents, and to supply
it to the requesting agents. It can also enable other interested agents to monitor,
audit, or, more generally, observe the social state evolution. The communica-
tions between the ArtifactManager Agent and the requesting agents is realized
via FIPA-ACL messages: when a requester sends a request ACL message to the
ArtifactManager Agent, specifying the protocol and the role it wants to enact,
the latter will do the following steps:

1. Check if the requested protocol is available;
2. Check if the requested role is foreseen by the protocol;
3. Create/retrieve a communication artifact of the requested type;
4. Set the requested artifact role field to the agent identifier (AID) of the re-

quester;
5. Respond to the requester with the artifact’s reference;
6. Possibly inform other interested agents of the availability of the communi-

cation artifact.

The initialization procedure is modeled as a simple FIPA Request Interaction
Protocol, where the content of messages consists of the communication artifact
request parameters. After this phase, the agent can use the enact operation to
start playing the requested role. The use of an agent does not necessarily imply
a centralization of the yellow pages: agents may directly create communication
artifacts; yellow pages can be federated.

3.2 Using Mediated Communication at Runtime

In the following, we show a scenario in which a communication artifact is used,
to better explain how to leverage the communication artifacts and the Artifact-
Manager Agent. We adopt the well-known FIPA Contract Net Protocol (CNP),
modeling it as a commitment-based protocol and implementing a corresponding
artifact. The scenario is depicted in Figure 3.

The JADE infrastructure is extended with the ArtifactManager Agent, that
provides a Yellow Pages service for communication artifacts. It can respond to
ACL Messages, that encode requests of a new Communication Atifact, either
with a Failure message or an Agree message. In the latter case, it will either
prepare a new instance of the requested communication artifact, or it will return
an already existing artifact. For instance, suppose that agent A1 has to assign a
task, and agents A2 and A3 have the capability of performing it. Suppose that
A2 and A3 already registered to the ArtifactManager Agent (ArA for brevity),
and that this has already instantiated a Contract Net Protocol communication
artifact (CNPCA for brevity). At this time, the (partial) state of CNPCA is:

– Initiator: null
– Participants: {A2.AID, A3.AID}

where AID is the JADE Agent Identifier. A1, then, asks ArA for a CNPCA,
following the procedure described before, without specifying a particular partic-
ipant. ArA matches this request with the already prepared CNPCA: the match

CNP
Initiator

CNP
Participant

ArtifactManager
Agent

[JADE]
Directory
Facilitator

Artifact Operations
+ cfp (task: Task)
+ propose (proposal: Proposal)
+ refuse
+ accept
+ reject
+ done
+ failure

Observable Properties
initiator: Role [0…*]
participant: Role [0…*]

<<CommitmentCommunicationArtifact>>
Contract Net Protocol

<register><register>

Request CNP artifact

Provide CNP artifact

Request CNP artifact

Provide CNP artifact

Focus
on Social State

Signal
on Social State

Manage/
Instantiate

Query

Focus
on Social State

Signal
on Social State

Manage
Signal

Manage
Signal

Fig. 3. Possible interactions between the main elements of our proposal, in a CNP
example.

is successful, inasmuch the Initiator role is not played by any agent. So, ArA
stores A1.AID in the Initiator property of CNPCA, and returns its reference
to A1. Following the CArtAgO terminology, agents A1, A2 and A3 focus on
the SocialState property of CNPCA immediately after having its reference. This
means that any change to the social state will be signaled to the three agents,
who can take decisions accordingly. The agents interact with one another via
operations on CNPCA, and observe the social state evolution in order to reason
about which actions to take.

An agent can stop playing a protocol role at anytime by executing the deact
operation. The artifact unregisters its AID from the AID-role mapping list. On
the other hand, an agent may enact a partially executed role within an interac-
tion session. What about commitments in such cases? In this work we focused
only on the communicational and interaction-related aspects of playing protocol
roles: sanctions or other action concerning the institutional (or organizational)
levels are not accounted for yet. Simply, since responsibilities are associated to
roles, deacting a role yields that the resigning agent will not need anymore to
fulfill them, while a substituting agent needs to accept the current commitments
of the role it is assuming [40]. A reference model to include, in the future, also
institutional aspects could be the JaCaMo proposal [15].

3.3 Using Mediated Communication at Design Time

We assume that MAS designers know a collection of communication artifacts,
each representing a commitment-based protocol. Each protocol is enriched with
an XML-based description of it, a Protocol Manual, available both at design- and
at run-time. It is an add-on to the CArtAgO artifact manual, with orthogonal
scopes and purposes. It can be used by MAS and agent designers as a guideline
for understanding whether an agent is suitable for a protocol role as well as for
understanding whether a protocol role suits the purposes of an agent. From a
methodological point of view, the designer needs the Protocol Manual to know
the social consequences of the actions supplied by an artifact, in terms of social
facts and commitments, so he/she can design agent behaviors accordingly. Then,
depending on the implemented behavior, the agent will decide how to use infor-
mation about the social state evolution, how to fulfill commitments, which social
action (i.e. a public artifact operation) to execute and when. Ideally, the designer
should equip the agent with the behaviors that are necessary to bring about the
conditions of the commitments it will possibly take. This protocol-centric design,
jointly with the commitment nature of protocols, avoids a critical facet of JADE
protocols. Here, a pattern of interaction is projected on a set of JADE behaviors,
one for each role, thus making a global view of the protocol and its maintenance
difficult, and binding the very interaction to ad-hoc behaviors. Consequently,
the risk of conflicting behaviors, not devised at design time, increases. This way,
the designer can leverage a library of programmable communication artifacts,
focusing on the internal agent behavior without being concerned about ad-hoc
shaped communication behaviors.

4 JADE Methodology revised

The JADE Methodology is a JADE founded agent-oriented software engineer-
ing methodology. It proposes a fully agent-based approach, instead of adapting
Object-Oriented techniques (like MASE [39], Adelfe [12] or MESSAGE [16]). It
concerns the analysis and the design phases of the software development life
cycle. The methodology considers agents as “pieces of autonomous code, able to
communicate with each other” [30], thus following a weak notion of agency; it
does not account for mentalistic/humanistic agents properties.

In the analysis phase, the first step is the identification of use cases, i.e.
functional requirements of the overall system, which are captured as standard
Use-cases UML Diagrams (Figure 4). Starting from this, the designer can point
out an initial set of agent types: an agent type for each user/device and for
each resource. The agent paradigm foresees that even external devices and soft-
ware/hardware resources (e.g. legacy systems, databases, external data sources)
are represented with an agent. The designer, then, identifies responsibilities, i.e.
the activities provided by system each agent is responsible for; and acquain-
tances, that is relationships between agents aimed at fulfilling some responsi-
bility. The results are a Responsibility table and an Agent diagram (Figure 5)
with initial acquaintances. No distinction is made between acquaintances and

Investor

FinancialMAS
Check

Portfolio

Search
Investment

Data
Insertion

Withdraw

Accept
Proposal

Investment

Classify
Products

Investor
Profiling

<include>

<extends>

Financial
Promoter

Bank

<include>

<include>

<utilizza>

Fig. 4. The FinancialMAS Use Cases.

responsibilities: in fact, the mentioned table will contain both. The analysis is
completed by executing activities related to agents/acquaintances refinement, to
define discover services and to add management/deployment information. The
design phase starts with the interaction specification step, where an interaction
table is produced. It refers to the responsibility table in order to define interac-
tions between JADE agents, specifying the interacting agents, the protocol and
protocol role (e.g. Initiator or Responder), the reference responsibility, and a
triggering condition.

Investor

Financial
Promoter

Bank

Investor
Agent

Financial Provider
Agent

Bank
Agent

Financial
DB

Financial
Promoter

Agent

Integrator Agent

Bank
Legacy

Informative
System

Fig. 5. The FinancialMAS Agent Type Diagram.

It is suggested to use, when possible, standard JADE protocol behaviors,
that must be added to an agent’s behavior set to implement the corresponding
protocol role. The subsequent steps focus on the specification of agent interac-
tions with users and resources; the definition of a yellow page services, using
the JADE Directory Facilitator; the implementation of agent behaviors, starting
from JADE protocol behaviors related to responsibilities. A last effort is the
definition of a shared, system-wide ontology.

Table 1. Responsibility Table for FinancialMAS.

Agent Type No. Responsibility

Investor agent (IA)

1 Let investor search for investments proposals
2 Assist investor in setting search parameters and data
3 Support the individuation of the investor’s risk profile
4 Support in proposal acceptance
5 Withdraw from an investment contract

Financial Promoter agent (FP)
1 Respond to investment searches

2 Assist financial promoter in risk-classifying finan-
cial products

3 Determine the investor’s profile
4 Support individuation of the investor’s risk profile

Bank agent (BA)
1 Support bank in investment contract subscription
2 Assist bank in investment conclusion

Financial Provider agent (FV) 1 Provide financial and aggregate news information

Integration agent (IntA) 1
Serve and support integration with legacy bank
informative systems

Table 2. Interaction Table for FinancialMAS: who interacts with whom, to fulfill which
duty, by using which protocol.

Interaction R.ty Interaction
Protocol

Role With When

Investor Agent
Search Investment 1 CNP Initiator FP Investor searches an investment
Profiling 3 Query Participant FP Investor chose a Financial Promoter
Proposal Acceptance 4 Query Participant BA Investor chose a financial product
Withdraw 5 Request Initiator BA After Investor accepted a proposal

Financial Promoter Agent
Respond to Search 1 CNP Participant IA Investor searches an investment
Profiling 3 Query Initiator IA Investor chose a Financial Promoter
Fin. Prod. Classif. 2 Query Initiator FV FP starts fin. prod. classif.

Bank Agent
Proposal Acceptance 1 Query Initiator IA Investor chose a financial product
Withdraw 3 Request Participant IA After Investor accepted a proposal

Financial Provider Agent
Fin. Prod. Classif. 1 Query Participant FP FP starts fin. prod. classif.

We show how it is possible to integrate, within the JADE Methodology [30],
an account of commitment-based protocols with the help of a real-world scenario,

we call FinancialMAS. For brevity, we show only the fundamental steps needed
to draft the system and to highlight the benefits of reifying commitment-based
protocols by means of artifacts, and thus based on mediated interaction. By
applying the steps of the methodology, we obtained an initial design prototype for
FinancialMAS, concerning an initial set of agents and the so called responsibility
table (Table 1). In the terminology of the JADE Methodology, responsibilities
amount to functional duties, agents are responsible for, from an overall MAS
point of view. To handle them, agents possibly need to interact with one another.
The result of this analysis is an Interaction table (Table 2). At this point, instead
of realizing protocols via distributed JADE behaviors, we implement them via
commitment-based communication artifacts. We assume to have already designed
artifacts for common interaction protocols, like the Contract Net Protocol, the
Query Protocol, and the Request Protocol. The resulting model is depicted in
Figure 6. For the sake of comparison, in Figure 7 we zoomed into the one of the
commitment artifacts, the Contract Net Protocol artifact, reported as a UML
diagram, while in Figure 8 we highlight the very same protocol, implemented
via pure JADE behaviors.

SOCIAL STATE

Investor
Agent

Financial
Promoter

Agent

Bank
Agent

CommitmentProtocol
ARTIFACT QUERY CommitmentProtocol

ARTIFACT REQUEST

Participant

enacts

CartAgo

JADE

CommitmentProtocol
ARTIFACT CONTRACT-NET-PROTOCOL

Initiator ParticipantInitiator ParticipantInitiator

Financial
Provider

Agent

Commitments [1…*]

Social Facts [0…*]

Commitments [1…*]

Social Facts [0…*]

Commitments [1…*]

Social Facts [0…*]

Fig. 6. FinancialMAS Commitment-based Interaction Architecture.

2COMM proposes a clear notion of Role that an agent must enact to partici-
pate in an interaction session, so the designer must only implement the behaviors
for fulfilling the commitments caused by the execution of a protocol actions. We

Observable Properties
socialState: SocialState
enactedRoles: Role [1…*]

<< Artifact >>
CommitmentCommunicationArtifact

+ send(message: Message): void
+ receive(): Message
create (commit: Commitment)
discharge (commit: Commitment)
cancel (commit: Commitment)
release (commit: Commitment)
assign (commit: Commitment, role: Role)
delegate (commit: Commitment, role: Role)
assertFact (fact: LogicalExpression)

<< Artifact >>
CNP

Artifact Operations
+ cfp (proposal: Proposal) : void
+ accept () : void
+ reject (): void
+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

Observable Properties
tupleSet: Tuple [0…*]

<< Artifact >>
AbstractTupleSpace

Artifact Operations
+ out (tuple: Tuple) : void
+ in (label: String) : Tuple
+ inp (label: String) : Tuple
+ rd (label: String) : Message
+ rdp (label: String) : Message

id: RoleId
agent: AID
artid: ArtifactId

Role

+ createArtifact (artifactName: String,
artifactClass: Class<? extends Artifact) : void
+ enact (roleName: String, artifact: ArtifactID,
agent: AID) : Role
+ deact (role: RoleId, artifact: ArtifactID, agent:
AID) : void

Initiator
<<Requires: C1>>

+ cfp(task: Task): void
+ accept(): void
+ rejecet(): void

Participant
<<Requires: C2>>

+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

+

+

CArtAgO

2COMM

<<plays>>

<<plays>>

JADEjade.core.Behaviourjade.core.Agent

Agent1

Agent2

Agent1Behaviour
<<Satisfies: C1>>

JADE

Contract Net Protocol

Agent2Behaviour
<<Satisfies: C2>>

Fig. 7. The UML diagram for the 2COMM implementation of CNP.

refer to the following description of CNP based on commitment protocols (this
is just an example, alternatives and variants can be found in papers like [42, 24]):

cfp means create(C(i, p, propose, accept ∨ reject))
accept means none
reject means release(C(p, i, accept, done ∨ failure))
propose means create(C(p, i, accept, done ∨ failure))
refuse means release(C(i, p, propose, accept ∨ reject))
done means none
failure means none

In the case of CNP, two roles are foreseen, Initiator (i) and Participant (p).
Playing a role gives an agent powers, in terms of social state modification (i.e.
the state of the interaction session) as a consequence of its actions, and the
agent designer can use them if, when and how he/she wants. For instance, for
what concerns the update of the social state, when an agent playing the role
Initiator executes the artifact action cfp, the social state is modified by creating
the commitment C(i, p, propose, accept ∨ reject). On the one hand, this change
binds i to either accept or reject a proposal, if one is received; the agent is free to

jade.core.Behaviour

+prepareCfps(ACLMessage cfp)
+handlePropose()
+handleRefuse()
+handleInform()
+handleFailure()

ContractNetInitiatorBehaviour

+handleCfp(ACLMessage cfp)
+handleAcceptProposal()
+handleRejectProposal()
+prepareResultNotification()

ContractNetParticipantBehaviour

jade.core.Agent

Agent1

Agent2

+prepareCfps(ACLMessage cfp)
+handlePropose()
+handleRefuse()
+handleInform()
+handleFailure()

Agent1Behaviour

+handleCfp(ACLMessage cfp)
+handleAcceptProposal()
+handleRejectProposal()
+prepareResultNotification()

Agent2Behaviour

<<hasBehaviour>>

<<hasBehaviour>>

Contract Net Protocol

JADE

Fig. 8. UML diagram for the JADE implementation of CNP.

decide not only which course of action to take but also how to realize acceptance
or rejection. On the other hand, this change is signaled to the agent playing the
role Participant, who will handle it in some manner (depending on its behaviors)
and decide whether sending a proposal. Instead, when a accept is executed the
raised event automatically discharges a commitment created by a cfp.

This approach is illustrated in Figure 7. We modeled CNP as a Commitment
Communication Artifact. Roles are inner classes within the artifacts, allowing
JADE agents to use them. The protocol consists of a set of social actions, each
of which has both an impact on the social state of the interaction and on the
communication between agents. Actions are attributed to roles. For instance,
action cfp is attributed to the role Initiator. For what concerns communication,
the execution of a social action amounts to sending the content to be communi-
cated through the tuple space provided by CArtAgO. This result is obtained by
exploiting the method send of the CommitmentCommunicationArtifact. Com-
mitments are handled as an instance of the class SocialState which is part of
the CommitmentCommunicationArtifact. For example, consider the social ac-
tion cfp, whose execution creates a commitment. This result is achieved through
the execution of the following artifact operation:

@OPERATION

public void cfp(Task task, Role initiator, Role participant) {

Message cfp = new Message();

// setting of cfp parameters

send(cfp);

create(new Commitment(initiator, participant, new Fact(‘‘propose’’),

new CompositeExpression(LogicalOperatorType.OR,

new Fact(‘‘accept’’), new Fact(‘‘reject’’))));

}

The first part of the operation manages the communication level, while the
latter manages the creation of the commitment. The action cfp attributed to the
role Initiator merely calls the described artifact operation.

An agent that will to play as a certain role can inspect the commitments
that are required by the role itself, which are the commitments it will possibly
be involved in as a debtor. In order to be able to satisfy them, the agent needs to
have appropriate behaviors, otherwise its role execution is bound to fail. Notice
that the agent is autonomous in selecting which social actions to execute and
when as well as how to behave in order to satisfy its commitments.

Looking at Figure 8, the reader can perceive a major drawback of the original
JADE approach: being part of an interaction protocol entails the adoption of an
entire behavior, that must be added to the set of the internal agent behaviors.
The resulting agent design breaks the autonomy of the agent, since the agent has
an additional behavior for each role of each interaction it takes part to, increasing
the possibility of conflicts between behaviors, and increasing the overall agent
design complexity. In fact, being such behaviors FSMBehaviors, they implement
Finite State Machines, i.e. they rigidly prescribe the sequences of actions that
the agent is allowed to execute without any flexibility. Thus, it is not possible to
intervene on the logic by which actions are sequentialized but only to realize the
methods that the predefined behavior requires to redefine, which roughly corre-
spond to decision points. Furthermore, this approach hinders the observability
of the interaction, unless the designer adds specific sniffing or audit agents to log
every message passed. In performance-critical applications, having more agents
and producing a message overhead can produce undesirable scenarios.

5 Related works, discussion and future work

2COMM is a first step towards the implementation of the Mercurio architec-
ture, proposed in [3, 4]. It realizes a programmable communication channel by
means of artifacts, which is interaction-centric, exploits the social meaning of
interaction supplied by commitment protocols, and enables the development of
monitoring functionalities. The realization of roles is inspired by [8, 9]. The use
of commitments gives a normative value to the encoded protocol, while the act
of using a communication artifact amounts to the explicit acceptance, by the
agent, of the rules of the protocol. This makes the current proposal very dif-
ferent from [7], whose aim was the introduction of the notion of role, as in [8,

9], inside JADE. The proposal conjugates the flexibility and the openness that
are typical of MAS with the need of modularity and compositionality that are
typical of design and development methodologies. The realization of commit-
ment protocols as artifacts is an advancement of research on commitment-based
approaches, w.r.t. approaches like [19], where commitment management resides
in a middleware which, in turn, relies on a message-exchange communication
infrastructure. Even though the function of the middleware recalls that of our
artifacts, artifacts are, by their nature, distributed (and not centralized), they
can be the result of the composition of other artifacts, can be manipulated and
customized by the agents themselves. Moreover, the adoption of tuple spaces
allows more variegated forms of communication where communication actions
are not limited to utterances.

We believe that a commitment approach brings relevant advantages in terms
of design and modeling flexibility, modularity and traceability. The resulting
artifact explicitly provides a notion of Role that is decoupled from the interacting
agent, instead of cabling it into an agent behavior (as in the JADE Methodology)
or of composing different atomic roles to build an agent type (as in the GAIA
Methodology [43]). Both approaches break into inner agent definitions, hindering
the agent autonomy and the openness of the system. The artifact entity supplies
a natural way for logging and audit purposes, leveraging the concept of social
state (and its evolution). In a pure agent environment (like JADE), a similar
result is obtained via a massive use of either message-sniffing agents and/or
auditing agents, with a consequent overhead of the number of messages that
are passed. This is, for example, the case of the proposal in [29]. By being an
observable property, the social state provides the agent society a clear vision of
who is responsible of what, in which protocol interaction, and when an agent
acted so as to fulfill its commitments.

2COMM focuses on the interaction protocol layer, leaving aside issues con-
cerning the society of agents in which the interaction takes place. Thus, it does
not, for instance, tackle how to deal with violations of commitments. In or-
der to properly handle these aspects it would be interesting to combine its use
with proposals from the area of e-institutions. Concerning this field 2COMM
would provide an improvement in that it would introduce the possibility to ac-
count for indirect forms of communication. As [25] witness, there is an emerging
need of defining a more abstract notion of action, which is not limited to direct
speech acts, whose use is not always natural. Along this direction, it is rele-
vant to mention the OCeAN meta-model for artificial institutions [26], which
encompasses a notion of commitment, and for which a possible architecture
is discussed in [31]. For what concerns organizations, instead, there are some
attempts to integrate them with artifacts, e.g. ORA4MAS [27] and JaCaMo
http://jacamo.sourceforge.net, which also accounts for BDI agents. Follow-
ing the A&A perspective, artifacts are concrete bricks used to structure the
agents’ world: part of which is the organizational infrastructure, part amounts
to artifacts introduced by specific MAS applications, including entities/services
belonging to the external environment. In [27] the organizational infrastructure

is based on Moise+, which allows both for the enforcement and the regimenta-
tion of the rules of the organization. This is done by defining a set of conditions
to be achieved and the roles that are permitted or obliged to perform them. The
limit of this approach is that it cannot capture contexts in which regulations
are, more generally, norms because norms cannot be restricted to achievement
goals. Recently, the use of a communication infrastructure based on artifacts
has been proposed to define, in an explicit and clear way, interaction in Ja-
CaMo [33]. Nevertheless, the proposal does not supply a normative account of
communication.

Finally, we think that our proposal can give significant contributions in in-
dustrial applicative contexts, for the realization of business processes and, in
particular, of human-oriented workflows, whose nature is intrinsically social and
where the notion of commitment plays a fundamental role [28]. In [36], the au-
thors present LoST, a commitment-based model for the definition of declarative
protocols, which is based on local history vectors of sent/received messages, as-
sociated to each of the interacting agents. LoST enables the representation and
monitoring of (business) protocols when it is necessary to transfer local knowl-
edge about occurring interactions between the agents. It works as an adapter
for message transfer between agents. 2COMM, instead, provides agents an envi-
ronment by which they communicate and, if this is requested, they can perform
actions which do not amount to utterances but still entail social effects.

As a future work, we devise an extension of 2COMM for tackling a more
expressive protocol language, with support for temporal constraints, see also [2].
This goal can easily be achieved by defining new artifact types that provide
developers the appropriate protocol language primitives, such as those offered
by 2CL [6][5].

Acknowledgments. The authors would like to thank the reviewers for their
comments and the participants to the EMAS 2013 workshop for the discussions.

References

1. FIPA specifications. http://www.fipa.org.
2. M. Baldoni and C. Baroglio. Some Thoughts about Commitment Protocols (Po-

sition Paper). In Post-Proc. of the 10th Int. Workshop on Declarative Agent Lan-
guages and Technologies X, DALT 2012, Revised Selected and Invited Papers, LNAI
7784, pages 190–196. Springer, 2013.

3. M. Baldoni, C. Baroglio, F. Bergenti, E. Marengo, V. Mascardi, V. Patti, A. Ricci,
and A. Santi. An interaction-oriented agent framework for open environments.
AI*IA 2011: Artificial Intelligence Around Man and Beyond, 6934, 2011.

4. M. Baldoni, C. Baroglio, E. Marengo, V. Patti, and A. Ricci. Back to the future:
An interaction-oriented framework for social computing. In First Int. Workshop
on Req. Eng. for Social Computing, RESC, pages 2–5. IEEE, 2011.

5. M. Baldoni, C. Baroglio, E. Marengo, F. Capuzzimati, and V. Patti. A Generalized
Commitment Machine for 2CL protocols and Its Implementation. In Post-Proc. of
the 10th Int. Workshop on Declarative Agent Languages and Technologies X, DALT

2012, Revised Selected and Invited Papers, LNAI 7784, pages 96–115. Springer,
2013.

6. M. Baldoni, C. Baroglio, E. Marengo, V. Patti, and F. Capuzzimati. Engineering
commitment-based business protocols with 2CL methodology. J. of Autonomous
Agents and Multi-Agent Systems, August 2013 (to appear).

7. M. Baldoni, G. Boella, V. Genovese, A. Mugnaini, R. Grenna, and L. van der Torre.
A Middleware for Modelling Organizations and Roles in Jade. In Programming
Multi-Agent Systems, 7th Int. Workshop, ProMAS 2009, Revised Selected Papers,
LNAI 5919, pages 100–117. Springer, 2010.

8. M. Baldoni, G. Boella, and L. van der Torre. Bridging Agent Theory and Object
Orientation: Agent-like Communication among Objects. In Post-Proc. of the In-
ternational Workshop on Programming Multi-Agent Systems, ProMAS 2006, LNAI
4411, pages 149–164. Springer, 2007.

9. M. Baldoni, G. Boella, and L. van der Torre. Interaction between Objects in
powerjava. Journal of Object Technology, 6(2), 2007.

10. F. Bellifemine and A. Poggi. JADE – A FIPA-compliant agent framework. Pro-
ceedings of PAAM, 1999.

11. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
a FIPA-compliant agent framework. Software-Practice and Experience, (July
1999):103–128, 2001.

12. C. Bernon, M. P. Gleizes, S. Peyruqueou, and G. Picard. Adelfe: A methodology
for adaptive multi-agent systems engineering. In ESAW, volume 2577 of LNCS,
pages 156–169. Springer, 2002.

13. G. Boella and L. W. N. van der Torre. An agent oriented ontology of social reality.
In Procs. of Formal Ontologies in Information Systems (FOIS). IOS Press, 2004.

14. G. Boella and L. W. N. van der Torre. The ontological properties of social roles
in multi-agent systems: definitional dependence, powers and roles playing roles.
Artificial Intelligence and Law, 15(3):201–221, 2007.

15. O. Boissier, R. H. Bordini, J. Hübner, A. Ricci, and A. Santi. Multi-agent oriented
programming with jacamo. Science of Computer Programming, 2011.

16. G. Caire, W. Coulier, Fr. J. Garijo, J. Gomez, J. Pavón, F. Leal, P. Chainho,
Paul E. Kearney, J. Stark, R. Evans, and P. Massonet. Agent oriented analysis
using message/uml. In Proc. of AOSE 2001, pages 119–135. Springer-Verlag, 2002.

17. G. Caire, D. Gotta, and M. Banzi. Wade: a software platform to develop mission
critical applications exploiting agents and workflows. In AAMAS (Industry Track),
pages 29–36. IFAAMAS, 2008.

18. C. Castelfranchi. Principles of Individual Social Action. In Contemporary action
theory: Social action, volume 2, pages 163–192, Dordrecht, 1997. Kluwer.

19. A. K. Chopra and M. P. Singh. An Architecture for Multiagent Systems: An
Approach Based on Commitments. In Proc. of ProMAS, 2009.

20. A.K. Chopra. Commitment Alignment: Semantics, Patterns, and Decision Pro-
cedures for Distributed Computing. PhD thesis, North Carolina State University,
Raleigh, NC, 2009.

21. R. Conte, C. Castelfranchi, and F. Dignum. Autonomous Norm Acceptance. In
Proc. of ATAL, volume 1555 of LNCS, pages 99–112. Springer, 1998.

22. M. Dastani, D. Grossi, Meyer. J.-J. Ch., and N. A. M. Tinnemeier. Normative
Multi-agent Programs and Their Logics. In KRAMAS, pages 16–31, 2008.

23. Jan L.G. Dietz. Understanding and modelling business processes with demo. In
Proc. of ER’99, 18th Int. Conf. on Conceptual Modeling, volume 1728 of LNCS,
pages 188–202. Springer, 1999.

24. Mohamed El-Menshawy, Jamal Bentahar, and Rachida Dssouli. Symbolic model
checking commitment protocols using reduction. In DALT, volume 6619 of Lecture
Notes in Computer Science, pages 185–203. Springer, 2010.

25. N. Fornara, F. Viganò, and M. Colombetti. Agent communication and artificial
institutions. Autonomous Agents and Multi-Agent Systems, 14(2):121–142, 2007.

26. Nicoletta Fornara, Francesco Viganò, Mario Verdicchio, and Marco Colombetti.
Artificial institutions: a model of institutional reality for open multiagent systems.
Artif. Intell. Law, 16(1):89–105, 2008.

27. J. F. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organ-
isations with organisational artifacts and agents: “Giving the organisational power
back to the agents”. Autonomous Agents and Multi-Agent Systems, 20, 2009.

28. R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The action workflow
approach to workflow management technology. Inf. Soc., 9(4):391–404, 1993.

29. M. T. Nguyen, P. Fuhrer, and J. Pasquier-Rocha. Enhancing e-health information
systems with agent technology. Int. J. Telemedicine Appl., 2009:1:1–1:13, 2009.

30. M. Nikraz, G. Caire, and P. A. Bahri. A Methodology for the Analysis and Design
of Multi-Agent Systems using JADE. (May), 2006.

31. D. Okouya, N. Fornara, and M. Colombetti. An Infrastructure for the Design
and Development of Open Interaction Systems. In Proc. of the 1st International
Workshop on Engineering Multi-Agent Systems, EMAS 2013, held in conjuction
with AAMAS 2013, pages 128–143, St. Paul, Minnesota, USA, May 2013.

32. A. Ricci, M. Piunti, and M. Viroli. Environment programming in multi-agent sys-
tems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems,
23(2):158–192, 2011.

33. T. F. Rodrigues, A. C. da Rocha Costa, and G. P. Dimuro. A Communication
Infrastructure Based on Artifacts for the JaCaMo Platform. In Proc. of the 1st
Int. Workshop on Engineering Multi-Agent Systems, EMAS 2013, pages 97–111,
St. Paul, Minnesota, USA, May 2013.

34. M. P. Singh. An Ontology for Commitments in Multiagent Systems. Artif. Intell.
Law, 7(1):97–113, 1999.

35. M. P. Singh. A social semantics for agent communication languages. In Issues in
Agent Communication, volume 1916 of LNCS, pages 31–45. Springer, 2000.

36. M. P. Singh. LoST: Local Transfer - An Architectural Style for the Distributed
Enactment of Business Protocols. Proc. of the 9th Internactional Conference on
Web Services, pages 57–64, IEEE Computer Society, 2011.

37. P. R. Telang and M. P. Singh. Specifying and Verifying Cross-Organizational
Business Models: An Agent-Oriented Approach. IEEE Transactions on Services
Computing, pages 1–14, 2011.

38. T. Winograd and F. Flores. Understanding computers and cognition - a new foun-
dation for design. Addison-Wesley, 1987.

39. M. F. Wood and S. A. DeLoach. An overview of the multiagent systems engineering
methodology. In AOSE, LNCS 1957, pages 207–222. Springer, 2000.

40. P. Yolum and M. P Singh. Designing and executing protocols using the event
calculus. Proc. of the 5th Int. Conf. on Autonomous agents - AGENTS ’01, pages
27–28, 2001.

41. P. Yolum and M. P. Singh. Commitment Machines. In Intelligent Agents VIII, 8th
International Workshop, ATAL 2001, LNCS 2333, pages 235–247. Springer, 2002.

42. Pinar Yolum. Design time analysis of multiagent protocols. Data Knowledge En-
gineering, 63(1):137–154, 2007.

43. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol., 12(3):317–370, 2003.

