iNnternational
conference
onN

8utonoMous
agents and
Multiagent
systems

4th- 8th June 2012
Valencia

W13
Workshop on
Declarative
Agent
Languages and

Technologies
(DALT)

Matteo Baldoni, Louise Dennis,
Viviana Mascardi, Wamberto Vasconcelos (eds.)

Declarative Agent Languages
and Technologies

Tenth International Workshop, DALT 2012
Valencia, Spain, June 4th, 2012

Workshop Notes

DALT 2012 Home Page:
http://www.di.unito.it/ baldoni/DALT-2012/

Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
tenth edition this year, is about investigating, studying, and using the declarative
paradigm for specifying, programming and verifying both individual agents and
and multi-agent systems. As one of the well-established workshops in the multi-
agent systems area, DALT aims to provide a forum for researchers interested
in linking theory to practical applications by combining declarative and formal
approaches with engineering and technology aspects of agents and multi-agent
systems.

Declarative approaches provide smoother and more natural ways to connect
theory with practical computing aspects. Algebras, logics and functions, to name
a few, have been used as declarative formalisms, with which (together with their
associated mechanisms) one can specify, verify, program and analyze computa-
tional systems. The well-understood mathematical underpinnings of declarative
approaches provide clean, solid and natural techniques for bridging the gap be-
tween theory and practice, providing formalisms, tools and techniques to sup-
port the development of applications. They offer useful abstractions for studying
computational phenomena, which are necessarily more compact than procedu-
ral accounts. Software agents and multi-agent systems have been pursued as a
means to realize a new generation of very large-scale, distributed information
systems. Declarative approaches to agent languages and technologies raise many
fresh challenges with exciting prospects for agent programming, communication
languages, reasoning and decision-making. These challenges include, for instance,
which formal foundations to use, how pragmatic concerns are addressed formally,
how expressive approaches are, and so on.

In the tradition of DALT, the 2012 meeting is being held as a satellite work-
shop of AAMAS 2012, the 11th International Joint Conference on Autonomous
Agents and Multiagent Systems, in Valencia, Spain. Following the success of
DALT 2003 in Melbourne (LNAT 2990), DALT 2004 in New York (LNAIT 3476),
DALT 2005 in Utrecht (LNAI 3904), DALT 2006 in Hakodate (LNAT 4327),
DALT 2007 in Honolulu (LNAT 4897), DALT 2008 in Estoril (LNATI 5397), DALT
2009 in Budapest (LNATI 5948), DALT 2010 in Toronto (LNAI 6619), DALT 2011
in Taiwan (LNAI 7169), DALT will aim at providing a discussion forum to both
(i) support the transfer of declarative paradigms and techniques to the broader
community of agent researchers and practitioners, and (ii) to bring the issue
of designing complex agent systems to the attention of researchers working on
declarative languages and technologies.

This edition of DALT received eight long paper submissions, and three short
paper submissions, describing work by researchers coming from seven different
countries. Siz long papers and three short papers have been selected by the Pro-
gramme Committee and are included in this volume. Each long paper received
at least three reviews in order to supply the authors with helpful feedback that

VI

could stimulate the research as well as foster discussion. The short papers are
a new innovation introduced to celebrate DALT’s 10th edition and the Alan
Turing year, aimed at encouraging the exchange of views among scientists shar-
ing the same interests. Each short paper received two “light touch” reviews
and was evaluated on the basis of its potential for stimulating discussion. As
has happened for all the nine previous editions, we plan to publish the DALT
2012 post-proceedings as a volume in Lecture Notes in Artificial Intelligence by
Springer.

We would like to thank all authors for their contributions, the members of
the Steering Committee for the valuable suggestions and support, and the mem-
bers of the Programme Committee for their excellent work during the reviewing
phase.

April 18th, 2012

Matteo Baldoni

Louise Dennis

Viviana Mascardi
Wamberto Vasconcelos

Workshop Organisers

Matteo Baldoni
Louise Dennis

Viviana Mascardi
Wamberto Vasconcelos

VII

University of Torino, Italy

University of Liverpool, UK
University of Genova, Italy
University of Aberdeen, UK

Programme Committee

Thomas Agotnes
Marco Alberti
Natasha Alechina
Cristina Baroglio
Rafael Bordini

Jan Broersen
Federico Chesani
Flavio Correa Da Silva
Marina De Vos
Francesco Donini
Michael Fink
James Harland
Andreas Herzig
Koen Hindriks
Joao Leite
Shinichi Honiden
Yves Lespérance
Nicolas Maudet
John-Jules Ch. Meyer
Peter Novak
Fabio Patrizi
Enrico Pontelli
David Pym
Alessandro Ricci
Michael Rovatsos
Guillermo Simari
Tran Cao Son

Bergen University College, Norvey
Universidade Nova de Lisboa, Portugal
University of Nottingham, UK

University of Torino, Italy

Pontificia Universidade Catdlica do Rio Grande do
Sul, Brasil

University of Utrecht, The Netherlands
University of Bologna, Italy

Universidade de Sao Paulo, Brasil

University of Bath, UK

Tuscia Universityas, Italy

Vienna University of Technology, Austria
RMIT University, Australia

Paul Sabatier University, France

Delt University of Technology, The Netherlands
Universidade Nova de Lisboa, Portugal
National Institute of Informatics, Japan

York University, Canada

University of Paris-Dauphine, France

Utrecht University, The Netherlands

Czech Technical University in Prague, Czech Republic
Imperial College London, UK

New Mexico State University, USA

University of Aberdeen, UK

University of Bologna, Italy

The University of Edinburgh, UK

Universidad Nacional del Sur, Argentina

New Mexico State University, USA

VIII

Steering Committee

Matteo Baldoni University of Torino, Italy

Andrea Omicini University of Bologna-Cesena, Italy

M. Birna van Riemsdijk Delft University of Technology, The Netherlands
Tran Cao Son New Mexico State University, USA

Paolo Torroni University of Bologna, Italy

Pmar Yolum Bogazici University, Turkey

Michael Winikoff University of Otago, New Zealand

Additional Reviewers

Michal Cap Czech Technical University in Prague, Czech Republic

Table of Contents

Automatic Generation of Self-Monitoring MASs from Multiparty
Global Session Types in Jason 1
Davide Ancona, Sophia Drossopoulou, Viviana Mascardi

A Generalized Commitment Machine for 2CL Protocols and its
Implementation 18
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Elisa

Marengo, Viviana Patti

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 35
Stefano Bistarelli, Giorgio Gosti, Francesco Santini

Commitment Protocol Generation. 51
Akin Giinay, Michael Winikoff, Pinar Yolum

Goal-based Qualitative Preference Systems 67
Wietske Visser, Koen Hindriks, Catholijn Jonker

SAT-based BMC for Deontic Metric Temporal Logic and Deontic
Interleaved Interpreted Systems......... i, 83
Bozena Wozna-Szczes$niak, Andrzej Zbrzezny

Some Thoughts about Commitment Protocols (Position Paper) 99
Matteo Baldoni, Cristina Baroglio

Semantic Web and Declarative Agent Languages and Technologies:
Current and Future Trends (Position Paper).................... 104
Viviana Mascardi, James Hendler, Laura Papaleo

Designing and Implementing a Framework for BDI-style Communicating
Agents in Haskell (Position Paper), 108
Alessandro Solimando, Riccardo Traverso

Author Index 113

Automatic Generation of Self-Monitoring M ASs
from Multiparty Global Session Types in Jason

Davide Ancona', Sophia Drossopoulou?, and Viviana Mascardi®

1 DISI, University of Genova, Italy
{davide.ancona,viviana.mascardi}@unige.it
2 Imperial College, London, UK
scd@doc.ic.ac.uk

Abstract. Global session types are behavioral types designed for speci-
fying in a compact way multiparty interactions between distributed com-
ponents, and verifying their correctness. We take advantage of the fact
that global session types can be naturally represented as cyclic Prolog
terms - which are directly supported by the Jason implementation of
AgentSpeak - to allow simple automatic generation of self-monitoring
MASSs: given a global session type specifying an interaction protocol,
and the implementation of a MAS where agents are expected to be com-
pliant with it, we define a procedure for automatically deriving a self-
monitoring MAS. Such a generated MAS ensures that agents conform
to the protocol at run-time, by adding a monitor agent that checks that
the ongoing conversation is correct w.r.t. the global session type.

The feasibility of the approach has been experimented in Jason for a non-
trivial example involving recursive global session types with alternative
choice and fork type constructors. Although the main aim of this work
is the development of a unit testing framework for MASs, the proposed
approach can be also extended to implement a framework supporting
self-recovering MASs.

1 Introduction

A protocol represents an agreement on how participating systems inter-
act with each other. Without a protocol, it is hard to do a meaningful
interaction: participants simply cannot communicate effectively.
The development and validation of programs against protocol descriptions
could proceed as follows:
— A programmer specifies a set of protocols to be used in her applica-
tion.

— At the execution time, a local monitor can validate messages with
respect to given protocols, optionally blocking invalid messages from
being delivered.

This paper starts with a few sentences drawn from the manifesto of Scribble, a
language to describe application-level protocols among communicating systems

initially designed by Kohei Honda and Gary Brown!. The team working on
Scribble involves both scientists active in the agent community and scientists
active in the session types one. Their work inspired the proposal presented in
this paper where multiparty global session types are used on top of the Jason
agent oriented programming language for runtime verification of the conformance
of a MAS implementation to a given protocol. This allows us to experiment our
approach on realistic scenarios where messages may have a complex structure,
and their content may change from one interaction to another.

Following Scribble’s manifesto, we ensure runtime conformance thanks to a
Jason monitor agent that can be automatically generated from the global session
type, represented as a Prolog cyclic term. Besides the global session type, the
developer must specify the type of the actual messages that are expected to be
exchanged during a conversation.

In order to verify that a MAS implementation is compliant with a given pro-
tocol, the Jason code of the agents that participate in the protocol is extended
seamlessly and automatically. An even more transparent approach would be
possible by overriding the underlying agent architecture methods of Jason re-
sponsible for sending and receiving messages, which could intercept all messages
sent by the monitored agents, and send them to the monitor which could manage
them in the most suitable way. In this approach message “sniffing” would have
to occur at the Java (API) level, gaining in transparency but perhaps loosing in
flexibility.

In this paper we show the feasibility of our approach by testing a MAS against
a non-trivial protocol involving recursive global session types with alternative
choice and fork type constructors.

The paper is organized in the following way: Section 2 provides a gentle
introduction to the notion of global session type adopted in this work; Section 3
discusses our implementation of the protocol testing mechanism and presents the
results of our experiments; Section 4 discusses the related literature and outlines
future directions of our work.

2 A gentle introduction to global session types for agents

In this section we informally introduce global session types (global types for
short) and show how they can be smoothly integrated in MASs to specify mul-
tiparty communication protocols between agents. To this aim, we present a typ-
ical protocol that can be found in literature as our main running example used
throughout the paper.

Our example protocol involves three different agents playing the roles of a
seller s, a broker b, and a client c, respectively. Such a protocol is described
by the FIPA AUML interaction diagram [14] depicted in Figure 1: initially, s
communicates to b the intention to sell a certain item to c; then the protocol
enters a negotiation loop of an arbitrary number n (with n > 0) of iterations,

! http://www.jboss.org/scribble/

sd Brokering J
[b: Broker | [c: Client |
I \

| tell(item) | |
[s A,
| I |
‘ loop ‘ tell(offer) ‘
—
‘ ‘ tell(counter) ‘
|
| | |
| parallel) | |
‘ tell(final) ‘ ‘
] s -
| | tell(result) |
=
| I |
T T
| |

Fig. 1. The Brokering interaction protocol in FIPA AUML.

where b sends an offer to ¢ and c replies with a corresponding counter-offer.
After such a loop, b concludes the communication by sending in an arbitrary
order the message of type result to c, and of type final to s.

Even though the AUML diagram of Figure 1 is very intuitive and easy to un-
derstand, a more compact and formal specification of the protocol is required to
perform verification or testing of a MAS, in order to provide guarantees that the
protocol is implemented correctly. Global session types [5,11] have been intro-
duced and studied exactly for this purposes, even though in the more theoretical
context of calculi of communicating processes. A global type describes succinctly
all sequences of sending actions that may occur during a correct implementation
of a protocol.

Depending on the employed type constructors, a global type can be more or
less expressive. Throughout this paper we will use a fixed notion of global type,
but our proposed approach can be easily adapted for other kinds of global types.
The notion of global type we adopt is a slightly less expressive version of that
proposed by Deniélou and Yoshida [7] (which, however, allows us to specify the
protocol depicted in Figure 1), defined on top of the following type constructors:

— Sending Actions: a sending action occurs between two agents, and specifies
the sender and the receiver of the message (in our case, the names of the
agents, or, more abstractly, the role they play in the communication), and
the type of the performative and of the content of the sent message; for

instance, msg(s, b, tell, item) specifies that agent s (the seller) sends the
tell performative to agent b (the broker) with content of type item.

— Empty Type: the constant end represents the empty interaction where no
sending actions occur.

— Sequencing: sequencing is a binary constructor allowing a global type t to be
prefixed by a sending action a; that is, all valid sequences of sending actions
denoted by seq(a,t) are obtained by prefixing with a all those sequences
denoted by t. For instance,

seq(msg(alice,bob, tell ,ping),
seq(msg(bob,alice, tell ,pong),end))

specifies the simple interaction where first alice sends tell (ping) to bob,
then bob replies to alice with tell (pong), and finally the interaction stops.

— Choice: the choice constructor has variable arity? n (with n > 0) and ex-
presses an alternative between n possible choices. Because its arity is variable
we use a list to represent its operands. For instance,

choice ([
seq(msg(c,b,tell ,counter),end),
seq(msg(b,s,tell ,final),end),
seq(msg(b,c,tell ,result),end)
D

specifies an interaction where either c¢ sends tell (counter) to b, or b sends
tell (final) to s, or b sends tell (result) to c.

— Fork: the fork binary® constructor specifies two interactions that can be
interleaved. For instance,

fork(
seq(msg(b,s,tell ,final),end),
seq(msg(b,c,tell ,result),end)
)

specifies the interaction where first b sends tell (final) to s, and then b sends
tell (result) to c, or the other way round.

Recursive types: the example types shown so far do not specify any interaction
loop, as occurs in the protocol of Figure 1. To specify loops we need to consider
recursive global types; for instance, the protocol consisting of infinite sending
actions where first alice sends tell (ping) to bob, and then bob replies tell (pong)
to alice, can be represented by the recursive type T s.t.

T = seq(msg(alice,bob,tell ,ping),
seq(msg(bob,alice, tell ,pong),T))

If we interpret the equation above syntactically (that is, as a unification prob-
lem), then the unique solution is an infinite term (or, more abstractly, an infinite

2 Arity 0 and 1 are not necessary, but make the definition of predicate next simpler.
3 For simplicity, the operator has a fixed arity, but it could be generalized to the case
of n arguments (with n > 2) as happens for the choice constructor.

tree) which is regular, that is, whose set of subterms is finite. In practice, the
unification problem above is solvable in most modern implementations of Prolog,
where cyclic terms are supported; this happens also for the Jason implementa-
tion, where Prolog-like rules can be used to derive beliefs that hold in the current
belief base*. As another example, let us consider the type T2 s.t.

T2 = seq(msg(alice,bob,tell ,ping),
seq(msg(bob,alice, tell ,pong),choice ([T2,end])))

Such a type contains the infinite interaction denoted by T above, but also all finite
sequences of length 2n (with n > 1) of alternating sending actions msg(alice,bob,
tell ,ping) and msg(bob,alice,tell,pong).

We are now ready to specify the Brokering protocol with a global type BP,
where for sake of clarity we use the auxiliary types 0ff0rFork, 0ff, and Fork:

BP = seq(msg(s,b,tell ,item),0ff0rFork),
0ff0rFork = choice ([0ff,Fork])
0ff = seq(msg(b,c,tell ,offer),

seq(msg(c,b,tell ,counter),0ff0rFork))
fork(seq(msg(b,s, tell ,final),end),
seq(msg(b,c,tell ,result),end))

Fork

Note that for the definition of global types we consider in this paper, the fork
constructor does not really extend the expressiveness of types: any type using
fork can be transformed into an equivalent one without fork. However, such a
transformation may lead to an exponential growth of the type [2].

Formal definitions

Figure 2 defines the abstract syntax of the global session types that will be used
in the rest of the paper. As already explained in the previous section, global

GT ::= choice([GTy,. .., GT,]) (n > 0) |
seq(SA, GT) |
fork(GT1, GT1) |
end

SA ::= msg(Ald;,Ald,PE,CT)

Fig. 2. Syntax of Global Types.

types are defined coinductively: GT is the greatest set of regular terms defined
by the productions of Figure 2.

The meta-variables Ald, PE and CT range over agent identifiers, performa-
tives, and content types, respectively. Content types are constants specifying the
types of the contents of messages.

4 Persistency of cyclic terms is supported by the very last version of Jason; since
testing of this feature is still ongoing, it has not been publicly released yet.

The syntactic definition given so far still contains global types that are not
considered useful, and, therefore, are rejected for simplicity. Consider for instance
the following type NC:

NC = choice ([NC,NC])

Such a type is called non contractive (or non guarded), since it contains an infi-
nite path with no seq type constructors. These kinds of types pose termination
problems during dynamic global typechecking. Therefore, in the sequel we will
consider only contractive global types (and we will drop the term “contractive”
for brevity), that is, global types that do not have paths containing only the
choice and fork type constructors. Such a restriction does not limit the expres-
sive power of types, since it can be shown that for every non contractive global
type, there exists a contractive one which is equivalent, in the sense that it rep-
resents the same set of sending action sequences. For instance, the type NC as
defined above corresponds to the empty type end.

Interpretation of global types. We have already provided an intuition of the
meaning of global types. We now define their interpretation, expressed in terms of
a next predicate, specifying the possible transitions of a global type. Intuitively,
a global type represents a state from which several transition steps to other
states (that is, other global types) are possible, with a resulting sending action.
Consider for instance the type F defined by

fork(seq(msg(b,s,tell ,final),end),
seq(msg(b,c,tell ,result),end))

Then there are two possible transition steps: one yields the sending action
msg(b,s,tell,final) and moves to the state corresponding to the type

fork (end,
seq(msg(b,c,tell ,result),end))

while the other yields the sending action msg(b,c,tell,result) and moves to the
state corresponding to the type

fork(seq(msg(b,s,tell ,final),end),
end)

Predicate next is defined below, with the following meaning: if next (GT1,SA,GT2)
succeeds, then there is a one step transition from the state represented by the
global type GT1 to the state represented by the global type GT2, yielding the
sending action SA. The predicate is intended to be used with the mode indicators
next (+,+,-), that is, the first two arguments are input, whereas the last is an
output argument.

next (seq(msg(sS, R, P, CT),GT) ,msg(S, R, P, C),GT) :-
has_type(C, CT).

next (choice ([GT11_]1),SA,GT2) :- next(GT1,SA,GT2).

next (choice([_IL]),SA,GT) :- next(choice(L),SA,GT).

next (fork (GT1,GT2) ,SA,fork(GT3,GT2)) :- next(GT1,SA,GT3).

next (fork (GT1,GT2) ,SA,fork(GT1,GT3)) :- next(GT2,SA,GT3).

We provide an explanation for each clause:

1. For a sequence seq(msg(S, R, P, CT),GT) the only allowed transition step
leads to state GT, and yields a sending action msg(S, R, P, C) where C is
required to have type CT; we assume that all used content types are defined
by the predicate has_type, whose definition is part of the specification of the
protocol, together with the initial global type.

2. The first clause for choice states that there exists a transition step from
choice([GT1]_]) to GT2 yielding the sending action SA, whenever there exists
a transition step from GT1 to GT2 yielding the sending action SA.

3. The second clause for choice states that there exists a transition step from
choice([_|L]) to GT yielding the sending action SA, whenever there exists a
transition step from choice(L) (that is, the initial type where the first choice
has been removed) to GT yielding the sending action SA.

Note that both clauses for choice fail for the empty list, as expected (since
no choice can be made).

4. The first clause for fork states that there exists a transition from fork(GT1,GT2)
to fork(GT3,GT2) yielding the sending action SA, whenever there exists a tran-
sition step from GT1 to GT3 yielding the sending action SA.

5. The second clause for fork is symmetric to the first one.

We conclude this section by a claim stating that contractive types ensure
termination of the resolution of next.

Proposition 1. Let us assume that has_type(c,ct) always terminates for any
ground atoms ¢ and ct. Then, next (gt,sa,X) always terminates, for any ground
terms gt and sa, and logical variable X, if gt is a contractive global type.

Proof. By contradiction, it is straightforward to show that if next (gt, sa, X) does
not terminate, then gt must contain a (necessarily infinite) path with only choice
and fork constructors, hence, gt is not contractive.

3 A Jason Implementation of a Monitor for Checking
Global Session Types

As already explained in the Introduction, the main motivation of our work is a
better support for testing the conformance of a MAS to a given protocol, even
though we envisage other interesting future application scenarios (see Section 4).
From this point of view our approach can be considered as a first step towards
the development of a unit testing framework for MASs where testing, types, and
— more generally — formal verification can be reconciled in a synergistic way.

In more detail, given a Jason implementation of a MAS®, our approach allows
automatic generation® of an extended MAS from it, that can be run on a set
of tests to detect possible deviations of the behavior of a system from a given

® We assume that the reader is familiar with the AgentSpeak language [17].
5 Its implementation has not been completed yet.

protocol. To achieve this the developer is required to provide (besides the original
MAS, of course) the following additional definitions:

— The Prolog clauses for predicate next defining the behavior of the used global
types (as shown in Section 2); such clauses depend on the notion of global
type needed for specifying the protocol; depending on the complexity of the
protocol, one may need to adopt more or less expressive notions of global
types, containing different kinds of type constructors, and for each of them
the corresponding behavior has to be defined in terms of the next predicate.
However, we expect the need for changing the definition of next to be a
rare case; the notion of global type we present here captures a large class
of frequently used protocols, and it is always possible to extend the testing
unit framework with a collection of predefined notions of global types among
which the developer can choose the most suitable one.

— The global type specifying the protocol to be tested; this can be easily defined
in terms of a set of unification equations.

— The clauses for the has_type predicate (already mentioned in Section 2),
defining the types used for checking the content of the messages; also in this
case, a set of predefined primitive types could be directly supported by the
framework, leaving to the developer the definition of the user-defined types.

The main idea of our approach relies on the definition of a centralized monitor
agent that verifies that a conversation among any number of participants is
compliant with a given global type, and warns the developer if the MAS does
not progress. Furthermore, the code of the agents of the original MAS requires
minimal changes that, however, can be performed in an automatic way.

In the sequel, we describe the code of the monitor agent, and the changes
applied to all other agents (that is, the participants of the implemented protocol).

3.1 Monitor

We illustrate the code for the monitor by using our running brokering example.
The monitor can be automatically generated from the global type specification in
a trivial way. The global type provided by the developer is simply a conjunction
UnifEq of unification equations of the form X = GT, where X is a logical
variable, and GT is a term (possibly containing logical variables) denoting a
global type. The use of more logical variables is allowed for defining auxiliary
types that make the definition of the main type more readable. Then from UnifEq
the following Prolog rule is generated:

initial_state(X) :- UnifEq.

where X is the logical variable contained in UnifEq corresponding to the main
global type. The definition of the type of each message content must be provided
as well. In fact, the protocol specification defines also the expected types (such as
item, offer, counter, final and result) for the correct content of all possible
messages. For example, the developer may decide that the type offer defines all

terms of shape offer (Item, Offer), where Itemis a string and Offer is an integer;
similarly, the type item corresponds to all terms of shape item(Client, Item)
where both Client and Item are strings.

Consequently, the developer has to provide the following Prolog rules that
formalize the descriptions given above:

has_type (offer (Item, Offer), offer) :-
string(Item) & int(Offer).

has_type(item(Client, Item), item) :-
string(Client) & string(Item).

The monitor keeps track of the runtime evolution of the protocol by saving its
current state (corresponding to a global type), and checking that each message
that a participant would like to send, is allowed by the current state. If so,
the monitor allows the participant to send the message by explicitly sending an
acknowledgment to it. We explain how participants inform the monitor of their
intention to send a message in Section 3.2.

The correctness of a sending action is directly checked by the next predicate,
that also specifies the next state in case the transition is correct. In other words,
verifying the correctness of the message sent by s to R with performative P and
content C amounts to checking if it is possible to reach a NewState from the
CurrentState, yielding a sending action msg(S, R, P, C) (type_check predicate).

/* Monitor’s initial beliefs and rules */

// user-defined predicates
initial_state(Glob) :-
Merge = choice([0ff,Fork]) &
0ff= seq(msg(b, c, tell, offer),
seq(msg(c, b, tell, counter), Merge)) &
Fork= fork(seq(msg(b, s, tell, final),end),
seq(msg(b, c, tell, result),end)) &
Glob = seq(msg(s, b, tell, item),Merge).

has_type(offer (Item, Offer), offer) :-
string(Item) & int(Offer).
has_type (counter (Item, Offer), counter) :-
string (Item) & int(0ffer).
has_type (final (Res, Client, Item, Offer), final) :-
string(Res) & string(Client) & string(Item) & int(Offer).
has_type (result (Res, Item, Offer), result) :-
string (Res) & string(Item) & int(Offer).
has_type(item(Client, Item), item) :-
string(Client) & string(Item).
// end of user-defined predicates

timeout (4000) .
type_check(msg(S, R, P, C), NewState) :-
current_state (CurrentState) &

next (CurrentState, msg(S, R, P, C), NewState).

// Rules defining the next predicate follow

The monitor prints every information relevant for testing on the console with
the .print internal action. The .send(R, P, C) internal action implements the

asynchronous delivery of a message with performative P and content C to agent
R.
A brief description of the main plans follow.

— Plan test is triggered by the initial goal !test that starts the testing, by
setting the current state to the initial state.

— Plan move2state upgrades the belief about the current state.

— Plan successfulMove is triggered by the !type_check message(msg(S, R,
P, C)) internal goal. If the type_check (msg(S, R, P, C), NewState) con-
text is satisfied, then S is allowed to send the message with performative P
and content C to R. The state of the protocol changes, and monitor notifies
S that the message can be sent.

— Plan failingMoveAndProtocol is triggered, like successfulMove, by the
'type_check message(msg(S, R, P, C)) internal goal. It is used when suc-
cessfulMove cannot be applied because its context is not verified. This
means that S is not allowed to send message P with content C to R, because
a dynamic type error has been detected: the message does not comply with
the protocol.

— Plan messageReceptionOK is triggered by the reception of a tell message
with msg(S, R, P, C) content; the message is checked against the proto-
col, and the progress check is activated (!check_progress succeeds either
if a message is received before a default timeout, or if the timeout elapses,
in which case !check_progress is activated again: .wait(+msg(S1, R1,
P1, C1), MS, Delay) suspends the intention until msg(S1, R1, P1, C1)
is received or MS milliseconds have passed, whatever happens first; Delay
is unified to the elapsed time from the start of .wait until the event or
timeout).

All plans whose context involves checking the current state and/or whose
body involves changing it are defined as atomic ones, to avoid problems due to
interleaved check-modify actions.

/* Initial goals */
'test.
/* Monitor’s plans */

Q@test [atomic]
+!test : initial_state(InitialState)
<- +current_state(InitialState).

@move2state[atomic]
+!move_to_state(NewState) : current_state(LastState)
<- -current_state(LastState);
+current_state (NewState).

@successfulMove [atomic]
+!type_check_message(msg(S, R, P, C)) : type_check(msg(S, R, P, C), NewState)
<- !move_to_state(NewState);
.print ("\nMessage ", msg(S, R, P, C), "\nleads to state ", NewState, "\n");
.send (S, tell, ok_check(msg(S, R, P, C))).

@failingMoveAndProtocol
+!type_check_message(msg(S, R, P, C)) : current_state(Current)

10

<- .print ("\n**xx DYNAMIC TYPE-CHECKING ERROR #***\nMessage ", msg(S, R, P, C),
"\ncannot be accepted in the current state ", Current, "\n");

!move_to_state(failure).

@messageReceptionOK
+msg (S, R, P, C)[source(S)]: true
<- -msg(S, R, P, C)[source(S)];
!'type_check_message(msg(S, R, P, C));
!check_progress.

+!check_progress : timeout (MS)
<- .wait ({+msg(S1, R1, P1, C1)}, MS, Delay);

laux_check_progress (Delay).

+laux_check_progress(Delay) : timeout(MS) & Delay < MS.

+laux_check_progress(Delay) : timeout(MS) & current_state(Current) & Delay >= MS
<- .print ("\n**xx WARNING ***\nNo progress for ", Delay, " milliseconds
in the current state ", Current, "\n");

!check_progress.

3.2 Participants

We assume that participants interact via asynchronous exchange of messages
with tell performatives.

To keep the implementation as general and flexible as possible, in the par-
ticipants’ code extended as explained below we use the Perf logical variable
where the message performative is expected. Under the assumption that only
tell performatives will be used, Perf will always be bound to the tell ground
atom.

Only two changes are required to the code of participants:

1. .send is replaced by !'my_send and
2. two plans are added for managing the interaction with the monitor.

The first plan is triggered by the !'my_send internal goal; my_send has the
same signature as the .send internal action, but, instead of sending a message
with performative Perf and Content to Receiver, it sends a tell message
to the monitor in the format msg(Sender, Receiver, Perf, Content). When
received, this message will be checked by the monitor against the global type,
as explained in Section 3.1.

The second plan is triggered by the reception of the monitor’s message that
allows the agent to actually send Content to Receiver, by means of a message
with performative Perf. In reaction to the reception of such a message, the agent
sends the corresponding message to the expected agent.

/* Plans for runtime type checking */

+!my_send (Receiver, Perf, Content) : true
<- .my_name (Sender);
.send (monitor, tell, msg(Sender, Receiver, Perf, Content)).

+ok_check (msg(Sender, Receiver, Perf, Content))[source(monitor)] : true

<- -ok_check(msg(Sender, Receiver, Perf, Content))[source(monitor)];
.send (Receiver, Perf, Content).

11

3.3 Experiments

Table 1 summarizes the results of some of the experiments we carried out with
the brokering protocol. The full implementation of the seller, client and bro-
ker agents, as well as the messages printed by the monitor on the console are
described in [2].

— Broker: i.0. is the initial offer the broker makes to the client.

— Broker: a.o. is the lowest price the broker is willing to accept for selling
oranges to the client.

— Client: c.o. is the client’s initial counter offer.

— Code is the agents code used to run the experiment.

— FExpected res. and Obtained res. are the expected and obtained results.

— Bugl: instead of sending a counter offer upon reception of the broker’s offer,
the client sends an offer followed by a message with unknown type.

— Bug?2: the client autonomously starts to interact with the broker before the
initial messages that the protocol enforces have been sent.

— Bug3: we deleted all the plans triggered by the reception of +counter (Item,
Offer) [source(Client)] from the broker’s code, making the broker agent
unable to react to a counter offer.

Our “meta-testing” of the testing mechanism was successful. We run the
MAS with many other values of the initial and acceptable offers, and with other
communication errors, always obtaining the expected result. The simpler proto-
cols involving alice and bob agents described in Section 2 have been successfully
tested as well.

Broker: i.o.|Broker: a.o.|Client: c.0.| Code |Expected res./Obtained res.
11 6 3 Correct ok ok
8 6 2 Correct noDeal noDeal
8 6 5 Bugl | protocol error | protocol error
8 6 5 Bug2 | protocol error | protocol error
8 6 5 Bug3 no progress no progress

Table 1. Some of our experiments with the brokering protocol

3.4 Discussion

Alternative implementations. We opted to implement the proof-of-concept of
our approach by extending the code of the existing participants rather than
modifying the code of the Jason interpreter, because this was the simplest and
quickest solution we could devise for developing a prototype, and easily experi-
menting different design choices. However, the same results could be obtained by

12

directly modifying the .send internal action by overriding the underlying agent
architecture methods of Jason responsible for sending and receiving messages.

This solution would not require any modification of the code of the par-
ticipants, and would allow the monitor to forward the message, when correct,
directly to the recipient agent, thus reducing the number of interactions required
among agents.

Another interesting solution would consist in creating a monitor agent for
each agent participating to the interaction, thus avoiding the communication
problems of the centralized approach where the unique monitor is required to
exchange a large amount of messages with the other agents; however, this solu-
tion requires to project the global session type to end-point types (a.k.a. local
types), specifying the expected behavior of each single agent involved in the in-
teraction. Depending on the considered notion of global type, it might be non
trivial to find an efficient and complete projection algorithm.

Global type transition. We have already shown that the next predicate is ensured
to terminate on contractive global types; however, a developer may erroneously
define a non contractive type for testing its system. Fortunately, there exist
algorithms for automatically translating a non contractive global type into an
equivalent contractive one.

Another issue concerns non deterministic global types, that is, global types
where transitions are not deterministic. Consider for instance the following global
type:
fork(seq(msg(alice ,bob,tell,ping),

seq(msg(bob,alice,tell,pong),end)),
seq(msg(alice ,bob,tell,ping),
seq(msg(alice ,bob,tell ,bye),end)))

In this case the next predicate has to guess which of the two operand types must
progress upon reception of the message matching with msg(alice,bob,tell,ping);
this means that in case of non deterministic global types the monitor may de-
tect false positives. To avoid this problem one could determinize the type, but
depending on the considered notion of global type, it would not be easy, or even
possible, to devise a determinization algorithm. Alternatively, the monitor could
store the whole sequence of received sending actions to allow backtracking in
case of failure, thus making the testing procedure much less efficient.

Finally, it is worth mentioning that the proposed approach makes an efficient
use of memory space if the initial global type does not contain loops with the
fork constructor. In this case the space required by a global type representing
an intermediate state is bounded by the size of the initial global type; since
only one type at a time is kept in the belief base of the monitor, this implies
a significant space optimization when the total number of all possible states is
exponential w.r.t. the size of the initial global type. As already pointed out, this
consideration does not apply to types with loops involving the fork constructor,
like in the following example:

T = fork(seq(msg(alice,bob,tell ,ping),T),

13

seq(msg(bob,alice, tell ,pong),T)).

In this case the term grows at each transition step (and there are cases where
the type cannot be simplified to a smaller one); however, we were not able to
come up with examples of realistic protocols that require types with fork in a
loop to be specified.

4 Related and Future Work

Our work represents a first step in two directions: extending an existing agent
programming language with session types, and supporting testing of protocol
conformance within a MAS. In this section we consider the related works in
both areas, discuss the (lack of) proposals of integrating session types in existing
MASSs frameworks, and outline possible extensions of our work.

Session types on top of existing programming languages. The integration of ses-
sion types into existing languages is a recent activity, dating back to less than ten
years ago for object oriented calculi, and less than five years for declarative ones.
The research field is very lively and open, with the newest proposals published
just a few months ago.

Session types have been integrated into object calculi starting from 2005 [8,
9]. The first full implementation of a language and run-time for session-based dis-
tributed programming on top of Java, featuring asynchronous message passing,
delegation, session subtyping and interleaving, combined with class download-
ing and failure handling, dates back to 2008 [13]. More recently, a Java language
extension has been proposed, that counters the problems of traditional event-
based programming with abstractions and safety guarantees based on session
types [12].

Closer to our work on declarative languages, the paper [18] discusses how
session types have been incorporated into Haskell as a standard library that
allows the developer to statically verify the use of the communication primitives
provided without an additional type checker, preprocessor or modification to
the compiler. A session typing system for a featherweight Erlang calculus that
encompasses the main communication abilities of the language is presented in
[16]. Structured types are used to govern the interaction of Erlang processes,
ensuring that their behavior is safe with respect to a defined protocol.

Protocol representation and verification in MASs. Because of the very nature
of MASs as complex systems consisting of autonomous communicating entities
that must adhere to a given protocol in order to allow the MAS correct function-
ing, the problem of how representing interaction protocols has been addressed
since the dawning of research on MASs (one of the most well known outcomes
being FIPA AUML interaction diagrams [14]), and the literature on protocol
conformance verification is extremely rich.

Although a bit dated, [3] still represents one of the most valuable contribu-
tions to wverification of a priori conformance. In that paper the authors propose

14

an approach based on the theory of formal languages. The ability to formally
prove the interoperability of two policies (the actual protocol implementations),
each of which is compliant with a protocol specification, is one of the main fea-
tures of the proposed approach whose aim is however deeply different from ours,
being devoted to a static analysis carried out before the interaction takes place.

The problem of verifying the compliance of protocols at run time has been
tackled — among others — within the SOCS project”, where the SCIFF compu-
tational logic framework [1] is used to provide the semantics of social integrity
constraints. Such a semantics is based on abduction: expectations on the possibly
observable, yet unknown, events are modeled as abducibles and social integrity
constraints are represented as integrity constraints. To model MAS interaction,
expectation-based semantics specifies the links between the observed events and
the expected ones. The recent paper “Modelling Interactions via Commitments
and Expectations” [20] discusses that and related approaches. Although aimed
at testing run-time conformance of an actual conversation with respect to a given
protocol, our approach differs from the expectation-based one in many respects,
including the lack of notion of expectation in the agent language, and the im-
plementation of the testing mechanism in a seamless way on top of an existing
and widespread agent-oriented programming language.

As far as formalisms for representing agent interaction protocols are con-
cerned, the reader may find a concise but very good survey in Section 4 of [19].
In that paper, the authors propose a commitment-based semantics of protocols.
Commitments involve a debtor, a creditor, an antecedent, and a consequent: the
debtor stakes a claim or makes a promise to the creditor about the specified
consequent provided that the antecedent holds. Protocols specify business in-
teractions by stating how messages affect the participants’ commitments. That
setting allows the authors to determine if a protocol refines another protocol, how
protocols may be aggregated into other protocols, and to verify interoperability
properties of agents and roles (safety, liveness, or alignment), conformance of
roles, and compliance of agents. Our approach is currently limited to the run-
time verification of the MAS compliance to the interaction protocol, but the
exploitation of session types as the formalism to represent protocols allows us
to take advantage of all the results achieved in the session types research field,
which include session subtyping and algorithms for static verification of protocol
properties such as safety and liveness.

The ability to specify the type of messages (has_type(c,ct) predicate) in
order to relate actual messages to messages specified in the protocol, usually
given at a more abstract level, is a characterizing feature of our approach and
seems to be supported by none of the proposals mentioned above.

Session Types and MASs. As demonstrated for example by the Scribble language
mentioned in the Introduction and by [10], using session types to represent and
verify protocol conformance inside MASs is not a new idea but, to the best of
our knowledge, no attempts of taking advantage of global session types to verify

7 http://lia.deis.unibo.it /research/projects/SOCS/

15

MASSs programmed in some widespread agent oriented programming languages
had been made so far, and our proposal is an original one.

Future extensions. Our work can be extended in many ways, as already discussed
to some extent in Section 3. Besides the specific extensions mentioned there,
and the fully automatic generation of the monitor and participants code, our
short term goals include analyzing how our approach could be extended to other
Prolog-based agent-programming languages, such as GOAL [4] or 2APL [6],
and designing more complex protocols to stress-test our system and provide a
quantitative assessment of its runtime behavior and scalability.

In the medium term, we plan to work for evolving our mechanism towards
a framework supporting self-recovering MASs. This evolution would require to
modify the way we extend the code of the participant agents, in order to au-
tomatically select other messages to send in the current state, if any, in case
the monitor realizes that the chosen one does not respect the protocol. Default
recovery actions for the situation where no other choices are available, should
be defined as well. In such a context — more oriented towards verification of in-
teroperability of deployed systems rather than testing of systems-to-be —, agents
might advertise to the monitor the services they offer and the protocols to follow
in order to obtain them. Besides ensuring the protocol’s compliance, the monitor
could then act as a repository of <service specification, protocol specification>
couples, helping agents to locate services in an open MAS in a similar way the
Universal Description, Discovery and Integration (UDDI) registry does for web
services.

In the long term, the integration of ontology-based meaning into protocol
specifications, leading to “ontology-aware session types”, will be addressed. Our
previous work on CooL-AgentSpeak [15] will represent the starting point for that
extension.

Acknowledgments

We are grateful to J. F. Hiibner and R. H. Bordini for their effort in making
cyclic terms in Jason belief base persistent, thus making the implementation
of our monitor agent possible. We also thank the anonymous reviewers for their
careful reading of the paper and for the valuable suggestions provided to improve
its quality.

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The SCIFF ab-
ductive proof-procedure. In AI*IA, pages 135-147, 2005.

2. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types - extended version. Tech-
nical report, University of Genova, Department of Computing, 2012. Online at
http://www.disi.unige.it /person/MascardiV/Download /sessionTypesd MASs.pdf.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Verification of protocol con-
formance and agent interoperability. In CLIMA VI, 2005, Revised Selected and
Invited Papers, volume 3900 of LNCS, pages 265—283. Springer, 2005.

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for
BDI agent systems. In ProMAS 2004, Selected Revised and Invited Papers, volume
3346 of LNCS, pages 44—65. Springer, 2004.

M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP’07 (part of ETAPS 2007), volume 4421 of
LNCS, pages 2—17. Springer, 2007.

M. Dastani. 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214-248, 2008.

P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating
automata. In ESOP’12 (part of ETAPS 2012), LNCS. Springer, 2012.

M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
types for object-oriented languages. In ECOOP 2006, volume 4067 of LNCS, pages
328-352. Springer, 2006.

M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopoulou. A distributed
object-oriented language with session types. In TGC 2005, Revised Selected Papers,
volume 3705 of LNCS, pages 299-318. Springer, 2005.

C. Grigore and R. Collier. Supporting agent systems in the programming language.
In WI/IAT, pages 9-12. IEEE Computer Society, 2011.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL 2008, pages 273-284. ACM, 2008.

R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful
sessions in Java. In EFCOOP 2010, volume 6183 of LNCS, pages 329-353. Springer,
2010.

R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in Java.
In ECOOP 2008, volume 5142 of LNCS, pages 516-541. Springer, 2008.

M.-P. Huget, B. Bauer, J. Odell, R. Levy, P. Turci, R. Cervenka, and H. Zhu.
FIPA modeling: Interaction diagrams. Working Draft Version 2003-07-02. Online
at http://www.auml.org/auml/documents/ID-03-07-02.pdf.

V. Mascardi, D. Ancona, R. H. Bordini, and A. Ricci. CooL-AgentSpeak: Enhanc-
ing AgentSpeak-DL agents with plan exchange and ontology services. In TAT 2011,
pages 109-116. IEEE Computer Society, 2011.

D. Mostrous and V. T. Vasconcelos. Session typing for a featherweight Erlang. In
COORDINATION 2011, volume 6721 of LNCS, pages 95-109. Springer, 2011.
A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In MAAMAW’96, volume 1038 of LNCS, pages 42-55. Springer, 1996.

M. Sackman and S. Eisenbach. Session types in Haskell: Updating message passing
for the 21st century. Technical report, Imperial College, Department of Computing,
2008. Online at http://spiral.imperial.ac.uk:8080/handle/10044/1/5918.

M. P. Singh and A. K. Chopra. Correctness properties for multiagent systems.
In DALT 2009, Revised Selected and Invited Papers, volume 5948 of LNCS, pages
192-207. Springer, 2009.

P. Torroni, P. Yolum, M. P. Singh, M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
and P. Mello. Modelling interactions via commitments and expectations. In Hand-
book of Research on Multi-Agent Systems: Semantics and Dynamics of Organiza-
tional Models. IGI Global, 2009.

17

A Generalized Commitment Machine for 2CL
Protocols and its Implementation

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati,
Elisa Marengo, and Viviana Patti

Universita degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, 1-10149 Torino (Italy)

Abstract. In practical contexts where protocols model business inter-
actions (e.g. trading, banking), designers need tools allowing them to
analyse the impact on the possible interactions of regulations, prefer-
ences, conventions and the like. This work faces the issue of how to equip
commitment protocols with formal and practical instruments aimed at
supporting such an analysis by identifying the possible risks of viola-
tion and, thus, enabling the definition of operational strategies aimed
at reducing risks of violation. Specifically, we present an operational se-
mantics for the commitment protocol language 2CL as well as a tool for
visualizing as a graph the possible interactions, labelling the states of
the interaction so as to highlight legal situations and violations.

Keywords: Commitment-based Interaction Protocols, Constraints among Com-
mitments, Commitment Machine, Risks of Violation

1 Introduction and Motivation

Agent interaction is generally specified by defining interaction protocols [16].
For communicating with one another, agents must follow the schema that the
protocol shapes. Different protocol models can be found in the literature, this
work concerns commitment-based protocols [14,19]. This kind of protocols relies
on the notion of commitment, which in turn encompasses the notions of debtor
and creditor: when a commitment is not fulfilled, the debtor is liable for that
violation but as long as agents reciprocally satisfy their commitments, any course
of action is fine.

In many practical contexts where protocols model business interactions (e.g.
trading, banking), designers must be able to regulate and constrain the possi-
ble interactions as specified by conventions, requlations [4], preferences or habits.
Some proposals attack the issue of introducing similar regulations inside commit-
ment protocols [3, 8, 5,12], however, none of them brought yet to the realization
of a tool that allows visualizing and analysing how regulations or constraints
impact on the interactions allowed by a commitment-based protocol. The avail-
ability of intuitive and possibly graphical tools of this kind would support the
identification of possible violations, thus enabling an analysis of the risks the

18

interaction could encounter. As a consequence, it would be possible to raise
alerts concerning possible violations before the protocol is enacted, and to re-
duce risks by defining proper operational strategies, like regimentation (aimed at
preventing the occurrence of violations) or enforcement (introduction of warning
mechanisms) [11].

The work presented in this paper aims at filling this gap. To this purpose,
we started from the commitment protocol language 2CL described in [3], whose
key characteristic is the extension of the regulative nature of commitments by
featuring the definition of patterns of interaction as sets of constraints. Such
constraints declaratively specify either conditions to be achieved or the order in
which some of them should be achieved. The first contribution is, therefore, a
formal, operational semantics for the proposal in [3], which relies on the Gener-
alized Commitment Machine in [15]. We named our extension 2CL-Generalized
Commitment Machines (2CL-GCM for short). On top of this, it was possible
to realize the second contribution of this work: a Prolog implementation for
2CL-GCM, which extends the implementation in [17], and is equipped with a
graphical tool to explore all the possible executions, showing both commitment
and constraint violations. The implementation is part of a plug-in Eclipse which
supports 2CL-protocol design and analysis.

The chief characteristic of our solution is that it performs a state evaluation of
protocol constraints, rather than performing path evaluation (as, instead, done
by model checking techniques). State evaluation allows considering each state
only once, labelling it as a state of violation if some constraint is violated in it
or as a legal state when no constraint is violated. This is a great difference with
respect to path evaluation, where a state belonging to different paths can be
classified as a state of violation or not depending on the path that is considered.
The advantage is practical: state evaluation allows to easily supply the user an
overall view of the possible alternatives of action, highlighting those which will
bring to a violation and those that will not. State evaluation, however, is possible
only by making some restriction on the proposal in [3]. Specifically, we assume
that the domain is expressed in terms of positive facts only.

The paper is organized as follows. Section 2 briefly summarizes 2CL inter-
action protocol specification. Section 3 describes the formalization of 2CL-GCM.
Section 4 presents a Prolog implementation of 2CL-GCM. Section 5 describes the
2CL Tools that supply features for supporting the protocol design and analy-
sis. Related Work and Conclusions end the paper. Along the paper we use as a
running example the well-known NetBill interaction protocol.

2 Background: 2CL Interaction Protocols

Let us briefly recall the chief characteristics of commitment protocols, as defined
in [3]. In this approach, commitment protocols feature an explicit distinction
between a constitutive and a regulative specification. The former defines the
protocol actions, while the latter encodes the constraints the interaction should
respect. Both specifications are based on commitments. Commitments are di-

19

Relation Operator Repr. LTL formula
. A correlate B A— B CAD OB
Correlation

Relation A not correlate B|A « B OCAD OB
Operators A co-exist B AeeB |Ae—BAB«— A

Co-existence
A not co-ezist B |Aeofe B |Aet-BABeot A
A response B A« B |O(ADOB)

Response
A not response B|A /> B |0(A D —=CB)
Temporal A before B A—B |-BUA
Operators Before
A not before B |A 4+ B |O(CB D —A)
A cause B Aese B |Ae>BANA—B

Cause

A not cause B |Aepe B |Aefr BANA /o B
Table 1. 2CL operators and their meaning.

rected from a debtor to a creditor. The notation C(z,y,r,p) denotes that agent
x commits to an agent y to bring about the consequent condition p when the
antecedent condition r holds. When r equals true, we use the short notation
C(z,y,p). The interacting partners share a social state that contains commit-
ments and other facts that are relevant to their interaction. Every partner can
affect the social state by executing actions, whose definition is given in terms
of operations onto the social state, see [19]. The partners’ behaviour is affected
by commitments, which have a regulative nature, in that debtors should act in
accordance with the commitments they have taken.

Definition 1 (Interaction protocol). An interaction protocol P is a tuple
(Ro, F, so, A, C), where Ro is a set of roles, identifying the interacting parties,
F is a set of facts and commitments that can occur in the social state, sq is the
set of facts and commitments in the initial state of the interaction, A is a set of
actions, and C' is a set of constraints.

The set of social actions A, defined on F' and on Ro, forms the constitutive
specification of the protocol. The social effects are introduced by the construct
means, and their achievement can depend on a precondition (conditional ef-
fects). Both preconditions and effects are given in terms of the set F specified
in the protocol, which contains commitments and facts (i.e. the conditions that
are brought about). The means construct amounts to a counts-as relation [13,
11]. For instance, consider the action sendGoods reported in Table 2. Its social
meaning is that it makes the facts goods true (the goods were delivered to the
customer) and creates the commitment C(m, ¢, pay, receipt) that corresponds to
a promise by the merchant to send a receipt after the customer has paid. Further
examples can be found in the first part of Table 2, which reports all the actions
of the NetBill protocol. The formalization is inspired by those in [19,17].

The regulative specification of the protocol is made of the set of 2CL con-
straints C, defined on F' and on Ro as well. 2CL is a declarative language,
which allows expressing what is mandatory and what is forbidden without the

20

Action Definitions

(al) sendRequest means request if —quote A ~goods

(a2) sendQuote means quote A create(C(m, ¢, C(c, m, goods, pay), goods))
A create(C(m, ¢, pay, receipt))

(a3) sendAccept means create(C(c, m, goods, pay)) if —pay

(ad) sendGoods means goods A create(C(m, ¢, pay, receipt))

(ab) sendEPO means pay

(a6) sendReceipt means receipt if pay

Constraints

(c1) quote — C(c, m, goods, pay) V C(c, m, pay)
(c2) C(m, ¢, pay, receipt) A goods — pay

(c2) pay e receipt

Table 2. Actions and constraints for the NetBill protocol: m stands for merchant while
c stands for customer.

need of listing the possible executions extensionally. Constraints have the form
“dnf1 op dnfs”, where dnf; and dnfy are disjunctive normal forms of facts and
commitments, and op is one of the 2CL operators, reported in Table 1 together
with their Linear-time Temporal Logic [7] interpretation and with their graphical
notation. Basically, there are two kinds of operators: relational and temporal.
The former kind expresses constraints on the co-occurrence of conditions (if this
condition is achieved then also that condition must be achieved, but the order of
the two achievements does not matter). For instance, one may wish to express
that both the payment for some item and its delivery must occur without con-
straining the order of the two conditions: no matter which occurs first, when one
is met, also the other must be achieved. Temporal operators, instead, capture
the relative order at which different conditions should be achieved. The second
part of Table 2 reports the constraints imposed by the NetBill protocol: (c1)
means that a quotation for a price must occur before a commitment to pay or a
conditional commitment to pay given that some goods were delivered; (¢2) that
the conditional commitment to send a receipt after payment and the delivery of
goods must occur before the payment is done; (¢3) that after payment a receipt
must be issued and if a receipt is issued a payment must have occurred before.

Among the possible interactions, derivable from the action specification, those
that respect the constraints are said to be legal. Violations amounting to the
fact that a constraint is not respected can be detected during the execution. The
following section provides the operational semantics 2CL lacked of.

3 2CL Generalized Commitment Machine

In order to provide the semantics of commitment protocols as specified in [3] (see
Definition 1 of this paper), we define the 2CL generalized commitment machine

21

(2CL-GCM). Briefly, 2CL-GCM relies on the notion of generalized commitment
machine (GCM) (introduced in [15]) for what concerns the inference of the pos-
sible evolutions of the social state, that can be obtained by taking into account
only the protocol actions and the commitment life cycle. Additionally, 2CL-GCM
also accounts for 2CL constraints.

According to [15], a GCM features a set S of possible states, each of which is
represented by a logical expression of facts and commitments. S represents the
possible configurations of the social state.

Ezample 1. Considering NetBill, the expression goods A C(c, m, pay) represents
one possible configuration of the social state, i.e. it is a state in S. This expression
means that the goods were shipped and that there is a commitment from ¢
(customer) to m (merchant) to pay for them. Another example is goods A
pay A C(m, ¢, receipt), meaning that not only the goods were shipped but that
the payment also occurred, and that there is an active commitment from m to
¢ to having a receipt sent.

Particularly relevant is the subset of S, whose elements are named good states:
they are the desired final states of the interaction. The characterization of good
states depends on the particular application. For instance, they may be only
those that do not contain unsatisfied active commitments, or they could be the
ones which satisfy a condition of interest (e.g. payment done and goods shipped).

In GCM, transitions between the states are logically inferred on the basis of
an action theory A, that contains a set of axioms of the kind p < ¢, meaning
that ¢ is a consequence of performing action a in a state where p holds. When ¢
is false the meaning is that a is impossible if p holds. In general, A contains all
the axioms deriving from the specification of the protocol actions. Additionally,
A also contains an axiom for each action a and for each couple of states s and
s’ such that the execution of a in s causes a transition to s’: for instance, if the
precondition p of a is satisfied in s and its effect ¢ is satisfied in s, then s < o
is in A. The way in which these axioms are obtained is explained in [15].

Example 2. According to the 2CL protocol syntax, the action sendAccept, per-
formed by the customer to accept a quote of the merchant, is defined as sendAc-

cept means CREATE(C(c,m,goods,pay)) if — pay. The corresponding axiom is
dAccept

—pay semeLgeer C(e,m, goods, pay). Now, if one considers a state in which

dAccept

—pay A quote holds, it is also possible to infer the axiom —pay A quote someLseer

C(e, m, goods, pay).

In GCM paths must be infinite. All the finite paths are transformed into
infinite ones by adding a transition from the last state of the finite path towards
an artificial new state with a self loop [15]. In 2CL-GCM we adopt the same
assumption and the same mechanism for transforming finite paths into infinite
ones. We are now ready to define 2CL-GCM. The definition adopts the same
notation in [15].

22

Definition 2 (2CL Generalized Commitment Machine). Let - and = be,
respectively, the logical consequence and the logical equivalence of propositional
logic. A 2CL-GCM is a tuple P = (S, A, s, A, G, C), where:

- S is a finite set of states;

- A is a finite set of actions;

- S9 € S is the initial state;

- A is an action theory;

- G C S is a set of good states;
- C is a set of 2CL constraints.

(i) Members of S are logically distinct, that is: Vs,s' € S, s # s'; (ii) false € S;
and (ili) Vs € G,s' € S: (s' F s) = (s’ € G), i.e. any state that logically derives
a good state is also good.

A sequence of states is a path of a 2CL-GCM if it satisfies all of the constraints
in C. Since 2CL constraints are defined in terms of LTL formulas, to perform the
verification one can consider the transition system corresponding to the path.
Given a sequence of states interleaved by actions, the corresponding transition
system can be derived quite straightforwardly. Intuitively, the set of states and
transitions of the system is the same set of states and transitions in the sequence.
A requirement on transition systems is that each state has at least one outgoing
transition (i.e. runs are infinite).

Definition 3 (Transition System). Let 7 = ((70,a0,71), (T1,a1,72),...) be
an infinite and ordered sequence of triples, where T; is the state at position i in
T and a; s the action that causes the transition from state T; to state T;41. The
transition system T(T) corresponding to T is a triple (S;,d., L) where:

- S, ={m| 7 € T} is a set of states;

- 67 : Sy — S; is a transition function where: 6(7;) = 11 iff (75,a, k) € T;

- L: S, — 2F is a labelling function, where: I is a set of facts and commit-
ments and given | € F, then l € L(r;) iff ; F L.

To define a 2CL-GCM path, we adapt the definition of GCM path by adding
the requirement that the sequence of states satisfies all the constraints of the
2CL-GCM. This condition is checked on the transition system corresponding to
the path, by means of the LTL satisfaction relation [1]. We denote it with the
symbol =rrr. In the following definition we adopt the same notation in [15].

Definition 4 (2CL-GCM path). Let P = (S, A, 59, A, G, C) be a 2CL-GCM. Let
7 = {(10,00,71),...) be an infinite sequence of triples and T(7) be the corre-
sponding transition system. Let inf(7) be the set of states that occur infinitely
often in 7. T is a path generated from P when:

(Z) V(Ti,ai,Ti+1) in T then Tiy Ti+1 € S and a; € A and 1; & Ti+1 € A; and

(ii) inf(7) NG # 0; and
(i) Ye € C: T(7),70 ELTL €

23

In the above definition, (i) and (ii) are the conditions for a path to be generated
from a GCM [15]. Condition (i) requires that each state in the sequence is a
state of the 2CL-GCM, that the action that causes the transition from a state
to the subsequent one in the sequence is an action of the 2CL-GCM, and that
the transition is inferable according to the azioms in A. It also requires that
the path is infinite. Condition (i) requires that at least one good state occurs
infinitely often in the sequence. Condition (éii) was added to account for the
evaluation of the protocol constraints. According to the LTL semantics, the
notation M, s Errr ¢ means that every execution path m of M, starting at
s, is such that m |=prp . Since T(7) is a transition system made only of one
linear path (by construction), whose starting state is the starting state of 7, the
condition T'(7), 7o FrrL ¢ amounts to checking if ¢ is satisfied in the path of the
transition system, corresponding to 7.

Given a protocol specification it is possible to build the corresponding 2CL-
GCM:

Definition 5 (2CL-GCM of a protocol). Let P = (Ro, F, so, A, C) be a proto-
col, S be a set of states and G C S be a set of good states. P = (S, L, so, 4,G,C)
is a 2CL-GCM of P when (i) L is the set of action labels in A; and (i) A is
the action theory of A, i.e.:

— for each (a means e if p) belonging to A, then p e belongs to A;
— A is closed under inference rules in [15].

Since the state sg and the constraints C of a 2CL-GCM are the same of the proto-
col, the definition uses the same symbols. By varying the sets S and G different
2CL-GCMs associated to the same protocol are obtained: when S contains all the
states that can be reached from sg, applying the protocol actions, the machine
can infer all the possible interactions; when S is smaller, only a subset of the
possible interactions is determined.

4 Implementation of the 2CL Commitment Machine

This section describes a Prolog implementation for the 2CL-GCM, formalized
above. It allows exploring all the possible executions of an interaction protocol,
showing the regulative violations— i.e. both those states in which some con-
straint is violated and those that contain unsatisfied commitments. We prove
that if a path is legal according to the implementation, then it is a path of the
corresponding 2CL-GCM.

The implementation is realized in tuProlog' and it builds upon the enhanced
commitment machine realized by Winikoff et al. [17]. By relying on it, we inherit
the mechanisms for the computation of the possible interactions. Specifically,
enhanced commitment machines feature the generation of the reachable states,
the transitions among them and the management of commitments (like the op-
erations of discharge, creation and so on). Our extension equips them with the

! http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/

24

Relation State Condition
Correlation P(Ae— B)=ANB
B(A+£ B) =~(AAB)
Co-existence P(A e B) =¢(A — B) ANY(B — A)
(A ofe B) = (A o+ B) Ap(B of A)
Response Y(Ae>B)=ANAB
Y(A o> B) = (AN B)
Before (A == B) = ~(B A -A)
V(A /> B) = ~(AA B)
Cause P(A e B) = (A o> B) Atp(A —= B)
G(A ofs B) = (A /> B) N(A /= B)

Table 3. State conditions corresponding to 2CL operators.

possibility of evaluating 2CL constraints. The aim is to provide a qualitative view
of the possible interactions, highlighting those that violate some constraints. The
interacting parties are not prevented from entering in illegal paths (autonomy is
preserved), but they are made aware of the risks they are encountering and that
they may incur in penalties as a consequence of the violations they caused [4].

In order to provide a compact but global view of the possible interactions,
the evaluation of constraints is performed on one state at a time rather than
on paths (as, instead, usually done in LTL model checking). Specifically, the
state content is given in terms of positive facts and commitments. A fact that
is not true in a state has not been achieved yet, so we use negation as failure
in the conditions of the action definitions to verify whether a fact is present or
not in the social state. In this setting, the evaluation of 2CL constraints can
be made on single states. For instance, if in a state b holds but a does not, we
can infer that the constraint ‘a before b’ is violated. This kind of verification,
however, can be performed only on a subset of 2CL formulas, specifically, only
on constraints corresponding to conditions that persist (i.e. that involve DNFs
of facts without negation). Since commitments do not persist because they can
be cancelled, discharged, etc., another requirement is to associate a fact to each
operation that is performed on commitments. These facts are automatically as-
serted whenever an operation is performed on a commitment and they can be
used in constraint formulas. For instance, when a commitment C(z,y,r,p) is
created, the fact CREATED(C(z,y,r,p)) is added to the state, and so forth for
the other operations.

Given a constraint ¢, we denote by v (c) the corresponding condition to be
verified one state at a time (state condition). The above assumptions allow the
simplification of the LTL formulas, corresponding to the 2CL operators, in the
way that is reported in Table 3. Consider, for instance, the before operator (—s):
it requires that A is met before or in the same state of B. So, given a run , if
in 7 there is a state j such that B holds while A does not, that is a state where
a violation occurred. In formulas: m; f=rr, A = B & —3j > i s.t. m; =rrr

25

(B A —A) (when a formula does not contain temporal operators, the relation
Errr checks the condition in the first state of a path).

The other 2CL operators can be divided in two groups. Correlation («—) and
response («—) are part of the same group. A «— B requires that if A is achieved in
a run, then also B is achieved in the same run (before or after A is not relevant).
If B is achieved before A it will remain true also after. Therefore, in those cases
in which the constraint is satisfied, from a certain time onwards both conditions
will hold. In formulas: m; |=ppp A «— B < —3j > i s.t. m; Erprr A and V5’ >
J» mjr Errr (AA-B). The same equivalence holds for 7; =7y, A «— B. In 2CL
A « B requires that when A is met, B is achieved at least once later (even if
it already occurred in the past) but under our assumptions it can be checked in
the same way of correlation. The state condition amounts to verifying whether
a state satisfies A but does not satisfy B. Notice that states that satisfy the
test cannot be marked as states of violation because the constraint does not
require B to hold whenever A holds. A state of violation is signalled when the
interaction does not continue after it: we say that there is a pending condition.

Negated correlation, response and before correspond to the same formula:
T ':LTL A op B <& ﬁaj > 1 s.t. vl |:LTL (A/\ B) where op € {%,07@,74*}
Intuitively, a constraint of the kind A & B (negative correlation) requires that
if A holds, B is not achieved. Since facts persist, this amounts to check that
the two conditions do not hold in the same state, otherwise a violation occurs.
Negative response (negative before) adds a temporal aspect to not-correlation: if
A holds, B cannot hold later (before, respectively). Since facts persist, the first
achieved condition will remain true also after the other becomes true. Also in
this case we only need to check that the two conditions do not hold together.

Derived operators are decomposed and the reasoning made for the operators,
from which they derive, is applied. For instance, cause (s—) derives from before
and response. If a state does not satisfy the response part of the cause, it is
marked as “pending”; if it violates the before part, it is marked as a “violation”.
Both labels are applied when the state does not satisfy any of the two.

Summarizing, given a constraint formula and a state in which to verify it,
we have three possible cases: (i) the state satisfies the formula; (ii) the state
does not satisfy the formula and this leads to a violation; and (iii) the state
does not satisfy the formula but the violation is potential, depending on future
evolution. Considering all the constraints of a protocol, a state can both violate
some constraint and have pending conditions. Moreover, states are also evaluated
based on the presence of unsatisfied active commitments.

These considerations enable the generation and the labelling of all the states
that can be reached by applying the protocol actions. The result is a labelled
graph, as defined in Definition 6, where each state is associated a set of labels.

Definition 6 (Labelled Graph). Let P = (Ro, F, so, A, C) be a protocol, the
corresponding labelled graph G(P) is a triple (S, 0, L) where:

— S is a set of states reachable from sg, such that Vs,s' € S,s #£ s';
— 0 C S x AxS is a transition relation such that ¥(s,a,s’) € ¢ then s,s' € S
and Ja € A s.t. when a is executed in s it determines s';

26

— L C S x {pending,violation, final,non-final} is a labelling relation such that
given s € S:

e violation € L(s) iff 3¢ € C s.t. s Errr ¢¥(c) and c is not a response or a
correlation;

e pending € L(s) iff Jc € C s.t. s Brrr ¥(c) and ¢ is a response or a
correlation;

o final € L(s) iff there are no unsatisfied active commitments in s;

e not-final € L(s) iff s contains unsatisfied active commitments.

Following Definition 6, our implementation starts from the initial state and de-
termines all the reachable states, by applying a depth-first search, as in [17]. The
difference is that our representation of the states contains also a list of labels,
which identify the presence of active commitments and of pending or violated
conditions. Listing 1.1 reports part of the Prolog program that generates the
labelled graph. The mechanism is as follows: given a state, explore finds the set
of the possible successors by applying the effects of the actions, whose precon-
ditions are satisfied in the state. A state is added only if it is new (not explored
yet). Before adding it, find_labels considers all the constraints and checks them
on the state. Constraints are represented as constraint(A, B, Id), where con-
straint is the 2CL operator used by the constraint, A and B are the antecedent
and the consequent conditions of the constraint, and Id is the identifier of the
constraint. Listing 1.1 reports, as an example of tests performed on states, the
verification of a response and of a before. The clause check_pending, that is re-
ported here, verifies response constraints: it is satisfied if there is a constraint
of kind response, whose antecedent condition can be derived in the state, while
the consequent condition cannot. In this case, the label pending is added to the
list of labels of the state. A similar clause checks the correlation constraint. In-
stead, the clause check_violation, checks before constraints, which are violated
if the consequent condition can be derived in the state while their antecedent
cannot. Other similar clauses, checking different conditions, are defined for the
other operators. Finally, the program checks the presence of unsatisfied commit-
ments (check_commitments) and adds the label final or not-final consequently.
The result of running this program on a protocol specification is a graph of
the reachable annotated states. Annotations follow the graphical convention ex-
plained in Section 5.
Given a labelled graph we are now able to define when a path is legal.

Definition 7 (Legal path). Let G(P) = (S,4,L) be a labelled graph, = =
((mo,a0,71),y «+y (Tn—1,an-1,7T)) be a path of at least one state. 7 is a legal
path of G(P) when:

(i) ¥i > 0,m; is a state of the graph and (7;, a;, Ti+1) € 9.
(ii) Pi > 0 such that w; € © and violation € L(m;);
(#i) pending ¢ L(m,) and final € L(m,).

Condition (i) requires that the transitions in the path find correspondence in the
graph; (ii) requires that none of the states of the path violates a constraint; (iii)

27

explore (StateNum , Free , NextFree) :—
state (StateNum , State , -),
findall (t(StateNum ,A,S2),nextstate (State ,A,S2),Ts),
add_states (Ts,Free,NextFree), add_transitions(Ts).

add_states ([] ,N,N).
add_states ([t(-,-,S)|Ss],N,N1) :—
state(-,St,_), seteq(St,S), !, add_-states(Ss,N,N1).
add_states ([t(-,-,S)|Ss],N,N3) :—
10| labels(S,L), assert(state(N,S,L)),
1| N1 is N+1, explore(N,N1,N2), add_states(Ss,N2,N3).

© 0 N o s W N =

13| labels (State ,Labels) :— find_labels (State ,[], Labels).

15| find_labels (S,L1,R) :—

16 check_violation (S,L1,L2),
17 check_pending (S,L2,L3),

13| check_commitments(S,L3,R).

20| check_pending (State ,L,[pending (Constr)|L]) :—
21 response (A,B, Constr),
22| consequence (A, State), \+consequence (B, State).

21| check_violation (State ,L,[violation (Constr)|L]) :—
25| before(A,B, Constr),

26| consequence (B, State), \+consequence (A, State).

28| check_commitments (State ,L,[final |L]) :—

20| \+member(c(-,-,-),State).
s0o| check_commitments (State ,L,[non—final |L]) :—
31| member(c(-,_,_),State).

Listing 1.1. Prolog clauses that generate the labelled graph: consequence(A,State) is
a clause that determines if the fact (or the DNF formula) A can be derived in State;
response and before are constraints. The complete program is downloadable at the
URL http://di.unito.it/2cl.

requires that the last state of the path does not contain pending conditions or
unsatisfied commitments.

Given a legal path 7, of a labelled graph produced by Listing 1.1, we can
prove its correctness w.r.t. the 2CL-GCM built on the same protocol specification.
This actually corresponds to prove that 7 is a path of the 2CL-GCM.

Theorem 1 (Soundness). Let P = (Ro, F, s, A, C) be a protocol; let G(P) be
the corresponding labelled graph; let @ = (70, a0, 1)y, (Tn—1, Gn-1, T)) be
a path; and let P = (S;, A, so, A, G,C) be the 2CL-GCM of P, where Sy is the
set of states in w and G is the set of states in w that do not contains unsatisfied
commitments. If w is a legal path of G then 7 is a path of P.

28

Fig. 1. Components and functionalities supplied by the system.

The proof is by contradiction. It is omitted for lack of space.

5 2CL Tool for Protocol Design and Analysis

Let us now present the tool that we developed based on the technical framework,
described in the previous sections. The tool supports the user in two different
ways: (i) it features two graphical editors for specifying the protocol actions and
the constraints; (ii) it generates different kinds of graphs for supporting the user
in the analysis of the possible interactions and in understanding which of them
are legal. The system is realized as an Eclipse plug-in, available at the URL
http://di.unito.it/2cl.

The functionalities that the system supports can be grouped into three com-
ponents: design, reasoning and visualization (see Figure 1).
Design Component. The design component provides the tools that are neces-
sary for defining the protocol. It supplies two editors: one for the definition of the
actions and one for the definition of constraints (Figure 2). The action defini-
tion editor is basically a text editor, where actions can be specified following the
grammar in [4]. The regulative specification editor allows the user to graphically
define a set of constraints. Constraints are represented by drawing facts, con-
necting them with 2CL arrows (following the graphical representation of Table
1) or with logical connectives so as to design DNF formulas. The advantage of
having a graphical editor is that it supplies a global view of constraints, thus
giving the perception of the flow imposed by them, without actually specifying
any rigid sequence (no-flow-in-flow principle [2]). Figure 2 shows a snapshot of
the constraint editor with a representation of the NetBill constraints. On the

29

e Java- NetBill/Netbill_Constraints.ccl - Eclipse SDK

File Navigate Search Project Run CclDesigner Window Help

TERE [$vovar [#6r @ v [fv e ovar | @ w & [Eoava)

2 Package Explorer %2 = 8 [€,] Netbill_constraints.ccl & =0
Bg ~ i Palette >

P 5 CCLDesigner-new @sale(t

P 3 CCLMifid %, Marquee

> & Modellosemplice & Fluents B

v & Netsill B Fact

[€, NetBill_Constraints-alternat
€, Netbill_Constraints.ccl @and

¥
> BUML @or
o ‘- @
& Connections @
+— Correlation Base
+—s Co-existence Base

*—b Response Base
—be Before Base

*—be Cause Base
—— Connector

& Negative Connectio... ©
+— Correlation Base

e—s Co-existence Base

< — «—b Response Base
% outline 51 =a —be Before Base
[E Fact quote *—be Cause Base
[E Fact created(C(c,m,goods,|
[E Fact created(C(c,m,pay)) % problems | @ Javadoc |[&, Declaration | @] Error Log | Bl Console| = Properties 52
B3 Fact created(C(m,c.pay.recl| | Property Value
B Fact goods. Formula pay
B3 Fact pay Height 46
[E3 Fact receipt width 104
@ or 13202454 x 221

v v 509

Fig. 2. Editor for constraint specification.

right the user can select the element to introduce in the graph. By editing the
properties (bottom of the figure), instead, he/she can specify the name of facts
and other graphical aspects.

Reasoning Component. The reasoning component consists of a Java Parser
and of the Prolog implementation of the commitment machine described in Sec-
tion 4. The former generates different kinds of graphs as well as the Prolog
program corresponding to the protocol specification. The latter is the input of
the Prolog implementation of the commitment machine for the generation of the
labelled graph. As explained, the labelled graph represents all the possible inter-
actions where each state is labelled according to the evaluation of the protocol
constraints. The graphical conventions is: (i) a state of violation is represented as
a red diamond, with an incoming red arrow (e.g. states 54, 57, 108 in Figure 3);
(ii) a state in which there is a pending condition is yellow (e.g. states 45, 53,
108); (iii) a state with a single outline, independently from the shape (e.g. 49,
57, 60), is a state that contains unsatisfied commitments; (iv) a state with a dou-
ble outline, independently from the shape, does not contain active commitments
(e.g. 41, 108). Graphical notations can be combined, e.g. a yellow diamond with
single outline is a state where there are unsatisfied active commitments, where a
constraint is violated and where there is a pending condition (e.g. 53, 57, 114).
Visualization Component. All the graphs produced by the reasoning com-
ponent can be visualized as images. Labelled graph, however, can be explored

30

sendAccept lc1

““sendEPO !c2

1 “sendQuote lc2
sendGoods .

Fig. 3. Part of the labelled Graph for NetBill.

by means of the tool Graph Explorer, which is realized in Java and relies on
iDot (Incremental Dot Viewer) — an open source project that uses the prefuse?
visualization framework for Dot graph display. The Graph Explorer supplies dif-
ferent functionalities, like the visualization of the shortest path given a source
and a target state, and the visualisation of legal (or illegal) paths only. The user
can add or delete a node in a path; search a state starting from its label; and
search all the states that contain a certain fact or commitment. Moreover, the
tool allows the exploration of the graph one state at a time, by choosing which
node to expand. Figure 3 reports part of the labelled graph for NetBill.

Protocol Analysis. The tool can be used as a support in protocol analysis [4].
Particularly interesting is the possibility of exploring the labelled graph by means
of the Graph Explorer, which can be used to predict whether performing a certain
sequence of actions results in a violation and, in this case, if there is a way to
return on a legal path. For what concerns the designer, it is not always easy,
when specifying a protocol, to individuate which constraints to introduce but,
with the help of the tool, it becomes easy to identify misbehaviours and revise the
constraints so as to avoid them. Moreover, a designer can decide, by analysing
the graph, to modify the specification so as to regiment some of the patterns
expressed as constraints, or to remove some of them. For instance, considering
the running example, from Figure 3 it is possible to infer that the protocol does

2 http://prefuse.org/

31

not allow the customer to pay (send EPO) before the merchant sends the goods.
This is due to the constraint CREATED(C(m, ¢, pay, receipt)) A goods — pay. If
this behaviour was not in the intention of the designer, he/she can discover it and,
e.g., relax the before constraint (—) transforming it into a co-existence (o—s).
If, instead, that is exactly the desired behaviour, one may decide to regiment
sendE PO so as to enable the payment only after the goods have been sent.

The complete NetBill protocol encoding and the corresponding labelled graph
together with further examples, like 2CL specifications of classical agent inter-
action protocols (CNet) and of real-life protocols (OECD guidelines and MiFID
[4]) are available at http://di.unito.it/2cl (section Examples).

6 Related Work and Conclusions

This work provides an operational semantics of 2CL protocols [3], based on an
extension of the Generalized Commitment Machine [15], and describes a Prolog
implementation of this formalization, where the constraint evaluation is per-
formed thanks to state conditions rather than by considering paths. Our aim
was to enrich commitment machines with a mechanism for constraint evalua-
tion, in a way that is suitable to creating tools which are useful in application
domains. The provided formalization allows the creation of compact and an-
notated graphs, which provide a global overview of the possible interactions,
showing which are legal and which cause constraint (or commitment) violations.
The aim was to support an implementation, which enables the verification of
exposure to risk on the graph of the possible executions, and taking decisions
concerning how to behave or to modify the protocol in order to avoid such a
risk. Due to this aim, we decided to base our implementation on [17], rather
than on formalizations which support, for instance, model checking. The reason
is that this work already is along the same line of ours, the intent being to give
a global view on desirable and undesirable states. Winikoff et al. [17], however,
propose to cope with undesired paths or undesired final states by adding ad-hoc
preconditions to the actions, or by adding active commitments to states that are
desired not to be final. This, however, complicates the reuse and the adaptation
of the specification to different domains. On the contrary, the proposal in [3]
results to be easily adaptable and customizable so as to address different needs
of different domains, and it also allows for the specification of more expressive
patterns of interaction, given as 2CL constraints.

Concerning model checking, in [6] it is possible to find a proposal of a
branching-time logic that extends CTL*, used to give a logical semantics to
the operations on commitments. This approach was designed to perform verifi-
cations on commitment-protocol ruled interactions by exploiting symbolic model
checking techniques. The properties that can be verified are those that are com-
monly checked in distributed systems: fairness, safety, liveness, and reachability.
It would be interesting to integrate in this logical framework the 2CL constraints
in order to combine the benefits of both approaches: on the one hand, the possi-
bility to embed in the protocols expressive regulative specification, and, on the

32

other hand, the possibility to exploit the logical framework to perform the listed
verifications.

For what concerns the semantics of commitment protocols, the literature
proposes different formalizations. Some approaches present an operational se-
mantics that relies on commitment machines to specify and execute protocols
[19, 18, 17]. Some others, like [9], use interaction diagrams, operationally specify-
ing commitments as an abstract data type, and analysing the commitment’s life
cycle as a trajectory in a suitable space. Further approaches rely on temporal
logics to give a formal semantics to commitments and to the protocols defined
upon them. Among these, [10] uses DLTL. All these approaches allow the infer-
ence of the possible executions of the protocol, but, differently than [3], all of
them consider as the only regulative aspect of the protocol the regulative value
of the commitments.

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

2. M. Baldoni, C. Baroglio, and E. Marengo. Behavior-Oriented Commitment-based
Protocols. In Proc. of ECAIL vol. 215 of Frontiers in Artificial Intelligence and
Applications, pages 137-142. IOS Press, 2010.

3. M. Baldoni, C. Baroglio, E. Marengo, and V . Patti. Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach. ACM Trans. on
Int. Sys. and Tech., Spec. Iss. on Agent Communication, 2011.

4. M. Baldoni, C. Baroglio, E. Marengo, and V. Patti. Grafting Regulations into
Business Protocols: Supporting the Analysis of Risks of Violation. In A. Antén,
D. Baumer, T. Breaux, and D. Karagiannis, editors, Forth International Workshop
on Requirements Engineering and Law (RELAW 2011), held in conjunction with
the 19th IEEE International Requirements Engineering Conference, pages 50-59,
Trento, Italy, August 30th 2011. IEEE Xplore.

5. A. K. Chopra and M. P. Singh. Constitutive Interoperability. In L. Padgham,
D. C. Parkes, J. Miiller, and S. Parsons, editors, Proc. of 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), vol. 2,
pages 797-804, Estoril, Portugal, May 2008. IFAAMAS.

6. M. El-Menshawy, J. Bentahar, and R. Dssouli. Verifiable Semantic Model for Agent
Interactions Using Social Commitments. In M. Dastani, A. Seghrouchni El Fallah,
J. Leite, and P. Torroni, editors, LAnguages, methodologies and Development tools
for multi-agent systemS (LADS 2009), LNCS 6039, pages 128-152, Torino, Italy,
September 2010. Springer.

7. E. A. Emerson. Temporal and Modal Logic, volume B. Elsevier, Amsterdam, The
Netherlands, 1990.

8. N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. In J. S. Rosenschein,
T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Proc. of the Second Interna-
tional Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS
2003), pages 520-527, Melbourne, Australia, July 2003. ACM.

9. N. Fornara and M. Colombetti. A Commitment-Based Approach To Agent Com-
munication. Applied Artificial Intelligence, 18(9-10):853-866, 2004.

33

10

11.

12.

13.
14.

15.

16.

17.

18.

19.

L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic. Journal of Applied Logic, 5(2):214-234,
2007.

A. J. 1. Jones and M. Sergot. On the Characterization of Law and Computer
Systems: the Normative Systems Perspective, pages 275-307. John Wiley & Sons,
Inc., New York, NY, USA, 1994.

E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P. Singh.
Commitments with Regulations: Reasoning about Safety and Control in REGULA.
In L. Sonenberg, P. Stone, K. Tumer, and P. Yolum, editors, AAMAS, vol. 1-3,
pages 467-474, Taipei, Taiwan, May 2011. IFAAMAS.

J.R. Searle. The construction of social reality. Free Press, New York, 1995.

M. P. Singh. An Ontology for Commitments in Multiagent Systems. Artificial
Intelligence and Law, 7(1):97-113, 1999.

M. P. Singh. Formalizing Communication Protocols for Multiagent Systems. In
M. M. Veloso, editor, IJCAI, pages 1519-1524, Hyderabad, India, January 2007.
AAAI Press.

G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press, 1999.

M. Winikoff, W. Liu, and J. Harland. Enhancing Commitment Machines. In J. A.
Leite, A. Omicini, P. Torroni, and P. Yolum, editors, Proc. of the Second Inter-
national Workshop on Declarative Agent Languages and Technologies II (DALT
2004), LNCS 3476, pages 198-220, New York, NY, USA, July 2005. Springer.

P. Yolum and M. P. Singh. Designing and Executing Protocols Using the Event
Calculus. In Agents, pages 27-28, New York, NY, USA, 2001. ACM.

P. Yolum and M. P. Singh. Commitment Machines. In J.-J. Ch. Meyer and
M. Tambe, editors, Proc. of the 8th International Workshop on Intelligent Agents
VIIT (ATAL 2001), LNCS 2333, pages 235-247, Seattle, WA, USA, August 2002.
Springer.

34

Solving Fuzzy Distributed CSPs: An Approach
with Naming Games*

Stefano Bistarelli'?, Giorgio Gosti® and Francesco Santinil»4**

! Dipartimento di Matematica e Informatica, Universita di Perugia
[bista,francesco.santini]@dmi.unipg.it
2 TIstituto di Informatica e Telematica (CNR), Pisa, Ttaly
stefano.bistarelli@iit.cnr.it
3 Institute for Mathematical Behavioral Sciences, University Of California,
Irvine, USA
ggostiQuci.edu
4 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
F.Santini@cwi.nl

Abstract. Constraint Satisfaction Problems (CSPs) are the formaliza-
tion of a large range of problems that emerge in computer science. The
solving methodology described here is based on the Naming Game (NG).
The NG was introduced to represent N agents that have to bootstrap
an agreement on a name to give to an object (i.e., a word). In this pa-
per we focus on solving Fuzzy NGs and Fuzzy Distributed CSPs (Fuzzy
DCSPs) with an algorithm for NGs. In this framework, each potential an-
swer evaluated by the agents is associated with a preference represented
as a fuzzy score. The solution is the answer associated with the highest
preference value. The two main features that distinguish this methodol-
ogy from Fuzzy DCSP methods are that the system can react to small
instance changes and and it does not require pre-agreed agent/variable
ordering.

1 Introduction

This paper presents a distributed method to solve Fuzzy Constraint Satisfaction
Problems (CSPs) [12,16,9, 10, 15] that comes from a generalization of the Nam-
ing Game (NG) model [13, 1,11, 8]. In Fuzzy Distributed CSP (DCSP) protocols,
the aim is to design a distributed architecture of processors, or more generally a
group of agents, who cooperate to solve a Fuzzy CSP instantiation. Fuzzy CSP

* Research partially supported by MIUR PRIN 20089M932N project: “Innovative and
multi-disciplinary approaches for constraint and preference reasoning”, by CCOS
FLOSS project “Software open source per la gestione dell’epigrafia dei corpus di
lingue antiche”, and by INDAM GNCS project “Fairness, Equita e Linguaggi”.

** This work was carried out during the tenure of an ERCIM ”Alain Bensoussan”
Fellowship Programme. This Programme is supported by the Marie Curie Co-funding
of Regional, National and International Programmes (COFUND) of the European
Commission.

35

overcame the limitations of crisp CSP, because they allow constraints to be par-
tially satisfied. This in turn allows us to model real-word situations in which at
the aggregate level we may have only partial agreement solutions. Moreover, in
a multi-agent environment, Fuzzy CSPs allow us to represent individual prefer-
ences, that most often are not strictly binary, but are better represented by a
continuous variable which characterizes a degree of satisfaction.

In our approach, we see Fuzzy DCSP protocol as a dynamic system and we
select the stable states of the system as the solutions to our CSP. To do this we
design each agent so that it will move towards a stable local state. This system
may be called “self-stabilizing” whenever the global stable state is obtained
through the reinforcement of the local stable states [7]. When the system finds
the stable state, the DCSP instantiation is solved. A protocol designed in this
way is resistant to damage and external threats because it can react to changes
in the problem instance. Moreover, in our approach all agents have equal chance
to reveal private information, for this reason this algorithm is unbiased (“fair’)
with respect to privacy. These characteristics make this protocol an ideal service
to coordinate cooperation among a party of independent clients such as banks,
private companies, or local institutions. Because it is unbiased with respect to
privacy and it allows the clients to be peers who are not forced into a pre-agreed
agent /variable ordering.

The NG describes a set of problems in which a number of agents bootstrap
a commonly agreed name for one or more objects. In this paper we discuss a
NG generalization in which agents have individual fuzzy preferences over words.
This is a natural generalization of the NG, because it models the endogenous
agents’s preferences and attitudes towards certain object naming system. This
preferences may be driven by pragmatic or rational reasons: some words may
be associated to other objects, some words may be too long or too complex, or
other words may be easy to confuse. To model the agents preferences we add
individual fuzzy preference levels to each word in the agents’ domain. A NG can
be viewed as a particular crisp CSP instance [3, 4].

When we add preference levels, the new game may be interpreted as an opti-
mization problem. To represent the Fuzzy NG instance as a particular instance of
a Fuzzy DCSP, we impose that only the solutions that optimize the Fuzzy DCSP
are the ones in which all the agents connected by a communication edge share
the same word as a naming. More specifically, we use fuzzy unary constraints to
represent the preferences over words and crisp binary constraints that prevent
the two variables of the scope to be assigned to different values (in our case, dif-
ferent names). This forces all the optimal solutions to be the states in which all
variables have the same assignment (name). The resulting Fuzzy NG algorithm
solves DCSPs with fuzzy unary constraints and crisp binary constraints.

In the algorithm we have an asymmetric interaction, in which one agent is
the speaker and the other agents involved are listeners. To let this interaction
occur our algorithm uses a central scheduler that randomly draws a speaker at
each turn. This may be interpreted as a “central blind orchestrator” scheme;
this central scheduler has no information on the DCSP instance, and has no

36

pre-determined agent/variable ordering (the algorithm “fairness” is preserved).
Nonetheless, the “central blind orchestrator” can be thought of as an ideal-
ization of a true asynchronous system which allows us to analyze some of the
interesting complexities of a distributed system without the complications intro-
duced by asynchronism. [4] shows how a similar algorithm can be extended to
an asynchronous system.

As a further novelty, in Sec. 5 we extend the algorithm to solve Fuzzy NG in
order to solve a generic instance of a Fuzzy DCSP, that is a DCSP problem where
both unary and binary constraints are associated with a fuzzy preference. This
kind of distributed Fuzzy DSCP can be applied to deal with resource allocation,
collaborative scheduling and distributed negotiation [9].

The paper extends [5] by refining the distributed algorithm and by providing
a detailed description of a run of the algorithm. The paper is organized as follows:
in Sec. 2 we present the background on NGs and Fuzzy DSCPs, while Sec. 3
summarizes the related work. Sec. 4 presents an algorithm that solves Fuzzy
NGs. Sec. 5 extends the algorithm in Sec. 4 in order to solve generic Fuzzy
DCSPs and discusses a simple example of a algorithm run. Sec. 6 presents the
tests and the results for the Fuzzy NG algorithm. Lastly, Sec. 7 reports the
conclusions and ideas about future work.

2 Background

2.1 Distributed Constraint Satisfaction Problem (DCSP)

A classical constraint can be seen as the set of value combinations for the vari-
ables in its scope that satisfy the constraint. In the fuzzy framework, a constraint
is no longer a set, but rather a fuzzy set [12]. Therefore, for each assignment of
values to its variables, we allow a gradual assessment of how much it belongs
to the set, not whether it belongs to the set. This allows us to represent the
fact that a combination of values for the variables of the constraint is partially
permitted.

A Fuzzy CSP is defined as a triple P = (X, D,C) where, as in classical
CSPs, X and D are the set of variables and their domain, and C'is a set of fuzzy
constraints. We suppose a single domain for all the variables. A fuzzy constraint
is defined as a function cy on a sequence of variables V', which is called the
scope (or support) of the constraint. The scope is the set of variables on which
the constraint is defined.

Cy H Dl—> [0,1]
x, €V
The function cy indicates to what extent an assignment of the variables in
V satisfies the constraint [12]. In fuzzy constraints, 1 usually corresponds to the
best preference, and 0 to the worst preference value. The combination cy ® cy
of two fuzzy constraints ¢y and cy is a new fuzzy constraint ¢y defined as

evuw () = min(ev (n), cw (1))

37

where 7 is a complete assignment of the variables in the problem, i.e., an
assignment of the variables in X:

ne HDi

x,€X

If exm > can (e.g., c1n = 0.8 and con = 0.4), it means that the assignment
7 satisfies ¢; better than cs. In the rest of the paper we will use the expression
enlx; := d] to denote a constraint assignment with variable z; € X assigned to
value d € D.

We can now define the preference of the complete set C' of constants in the
problem, by performing a combination of all the fuzzy constraints. Given any
complete assignment 1 we have

() ev)(n) = min ey (n)

cyeC
cyeC v

Thus, the optimal solutions of a fuzzy CSP are the complete assignments
whose satisfaction degree is maximum over all complete assignments, that is,

OptSol(P) = {n | max min cy(n)}
n cveCl

In DCSPs [16, 12], the main difference to a classical CSP is that each variable
is controlled by a corresponding agent, meaning that this agent sets the variables
value. Formally, a DCSP is a tuple (X, D,C, A), i.e., a CSP with a set A of
n agents. We suppose the number of variables m to be greater/equal than the
number of agents n, i.e., m > n. When an agent controls more than one variable,
this would be modeled by a single variable whose values are combinations of
values of the original variable. It is further assumed that an agent knows the
domain of its variable and all constraints involving the variable, and that it can
reliably communicate with all other agents. The main challenge is to develop
distributed algorithms that solve the CSP by exchanging messages among the
agents.

2.2 Introduction to Naming Games

The NGs [13,1,11, 8] describe a set of problems in which a number of agents
bootstrap a commonly agreed name for one or more objects. The game is played
by a population of n agents which play pairwise interactions in order to nego-
tiate conventions, i.e., associations between forms and meanings, and it is able
to describe the emergence of a global consensus among them. For the sake of
simplicity the model does not take into account the possibility of homonyms,
so that all meanings are independent and one can work with only one of them,
without loss of generality. An example of such a game is that of a population
that has to reach the consensus on the name (i.e., the form) to assign to an
object (i.e., the meaning) exploiting only local interactions. As we clarify later,

38

this model is appropriate to address all those situations in which negotiation
rules a decision process (i.e., opinion dynamics, ete.) [1].

Each NG is defined by an interaction protocol. There are two important
aspects of the NG. First, the agents randomly interact and use a simple set of
rules to update their state. Second, the agents converge to a consistent state
in which all the objects of the set have a uniquely assigned name, by using
a distributed social strategy. Generally, two agents are randomly extracted at
each turn to perform the role of the speaker and the listener (or hearer as used
in [13,1]). The interaction between the speaker and the listener determines the
agents’ update of their internal state. DCSPs and NGs share a variety of common
features [3, 4].

2.3 Self-Stabilizing Algorithms

The definition of Self-stabilizing algorithm in distributed computing was first in-
troduced by [7]. A system is self-stabilizing whenever, each system configuration
associated with a solution is an absorbing state (global stable state), and any
initial state of the system is in the basin of attraction of at least one solution.

In a self-stabilizing algorithm, we program the agents of our distributed sys-
tem to interact with their neighbors. The agents update their state through these
interactions by trying to find a stable state in their neighborhood. Since the al-
gorithm is distributed, many legal configurations of the agents’ states and their
neighbors’ states start arising sparsely. Not all of these configurations are mutu-
ally compatible, and so they form mutually inconsistent potential cliques. The
self-stabilizing algorithm must find a way to make the global legal state emerge
from the competition between these potential cliques. Dijkstra [7] and Collin [6]
suggest that an algorithm designed in this way can not always converge, and a
special agent is needed to break the system symmetry. In this paper, we show
a different strategy based on the concept of random behavior and probabilistic
transition function, which we discuss in Sec. 4.3.

3 Related Work

This paper extends the results of [3, 4], in which the authors discuss how to solve
(non fuzzy) DCSP with NGs. Despite the fact that a number of approaches have
been proposed to solve DCSPs [12,16] or centralized FCSP [12] alone, there is
less work related to the combination of DCSPs and Fuzzy CSPs.

It is important to notice the fundamental difference with the DCSP algo-
rithms designed by Yokoo [16]. Yokoo addresses three fundamental kinds of
DCSP algorithms: Asynchronous Backtracking, Asynchronous Weak-commitment
Search and Distributed Breakout Algorithm [16]. Although these algorithms share
the property of being asynchronous, they require a pre-agreed agent/variable or-
dering. The algorithm presented in this paper does not need this initial condition.

Fuzzy DCSPs has been of interest to the Multi-Agent System community,
especially in the context of distributed resource allocation, collaborative schedul-
ing, and negotiation (e.g., [9]). In these contexts, the work focuses on bilateral

39

negotiations; where a central coordinating agent may be required when many
agents take part.

For example, the work in [9] promotes a rotating coordinating agent which
acts as a central point to evaluate different proposals sent by other agents. Thus
the network model employed is not totally distributed. Another important note
is that this work focuses on competitive negotiation where agents try to outsmart
each other as opposed to collaborative negotiation. Therefore, it does not use
techniques from DCSP algorithms.

In [14,15] the authors define the fuzzy GENET model for solving binary
FCSPs. Fuzzy GENET is a neural network model for solving binary FCSPs.
Through transforming FCSPs into [0, 1] integer programming problems, they dis-
play an equivalence between the underlying working mechanism of fuzzy GENET
and the discrete Lagrangian method. Benchmarking results confirm its feasibility
in tackling CSPs and flexibility in dealing with over-constrained problems.

In [10] the authors propose two approaches to solve these problems: An it-
erative method and an adaptation of the Asynchronous Distributed constraint
OPTimization algorithm (ADOPT) for solving Fuzzy DCSPs. They also present
experiments on the performance comparison of the two approaches, showing that
ADOPT is more suitable for low density problems (density = num of links /
number of agents).

4 An Algorithm for Fuzzy Naming Games

In this section we extend the NGs to take into account Fuzzy scores associated
with words. Therefore, we propose an algorithm that solves Fuzzy NGs. Since we
deal with fuzzy values associated only with words, we can consider the Fuzzy NG
as a particular instance of a Fuzzy DCSP P = (X, D,C, A) (see Sec. 2.1). We
assume that each agent a; controls a variable x; € X, and searches its domain
d; € D for a name convention that optimizes P. Each agent a; has a fuzzy unary
constraints ¢; € C' which describes its preferences over the competing names,
and controls all the binary constraint ¢; ; € C that act on its variable z;. In
the Fuzzy NG, we restrict C to constraints that are satisfied only if the words
chosen from a; and a; are the same (i.e., x; = x;). Therefore, the solution of
the Fuzzy NG is a naming convention that maximizes the individual preferences
of the agents. In Sec. 5 we extend the algorithm in order to solve fuzzy binary
constraints among agents, and consequently, to solve all Fuzzy DCSPs.

The algorithm is based on two entities. The first is the speaker, who commu-
nicates by broadcasting a word he considers a possible solution and the related
fuzzy preference. The second, is a set of listeners, who are all the neighboring
agents. We define the neighbors as those agents who share a binary constraint
with the speaker. At each turn ¢, an agent is drawn with uniform probability to
be the speaker. In the following paragraph we describe in detail each step of the
interaction scheme that defines the behavior between the speaker and the lis-
teners: we consider three phases, i) broadcast, ii) feedback and iii) update. Each
agent marks the element that it expects to be the final shared name.

40

4.1 Interaction Protocol

Broadcast The speaker s executes the broadcast protocol. The speaker com-
putes top = {xs|r, = argmax, &) cgn[s := x|}, and checks if the marked
variable assignment b is in top. If the marked variable assignment is not in top
it selects a new variable assignment b with uniform probability from top, and

marks it. Then it sends the couple (b, l?el%}f.(® cisynls = b])) to all its neigh-

boring listeners. ¢,y is the set of all the constraints whose scope contains the
variable s.

Feedback All the listeners receive the broadcast message (b, u) from the speaker.
Bach listener I computes Vdy, the aggregate preference vy = @) c(131[s :=][l :=
dy], that is it computes the combination of the fuzzy preferences (i.e., vy) for
each dj assignment, supposing that s chooses word b. ¢y} is the set of all the
constraints whose scope contains the variable s or [. Each listener sends back to
s a feedback message according to the following two cases:

— Failure. If u > mkax(vk) there is a failure, and the listener feedbacks a failure

message containing the maximum value and the corresponding assignment
for I, Fail(mlgx(vk)).

— Success. If u < m&x(vk), there is a success, the listener feedbacks Succ, and

marks the assigment b.

Update The overall listeners’ feedback determines the update of the listen-
ers and of the speaker. When a listeners feedback a Succ, then it lowers the
preference level for all its v, with a preference value higher then the speaker’s
preference level: Vug.vp > u and it sets vy = u. If the speaker receives only Succ
feedback messages from all its listeners, then it does not need to update.

Otherwise, that is if the speaker receives a number of Fail(v;) feedback
messages from h listeners (with A > 1 and 1 < j < h), then it selects the
worst v,, fuzzy preference such that Vj,v, < v;, and it sends to all listeners
a FailUpdate(v,,). Thus, the speaker sets its preference for the assignment b
to vy, i.e., c(gn[s := b] = v,. In addition, each listener I sets v; = vy, i.e.,
C{S_’l}[l = dl] = V-

4.2 A Simple Execution

In this section, we describe a run of the algorithm on a Fuzzy NG instance. We
consider a problem with three agents (X7, X5, and X3) that try to come to an
agreement on the naming convention A or B, and the unary/binary constraints
as depicted in Fig. 1.

At t = 1 (see Fig. 5b), X, is the first agent to speak. It computes the
elements with the highest preference over the constraints cg,, and puts them in
top. ¥b € Dy = {A, B} it computes @) cq5}7, it finds that @) cr3n[s := A] = 0.8,

41

P (G0 o)
C{X1,Xa} C{x3,X3}
(A,A)=1 X2 (A,A)=1
< (A,B)=0 A_s (A,B)=0
@ (B:5)=1 2 (B.5)=1 @
(B,B)=1 (B,B)=1
- = J - - J

Fig. 1: Fuzzy NG example at time ¢ = 0: the initial state of the problem.

and) cgsyn(s := B] = 0.3. Thus, top = {A}. Because this is the first interaction,
the agent has no marked element, thus it draws the only element in top. Thus,
it marks A, and chooses to broadcast (A,0.8) (Fig. 2).

Listener X computes vy, = @ cqqn[s := A][l := di]. For dy = A it finds
v = Qs := A]ll := A] = 0.1, and for dy = B it finds v2 = @ c(s3n[s =
A][l := B] = 0. Thus, it returns Fail(0.1). Simultaneously, listener X3 computes
v = @ cgsynls = b][l := di]. For dy = Ait finds v1 = @ cyqynls := A[l := A] =
0.5, and for dy = B it finds vo = Q) cy5yn[s := A][l := B] = 0. Thus, it returns
Fail(0.5). In the update phase the listeners X; and X3 change the preference
levels of the vy > 0.2 to vy = 0.2 (the changed values are colored in blue in
Fig. 2). Since X5 receives a failure feedback, it calls FailUpdate(0.1). Then,
the speaker update its preference level, A = 0.1 (Fig. 2), and the listeners X,
and X3 change the preference levels v, = 0.1 (Fig. 2).

(oo - oo -
C{x1,X3} C{Xq,X3}
(A,A)=.1 X2 (A, A)=.1

< (A,B)=0 Y (A,B)=0
(B,A)=0 B_3 (B,A)=0
(B,B)=1 (B,B)=1
N N

Fig. 2: Fuzzy NG example at time ¢ = 1.

At t = 2 (see Fig. 5b), X; is the second agent to speak. It finds that
X caynls == Al = 0.1, and Q c(q3n[s := B] = 0.3. Thus, top = {B}. Thus,
it marks B, and chooses to broadcast (B, 0.3) (Fig. 3).

Listener X» computes vy = @ c(syn[s := B[l := di]. For dy = A it finds
v = Qcgqynls == B][l := A] = 0, and for dy = B it finds vy = @ cin[s =
B][l := B] = 0.2. Thus, it returns Succ. In the update phase the listeners X5
change the preference levels of the vy > 0.2 to vy = 0.2 (Fig. 3). Then, the
listeners X5 change the preference levels v, = 0.2 (Fig. 3).

P P
C{x1,X3} C{xy,X3}
(A,A)=.1 X2 (A,A)=.1

< (A,B)=0 T (A,B)=0
(B,A)=0 B—3 (B,A)=0
(B,B)=.2 (B,B)=1
e 2=)

Fig. 3: Fuzzy NG example at time ¢t = 2.

At time t = 3, X3 is selected to be a speaker, and chooses to broadcast B. The
listener X feedbacks success and adjusts vy = &) cqqyn[s := B[l ;= B] = 0.2.
At time t = 4, X5 is selected to be a speaker, and chooses to broadcast B. X
and Xy feedback success. From now on all interactions are successful, and the
agents agree on the convention B (Fig. 4).

G P
(A,A)=.1 X2 (A,A)=.1
(A,B)=0 A 1 (A,B)=0
(B,B)=.2 (B,B)=.2
=272) 272)

Fig.4: Fuzzy NG example at time ¢ > 4.

4.3 Theorems

In this Section we show the lemmas and theorems that lead to the convergence
property of the algorithm in Sec. 4.1. We formally prove that the algorithm
always terminates with the best solution, i.e., the word with the highest fuzzy
preference. With Lemma 1 we state that a subset of constraints C/ C C has
a higher fuzzy preference w.r.t. C'. We say that a fuzzy constraint problem is
a-consistent if it can be solved with a level of satisfiability of at least « (see also

[2])-

Lemma 1 ([2]). Consider a set of constraints C and any subset C' of C. Then
we have Q@ C < Q C".

The speaker selection rule defines a probability distribution function F' that
tells us the probability that a certain domain assignment is selected. @) cs11[s :=
b]) and the marked word determine F. In Lemma 2 we relate F' and convergence
of the algorithm with probability 1, to the level of satisfiability of the problem.

Lemma 2. If the F function selects only the domain elements with preference
level larger then «, and the algorithm converges with probability 1, then it con-
verges only to solutions such that Sol(P) > «.

From [3,4], if the F' function chooses a random element in the word domain,
then the algorithm converges to the same word, but this word could not be the
optimal one, i.e., the word with the highest fuzzy preference. If we choose F' in
order to select only words with a preference greater than «, then the algorithm
converges to a solution with a global preference greater than .

With Prop. 1 and Prop. 2 we prepare the background for the main theorem
of this section, i.e., Th. 1. Proposition 1 shows the stabilization of the algo-
rithm after some time, while Prop. 2 states that the algorithm converges with a
probability of 1.

43

Proposition 1. For timet — +oo, the weight associated to the optimal solution
is equal for all the agents, and it is equal to the minimum preference level of that
word.

Proposition 2. For any probability distribution F such that the system is an
absorbing homogeneous Markov process the algorithm converges with a probability

of 1.

At last, we state that the presented algorithm always converge to the best
solution of the Fuzzy DCSP.

Theorem 1. The algorithm described in Sec. 4.1 is an absorbing homogeneous
Markov process thus it always converges to the best solution of the represented
Fuzzy NG, i.e.,, to the solution with the highest preference possible.

The proof comes from the fact that, i) according to Prop. 2, the algorithm
always converges, and i) we choose a proper function F' as described in Lem. 2.

5 Solving Fuzzy Distributed Constraint Satisfaction
Problems with Naming Games

In this section, we propose an generalization of the Fuzzy NG algorithm given
in Sec. 4 that intended to solve Fuzzy DCSPs in general. As proposed in [16],
we assign to each variable z; € X of the P = (X, D,C, A), an agent a; € A. We
assume that each agent knows all the constraints that act over its variables [16].
Each agent ¢ = 1,2,...,n (where |A| = n) searches its own variable domain
d; € D for its variable assignment that optimizes P. The degree of satisfaction
of a fuzzy constraint tells us to what extent it is satisfied (see Sec. 2.1). Otherwise
stated, the goal of the game is to make the agents find an assignment of their
variables that maximizes the overall fuzzy score result for the problem; fuzzy
preferences of constraints are combined with min function (see Sec. 2.1).

In our algorithm we solve unary and binary constraints only, since we know
from literature that any CSP can be translated to an equivalent one adopt-
ing only unary/binary constraints [12] . Each agent has a unary constraint ¢;
with support defined over its variable x; € X; these unary constraints repre-
sent the local preference of the agents a; for each variable assignment d; € D,
ca;nla; := d;]. Each agent interacts only with its neighbors, we define neighbors
as any two agents that share a constraint ¢;; € C. Any binary constraint c; ;
returns a preference value p € [0, 1] that states the combined preference over the
assignment of x; and x; together.

At each turn ¢, an agent is drawn with uniform probability to be the speaker.
As illustrated in Sec. 4 we have a speaker s and a set of listeners [;, each of
them sharing a binary constraint with s. The phases of the algorithm are the
same three as in Sec. 4: i) broadcast, i) feedback and iii) update. The two main
features that distinguish this methodology from Fuzzy DCSPs methods are: the
system can react to small instance changes, and it does not require pre-agreed
agent /variable ordering [3, 4].

44

5.1 Interaction Protocol

Broadcast The speaker s executes the broadcast protocol. The speaker com-
putes top = {xs|rs = max,, @ cs1n[s := z]}, and checks if the marked variable
assignment b is in top. If the marked variable assignment is not in top it selects
a new variable assignment b with uniform probability from top, and marks it.
Then it sends the couple (b, ig%x(® cisynls = b])) to all its neighboring lis-

teners. cy4y is the set of all the constraints whose scope contains the variable
s.

Feedback All the listeners receive the broadcast message (b, u) from the speaker.
Each listener I computes Vd, v, = @ cqs,13n[s := b][l := d}], that is it computes
the combination of the fuzzy preferences (i.e., vy) for each dj word, supposing
that s chooses word b. ¢y, ;y is the set of all the constraints whose scope contains
the variable s or [. Each listener sends back to s a feedback message according
to the following two cases:

— Failure. If u > mkax(vk) there is a failure, and the listener feedbacks the

failure message Fail(mgx(vk)).

— Success. If u < m}iix(vk), there is a success, the listener feedbacks Succ.

Update As in Sec. 4.1, the overall listeners’ feedback determines the update of
the listener and of the speaker. When a listener feedbacks a Succ, it also lowers
the preference level for all its vy with a preference value higher than the speaker’s
preference level u: Yoy, v, > u and it sets vy, = w. If the speaker receives only
Succ feedback messages from all its listeners, then it does not need to update.

Otherwise, that is, if the speaker receives a number of Fail(v;,l; = d;)
feedback messages from h listeners (with A > 1 and 1 < j < h), then it selects
the worst v,, fuzzy preference such that Vj, v, < v;. Then it sends to all listeners
a FailUpdate(v,,). Thus, the speaker sets its assignment to b with the worst
fuzzy preference level among the failure feedback messages of the listeners, i.e.,
c{syn[s = b] = vy. In addition, each listener [sets v; = vy, i.e., cfe3n[s =
b|[l := dj] = v.

5.2 A Simple Algorithm Execution

In this section we provide a simple run of the algorithm. We consider a problem
with three agents (X7, X3 and X3) and the unary/binary constraints as depicted
in Fig. 5a.

45

B
w

Il
<

Ryl
oeo

(e) t=4

Fig. 5: Example Fuzzy DCSP problem.

At ¢t =1 (see Fig. 5b), X7 is the first agent to speak. It computes the elements

with the highest preference over the constraints cyyy and puts them in top. It
finds that & c(s3n[s := A] = 0.1, and Q) c(53n[s := O] = 0.2. Thus, top = {O},
it marks (), and chooses to broadcast ((,0.2) (Fig. 5b), and marks it.

Listener X finds vy = @ crsynfs := O]l := A] = 0.2, and vy = @Q cry7[s =

OJll :== O] = 0.2. Thus, it returns Succ. Simultaneously, listener X3 finds
v = Qcianls == OJll := Al = 0.2, and v2 = Q cgqynls == Ol :== O] = 0.2.

Thus, it returns Succ. In the update phase the listeners X5 and X3 change the

preference levels of the v, > 0.2 to vy, = 0.2 (Fig. 5b).

At t = 2 (see Fig. 5¢), Xy is the second agent to speak. It finds that

R cianls == Al = 04, and Qcgqyns := O] = 0.2. Thus, it sends (A,0.4)

46

(Fig. 5¢), and marks it. Listener X; finds di = @ crsyn[s := AJ[l := A] = 0.1,
and dy = Qecrnls = AJll := O] = 0.2. Thus, it returns Fail(0.2). Si-
multaneously, listener X3 finds di = @cgqynls = bJ[l := di] = 0.4, and
dy = @ cgsynls == B[l := di] = 0.4. Thus, it returns Succ. Since X3 receives a
failure feedback, it calls FailUpdate(0.2). Then, the speaker update its pref-
erence level, A = 0.2. The listeners X; and X5 change their preference levels
v = 0.2 (5¢).

At t = 3 (see Fig. 5d), X3 is the third agent to speak. It finds that @) cys31[s :=
Al = 0.3, and @ csyn[s := O] = 0.5. Thus, it sends (O, 0.5), and marks it.
Listener X finds v = @ cryn[s := Q][I := A] = 0.1, and va = @ cg37n[s =
QJ[l := QO] = 0.2. Thus, it returns Fail(0.2). Listener X3 finds vy = @ ci31[s :=
Olll := Al = 0.2, and v2 = @ cgqyn[s := Ol := O] = 0.7. Thus, it returns
Succ. Since X receives a failure feedback, it calls FailUpdate(0.2). Then, the
speaker update its preference level, A = 0.2 (Fig. 5d), and the listeners X; and
X change the preference levels v, = 0.2 (Fig. 5d).

At t = 4 (see Fig. be), X3 is the fourth agent to speak. It finds that
R cqaynls == Al = 0.3, and @ cgyn[s := O] = 0.2. Thus, it marks (A,0.3) and
chooses to broadcast it. Listener X finds v; = @ cqqyn[s := A]ll := A] = 0.1,
and vy = @ ciaynfs := AJ[l := O] = 0.2. Thus, it returns Fail(0.2). Listener
X, finds v1 = @ cranls := Al := Al = 0.2, and v = Q cianfs == Al =
(O] = 0.6. Thus, it returns Succ. Since X3 receives a failure feedback, it calls
FailUpdate(0.2). Then, the speaker update its preference level, A = 0.2 (green
in Fig. 5e), and the listeners X; and X5 change the preference levels v, = 0.2
(blue in Fig. 5e).

At t =5, X» is the fifth agent to speak. It finds that @) cyn[s := A] = 0.2,
and @ cgs1n[s := O] = 0.2. Since A is marked, the agent chooses to broadcast
it. Listener X; finds v1 = @ cisyn[s := b][l := di] = 0.1, and vy = Q) ¢ 15 =
b][l := di] = 0.2. Thus, it returns Succ. Listener X3 finds v1 = @ cyqnls :=
bl := di] = 0.2, and v2 = Qcqan[s := b|[l := dp] = 0.2. Thus, it returns
Succ. Since all interactions are successful the speaker calls a success update, the
listeners X5 and X3 do not change the preference levels, because all v < 0.2.
From ¢ > 5 the system converges to a absorbing state in which all interactions are
successes, and the preference levels do not change. This state is also a solution
of the fuzzy DCSP.

6 Experimental Results

In this Section we show some performance results related to the algorithm pre-
sented in Sec. 4.

To evaluate the runs we define the probability of a successful interaction at
time ¢, P;(succ). Pi(succ) is determined by the probability that an agent is a
speaker at time ¢, and the probability the interaction is a success, P;(succ) =
> Pi(suce|s = a;)P(s = a;). At each time t, by querying the state of the speaker
and the listeners we can compute P;(succ|s = a;) for each agent in the system.
Since P(s = a;) = 1/N, we can compute P;(succ) =Y Pi(succ|s = a;)/N.

47

For our benchmark, let us define a Random Fuzzy NG instance (RFNG).
To generate such an instance, we assign the same domain of names D to each
agent, and for each agent and each agent’s name we draw a preference level
between [0, 1] from a uniform distribution. Moreover, RFNG can only have crisp
binary equality constraints. We also define the Path RFNG Instance [4] which
is a RFNG instance, in which the constraint network is a path graph. A path
graph (or linear graph) is a particularly simple example of a tree, which has
two terminal vertices (vertices that have degree 1), while all others (if any) have
degree 2.

We generated 5 such random instances, with 10 agents and 10 words each.
we computed using a For each one of these instances, brutal force algorithm the
best preference level and the word associated to this solution. Then, we ran this
algorithm 10 times on each instance. In Fig. 6 we measure the evolution in time
of P,(succ) for the path RFNG instance. When P;(succ) = 1, all interactions are
going to be successful, thus we are in an absorbing state. We also checked that
the system is at a optimal naming convention when the probability of success
becomes one.

0.8) -

0.6 - 7y R
P (succ)
0.4 - =

A

0.2 -

0 50 100 150 200 250 300

Fig. 6: Evolution of the mean P;(succ) over 5 different path RFNG instances.
For each instance, we computed the mean P;(succ) over 10 different runs. We
set N = 10, and the number of words to 10.

In Fig. 7, we show the scaling of the mean number of messages M N M needed
to the system to find a solution for different numbers of N variables in the path
RFNG instances. For each N, the M NM was measured over 5 different path
RFNG instances. We notice that the points approximately overlap the polinomial
t=cN!8,

48

le+08

T T
rPath RFNG —6—
F cN*® B
le+07 E|

le+06 4
MN M 100000]
10000 % =

1000 % s %

10[]7‘““ L P | L P |
10 100 1000

Fig. 7: Scaling of the mean number of messages M N M needed to the system to
find a solution for different numbers of variables N in path RFNG instances. For
each N, the M NM was measured over 5 different path RFNG instances. We
notice that the points approximately overlap the function cN'8.

7 Conclusions and Future Work

In this paper we have shown an algorithm to solve an extension of NG prob-
lems [13,1,11, 8] with fuzzy preferences over words and we have also extended
this algorithm in order to solve a generic instance of a Fuzzy DCSP [12,16,9,
10, 15]. In the study of this kind of algorithm we try to fully exploit the power
of distributed calculation. Our algorithm is based on the random exploration
of the system state space: it travels through the possible states until it finds
the absorbing state, where it stabilizes. These goals are achieved through the
union of new topics addressed in statistical physics (the NG), and the abstract
framework posed by constraint solving.

Furthermore, in the real world applications, it may be quite restrictive to
impose predetermined agent/variable ordering. For example, if we consider our
agents to be corporations, institutions, or in general any collective of peers,
we may find that a predetermined order may not be acceptable. Thus, it is
very important to explore and understand how such distributed systems may
cooperate and what problems may hinder them.

In future work, we intend to evaluate an asynchronous version of this algo-
rithm in depth, and to test it using comparison metrics, such as communication
costs (number of message sent), NCCCs (number of non-concurrent constraint
checks). We then intend to compare our algorithm, against other distributed
and asynchronous algorithms, such as the distributed stochastic search algo-
rithm (DSA), and the distributed breakout algorithm (DBA). We also intend to
investigate the “fairness” in the loss of privacy between algorithms with no pre-
agreed agent/variable ordering, and algorithms with pre-agreed agent/variable
ordering. We also plan to develop other functions used to select the speaker
agent in the broadcast phase of the algorithm, and to study the their conver-

49

gence comparing the performance with the function F' used in this paper (see
Sec. 4.1). Furthermore, we will try to generalize it to generic semiring-based CSP
instances [2], and not only Fuzzy CSPs.

References

1.

10.

11.

12.

13.
14.

15.

16.

A. Baronchelli, M. Felici, E. Caglioti, V. Loreto, and L. Steels. Sharp transition
towards shared vocabularies in multi-agent systems. CoRR, abs/physics/0509075,
2005.

S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962
of LNCS. Springer, 2004.

S. Bistarelli and G. Gosti. Solving CSPs with naming games. In A. Oddji, F. Fages,
and F. Rossi, editors, CSCLP, volume 5655 of LNCS, pages 16—32. Springer, 2008.
S. Bistarelli and G. Gosti. Solving distributed CSPs probabilistically. Fundam.
Inform., 105(1-2):57-78, 2010.

S. Bistarelli, G. Gosti, and F. Santini. Solving fuzzy DCSPs with naming games. In
IEEFE 23rd International Conference on Tools with Artificial Intelligence, ICTAI
2011, pages 930-931, 2011.

Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed constraint
satisfaction. In IJCAI, pages 318-324, 1991.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17:643-644, November 1974.

N. L. Komarova, K. A. Jameson, and L. Narens. Evolutionary models of color cate-
gorization based on discrimination. Journal of Mathematical Psychology, 51(6):359
— 382, 2007.

X. Luo, N. R. Jennings, N. Shadbolt, H. Leung, , and J. H. Lee. A fuzzy con-
straint based model for bilateral, multi-issue negotiations in semi-competitive en-
vironments. Artif. Intell., 148:53-102, August 2003.

X. T. Nguyen and R. Kowalczyk. On solving distributed fuzzy constraint satis-
faction problems with agents. In Proceedings of the 2007 IEEE/WIC/ACM In-
ternational Conference on Intelligent Agent Technology, IAT 07, pages 387-390,
Washington, DC, USA, 2007. IEEE Computer Society.

M. A. Nowak, J. B. Plotkin, and D. C. Krakauer. The evolutionary language game.
Journal of Theoretical Biology, 200(2):147-162, September 1999.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.
L. Steels. A self-organizing spatial vocabulary. Artificial Life, 2(3):319-332, 1995.
J. Wong, K. Ng, and H. Leung. A stochastic approach to solving fuzzy constraint
satisfaction problems. In Eugene Freuder, editor, Principles and Practice of Con-
straint Programming CP96, volume 1118 of LNCS, pages 568—569. Springer Berlin
Heidelberg, 1996. 10.1007/3-540-61551-2-119.

J. H. Y. Wong and H. Leung. Extending GENET to solve fuzzy constraint sat-
isfaction problems. In Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAT "98
TAAI 98, pages 380-385, Menlo Park, CA, USA, 1998. American Association for
Artificial Intelligence.

M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems, 3:185-207, June 2000.

50

Commitment Protocol Generation

Akin Giinay!* and Michael Winikoff? and Piar Yolum!

! Computer Engineering Department, Bogazici University, Istanbul, Turkey
{akin.gunay, pinar.yolum}@boun.edu.tr
2 Department of Information Science, University of Otago, Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Abstract. Multiagent systems contain agents that interact with each other to
carry out their activities. The agents’ interactions are usually regulated with pro-
tocols that are assumed to be defined by designers at design time. However, in
many settings, such protocols may not exist or the available protocols may not
fit the needs of the agents. In such cases, agents need to generate a protocol on
the fly. Accordingly, this paper proposes a method that can be used by an agent
to generate commitment protocols to interact with other agents. The generation
algorithm considers the agent’s own goals and capabilities as well as its beliefs
about other agents’ goals and capabilities. This enables generation of commit-
ments that are more likely to be accepted by other agents. We demonstrate the
workings of the algorithm on a case study.

1 Introduction

Interaction is a key element of many multiagent systems. Agents need to interact for
various reasons such as coordinating their activities, collaborating on tasks, and so on.
These interactions are generally regulated by interaction protocols that define the mes-
sages that can be exchanged among agents. Traditionally, agents are supplied with inter-
action protocols at design time. Hence, they do not need to worry about which protocol
to use at run time and can just use the given protocol as they see fit.

However, in open agent systems, where agents enter and leave, an agent may need
to interact with another agent for which no previous interaction protocol has been de-
signed. For example, a buyer may know of interaction protocols to talk to a seller,
but may not be aware of an interaction protocol to talk to a deliverer. If these two
agents meet, they need to figure out a protocol to complete their dealing. Additionally,
even if there is an existing interaction protocol, the interaction protocols that are de-
signed generically may make false assumptions about agents’ capabilities, which would
make the interaction protocol unusable in a real setting. For example, assume that an
e-commerce protocol specifies that a buyer can pay by credit card upon receiving goods
from a seller. If the buyer does not have the capability to pay by credit card, this protocol
will not achieve its purpose. Even when the capabilities of the agents are aligned with
those expected by the interaction protocol, the current context of the agents may not be
appropriate to engage in the protocol. Following the previous example, an agent who

* Akin Giinay is partially supported by TUBITAK Scholarships 2211 and 2214 and Piar Yolum
is partially supported by a TUBITAK Scholarship 2219.

o1

can pay by credit card might have a current goal of minimizing bank transactions for
that month and thus may find it more preferable to pay cash. That is, based on its cur-
rent goals and existing commitments, the interactions that it is willing to engage in may
differ. Therefore an interaction protocol that is blind to agents’ current needs would not
be applicable in many settings.

Accordingly, we argue that an agent needs to generate appropriate interaction pro-
tocols itself at run time. Since the agent would know its own capabilities, goals, and
commitments precisely, it can generate an interaction protocol that respects these. How-
ever, for the interaction protocol to be successful, it should also take into account the
participating agents’ context.

Many times, even though the goals, commitments, or the capabilities of the other
agents may not be known in full, partial information will exist. For example, agents may
advertise their capabilities especially if they are offering them as services (e.g., selling
goods). Existing commitments of the other agents may be known if the agent itself
is part of those commitments (e.g., the agent has committed to deliver, after payment).
The partial goal set of the participating agents may be known from previous interactions
(e.g., the agent is interested in maximizing cash payments), or from domain knowledge
(e.g. merchants in general have the goal of selling goods and/or services). Hence, the
other agents’ context can be approximated and using this approximate model a set of
possible interaction protocols can be generated.

To realize this, we propose a framework in which agents are represented with their
capabilities, goals, and commitments. The interactions of the agents are represented
using commitments [2, 13] and the interaction protocols are modeled as commitment
protocols. Commitments offer agents flexibility in carrying out their interactions and
enable them to reason about them [8, 18,20]. An agent that wants to engage in an in-
teraction considers its own goals, makes assumptions about the other agents’ goals, and
proposes a set of commitments such that, if accepted by the other agent, will lead the
initial agent to realize its goal. While doing this generation, the agent also considers its
own capabilities, so that it generates commitments that it can realize. Note that even
with a good approximation of the other agent, the proposed protocol may not be ac-
ceptable. For this reason, the agent generates a set of alternative protocols rather than a
single one. The exact protocol that will be used is chosen after deliberations with other
agents. Having alternative protocols is also useful for recoverability. That is, if a pro-
tocol is chosen by the agents, but if one of the agents then violates a commitment, the
goals will not be realized as expected. In this case, agents can switch to an alternative
protocol. This work is novel in that it situates commitment-based protocols in the larger
context of agents by relating commitments to the agents goals, capabilities, and their
knowledge of other agents’ goals and capabilities.

The rest of this paper is organized as follows. Section 2 describes our technical
framework in depth. Section 3 introduces our algorithm for generating commitment
protocols based on agents’ goals and capabilities. Section 4 applies the algorithm to a
case study. Section 5 explains how our approach can be used in a multiagent system.
Finally, Section 6 discusses our work in relation to recent work.

52

2 Technical Framework

In this section we define formally the necessary concepts: agents which have goals that
they want to fulfill, and certain capabilities (formalized as propositions that they are able
to bring about). We also define the notion of a social commitment between agents (in
line with existing approaches, e.g. [20]). The concepts are captured using the following
syntax, where prop is a proposition, and agent is an agent identifier.

commitment — C(agent, agent, prop, prop)"

goal - Gagenl(prop’ prop, prop)gsmte

service — Sagent(Prop, prop)

belief — BGgeni(agent, prop, prop) | BSageni(agent, prop, prop)

cstate — Null | Requested | Active | Conditional | Violated | Fulfilled | Terminated
gstate — Inactive | Active | Satisfied | Failed

Requested (R)

Terminated (T)

create

Conditional (C)

consequent| consequent timeout

l Violated (V) l

request

create antecedent

Active (A)

Fulfilled (F)

Fig. 1. Life cycle of a commitment.

Commitments. A commitment C(debtor, creditor, antecedent, consequent)state
expresses the social contract between the agents debtor and creditor, such that if the
antecedent holds, then the debtor is committed to the creditor to bring about the
consequent. Each commitment has a state that represents the current state of the com-
mitment in its life cycle. The state of a commitment evolves depending on the state of
the antecedent and the consequent and also according to the operations performed by
the debtor and the creditor of the commitment. We show the life cycle of a commitment
in Fig. 1. In this figure, the rectangles represent the states of the commitment and the di-
rected edges represent the transitions between the states. Each transition is labeled with
the name of the triggering event. A commitment is in Null state before it is created. The
create operation is performed by the debtor to create the commitment and the state of
the commitment is set to Conditional. If the antecedent already holds while creating
the commitment, the state of the commitment becomes Active immediately. It is also
possible for the creditor of a commitment in Null state to make a request to the debtor
to create the commitment. In this case, the state of the commitment is Requested. The
debtor is free to create the requested commitment or reject it, which makes the commit-
ment Terminated. A Conditional commitment becomes Active if the antecedent starts

53

to hold, Fulfilled if the consequent starts to hold or Terminated if the debtor cancels
the commitment. An Active commitment becomes Fulfilled if the consequent starts
to hold, Violated if the debtor cancels the commitment or Terminated if the creditor
releases the debtor from its commitment. Fulfilled, Violated and Terminated states are
terminal states (depicted with thicker borders in Fig. 1)

activate

Inactive (I) Active (A)

suspend

achieve

=)

Fig. 2. Life cycle of a goal.

Goals. A goal Gygeni (precondition, satis faction, failure)*t®*€ represents an aim

of an agent such that the agent has a goal to achieve satis faction if precondition
holds and the goal fails if failure occurs (adapted from [19]). The state of the goal is
represented by state. We show the life cycle of a goal in Fig. 2. A goal is in Inactive
state if its precondition does not hold. An inactive goal is not pursued by the agent. A
goal is in Active state if its precondition holds and neither satis faction nor failure
holds. An active goal is pursued by the agent. A goal is Satisfied, if satis faction starts
to hold while in the Active state. A goal is Failed, if failure occurs while in the Active
state. An active goal may also be suspended, if the precondition ceases to hold. The
Satisfied and Failed states are terminal states.

Capabilities. A capability S, gent(precondition, proposition) states that an agent
has the capability of performing an action (or actions) that will make proposition true.
However, this is only possible if the precondition holds. Note that we use the terms
“capability” and “service” interchangeably: in a context where an agent does some-
thing for itself “capability” makes more sense, but when an agent acts for another agent,
then “service” is more appropriate.

Beliefs. Agents have their own beliefs about other agents’ goals and capa-
bilities. BGagent, (agent;, condition, satis faction) represents that agent; believes
agent; has the goal satisfaction if condition holds. Note that beliefs about other
agents’ goals do not include information about the failure conditions. Similarly
BS,gent; (agent;, condition, proposition) represents that agent; believes agent; is
able to bring about the proposition, if the condition holds. Beliefs about other agents’
capabilities essentially correspond to services provided by other agents and interpreted
as agent; believes that agent; provides a service to bring about proposition, if
condition is brought about (most probably by an effort of agent;). As discussed in
Section 1, although in general other agents’ goals and capabilities are private, some in-
formation will be available. Although it is possible that advertised services may differ
from the actual capabilities of the agent. For example, certain capabilities may not be

54

advertised, or some advertised services may in fact be realized by a third party (e.g. a
merchant delegating delivery to a courier).

Agents and Multiagent system. An agent is a four tuple A = (G, S,C, B), where
G is a set of goals that agent A has, S is a set of services (aka capabilities) that agent
A can provide, C is a set of commitments that agent A is involved in and B is a set of
beliefs that agent A has about other agents. A multiagent system A is a set of agents
{A1,..., A, }. We write a.X to denote the X component of the agent, e.g. writing a.G
to denote the agent’s goals, a.C to denote its commitments etc.

Protocol. We adopt the definition of commitment protocols [6,20] in which a pro-
tocol P is a set of (conditional) commitments. Hence, we do not have explicit message
orderings. Each agent can manipulate the commitments as it sees fit. The manipulations
of the commitments lead to state changes in the lifecycles of the commitments as de-
picted in Fig. 1. Unlike traditional approaches to capturing protocols, such as AUML,
this approach, using social commitments, aims to provide minimal constraints on the
process by which the interaction achieves its aims [14]. We emphasise that a set of
commitments is a protocol in the sense that it allows for a range of possible concrete
interactions, unlike the notion of contract used by Alberti et al. [1] which represents a
single specific concrete interaction.

Definition 1 (Proposition Support). Given a set I of propositions that hold, and a
proposition p, the agent a = (G, S, C, B) supports p, denoted as a |+ p, iff at least one
of the following cases holds:

base case: I' |= p, i.e. p already holds

capability: 35S, (pre,prop) € S : {prop — p A a |k pre}, i.e. the agent is able
to bring about p (more precisely, a condition prop which implies p) itself, and the
required condition is also supported

commitment: 3C(a’,a, T, cond)* € C : {cond — p}, i.e. there is an active com-
mitment from another agent to bring about p

conditional: 3C(a', a, ant,cond)® € C : {cond — p A a IF ant}, i.e. there is a
conditional commitment from another agent to bring about p, and the antecedent
of the commitment is supported by agent a

The capability case states that p can be made true by agent a if p is one of the agent’s
capabilities. This is the strongest support for p, since p can be achieved by the agent’s
own capabilities. The commitment case states that the agent has a commitment in which
it expects p to become true (because it is the creditor of an active commitment). Note
that this is weaker than the capability condition since the commitment may be violated
by its debtor. In the conditional case, the agent first needs to realize the antecedent for
p to be achieved.

Definition 2 (Goal Support). A goal g = G,(pre, sat, fail)*
agent a = (G,S,C, B), denoted as a |t g, if a | sat.

is supported by the

Theorem 1. If a proposition p (respectively goal g) is supported by agent a, then the
agent is able to act in such a way that p (resp. g) eventually becomes true (assuming all
active commitments are eventually fulfilled).

Proof: Induction over the cases in Definition 2 (details omitted).

95

3 Commitment Protocol Generation Algorithm

We present an algorithm that uses the agent’s capabilities, commitments and also be-
liefs about other agents, to generate a set of alternative commitment protocols® such
that each generated protocol supports the given agent’s set of goals. That is, for each
given goal of the agent, either the agent is able to achieve the goal by using its own
capabilities, or the agent is able to ensure that the goal is achieved by relying appropri-
ately on a commitment from another agent which has the goal’s satisfaction condition
as its consequent. More precisely, if an agent a cannot achieve a desired proposition p
using its own capabilities, then the algorithm generates a proposed commitment such
as C(a’,a,q,p)™ (ensuring ¢ is supported by a) to obtain (conditional) proposition
support for p, which implies goal support for goal g = G, (pre, p, fail).

Note that in general, we can only expect to be able to obtain conditional support (in
terms of Definition 1). Obtaining capability support amounts to extending the agent’s
capabilities, and obtaining commitment support amounts to getting an active commit-
ment C(a’,a, T, q)A which, in general, another agent a’ would not have any reason to
accept. Thus, the algorithm proposes commitments that are likely to be attractive to a’
by considering its beliefs about the goals of a’ and creating a candidate commitment
C(d',a,q,p)" where ¢ is a proposition that is believed to be desired by a’ (i.e. satisfies
one of its goals). Clearly, there are situations where a given goal cannot be supported
(e.g. if no other agents have the ability to bring it about, or if no suitable g can be found
to make the proposed commitments attractive), and hence the algorithm may not always
generate a protocol.

We divide our algorithm into four separate functions (described below) for clarity:

— generateProtocols takes an agent and the set of proposition that hold in the world

as arguments, and returns a set of possible protocols P = {Py,..., P,}, where
each protocol is a set of proposed commitments (i.e. it returns a set of sets of com-
mitments).

— findSupport takes as arguments an agent, a queue of goals, a set of propositions
that are known to hold, and a set of commitments that are known to exist (initially
empty); and does the actual work of computing the possible protocols, returning a
set of possible protocols P.

— isSupported takes as arguments an agent, a proposition, a set of propositions known
to hold, and a set of commitments known to exist; and determines whether the
proposition is supported, returning a Boolean value.

— updateGoals is an auxiliary function used by the main algorithm, and is explained
below.

The generateProtocols function (see Algorithm 1) is the entry point of the algo-
rithm. It has as parameters an agent a and a set of propositions /" that hold in the world.
I is meant to capture a’s current world state. The algorithm finds possible, alternative
protocols such that when executed separately, each protocol ensures that all of the goals
of that agent are achievable.

3 In practice, we may want to generate the set incrementally, stopping when a suitable protocol
is found.

56

Algorithm 1 P generateProtocols(a, I")

Require: a, the agent that the algorithm runs for

Require: I, set of propositions known to be true
1: queue G’ — {g|g € a.G A g.state = Active}
2: return findSupport(a,G’, I', 0)

The generateProtocols function copies the agent’s active goals into a queue struc-
ture G’ for further processing and then calls the recursive function findSupport providing
a (the agent), G’ (its currently active goals), I" (the propositions that currently hold), and
() (initial value for A) as arguments. The generateProtocols function returns the result
of findSupport, which is a set of commitment protocols (P), i.e. a set of sets of commit-
ments. Recall that we use a.G to denote the goals G of agent a, and that for goal g we
use g.state to denote its state.

The main function is findSupport (see Algorithm 2). The function recursively calls
itself to generate alternative commitment protocols which support every given goal of
the agent a. The function takes as arguments an agent a, the queue of the agent’s goals
G’ that need to be supported, a set I" of propositions that are known to be true, and
a set A of commitments that are known to exist. The function first defines sets BG
and BS of (respectively) the beliefs of agent a about the goals and the services of
other agents. It then pops the next goal g from the goal queue G’ (Line 3). If all goals
are considered (i.e. ¢ = Null), then there is no need to generate extra commitments.
Hence, the algorithm simply returns one protocol: the set of the commitments already
proposed. This corresponds to the base case of the recursion (Lines 4-5). If the agent
already supports g (determined by isSupported function, see Algorithm 3), then the
algorithm ignores g and calls itself for the next goal in G’ (Line 8).

Otherwise, the function searches for one or more possible sets of commitments that
will support the goal g. It first initializes the set of alternative protocols P to the empty
set (Line 10). Then the algorithm searches for candidate commitments that will support
g. As a first step it checks whether it has any capabilities that would support this goal
if the precondition of the capability could be achieved through help from other agents
(Line 11). Note that if the preconditions could be achieved by the agent itself then the
algorithm would have detected this earlier in Line 3. Hence, here the specific case being
handled is that the precondition of a capability cannot be achieved by the agent itself,
but if it were achieved through other agents, then the capability would enable the agent
to reach its goal g. For each such capability, we make the precondition pre a new goal
for the agent, add it to the list of goals G’ that it wants to achieve, and recursively call
findSupport to find protocols.

After checking its own capabilities for achieving g, the agent then also starts looking
for another agent with a known service s’ € BS such that s’ achieves the satisfaction
condition of the goal g (Line 14). For any such service s’, we generate a proposed
commitment of the form C/(a’, a, sat’, prop)® (Line 16), where a’ is the agent that is
believed to be provide the service s’, a is the agent being considered by the call to the
function (its first argument), prop implies the satisfaction condition of the desired goal
g (i.e. prop — sat), and sat’ is an “attractive condition” to the proposed debtor agent

57

Algorithm 2 P findSupport(a,G’, I', A)
Require: a, the agent that the algorithm runs for
Require: G’, queue of agent’s (active) goals
Require: I, set of propositions known to be true

Require: A, set of commitments already generated (initially called with ()
1: define BG = {b|b € a.BAb= BG.(d’,gc,s)}

2: define BS = {bjb € a.BAb= BS.(d’,c,p)}

3: g < pop(g')

4: if g = Null then

5: return {A}

6: Ilelse g = Ga(gpre, sat, fail)*

7: else if isSupported(a, sat, I', A) then

8: return findSupport(a,G’, I, A)

9: else

10 P=90

11: forall {s | S.(pre,prop) € a.S A prop — sat} do

12: P «— P U findSupport(a, {G.(T,pre, L)AYU G T, A)
13: end for

14: forall {s' | BS,(a’, cond, prop) € BS A prop — sat} do
15: for all {¢' | BG4 (d’,pre’, sat") € BG A isSupported(a, pre’, I', A)} do
16: ¢+ C(d',a,sat’, prop)

17: G" « updateGoals(sat’, prop, a.G,G")

18: if —isSupported(a, sat’, I', A) then

19: G" — {Gu(T,sat’, LY }UG"”
20: end if
21: if - isSupported(a, cond, I', A) then
22: G" — {Go(T,cond, L) YU g”
23: end if
24: P « P U findSupport(a, G”, I, AU {c})
25: end for
26: end for
27: return P
28: end if

(a’). The notion of “attractive to agent a’” is defined in line 15: we look for a condition
sat’ that is believed to be a goal of agent a’. Specifically, we consider the known goals
BG of other agents, and look for a ¢’ € BG such that ¢ = BG,(a’, pre’, sat’) where
pre’ is already supported by agent a.

Next, having generated a potential commitment C(a’, a, sat’, prop)™ where the
debtor, a’, has a service that can achieve the desired condition prop and has a goal
to bring about sat’ (which makes the proposed commitment attractive), we update the
goals of the agent (discussed below) and check whether (1) the promised condition sat’
is supported by agent a, and (2) the precondition cond for realizing prop is supported
by agent a. If they are supported, then a does not need to do anything else. Otherwise,
it adds the respective proposition to the list of goals G” (Lines 19 and 22), so that ap-
propriate support for these propositions can be obtained.

58

Finally, the agent calls the function recursively to deal with the remainder of the
goals in the updated goal queue G”. When doing this, it adds the currently created com-
mitment c to the list of already generated commitments A. The result of the function
call is added to the existing set of possible protocols P (line 24). Once the agent has
completed searching for ways of supporting g, it returns the collected set of protocols
‘P. Note that if the agent is unable to find a way of supporting its goals, then P will be
empty, and the algorithm returns the empty set, indicating that no candidate protocols
could be found.

Algorithm 3 {true | false} isSupported(a, p, I, A)
Require: a, agent to check for support of p
Require: p, property to check for support
Require: I, set of propositions known to be true
Require: A, set of commitments already generated
1: if I' |= p then
2 return true
3: end if
4: for all s = S, (pre,prop) € a.S do
5: if prop — p A isSupported(a, pre, I', A) then
6.
7
8

return true
end if
: end for
9: for all {c | C(d’,a, cond, prop) € (a.CUA)} do
10: if c.state = Active A prop — p then

11: return true

12: else if (c.state = Conditional V c.state = Requested) A prop — p A
isSupported(a, cond, I', A) then

13: return true

14: endif

15: end for

16: return false

Algorithm 3 defines the isSupported function. This algorithm corresponds to Def-
inition 1 and returns true if the given proposition p is supported by the given agent a,
and false otherwise. The first case (line 1) checks whether the proposition is known to
be true. The second case checks capability support. That is, whether p is supported by
a capability s of the agent. More precisely, if the proposition prop of s implies p and
the precondition pre of s is supported by the agent (Lines 4-8). The third case checks
commitment support by checking whether a has (or will have) an active commitment c,
in which a is the creditor and the consequent prop implies p (Lines 10-11). In the last
case, the algorithm checks conditional support by checking whether a has (or will have)
a conditional commitment ¢, in which a is the creditor, the consequent prop implies p
and a supports the antecedent cond (Lines 12-14). If none of the above cases hold, then
the algorithm returns false, indicating that p is not supported by a.

59

Algorithm 4 G” updateGoals(ant, cons, G, G')

Require: ant, the antecedent of the new commitment

Require: cons, the consequent of the new commitment
Require: G, set of agent’s goals

Require: G’, the current queue of (potentially) unsupported goals

1: create new queue G’

2: G"” « copyof G’

3: for all {g | G.(pre, sat, fail) € G} do

4: if g.state = Inactive A (ant — pre \V cons — pre) then
5: g.state «— Active

6: push(G”, g9)

7: endif

8: end for

9: return G”

Algorithm 4 defines the updateGoals function. This function is called when a new
commitment is generated to support goal g of agent a. It takes propositions ant and
cons corresponding respectively to the antecedent and consequent of the new commit-
ment. The function also takes as arguments the goals G of agent a, and the queue of
currently unsupported goals G’. The algorithm assumes that both ant and cond will
be achieved at some future point due to the generated commitment. Accordingly, the
algorithm assumes that currently inactive goals which have ant or cond as their pre-
condition will be activated at some future point. Hence, these goals also need to be able
to be achieved, i.e. to be supported by agent a. The algorithm thus generates these ad-
ditional goals, and adds them to a (new queue) G”. The algorithm first creates a new
queue G and copies into it the current contents of G’ (Line 2). Then the goals in G that
are inactive but will be activated are pushed into G as active goals (Lines 3-8). Finally,
G" is returned. Instead of pushing the goals that are assumed to be activated directly
into G’, the algorithm creates a new queue. This is done because every recursive call in
line 24 of Algorithm 2 is related to a different commitment, which activates different
goals depending on its antecedent and consequent. Hence each recursive call requires a
different goal queue.

The algorithms presented are sound in the sense of Theorem 1: for any generated
protocol, the agent is able to act in such a way as to ensure that the desired goal be-
comes achieved, without making any assumptions about the behaviour of other agents,
other than that they fulfill their active commitments. The algorithms in this sec-
tion have been implemented (available from http://mas.cmpe.boun.edu.tr/
akin/cpgen.html), and have been used to generate protocols for a number of case
studies, including the one we present next, which took 0.6 seconds to generate protocols
(on a 2.GHz Intel Core i7 machine with 4 GB RAM running Ubuntu Linux).

4 Case Study

We illustrate our commitment generation algorithm’s progress through an e-commerce
scenario. In this scenario there is a customer (Cus), a merchant (Mer) and a bank

60

(Bank). The goal of the customer is to buy some product from the merchant. The
customer also has a goal of being refunded by the merchant, if the purchased product is
defective. The customer is capable of making payment orders to the bank to pay to the
merchant. The customer can also use a gift card, instead of payment. The merchant’s
goal is to be paid or to receive a gift card and the bank’s goal is to get payment orders
to earn commissions. We discuss the scenario from the customer’s point of view, who
runs our algorithm to generate a protocol in order to satisfy her goals. We first describe
the propositions that we use and their meanings:

Delivered: The purchased product is delivered to the customer.
— Paid: The merchant is paid.

HasGiftCard: The customer has a gift card.

GiftCardUsed: The customer uses the gift card.

Defective: The delivered product is defective.

Returned: The delivered product is returned to the merchant.
Refunded: The customer is refunded.

PaymentOrdered: The bank receives a payment order.

The customer has the following goals and capabilities: g; states that the goal of the
customer is to have the product be delivered (without any condition) and g- represents
the goal of the customer to be refunded, if the delivered product is defective, s; states
that the customer is able to make payment orders (without any condition), and s states
that the customer is able to use a gift card (instead of payment), if she has one. Finally,
s3 states that the customer is capable of returning a product, if it is defective.

- 91 = Gous(T, Delivered, ~Delivered)

- g2 = Gous(Defective, Refunded, = Re funded)
- 81 = Scus(T, PaymentOrdered)

- 89 = Scus(HaveGiftCard, Gi ftCardU sed)

- 83 = Scus(Defective, Returned)

The customer has the following beliefs about the other agents: b and by state that
the customer believes that the merchant provides a service to deliver a product, if the
merchant is paid or a gift card is used, respectively. b3 represents the belief that the
merchant will give a refund, if a product is returned, and b, is the belief about the
service of the bank to perform a money transaction for payment, if the bank receives
such a request. The customer also believes that the goal of the merchant is to be paid
(bs) or to receive a gift card (bg) and refund the customer if a sold product is defective
(b7), in order to ensure customer satisfaction. The goal of the bank is to receive payment
orders (bg), so that it can earn a commission from payment orders.

- by = BScus(Mer, Paid, Delivered)

— by = BScus(Mer,GiftCardUsed, Delivered)
- bs = BScus(Mer, Returned, Re funded)

— by = BScus(Bank, PaymentOrdered, Paid)
- by = BGous(Mer, T, Paid)

- bg = BGeys(Mer, T, GiftCardUsed)

61

- by = BGgyus(Mer, De fective, Returned)
- by = BGcys(Bank, T, PaymentOrdered)

Let us first discuss the states of the merchant’s goals g; and g». The algorithm con-
siders both goals as active. g; is active, since its condition is T. On the other hand,
De fective actually does not hold initially, which means g» should not be active. How-
ever, the algorithm assumes that De fective holds, since its truth value is not controlled
by any agent and therefore may or may not be true while executing the protocol. Us-
ing this assumption, the algorithm aims to create necessary commitments to capture all
potential future situations during the execution of the protocol.

Let us walk through the protocol generation process. The algorithm starts with g;.
To support Delivered, which is the satisfaction condition of g;, the algorithm generates
the commitment ¢; = C(Mer, Cus, Paid, Delivered)® using the belief b1, which is
about the service to provide Delivered and bs, which is the goal of the merchant. How-
ever, the antecedent Paid of ¢, is not supported by the customer. Hence, the algorithm
considers Paid as a new goal of the customer and starts to search for support for it. It
finds the belief by, which indicates that the bank can bring about Paid with a condition
PaymentOrdered, which is also a goal of the bank due to bg. PaymentOrdered is
already supported, since it is a capability of the customer (s1). Hence, the algorithm
generates the commitment ¢, = C(Bank, Cus, PaymentOrdered, Paid)®. At this
point, everything is supported to achieve g;. The algorithm continues for go, which is
achieved, if Re funded holds. Re funded can be achieved by generating the commit-
ment c; = C(Mer,Cus, Returned, Refunded)® using the service bz and the goal
b7 of the merchant. The antecedent Returned is a capability of the customer with a
supported condition De fective. Hence, everything is supported to achieve gs and the
algorithm returns the protocol that contains commitments ¢y, co, and cs.

Let us examine the protocol. c; states that the merchant is committed to deliver the
product if the customer pays for it. However, the customer is not capable of payment
(cannot bring about Paid by itself). co handles this situation, since the bank is com-
mitted to make the payment if the customer orders a payment. Finally, c3 guarantees
a refund, if the customer returns the product to the merchant. Note that the customer
returns the product only if it is defective (s2), hence there is no conflict with the goal
(bs) of the merchant.

Although the above protocol supports all the goals of the customer, the algorithm
continues to search for other alternative protocols, since our aim is to generate all possi-
ble protocols to achieve the goals. Hence, it starts to search for alternative protocols that
support the goals of the customer. It finds that it is possible to support g; also by using
the service bs. Accordingly, the algorithm initiates a new alternative protocol and gener-
ates the commitment c,_; = C(Mer, Cus, GiftCardU sed, Delivered) using the
beliefs b, and bg. However, the antecedent Gi ftCardU sed of co_1 is not supported
by the customer, since HasGiftCard, which is the condition of service s,, does not
hold. The algorithm searches for support for HasGiftCard, but it fails, since neither
the customer nor any other agent is able to bring it about.

Note that our algorithm also generates other protocols, which, due to information
about other agents not being complete or correct, may be inappropriate. For instance,
such a protocol may include a commitment such as C(Mer, Cus, Paid, Re funded)®.

62

This happens because the algorithm considers all believed goals of the other agents
while creating commitments. Specifically, to satisfy her goal Re funded, the customer
considers the known goals of the merchant, and finds three options to offer to the mer-
chant in return: Paid, GiftCardUsed and Returned. Hence the algorithm creates
three alternative commitments using each of these three goals of the merchant and each
commitment is considered as an alternative protocol. Another example of this is a sit-
uation where the merchant actually replaces a defective product instead of refunding
money (i.e. by is incorrect). We deal with inappropriate protocols by requiring all in-
volved agents to agree to a proposed protocol (see below). Specifically in this case
when the customer requests the commitment from the merchant, the merchant would
not accept the request.

5 Using Generated Protocols

The algorithm presented in the previous section generates candidate protocols, i.e. pos-
sible sets of proposed commitments that, if accepted, support the achievement of the
desired propositions. In this section we consider the bigger picture and answer the ques-
tion: how are the generated candidate protocols used?

The process is described in Algorithm 5, which uses two variables: the set of can-
didate protocols (P), and the set of commitments (in the current candidate protocol, P)
that agents have already accepted (C). We begin by generating the set of protocols P
(line 1). Next, we need to select one of the protocols* (line 2). The selected protocol is
removed from P. We then propose each commitment in the protocol to its debtor. This
is needed because, as noted earlier, domain knowledge about other agents’ goals may
not be entirely correct or up-to-date. If any agent declines the proposed commitment
then we cannot use the protocol, and so we clean up by releasing agents from their
commitments in the protocol, and then try an alternative protocol. If all agents accept
the commitments, then the protocol is executed.

Note that, since agents may not always fulfill their active commitments, we need to
monitor the execution (e.g. [9]), and in case a commitment becomes violated, initiate
action to recover. There are a range of possible approaches for recovery including sim-
ply abandoning the protocol and generating new protocols in the new state of the world;
and using compensation [17].

6 Discussion

We developed an approach that enables agents to create commitment protocols that fit
their goals. To achieve this, we proposed to represent agents’ capabilities and commit-
ments in addition to their goals. Agents reason about their goals as well as their beliefs
about other agents’ capabilities and goals to generate commitments. Our experiments
on an existing case study showed that an agent can indeed generate a set of commitment
protocols that can be used among agents. Hence, even agents who do not have any prior

* For the present we assume that the selection is done based on the simple heuristic that fewer
commitments are preferred.

63

Algorithm 5 generateAndUseProtocols(a, ")

Require: a, the agent that the algorithm runs for

Require: I, set of propositions known to be true
1: P — generateProtocols(a, ")

2: select P € P

3: P—P\{P}

4: C—10

5: for all C(z,vy,p, q)" € P such that z # a do
6: Propose C(x,y,p,q)" to agent =

7: if Agent x declines then

8: for all C(z,y,p,q)" € C do

9: Release agent = from the commitment C'(x, y, p, q)R
10: end for

11: Go to line 2

12: else

13: C —Ccu{C(z,y,p,q)"}

14: endif

15: end for

16: Execute Protocol P

protocols among them can communicate to carry out their interactions.

While we primarily discuss how our approach can be used at runtime, many of the
underlying ideas can be used at design time as well. That is, a system designer who is
aware of some of the goals and capabilities of the agents that will interact at runtime, can
use the algorithm to generate protocols for them. This will enable a principled approach
for designing commitment-based protocols.

Goals and commitments have been both widely studied in the literature. On the
goals side, Thangarajah et al. [16] study relations and conflicts between goals. van
Riemsdijk et al. [12] study different types of goals and propose to represent them in a
unifying framework. On the commitments side, EI-Menshawy et al. [7] study new se-
mantics for commitments. Chopra and Singh [4, 5] study the interoperability and align-
ment of commitments. However, the interaction between goals and commitments has
started to receive attention only recently.

Chopra et al. [3] propose a formalization of the semantic relationship between
agents’ goals and commitment protocols. Their aim is to check whether a given commit-
ment protocol can be used to realize a certain goal. To do this, they define a capability
set for each agent and first check if an agent can indeed carry out the commitments it
participates in. This is important and can be used by agents to choose among possible
commitment protocols. Chopra et al. assume that the commitment protocols are already
available for agents. By contrast, in our work, we are proposing a method for the agents
to generate a commitment protocol that they can use to realize their goals from scratch.

Isiksal [10] studies how an agent can create a single commitment to realize its goal
with the help of other agents’ in the system. She proposes reasoning rules that can
be applied in various situations and she applies these rules on an ambient intelligence
setting. She does not generate a set of alternative protocols and does not consider beliefs
about other agents’ goals as we have done here.

64

Desai et al. [6] propose Amoeba, a methodology to design commitment based pro-
tocols for cross-organizational business processes. This methodology enables a system
designer to specify business processes through the participating agents’ commitments.
The methodology accommodates useful properties such as composition. Desai et al.
model contextual changes as exceptions and deal with them through metacommitments.
Their commitment-based specification is developed at design time by a human, based
on the roles the agents will play. In this work, on the other hand, we are interested in
agents generating their commitments themselves at run time. This will enable agents to
interact with others even when an appropriate protocol has not been designed at design
time.

Telang et al. [15] develop an operational semantics for goals and commitments.
They specify rules for the evolution of commitments in light of agents’ goals. These
practical rules define when an agent should abandon a commitment, when it should
negotiate, and so on. These rules are especially useful after a commitment protocol has
been created and is in use. In this respect, our work in this paper is a predecessor to the
execution of the approach that is described by Telang ef al., that is, after the protocol
has been generated, the agents can execute it as they see fit, based on their current goals.

The work of Marengo et al. [11] is related to this work. Specifically, our notion of
support (Definition 1) is analogous to their notion of control: intuitively, in order for an
agent to consider a proposition to be supported, it needs to be able to ensure that it is
achieved, i.e. be able to control its achievement. However, whereas the aim of their work
is to develop a framework for reasoning about control and safety of given protocols, our
aim is to derive protocols.

Future work includes studying how well our algorithms generate protocols in dif-
ferent scenarios, especially in cases where an agent’s beliefs about other agents’ goals
and capabilities are incomplete or inconsistent. Also, we have not considered prioriti-
zation among generated alternative protocols. However, in real life, we would expect a
ranking of different protocols based on how well a protocol satisfies an agents’ goals or
how much work a protocol requires an agent to carry out.

References

1. Alberti, M., Cattafi, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Tor-
roni, P.: A Computational Logic Application Framework for Service Discovery and Con-
tracting. International Journal of Web Services Research IJWSR) 8(3), 1-25 (2011)

2. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Organizations.
In: Lesser, V.R., Gasser, L. (eds.) ICMAS. pp. 41-48. The MIT Press (1995)

3. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about Agents and Proto-
cols via Goals and Commitments. In: International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). pp. 457-464 (2010)

4. Chopra, A.K., Singh, M.P.: Constitutive Interoperability. In: International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). pp. 797-804 (2008)

5. Chopra, A.K., Singh, M.P.: Multiagent Commitment Alignment. In: International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS). pp. 937-944 (2009)

6. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A Methodology for Modeling and Evolving
Cross-organizational Business Processes. ACM Transactions on Software Engineering and
Methodology 19, 6:1-6:45 (October 2009)

65

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. El-Menshawy, M., Bentahar, J., Dssouli, R.: A New Semantics of Social Commitments Using

Branching Space-Time Logic. In: WI-IAT *09: Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology. pp.
492-496 (2009)

. Fornara, N., Colombetti, M.: Operational Specification of a Commitment-Based Agent Com-

munication Language. In: International Conference on Autonomous Agents and Multiagent
Systems (AAMAS). pp. 536-542 (2002)

. Giinay, A., Yolum, P.: Detecting Conflicts in Commitments. In: Sakama, C., Sardina, S.,

Vasconcelos, W., Winikoff, M. (eds.) Declarative Agent Languages and Technologies IX.
LNAL vol. 7169, pp. 51-66. Springer (2011)

Isiksal, A.: Use of Goals for Creating and Enacting Dynamic Contracts in Ambient Intelli-
gence. Master’s thesis, Bogazici University (2012)

Marengo, E., Baldoni, M., Baroglio, C., Chopra, A K., Patti, V., Singh, M.P.: Commitments
with Regulations: Reasoning about Safety and Control in REGULA. In: International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS). pp. 467-474 (2011)
van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in Agent Systems: A Unifying
Framework. In: International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). pp. 713-720 (2008)

Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial Intelligence
and Law 7(1), 97-113 (1999)

Singh, M.P.: Information-Driven Interaction-Oriented Programming: BSPL, the Blindingly
Simple Protocol Language. In: International Conference on Autonomous Agents and Multi-
agent Systems (AAMADS). pp. 491-498 (2011)

Telang, P.R., Yorke-Smith, N., Singh, M.P.: A Coupled Operational Semantics for Goals
and Commitments. In: 9th International Workshop on Programming Multi-Agent Systems
(ProMAS) (2011)

Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & Avoiding Interference Between
Goals in Intelligent Agents. In: Proceedings of the 18th International joint Conference on
Artificial Intelligence. pp. 721-726 (2003)

Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied or
compensated. In: Declarative Agent Languages and Technologies (DALT). LNCS, vol. 5498,
pp. 228-243 (2009)

Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite, J., Omicini,
A., Torroni, P., Yolum, P. (eds.) Declarative Agent Languages and Technologies II, Lecture
Notes in Computer Science, vol. 3476, pp. 198-220. Springer (2005)

Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: KR. pp. 470-481 (2002)

Yolum, P., Singh, M.P.: Flexible Protocol Specification and Execution: Applying Event Cal-
culus Planning using Commitments. In: International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). pp. 527-534 (2002)

66

Goal-based Qualitative Preference Systems

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

Interactive Intelligence Group, Delft University of Technology, The Netherlands
{wietske.visser,k.v.hindriks, c.m.jonker}@tudelft.nl

Abstract. Goals are not only used to identify desired states or outcomes, but
may also be used to derive qualitative preferences between outcomes. We show
that Qualitative Preference Systems (QPSs) provide a general, flexible and suc-
cinct way to represent preferences based on goals. If the domain is not Boolean,
preferences are often based on orderings on the possible values of variables. We
show that QPSs that are based on such multi-valued criteria can be translated into
equivalent goal-based QPSs that are just as succinct. Finally, we show that goal-
based QPSs allow for more fine-grained updates than their multi-valued coun-
terparts. These results show that goals are very expressive as a representation of
qualitative preferences and moreover, that there are certain advantages of using
goals instead of multi-valued criteria.

Key words: Qualitative multi-criteria preferences, goals

1 Introduction

In planning and decision making, goals are used to identify the desired states or out-
comes. Essentially, goals provide a binary distinction between those states or outcomes
that satisfy the goal and those that do not [1]. Outcomes that satisfy all goals are ac-
ceptable. However, it may happen that such outcomes are not available, but a decision
still has to be made. Or there may be multiple outcomes that satisfy all goals and only
one can be chosen. In these situations, goals provide no guidance to choose between the
available alternatives [1, 2].

Instead of using goals in an absolute sense, it would be more convenient to use them
to derive preferences between outcomes. There are multiple approaches to doing this in
the literature, for example comparing the number of goals that are satisfied, or taking
the relative importance of the (un)satisfied goals into account. We show in Section 2
that Qualitative Preference Systems [3] provide a general, flexible and succinct way to
represent preferences based on goals. In this approach goals are modelled as criteria
that can be combined to derive a preference between outcomes. We show that the best-
known qualitative approaches to interpret goals as a representation of preferences are
all expressible in a QPS.

Most goal-based approaches in the literature define outcomes as propositional mod-
els, i.e. all variables are Boolean, either true or false. In real-world applications, not all
variables are Boolean. For example, variables may be numeric (e.g. cost, length, num-
ber, rating, duration, percentage) or nominal (e.g. destination, colour, location). Qual-
itative Preference Systems typically express preferences, in a compact way, based on

67

preference orderings on the possible values of variables. In Section 3 we show that such
QPSs can be translated into equivalent goal-based QPSs, i.e. QPSs that express pref-
erences based solely on goals. Such a translation requires at most polynomially more
space, and hence is just as succinct as the original QPS. This result shows that goals
are very expressive as a representation of qualitative preferences among outcomes. In
[3], we discussed in detail the relation between Qualitative Preference Systems and two
well-known frameworks that are representative for a large number of purely qualitative
approaches to modelling preferences, namely Logical Preference Description language
[4] and CP-nets [5]. We showed that for both of these approaches, a corresponding QPS
can be defined straightforwardly. Since a QPS can be translated to a goal-based QPS,
this result also holds for the goal-based QPSs that are the topic of the current paper.

In Section 4 we show that goal-based criterion trees also have some added value
compared to trees with multi-valued criteria. We introduce basic updates on a QPS and
show that goal-based QPSs allow for more fine-grained updates than their multi-valued
counterparts. This is due to the different structure of goal-based criteria. We suggest
a top-down approach to preference elicitation that starts with coarse updates and only
adapts the criterion structure if more fine-grained updates are needed. Finally, Section
5 concludes the paper.

2 Modelling Goals as Criteria in a QPS

Several approaches to derive preferences over outcomes from goals can be found in the
literature. Goals are commonly defined as some desired property that is either satisfied
or not. As such, it is naturally represented as a propositional formula that can be true
or false. Hence outcomes are often defined as propositional models, i.e. valuations over
a set of Boolean variables p,q,r,.... Sometimes all theoretically possible models are
considered, sometimes the set of outcomes is restricted by a set of constraints. In the
latter case, it is possible to specify which outcomes are actually available, or to use
auxiliary variables whose values are derived from the values of other variables.

In [3] we introduced a framework for representing qualitative multi-criteria pref-
erences called Qualitative Preference Systems (QPS). With this framework we aim to
provide a generic way to represent qualitative preferences that are based on multiple cri-
teria. A criterion can be seen as a preference from one particular perspective. We first
summarize the general definition of a QPS from [3] in Section 2.1. We then propose
in Section 2.2 that a goal can be straightforwardly modelled as a criterion in a QPS,
thus providing the means to derive preferences over outcomes from multiple goals. In
Section 2.3 we show that QPSs based on goal criteria can express different interpre-
tations of what it means to have a goal p, such as absolute, ceteris paribus, leximin
and discrimin preferences, and provide the possibility to state goals in terms of more
fundamental interests.

2.1 Qualitative Preference Systems

The main aim of a QPS is to determine preferences between outcomes (or alternatives).
An outcome is represented as an assignment of values to a set of relevant variables.

68

Every variable has its own domain of possible values. Constraints on the assignments
of values to variables are expressed in a knowledge base. Outcomes are defined as
variable assignments that respect the constraints in the knowledge base.

The preferences between outcomes are based on multiple criteria. Every criterion
can be seen as a reason for preference, or as a preference from one particular perspec-
tive. A distinction is made between simple and compound criteria. Simple criteria are
based on a single variable. Multiple (simple) criteria can be combined in a compound
criterion to determine an overall preference. There are two kinds of compound criteria:
cardinality criteria and lexicographic criteria. The subcriteria of a cardinality criterion
all have equal importance, and preference is determined by counting the number of
subcriteria that support it. In a lexicographic criterion, the subcriteria are ordered by
priority and preference is determined by the most important subcriteria.

Definition 1. (Qualitative preference system [3]) A qualitative preference system
(QPS) is a tuple (Var,Dom,K ,C). Var is a finite set of variables. Every variable X € Var
has a domain Dom(X) of possible values. K (a knowledge base) is a set of constraints
on the assignments of values to the variables in Var. A constraint is an equation of the
form X = Expr where X € Var is a variable and Expr is an algebraic expression that
maps to Dom(X). An outcome « is an assignment of a value x € Dom(X) to every
variable X € Var, such that no constraints in K are violated. denotes the set of all
outcomes: 2 C [Ixeyar Dom(X). ax denotes the value of variable X in outcome o. C is
a finite, rooted tree of criteria, where leaf nodes are simple criteria and other nodes are
compound criteria. Child nodes of a compound criterion are called its subcriteria. The
root of the tree is called the top criterion. Weak preference between outcomes by a crite-
rion c is denoted by the relation >.. >, denotes the strict subrelation, ~. the indifference
subrelation.

Definition 2. (Simple criterion [3]) A simple criterion c is a tuple (X,.,>.), where X, €
Var is a variable, and >, a preference relation on the possible values of X., is a preorder
on Dom(X.). >, is the strict subrelation, =, is the indifference subrelation. We call ¢ a
Boolean simple criterion if X, is Boolean and T >. 1. A simple criterion ¢ = (X.,>.)

weakly prefers an outcome o over an outcome B, denoted o >, B, iff ox, 2. PBx..

Definition 3. (Cardinality criterion [3]) A cardinality criterion c is a tuple (C.) where
C. is a nonempty set of Boolean simple criteria (the subcriteria of c). A cardinality
criterion ¢ = (C,.) weakly prefers an outcome o over an outcome 3, denoted o >, B, iff

{seCela>s B}|2{seCe|afs Bl

Note that a cardinality criterion can only have Boolean simple subcriteria. This is to
guarantee transitivity of the preference relation induced by a cardinality criterion [3].

Definition 4. (Lexicographic criterion [3]) A lexicographic criterion ¢ is a tuple
(Ce,>c), where C, is a nonempty set of criteria (the subcriteria of ¢) and >, a pri-
ority relation among subcriteria, is a strict partial order (a transitive and asymmetric
relation) on C,. A lexicographic criterion ¢ = (C,,>.) weakly prefers an outcome o, over
an outcome B, denoted o> B, iff Vs € Co(a =, BvIs' e Co(ot >y B As'Des)).

69

>
< R 300
300 5.B
> =
400 N 400
>
500 P 500
a. Criterion tree b. Preference relation

Fig. 1. Qualitative Preference System

This definition of preference by a lexicographic criterion is equivalent to the priority
operator as defined by [6]. It generalizes the familiar rule used for alphabetic ordering
of words, such that the priority can be any partial order and the combined preference
relations can be any preorder.

Example 1. To illustrate, we consider a QPS to compare holidays. Holidays (outcomes)
are defined by two variables: C (cost) and D (destination). Dom(C) = {300,400,500}
and Dom(D) = {R,B, P} (Rome, Barcelona and Paris). For the moment, we do not use
any constraints. We use the notation ‘300B°, ‘500R’ etc. to refer to outcomes. Prefer-
ences are determined by a lexicographic criterion ! with two simple subcriteria: (C, >¢)
such that 300 >¢ 400 >¢ 500 and (D, >p) such that R =p B >p P. We slightly abuse nota-
tion and refer to these criteria by their variable, i.e. C and D. C has higher priority than
D: C > D. The criterion tree is shown in Figure 1a, the induced preference relation in
Figure 1b. The black dots represent the outcomes, and the arrows represent preferences
(arrows point towards more preferred outcomes). Superfluous arrows (that follow from
reflexivity and transitivity of the preference relation) are left out for readability.

Priority between subcriteria of a lexicographic criterion (>) is a strict partial order
(a transitive and asymmetric relation). This means that no two subcriteria can have the
same priority. If two criteria have the same priority, they have to be combined in a
cardinality criterion, which can then be a subcriterion of the lexicographic criterion. To
simplify the representation of such a lexicographic criterion with cardinality subcriteria,
we define the following alternative specification.

Definition 5. (Alternative specification of a lexicographic criterion) A tuple (C.,>!
), where C.. is a set of criteria and ©.. is a preorder, specifies a lexicographic criterion

¢ =(Ce,>c) as follows.

— Partition C. into priority classes based on ©...

— For every priority class P, define a criterion cp. If P contains only a single criterion
s, then cp = s. Otherwise cp is a cardinality criterion such that for all s € P: s € Cep,.

— Define ¢ = (C;,>.) such that C. = {cp | P is a priority class} and cp > cps iff for all
sePs" eP:spls.

For example, the specification / = ({g1,£2,¢3},2) such that g; > g» = g3 is short for
1=({g1.c},>) such that g; > c and c = ({g2,83})-

70

2.2 Goalsina QPS

In general, the variables of a QPS can have any arbitrary domain and simple criteria
can be defined over such variables. Example 1 contains two such multi-valued simple
criteria. In the goal-based case however, we define outcomes as propositonal models,
and hence all variables are Booleans. Goals are defined as Boolean simple criteria, i.e.
simple criteria that prefer the truth of a variable over falsehood.

Definition 6. (Goal) A QPS goal is a Boolean simple criterion (X,{(T,1)}) for some
X € Var. For convenience, we denote such a goal by its variable X.

This is straightforward when goals are atomic, e.g. p. If goals are complex proposi-
tional formulas, e.g. (pVv q) A =r, an auxiliary variable s can be defined by the constraint
s=(pvq) A-r(see [3] for details on auxiliary variables). As this is a purely technical
issue, we will sometimes use the formula instead of the auxiliary variable in order not
to complicate the notation unnecessarily.

Multiple goals can be combined in order to derive an overall preference. If multi-
ple goals are equally important and it is the number of satisfied goals that determines
preference, a cardinality criterion can be used. Actually, every cardinality criterion is
already goal-based, since the subcriteria are restricted to Boolean simple criteria which
are the same as goals. If there is priority between goals (or if goals have incomparable
priority), they can be combined in a goal-based lexicographic criterion. Such a criterion
can also be used to specify priority between sets of equally important goals (goal-based
cardinality criteria).

Definition 7. (Goal-based lexicographic criterion) A goal-based lexicographic cri-
terion is a lexicographic criterion all of whose subcriteria are either goals, goal-based
cardinality criteria, or goal-based lexicographic criteria.

Note that in the goal-based case, multi-valued simple criteria do not occur anywhere
in the criterion tree; that is, all simple criteria are goals. The criterion tree in Figure 1a
is not goal-based. However, we will see later that it can be translated to an equivalent
goal-based criterion tree.

Example 2. Anne is planning to go on holiday with a friend. Her overall preference is
based on three goals: that someone (she or her friend) speaks the language (s/), that
it is sunny (su) and that she has not been there before (—bb). The set of variables is
Var = {sl,su,bb}. Since every variable is propositional, the domain for each variable is
{T,1} and there are eight possible outcomes. For the moment we do not constrain the
outcome space and do not use auxiliary variables (K = @&). Two goals (s/ and su) are
based on atomic propositions, the third (-=bb) on a propositional formula that contains a
negation. The overall preference between outcomes depends on the way that the goals
are combined by compound criteria. In the next section we discuss several alternatives.

2.3 Expressivity of QPS as a Model of Goal-Based Preferences

What does it mean, in terms of preferences between outcomes, to have a goal p? Dif-
ferent interpretations can be found in the literature. We give a short overview of the
best-known ones and show that QPSs can express the same preferences by means of
some small examples.

71

sl,su,—bb

=sl,su,=bb sl,—su,—=bb sl,su,bb

-bb sl su —sl,=su,bb

a. Criterion tree b. Preference relation

Fig. 2. Ceteris paribus preference

Ceteris Paribus Preference One interpretation of having a goal p is that p is preferred
to —p ceteris paribus (all other things being equal) [7, 1,5]. The main question in this
case is what the ‘other things’ are. Sometimes [5, 7], they are the other variables (atomic
propositions) that define the outcomes. Wellman and Doyle [1] define ceteris paribus
preferences relative to framings (a factorisation of the outcome space into a cartesian
product of attributes). The preference relation over all outcomes is taken to be the tran-
sitive closure of the preferences induced by each ceteris paribus preference. So if we
have p and g as ceteris paribus goals, then p A g is preferred to -p A —g since p A q is
preferred to —p A g (by goal p) and —p A q is preferred to —p A =g (by goal g).

Example 3. Consider a lexicographic criterion / that has the three goals as subcriteria,
and there is no priority between them, i.e. [= ({sl,su,~bb},) (Figure 2a). The resulting
preference relation (Figure 2b) is a ceteris paribus preference.

This is a general property of qualitative preference systems: a lexicographic cri-
terion with only goals as subcriteria and an empty priority relation induces a ceteris
paribus preference, where the other things are defined by the other goals (see also [8]).
The main advantage of the ceteris paribus approach is that it deals with multiple goals
in a natural, intuitive way. However, the resulting preference relation over outcomes is
always partial since there is no way to compare p A —~q and —p Aq. This is why [1] claim
that goals are inadequate as the sole basis for rational action. One way to solve this is
to introduce relative importance between goals, which is done in the prioritized goals
approach.

Prioritized Goals In e.g. [4], preferences are derived from a set of goals with an asso-
ciated priority ordering (a total preorder). That is, there are multiple goals, each with
an associated rank. There may be multiple goals with the same rank. Various strategies
are possible to derive preferences from such prioritized goals. For example, the € or
discrimin strategy prefers one outcome over another if there is a rank where the first
satisfies a strict superset of the goals that the second satisfies, and for every more im-
portant rank, they satisfy the same goals. The # or leximin strategy prefers one outcome
over another if there is a rank where the first satisfies more goals than the second, and
for every more important rank, they satisfy the same number of goals.

The prioritized goals strategies discrimin and leximin can also be expressed in a
QPS. An exact translation is given in [3]. Here we just illustrate the principle. In the

72

sl,su,~bb sl,su,~bb

)

ﬂsl,sw,ﬂbb =sl,su,=bb <= sl,—~su,—bb
| ﬂsl,ﬂ%u,ﬁbb | ﬂsl,ﬂ%u,ﬂbb
sl,su,bb /\ l,su,bb

e
v
(O
o
As
v
o
N)

=sl,su,bb sl,=su,bb =sl,su,bb <— sl,—su,bb

<

—-bb sl su =sl,—su,bb =bb sl su =sl,—su,bb

a. Criterion tree b. Preference relation c. Criterion tree d. Preference relation

Fig. 3. (a, b) Discrimin preference (c, d) Leximin preference

prioritized goals approach, priority between goals is a total preorder, which can be ex-
pressed by assigning a rank to every goal. A QPS can model a discrimin or leximin
preference with a lexicographic criterion that has one subcriterion for every rank. These
subcriteria are compound criteria that contain the goals of the corresponding rank, and
they are ordered by the same priority as the original ranking. For the discrimin strategy,
the subcriteria are lexicographic criteria with no priority ordering between the goals.
The leximin strategy uses the number of satisfied goals on each rank to determine over-
all preference. Therefore, each rank is represented by a cardinality criterion.

Example 4. Suppose that -bb has the highest rank, followed by s/ and su that have the
same rank. The discrimin criterion tree for the example is shown in Figure 3a, where
[is the top criterion and /; and [, the lexicographic criteria corresponding to the two
ranks. The resulting preference relation is shown in Figure 3b. The leximin criterion
tree for the example is shown in Figure 3c, where [is the top criterion and c; and c; the
cardinality criteria corresponding to the two ranks. The resulting preference relation is
shown in Figure 3d.

Preferential Dependence The above approaches all assume that goals are preferentially
independent, that is, goalhood of a proposition does not depend on the truth value of
other propositions. There are several options if goals are not preferentially independent.
One is to specify conditional goals or preferences, as is done in e.g. [5,2]. Another is
to achieve preferential independence by restructuring the outcome space or expressing
the goal in terms of more fundamental attributes [1, 9] or underlying interests [8].

Example 5. Actually, the variables s/ and bb that we chose for the example already
relate to some of Anne’s underlying interests. It may have been more obvious to char-
acterize the outcome holidays by the destination (where Anne may or may not have
been before) and the accompanying friend (who may or may not speak the language of
the destination country). In that case we would have had to specify that Anne would
prefer Juan if the destination was Barcelona, but Mario if the destination was Rome.
Instead of specifying several conditional preferences, we can just say that she prefers
to go with someone who speaks the language. In this case, knowledge is used to create
an abstraction level that allows one to specify more fundamental goals that are only
indirectly related to the most obvious variables with which to specify outcomes [8].

73

3 Modelling Multi-valued Criteria as Goals

Preferences in a QPS are ultimately based on simple criteria, i.e. preferences over the
values of a single variable. In general, the domain of such a variable may consist of
many possible values. In the goal-based case, simple criteria are based on binary goals.
In this section we show that the goal-based case is very expressive, by showing that
every QPS can be translated into an equivalent goal-based QPS (provided that the do-
mains of the variables used in the original QPS are finite). Moreover, we show that this
translation is just as succinct as the original representation. In order to do this, we must
first formalize the concept of equivalence between QPSs.

3.1 Equivalence

An obvious interpretation of equivalence between criteria is the equivalence of the pref-
erence relations they induce. L.e. two criteria c; and ¢, are equivalent if for all outcomes
o, B, we have o >, B iff ot >, B. However, this definition only works if the criteria are
defined with respect to the same outcome space, i.e. the same set of variables Var, the
same domains Dom and the same constraints K. Since we will make use of auxiliary
variables, we cannot use this definition directly. Fortunately, this is a technical issue that
can be solved in a straightforward way.

Definition 8. (Equivalence of outcomes) Ler S = (Var;,Domy,K;,C1) and S, = (Vars,
Domy,K;,Cy) be two QPSs such that Vary € Vary, VX € Vari(Dom;(X) € Domy (X))
and K1 € K;. Let Q1 and €2, denote the outcome spaces of S| and S», respectively. Two
outcomes o, € Q1 and B € £, are equivalent, denoted o = 3, iff VX € Vary : ax = Px.

In the following, the only variables that are added are auxiliary variables. Such
variables do not increase the outcome space because their value is uniquely determined
by the values of (some of) the existing variables. We use special variable names of the
form ‘X =v’ to denote a Boolean variable that is true if and only if the value of variable
X is v. For example, the variable C = 300 is true in outcomes 300R, 300B and 300P, and
false in the other outcomes. When only auxiliary variables are added, every outcome
in £, has exactly one equivalent outcome in £2,. We will represent such equivalent
outcomes with the same identifier.

Definition 9. (Equivalence of criteria) Ler Sy = (Vary,Domy,K;,C1) and S, = (Vars,
Domy,K;,Cy) be two QPSs such that Vary € Vary, VX € Vari(Dom;(X) € Domy (X))
and K1 € K;. Let Q1 and €, denote the outcome spaces of S| and Sy, respectively. Two
criteria c in Cy and ¢’ in C, are called equivalent iff Voo, B € Q, Vo', € s, if =’
and B = B’, then a >, B iff &' > B’

Definition 10. (Equivalence of QPSs) Let S| = (Var;,Dom,,K;,C1) and Sy = (Vars,

Domy,K;,Cy) be two QPSs. S| and Sy are equivalent if the top criterion of Cy is equiv-
alent to the top criterion of S.

74

g(l)

9(C) > 9(D) [CIO)

C=300 > C=400 > C=500 c > D=P C=300 » C=400 » C=500 » ¢ P> D=P
D=R D=B D=R D=B
a. Goal-based translation of b. The result of flattening
the criterion tree in Figure 1a the criterion in Figure 4a

Fig. 4. Goal-based translation and flattening

3.2 From Simple Criteria to Goals

A simple criterion on a variable with a finite domain can be translated to an equivalent
goal-based criterion in the following way.

Definition 11. (Goal-based translation) Lez ¢ = (X, >) be a simple criterion such that
Dom(X) is finite. The translation of ¢ to a goal-based criterion, denoted g(c), is defined
as follows. If ¢ is already a Boolean simple criterion, then g(c) = c. Otherwise:

— For every xe Dom(X), define a goal (Boolean simple criterion) c, on variable X = x
with T 2., L.

— Define a lexicographic criterion g(c) = (Cy(c),2q(c)) such that Cyiy = {cx | x €
Dom(x)} and cx Bg(cy Cor iff X 2 X

Example 6. To illustrate, Figure 4a displays the translation of the criterion tree in Figure
la. The simple criteria C and D have been replaced by their translations g(C) and g(D).
These lexicographic criteria have a subgoal for every value of C resp. D. The priority
between these goals corresponds to the value preferences of the original simple criteria.

Theorem 1. Let ¢ = (X,>) be a simple criterion such that Dom(X.) is finite. The goal-
based translation g(c) of ¢ as defined in Definition 11 is equivalent to c.

Proof. We distinguish five possible cases and show that in every case, ¢’s preference
between o and f is the same as g(c)’s preference between o and 3.

If ax = Bx then (a) &~ B and (b) & ~y(.) B-

If oy = Bx but oy # Py then (a) @~ and (b) &~y B-

If oy > Bx then (a) a >, B and (b) @ >o(c) B.

If Bx >. ax then (a) B >. o and (b) >o(c) Q-

If ax ¥ Bx and By ¥ oy then (a) & ¥ B and B # o and (b) & £y B and B #4(.) .

Nk LD =

1-5(a). This follows directly from the definition of simple criteria. 1(b). If oty = Bx then
Vx € Dom(X) : Qx=x = Bx=x, 80 also Vx € Dom(X) : &t »., B. Hence, by the definition of
a lexicographic criterion: o ~,(.) B. 2-5(b). If oty # Bx then Vx € Dom(X)\{ox,Bx } :
Ox—x = Bx=y and o a(c) B. Since a subcriterion s of a compound criterion such that
o ~; B does not influence that compound criterion’s preference between o and f3, the

(0]

only criteria that can influence g(c)’s preference between a and f8 are cq, and cg, .
Since o >¢,, B and B >cp, O, preference between o and B by g(c) is determined by the
priority between cq, and Cpy - 2(b). If oty 2 Bx then cqy 24(¢) Cpys SO they are together
in a cardinality criterion and we have & ~,(,) B. 3(b). If oy > By then cqy Do(c) Cpyx SO
by the definition of a lexicographic criterion o > 2(c) B. 4(b). Analogous to 3(b). 5(b).
If o ¥ Bx and Bx ¥c ax then cay Ho(c) cp, and cpy Fo(cy Coyx and cay F4(c) Cpys SO by
the definition of a lexicographic criterion o fg(() B and 8 #g(c) a.

By replacing every simple criterion c in a criterion tree with its goal-based transla-
tion g(c), an equivalent goal-based criterion tree is obtained.

Definition 12. (Relative succinctness) g(c) is ar least as succinct as c iff there exists
a polynomial function p such that size(g(c)) < p(size(c)). (Adapted from [10].)

Theorem 2. Let ¢ = (X,>) be a simple criterion such that Dom(X,) is finite. The trans-
lation g(c) of ¢ as defined in Definition 11 is just as succinct as c.

Proof. The goal-based translation just replaces variable values with goals, and the pref-
erence relation between them with an identical priority relation between goals, so the
translation is linear. O

The above two theorems are very important as they show that goals are very expres-
sive as a way to represent qualitative preferences, and moreover, that this representation
is just as succinct as a representation based on multi-valued criteria.

4 Updates in a QPS

In this section we show that goal-based criterion trees also have some added value
compared to trees with multi-valued criteria. We introduce updates on a criterion tree
as changes in the value preference of simple criteria or in the priority of lexicographic
criteria. The number of updates of this kind that are possible depends on the structure
of the tree. In general, the flatter a criterion tree, the more updates are possible. It is
possible to make criterion tree structures flatter, i.e. to reduce the depth of the tree,
by removing intermediate lexicographic criteria. The advantage of goal-based criterion
trees is that they can be flattened to a greater extent than their equivalent non-goal-
based counterparts. We first formalize the concept of flattening a criterion tree. Then
we define what we mean by basic updates in a criterion tree and show the advantages
of flat goal-based QPSs compared to other flat QPSs.

4.1 Flattening

Simple criteria are terminal nodes (leaves) and cannot be flattened. Cardinality criteria
have only Boolean simple subcriteria and cannot be flattened either. Lexicographic cri-
teria can have three kinds of subcriteria: simple, cardinality and lexicographic. They can
be flattened by replacing each lexicographic subcriterion by that criterion’s subcriteria
and adapting the priority accordingly (as defined below).

76

Definition 13. (Removing a lexicographic subcriterion) Lez ¢ = (C.,>.) be a lexico-
graphic criterion and d = (Cy,>,4) € C, a lexicographic criterion that is a subcriterion of
c. We now define a lexicographic criterion f(c,d) =(Cg(c.q),>f(c.a)) that is equivalent
to ¢ but does not have d as a subcriterion. To this end, we define Cy(. 4y = C/\{d} uCy
and Vi, j€Cyeqy i peay JUfi,j€Ceand ive j, ori, jeCyandivy j, orieCe, jeCy
andiv.d, orieCy, jeCoanfd . j.

Theorem 3. f(c,d) is equivalent to c, i.e. > B iff & >f(c.q4) B-

Proof. =>. Suppose @ >, 3. Then Vs e C.(0t =5 Bv3Is’ e Co(o >?/ BAs >c5)). We need
to show that also Vs € Cy(, d)(a > Bv3s'eCy, d)(oc > BAS" > (ca) $)). We do this
by showing that a >5 B v 3s" € Crc qy (0t >¢ B AS" >4y 5) holds for every possible
origin of s € Cy(. 4. We have Vs € Cy(. 4y, either s e C:\{d} or s € Cy.

- If se C\{d}, we know that o >, Bv 3Is" € C.(at >y BAs' bes). If @ >, B, trivially
also o> fvIs’ e Cf(cyd)(a > BAS Df(c‘d) s) and we are done. If 3s" € C.(ot >y
ﬁ/\s >c 5), then either s" € C\{d} or 5" =d. If s € C/\{d}, then 5" € Cy(. 4y and
s’ ‘>f(cd) 5,80 also & > Bv 35" € Cy(eq) (@ >y BAS Dy q)s) and we are done. If
s =d, then (since & >y 8) i € Cy (and hence € Creay): O >i B. Since 5" b, 5, we
have it (. 4) s and so also & >5 Bv i€ Cpc gy (A >i BAiPf(c 4y 5) and we are done.

— Now consider the case that s € C;. Since d € C., we know that either @ >, 8 or
As' e Co(o >y BAs' b d). If o0 >4 B, we know @ >5 BvIs’ e Cy(a >y BAS Dy s)
and hence o >; BV 3s" € Cy(c gy (0t >y BAS >rcq)) and we are done. If 3s” €
Ce(o >y BAs' > d) then 35" € Cre gy (0 >g BAS">p(cqy) so trivially also a >
Bv3s'€Cpeay(a>y BAs">pcq)s) and we are done.

<. Suppose a #. . Then s € C.(a #s BAVs € Co(s' e s = a ¢ B)). We need to
show that also 37 € Cy(c.) (@ # B AV € Cp(cay(t' > y(cayt = @ #v B)). Either s # d or
s=d.

— If s #d, then s € Cy(. 4) and we know that o ¥ B and Vs" € Crieay\Ca(s" > p(c.a)
s> afy B). I dics, then Vs' € Cox(s' > ricay s = 8" € Cpea)\Ca). So we have
Is € Creeay(o s BAVS € Cf(cd)(s D f(ed) S = O #s B)). Take ¢ = s and we are
done. If d >, s, then a ¥4 B, ie. a# B or B>y 0. If @}y B, then Jue Cy(a #,
BAavu €Cy(u >yu—> at,y B)). Since Vs' € Co(s' b s > o # B) and d >, 5, we
also have Ju € Cpc gy (@ Fu BAVU' € Cpeqy(u B picayu — oty B)). Take t = u
and we are done. If 8 >, o, then Vv e Cy(B >, av IV € Cy(B > a AV >y v)).
This means that either Yu € C;(B >, &) or Jue Cy(B >, ar-3u’ € Cy(u' >y u)). If
VueCy(B =,), then Vu e Cy(a #, B). Take t = s and we are done. If Ju e Cy(B >,
on-Fu' €Cy(u' >4 u)), then Jue Cy(a #, BAVU' €Cy(u' >gu— ot #,v B)). Take
t = u and we are done.

—If s=d, then o #4 B, s0 JueCy(a £y BAVU € Cy(u' bgu— a#, B)). Since
Vs' €C.(s'bed - a>¢ B), we have Vs' € Co(s" b u — o >). Take t = u and we
are done. m]

Theorem 4. f(c,d) is just as succinct as c.

7

Proof. When a lexicographic subcriterion is removed according to Definition 13, the to-
tal number of criteria decreases with 1: the subcriteria of d become direct subcriteria of
¢ and d itself is removed. The priority between the original subcriteria of ¢ (i.e. C/\{d})
and the priority between the original subcriteria of d (i.e. C;) remains unaltered. Just
the priority between the subcriteria in C.\{d} and d is replaced by priority between the
subcriteria in C.\{d} and the subcriteria in C,. Since |C,/| is finite, the increase in size
is linear. O

Definition 14. (Flat criterion) All simple and cardinality criteria are flat. A lexico-
graphic criterion is flat if all its subcriteria are either simple or cardinality criteria.

Definition 15. (Flattening) The flat version of a non-flat lexicographic criterion c,
denoted [~ (c), is obtained as follows. For an arbitrary lexicographic subcriterion d €

Ce. get f(c,d). If f(c.d) is flat, f*(c) = f(c,d). Otherwise, f*(c) = f*(f(c,d)).

Example 7. (Flattening) The original criterion tree in Figure 1 is already flat. Its goal-
based translation in Figure 4a can be flattened further, as shown in Figure 4b. Here the
lexicographic subcriteria g(C) and g(D) have been removed.

4.2 Updates

Criterion trees can be updated by leaving the basic structure of the tree intact but chang-
ing the priority between subcriteria of a lexicographic criterion () or the value pref-
erences of a multi-valued simple criterion (>). By performing these basic operations,
the induced preference relation also changes. Therefore, such updates can be used to
‘fine-tune’ a person’s preference representation.

Definition 16. (Update) An update of a criterion tree is a change in (i) the prefer-
ence between values (>) of a multi-valued simple criterion; and/or (ii) the priority (>)
between (in)direct subcriteria of a lexicographic criterion (in the alternative specifica-
tion). The changed relations still have to be preorders.

Theorem 5. For every update on a criterion tree c, there exists an equivalent update
on the goal-based translation g(c) and vice versa.

Proof. Every change in a value preference > between two values x and y corresponds
one-to-one to a change in priority between ¢, and c,. Every change in priority between
two subcriteria s and s” corresponds one-to-one to a change in priority between g(s)
and g(s"). m

Example 8. Consider for example the criterion tree in Figure 1a. On the highest level,
there are three possibilities for the priority: C > D, D > C or incomparable priority. On
the next level, each simple criterion has preferences over three possible values, which
can be ordered in 29 different ways (this is the number of different preorders with three
elements, oeis.org/A000798). So in total there are 3 x 29 x 29 = 2523 possible updates
of this tree. For the goal-based translation of this tree (in Figure 4a) this number is the
same. Figure 5 shows one alternative update of the original criterion tree in Figure 1 as
well as its goal-based translation in Figure 4a.

78

g 9 9(D)’ > o)

B 400 /N /’\

> >

R 500/ p=p >D=B>D=R C=300>C=400>C=500
a. Update on the original tree b. Update on the goal-based translation

CI0)

D=P > D=B > D=R > C=300 > C=400 > C=500
c. Update on the flattened goal-based translation

Fig. 5. Updates on criterion trees

Theorem 6. For every update on a criterion tree c, there exists an equivalent update
on the flattened criterion tree *(c).

Example 9. Figure 5c shows an update on the flat goal-based criterion tree in Figure 4b
that is equivalent to the updates in Figure 5a and 5b.

Theorem 7. If a criterion tree c is not flat, there exist updates on f*(c) that do not
have equivalent updates on c.

We show this by means of an example.

Example 10. The goal-based tree in Figure 4a can be flattened to the equivalent flat
tree in Figure 4b. This flattened tree can be updated in 209527 different ways (the
number of different preorders with 6 elements, oeis.org/A000798), thereby allowing
more preference relations to be represented by the same tree structure. Figure 6 shows
an alternative flat goal-based tree that can be obtained from the previous one by updating
it. It is not possible to obtain an equivalent criterion tree by finetuning the original
criterion tree or its goal-based translation. This is because goals relating to different
variables are ‘mixed’: the most important goal is that the cost is 300, the next most
important goal is that the destination is Rome or Barcelona, and only after that is the
cost considered again. This is not possible in a criterion tree that is based on simple
criteria that are defined directly on the variables C and D.

Theorem 8. Let ¢ be a non-flat, non-goal-based criterion. Then there exist updates on
f*(g(c)) that do not have equivalent updates on f*(c).

In general, the flatter a criterion tree, the more different updates are possible. Since

a goal-based tree can be made flatter than an equivalent criterion tree that is based on
multi-valued simple criteria, the goal-based case allows more updates.

79

%\ 300
C=300¢ > C=400> C=500-D=P /
400 ey

D=RAD=B 500 Hﬂ

a. Criterion tree b. Preference relation

Fig. 6. Alternative flat goal-based tree obtained by updating the tree in Figure 4b

>n

e e
R 300 G > c > Cs
B 400
> >
P 900 D=R C=300 D=B C=400 D=P C=500
a. Invalid cardinality criterion b. Goal-based compensation

Fig. 7. Preferences where C and D are equally important

Example 11. This example shows how goals can be used for compensation between
variables. The subcriteria of a cardinality criterion must be Boolean, to avoid intran-
sitive preferences. So, for example, the criterion in Figure 7a is not allowed. It would
result in 400B ~ 500R and 500R ~ 300B, but 300B > 400B. However, the underlying idea
that the variables C and D are equally important is intuitive. Using goals we can cap-
ture it in a different way, as displayed in Figure 7b. This criterion tree results in a total
preorder of preference between outcomes, where for instance 3008 > S00R > 400B.

The results above show that every update that can be applied on a criterion tree
can also be applied on its flattened goal-based translation, and that this last criterion
tree even allows more updates. However, if we look at the size of the updates, we can
see that for equivalent updates, more value preference or priority relations have to be
changed when the structure is flatter. For example, a simple inversion of the priority
between g(C) and g(D) in Figure 4a corresponds to the inversion of priority between
all of C =300, C =400 and C =500 and all of D=R, D =B and D = P in Figure 4b.
This suggests the following approach to finetuning a given preference representation
during the preference elicitation process. First, one can fine-tune the current criterion
tree as well as possible using (coarse) updates. If the result does not match the intended
preferences well enough, one can start flattening, which will create more, fine-grained
possibilities to update the tree. If this still does not allow to express the correct prefer-
ences, one can make a goal-based translation and flatten it. This allows for even more
possible updates on an even lower level.

Example 12. Susan and Bob are planning a city trip together. Susan would like to go
to a city that she has not been to before, and hence prefers Rome or Barcelona to Paris.
She also does not want to spend too much money. Bob is a busy businessman who

80

joint
Susan Bob jomt joint

S L > D®P>c > c P

R

Tv

a. Initial criterion tree b. First refinement c¢. Second refinement

Fig. 8. Successive criterion trees for Susan and Bob

only has a single week of holiday and would like some luxury, expressed in the number
of stars of the hotel. There is no priority between Susan’s and Bob’s preferences. The
initial criterion tree for Susan and Bob’s joint preferences is displayed in Figure 8a.
Susan and Bob decide that Bob’s criterion on the length of the trip should be the most
important, because he really does not have time to go for two weeks. They also decide
that luxury is less important than the other criteria. In order to update the tree, it is first
flattened by removing the subcriteria of Susan and Bob. The new tree, after flattening
and updating, is shown in Figure 8b. However, Bob feels that luxury can compensate for
cost. To represent this, the criteria for cost and number of stars are translated to goals
and combined into three cardinality criteria, as shown in Figure 8c. At this point, the
travel agent’s website is able to make a good selection of offers to show and recommend
to Susan and Bob.

5 Conclusion

We have shown that the QPS framework can be used to model preferences between
outcomes based on goals. It has several advantages over other approaches. First, the
QPS framework is general and flexible and can model several interpretations of using
goals to derive preferences between outcomes. This is done by simply adapting the
structure of the criterion tree. It is possible to specify an incomplete preference relation
such as the ceteris paribus relation by using an incomplete priority ordering. But if a
complete preference relation is needed, it is also easy to obtain one by completing the
priority relation between subcriteria of a lexicographic criterion, or using cardinality
criteria. Second, goals do not have to be independent. Multiple goals can be specified
using the same variable. For example, there is no problem in specifying both p and
P Aq as a goal. Third, goals do not have to be consistent. It is not contradictory to have
both p preferred to —p (from one perspective) and —p preferred to p (from another).
This possibility is also convenient when combining preferences of multiple agents, who
may have different preferences. Preferences of multiple agents can be combined by
just collecting them as subcriteria of a new lexicographic criterion. Fourth, background
knowledge can be used to express constraints and define abstract concepts. This in turn
can be used to specify goals on a more fundamental level.

When the variables that define the outcomes are not Boolean, preferences are usu-
ally based on orderings of the possible values of each variable. We have shown that

81

B - 4% 3*
N 500 w) (R=B v
P . o C=300 C=500 C=

such multi-valued criteria can be translated to equivalent goal-based criteria. Such a
translation requires at most polynomially more space, and hence is just as succinct as
the original QPS. This result shows that goals are very expressive as a representation of
qualitative preferences among outcomes.

Goal-based criterion trees also have some added value compared to trees with multi-
valued criteria. We introduced basic updates on a QPS and showed that goal-based QPSs
allow for more fine-grained updates than their multi-valued counterparts. This is due to
the different structure of goal-based criteria. In general, the flatter a criterion tree, the
more updates are possible. It is possible to make criterion tree structures flatter, i.e.
to reduce the depth of the tree, by removing intermediate lexicographic criteria. The
advantage of goal-based criterion trees is that they can be flattened to a greater extent
than their equivalent non-goal-based counterparts, and hence provide more possible
updates.

We proposed a procedure to fine-tune a criterion tree during the preference elici-
tation process. Essentially, this is a top-down approach where a criterion tree is first
updated as well as possible in its current state, and is only flattened and/or translated to
a goal-based tree if more updates are necessary. This procedure gives rise to a more fun-
damental question. If it is really necessary to take all these steps, then maybe the original
criteria were not chosen well in the first place. It may have been better to choose more
fundamental interests as criteria. This is still an open question that we would like to
address in the future.

Acknowledgements. This research is supported by the Dutch Technology Foundation STW,
applied science division of NWO and the Technology Program of the Ministry of Economic
Affairs. It is part of the Pocket Negotiator project with grant number VICI-project 08075.

References

1. Wellman, M.P., Doyle, J.: Preferential semantics for goals. In: Proc. AAAI (1991) 698-703
2. Boutilier, C.: Toward a logic for qualitative decision theory. In: Proc. KR. (1994) 75-86
3. Visser, W., Aydogan, R., Hindriks, K.V., Jonker, C.M.: A framework for qualitative multi-
criteria preferences. In: Proc. ICAART. (2012)
4. Brewka, G.: A rank based description language for qualitative preferences. In: Proc. ECAI
(2004) 303-307
5. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal
of Artificial Intelligence Research 21 (2004) 135-191
6. Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining preference
relations. Journal of Logic and Computation 12(1) (2002) 13-53
7. Von Wright, G.H.: The Logic of Preference: An Essay. Edinburgh University Press (1963)
8. Visser, W., Hindriks, K.V., Jonker, C.M.: Interest-based preference reasoning. In: Proc.
ICAART. (2011) 79-88
9. Keeney, R.L.: Analysis of preference dependencies among objectives. Operations Research
29(6) (1981) 1105-1120
10. Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas
for cardinal preference modelling. In: Proc. KR. (2006)

82

SAT-based BMC for Deontic Metric Temporal Logic and
Deontic Interleaved I nterpreted Systems™

Bozena Wozna-SzczesSniak and Andrzej Zbrzezny

IMCS, Jan Dtugosz University. Al. Armii Krajowej 13/15, 4200 Czestochowa, Poland.
{b. wozna, a. zbrzezny }@j d. czest . pl

Abstract. We consider multi-agent systems’ (MASs) modelled by deointi
terleaved interpreted systems and we provide a new SATddasmended model
checking (BMC) method for these systems. The properties ASMare ex-
pressed by means of the metric temporal logic with discreteasitics and ex-
tended to include epistemic and deontic operators. TheogempBMC approach
is based on the state of the art solutions to BMC. We test uilteeon a typical
MASSs scenario: train controller problem with faults.

1 Introduction

By agentswe usually mean rational, independent, intelligent anéifierh entities that
act autonomously on behalf of their users, across open atdbdited environments,
to solve a growing number of complex problemdsmulti-agent systerfMAS) [24]
is a system composed of multiple interacting (communiggioordinating, cooperat-
ing, etc.) agents which can be used to solve problems thaiegrend the individual
capacities or knowledge of a single agent.

Deontic interpreted systen{®ISs) [17] are models of MASs that make possible
reasoning about epistemic and correct functioning belaabMASs. They provide a
computationally grounded semantics on which it is posdibieterpret the);« modal-
ity, representing the fact “in all correct functioning exéions of agent, « holds”,
as well as a traditional epistemic modalities and tempopa&rators. Bydeontic in-
terleaved interpreted systeni®IISs) we mean a restriction of DISs that enforce the
executions of agents to be interleaved. Thus we assumegdbatsaact as network of
synchronised automata; note that one can see DIISs as dadextension of the for-
malism of interleaved interpreted systems [16]. We condlESs since they allow for
the distinction between correct (or ideal, normative,)etod incorrect states, and they
enable more efficient verification of MASs, the behaviour &fch is as the behaviour
of synchronised automata. Note that although our methoedssribed for DIISs, it can
be applied to DISs [7] as well; as it will be clear below the mdifference between
DIISs and DISs is in the definition of the global evolution €tion. Thus, to apply
our method to DISs it is enough to change the definition a pibpoal formula that
encodes the transition relation. However, only DIISs caedrabined with partial or-
der reductions allowing for more efficient verification of N84 that are not so loosely
coupled.

* Partly supported by National Science Center under the ¢¢an2011/01/B/ST6/05317.

83

Model checking [4, 21] has been developed as a method foraitoverification of
finite state concurrent systems, and impressive strides heen made on this problem
over the past thirty years.The main aim of model checking igrbvide an algorithm
determining whether an abstract model - representing Xamgle, a software project -
satisfies a formal specification expressed as a modal foriuaeeover, if the property
does not hold, the method discovers a counterexample ézrthat shows the source
of the problem. The practical applicability of model chewkin MASSs settings requires
the development of algorithms hacking the state explosioblpm. In particular, to
avoid this problem the following approaches have been deeel: BDD-based bounded
[12,18] and unbounded [23, 22] model checking, SAT-basewbed [19, 20, 25] and
unbounded [13] model checking.

To express the requirements of MASSs, various extensionsroporal [5] or real
time [2] temporal logics with epistemic (to represent knesde) [7], doxastic (to repre-
sent beliefs) [15], and deontic (to represent norms anccgp®ns) [17, 3] components
have been proposed. In this paper we consider a deontic &tdrejr extension of Met-
ric Temporal Logic (MTL) [14], which we call MTLKD and interpt over discrete-time
models; note that over the adopted discrete-time model, MEimply LTL, but with
an exponentially succinct encoding [8]. MTLKD allows foretmepresentation of the
quantitative temporal evolution of epistemic states ofagents, as well as their correct
and incorrect functioning behaviour. It can express midtijing constraints on runs,
which is really interesting for writing specifications. Fexample, MTLKD allows to
express property asserting that whenever the system fagalbiit ap-state, then agent
¢ knows that the system will be in@state precisely one time unit later; note that this
can be specified by the formula(p = K.F1 119).

In our past research we have provided a theoretical underga of a bounded
model checking (BMC) algorithm for DIS and an epistemic aedmtic extension of
CTL [25]; the method have not been implemented and expetatigrevaluated. The
main contributions of the paper are as follows. First, weodtice the MTLKD lan-
guage. Second, we propose a SAT-based bounded model chéBRIC) technique
for DIISs and the existential part of MTLKD. This is the firétne when the BMC
method for linear time epistemic (and deontic) logics usesdaiced number of paths
to evaluate epistemic and deontic components what resusiginificantly smaller and
less complicated propositional formulae that encode th& KT properties. Third, we
implement the proposed BMC method and evaluate it expetaigriTo the best of our
knowledge, this is the first work which provides a practidedynded) model checking
algorithm for the MTLKD language, and the MTL itself.

The structure of the paper is the following. In Section 2 werh introduce DIISs
and the MTLKD language. In Section 3 we define a bounded sécsgot EMTLKD
(existential part of MTLKD) and prove that there is a boundtsthat both bounded
and unbounded semantics for EMTLKD are equivalent. In 8actiwe define a BMC
method for MTLKD. In Section 5 we present performance eu#maof our newly
developed SAT-based BMC algorithm and we conclude the paper

84

2 Prdiminaries

DIIS. We assume that a MAS consistsroagents, and bylg = {1,...,n} we denote
the non-empty set of agents; note that we do not considemtribement component.
This may be added with no technical difficulty at the price elvier notation. We
assume that each agentc Ag is in some particular local state at a given point in
time, and that a set. of local states for agent € Ag is non-empty and finite (this is
required by the model checking algorithms). We assume thagdch agent € Ag, its
setL. can be partitioned inttaultless (greenandfaulty (red)states. Fon agents and
n mutually disjoint and non-empty seds, . . ., G,, we define the sefr of all possible
global statesas the Cartesian produkt x ... x L,,suchthat; © G;,..., L, 2 G,.
The setG. is called the set of green states for agenThe complement of. with
respect tol. (denoted byR) is called the set of red states for the agenhote that
G. UR. = L. for any agentc. Further, byl.(g) we denote the local component of
agentc € Ag in a global statgy = (I4,...,1,).

With each agent € Ag we associate a finite set pbssible actionsict. such that
a special “null” action {.) belongs toAct.; as it will be clear below the local state of
agentc remains the same, if the null action is performed. We do mimag that the sets
Act. (forall ¢ € Ag) are disjoint. Next, with each agent Ag we associate a protocol
that defines rules, according to which actions may be peddimeach local state. The
protocol for agent: € Ag is a functionP, : L. — 24¢« such that., € P.(l) for
anyl € L., i.e., we insist on the null action to be enabled at everyllsizde. For each
agente, there is a (partial) evolution functian : L. x Act. — L. such that for each
l € L. and for eachu € P,(l) there existd’ € L. such that.(l,a) = I’; moreover,
t.(l,e.) = L for eachl € L.. Note that the local evolution function considered here
differs from the standard one (see [7]) by having the locéibacinstead of the join
action as the parameter. Further, we define the following 4et = | J Act. and
Agent(a) = {c € Ag | a € Act.}.

Theglobal interleaved evolution functidn G x Acty x - - - x Act,, — G is defined
as follows:t(g,a1,...,a,) = ¢ Iiff there exists an actiom € Act \ {e1,...,€n}
such that for alle € Agent(a), a. = a andt.(l.(g),a) = l.(¢’), and for allc €
Ag \ Agent(a), a. = €. andt.(I.(g),a.) = l.(g). In brief we write the above as
94

Now, for a given set of agentdg and a set of propositional variabl#y’, which
can be either true or false deontic interleaved interpreted systésra tuple:DI1S =
(t,< L¢,Ge, Acte, Peyte >ceaq,V), Wheree € G is an initial global state, anid :

G — 2PV is a valuation function. With such a DIIS it is possible toasate amodel
M = (1,5, T,{~c}ceag, {™c}ccag, V), Wheree is the initial global stateS C G is

a set of reachable global states that is generated frioyrusing the global interleaved
evolution functiong; T' C S x S is a global transition (temporal) relation éhdefined
by: sT's' iff there exists an action € Act\ {e, ..., e, } such that — s'. We assume
that the relation is total, i.e., for anye S there exists an € Act \ {e1,...,€,} such
thats - s for somes’ € S; ~.C S x S is an indistinguishability relation for agent
c defined by:s ~. s iff 1.(s') = l.(s); =<.C S x S is a deontic relation for agent
defined by:s <. s iff 1.(s') € G.; V : S — 2FV is the valuation function oDI1S

ceAg

85

restricted to the sef. V assigns to each state a set of propositional variables teat a
assumed to be true at that state.

Syntax of MTLKD. Letp € PV, ¢ € Ag, I’ C Ag, andI be an interval inN =
{0,1,2,...} of the form:[a, b) and[a,), for a, b € IN; note that the remaining forms
of intervals can be defined by means[@fb) and|a, o0). Hereafter, lefeft(I) denote
the left end of the interval, i.e.,left(I) = a, andright(I) the right end of the interval
1,i.e.,right([a,b)) = b— 1 andright([a, o)) = co. The language MTLKD is defined
by the following grammar:

a=true |false|p|a|arha|laVa|Xa|aUra|Gra|

- = — — — =d
Kea|Dra|Era|Cral|Oqa | K, o

The derived basic modalities are defined as follawi; 3 & BUr(anB)VGig,

— — ~ d
Fra “ trueUsa, 0.0 ¥ ~0.~a, Kea & K, -a, Kia = -K.—-a, Dra o

~Dr-a, Era ¥ —Er-a, Cra ¢ <Cr—a, wherec,d € AG, andI” C AG. Intu-
itively, Uy andGj are the operators, resp., for “bounded until” and “boundedys”.

Xa is true in a computation i is true at the second state of the computatidii; 3 is

true in a computation iff is true in the interval at least in one state and always earlier
a holds, andGra is true in a computation i is true at all the states of the computation
that are in the interval. K. is the operator dual for the standard epistemic modality
K. (“agentc knows”), soK .« is read as “agent does not know whether or net
holds”. Similarly, the modalitie® -, Er, Cr are the dual operators f@,Er, Cr
representing distributed knowledge in the grdugeveryone in” knows, and common
knowledge among agents in. Further, we use the (double) indexed modal operators

o., O, I?‘j anchCl to represent theorrectly functioning circumstances of agent
The formulaO .« stands for “for all the states where agerns functioning correctlyq
holds”. The formulad .« can be read as "there is a state where agéstfunctioning
correctly, and in whichy holds”. The formulak¢a is read as “agent knows thata

. . _ ~d .
under the assumption that ageris functioning correctly”K,. is the operator dual for

the modalityIA{‘j. We refer to [17] for a discussion of this notion; note that tperator
O. is there referred to @B..

Note that MTL is the sublogic of MTLKD which consists only &fe formulae built
without epistemic operators. EMTLKD is the existentialgnaent of MTLKD, defined
by the following grammare ::= true | false |p | p|aAa|aVa| Xa | aUra |

— — — — — ~d
Gra|Kea | Dra|Era | Cra| O.a| K, a.

Semantics of MTLKD. Let M be a model forDI1S. A pathin M is an infinite se-
quencer = (so, $1,...) Of states such thdts,,,, s;,+1) € T for eachm € IN. For a
pathm andm € IN, we taker(m) = s,,, them-th suffix of the pathr is defined as
standardn™ = (s, Sm+1, - - -), @and them-th prefix ofr also is defined in the standard

way: 7[..m] = (so, s1,--.,Sm)- By II(s) we denote the set of all the paths starting at
s € S. For the group epistemic modalities we define the followifig: C Ag, then
pdef cdef pdef

~E= Uer ~e ~5 = (~F)T (the transitive closure of £), and~2'= (. ~e.
Given the above, the semantics of MTLKD is the following.

86

Let I be an interval inIN of the form:|a, b) or [a,0), andm € IN. Then,I +

m 2 jatm,brm)if I =[a,b),andl+m 2 [a+m,c0)if I = [a,00). AMTLKD
formulay is true (valid) along the path (in symbolsM, 7 |=) iff M, 7° = ¢, where
M, 7™ [true, M, 7™ £ false,

M, 7™ E=p iff p e V(r(m)), M,7™ E -aiff M,7™ |~ a,

M, 7™ EaAfiff M,7™ E aandM,s™ = G,

M, 7™ EaVvpiff M,7™ EaorM,m™ = G,

M,m" = Xa iff M, 7! = q,

M, 7™ = aU;f3 if‘f (Fi>m)[li e I+mandM,r* E Band(Vm < j <)M, 77 | o,

M, 7™ = Gro iff (Vi € I+m)[M, 7" = q],

M, 7™ = Kea iff (37" € (2))(3i = 0)[r(m) ~. 7' (i) and M, 7" |= o],

M,7™ = Do iff (37 € I1(:))(3i = 0)[r(m) <o 7 (i) and M, 7" |= al,

M,7m = Rl iff (3¢ € 1())(3i = 0)[r(m) ~e (i) andm(m) bdg 7 (i)
andM, 7" = a,

M, 7™ =Y ra iff (37" € (:))(3i = 0)[r'(i) ~¥ n(m) andM, " |= o],
whereY € {D,E, C}.

A MTLKD formula ¢ holds in the modeM, denotedV! = o, iff M, n = ¢ forall
the pathsr € I7(1). An EMTLKD formulay holds in the modeM, denotedV =3 ¢,
iff M, 7 = ¢ for some pathr € II(:). Theexistential model checking probleasks
whetherM =7

3 Bounded semanticsfor EMTLKD

The proposed bounded semantics is the backbone of the SSEBEBMC method for
EMTLKD, which is presented in the next section. The temppeat of this semantics
is based on the bounded semantics presented in [26]. As, wseiatart by defining
k-pathsandloops Let M be a model forDIIS, k € IN, and0 < [< k. A k-path
is a pair(r, 1), also denoted by;, wherer is a finite sequence = (so, ..., si) of
states such thds;, s;+1) € T for each0 < j < k. A k-pathm; is aloopif [< k and
(k) = 7(1). Note that if ak-pathm; is a loop it represents the infinite path of the form
uv®, whereu = (7(0),...,7(l)) andv = (7 (I +1),...,n(k)). We denote this unique
path byo(m;). Note that for eaclj € IN, o(m)"t7 = g(m)kﬂ By I1x(s) we denote
the set of all the:-paths starting at in M.

As in the definition of semantics one needs to define the sdiibfy relation on
suffixes ofk-paths, we denote by, the pair(m;, m), i.e., thek-pathm; together with
the designated starting point, where0 < m < k.

Let M, 7" =i o, where0 < m < k, denotes that the EMTLKD formula is k-
true along the suffixr(m), ..., w(k)) of . For convenience, in the following definition
we write ;" =, ¢ instead ofM, 7" =, . The relation=; is defined inductively as

follows:
7" =k true, " by, false,

mErp i peV(m(m), m" = opiff p &V (m(m)),
" Ep oA B 1" = accandn =g B, 1 =k a Vv BIff 1 =y acor Tt = B,
™ =, Xao iff (m < kanda" ™! =y @) or (m = k andn (k) = w(1) andwl“ =i a),

87

" ey U Biff (3m < j <k)(j € I +mandM,n] =, fand(Vm < i < j)
M,x} le a)or (I <mandr(k) = (1) and(3 < j < m)
(j+k—lel+mandr] =, fand(Vl <i < j)7i = a
and(Vm < i < k)mi Ei «)),

" by, Gra iff (k> right(I +m) and(Vj € T +m)(x =5 a))
or (k < right(I +m) andr(k) = w(l) and(Vmax < j < k)

™ FEr cand(Vl < j < maz)(j +k —1 € I +mimplies
Izk a)), WherEmCLr = maz(left(I +m), m)
" ey Kea dff (Hﬂl’l € Ik(1))(F0 <5 < k)(ﬂ'” Er aandr(m) ~, 7’

(v (m) ~e
s Toe f (3 ()30 <7 < Dlnt s o ancinto <F 20
" =k (3504 iff (3], € Iy (0))(30 < j < k)(m),’ . Er aandr(m) . 7' (5)),
" e Kea iff (3, € I (1) (30 < j < k)(m” x o andm(m) ~c 7'(j)

andrm(m) p<ig 7 (]))

Let M be a model, angp an EMTLKD formula. We use the following notation&! =3

e iff M, 7 =i ¢ for somen; € (). Thebounded model checking probleasks
whether there exists € IN such that\/ =7 .

Equivalence of the bounded and unbounded semantics. Now, we show that for some
particular bound the bounded and unbounded semantics ainakmt.

Lemmal. Let M be a modely an EMTLKD formulak > 0 a bound;r; a k-path in
M, and0 < m < k. Then, M, 7" |=5, ¢ implies

1. if m is not a loop, then, p™ = ¢ for each pattp € M such that|..k] = .

2. if m is aloop, thenM, o(m)™ |= ¢,

Proof. (Induction on the length op) The lemma follows directly for the propositional
variables and their negations. Assume thatr]" =, ¢ and consider the following
cases:

1. ¢ = anpB. FromM, 7" =i ¢ it follows that M, 7] =, « and M, 7™ =i B.
Suppose first that; is not a loop. By induction we have that for each paih M
such thap|..k] = =, M, p™ = « and M, p™ = B. Hence, for every path in M
such thap[..k] = 7, M, p™ = a A S.

Now suppose that; is a loop. By induction we have thatl, o(m;)™ = « and
M, o(m)™ = 8. Hence M, o(m)™ = a A S.

2. ¢ = aV . FromM, " = ¢ it follows that M, 7" =, o or M, 7" = B.
Suppose first that; is not a loop. By inductive hypothesis, for each patim M
such thafp[..k] = =, M, p™ | a or M, p™ = §. Hence, for every patp in M
such thap[..k] =7, M, p™ = a V (.

Now suppose that; is a loop. By inductive hypothesis\/, o(m;)™ & « or
M, o(m)™ = 8. Hence M, o(m)™ = a V (.

3. ¢ = Xa. Suppose first that; is not a loop. Themn < k and M, 7rl"‘+1 =i a. By
inductive hypothesis, for every pathin M such tha[..k] = =, M, p™*! | «.
Hence, for every patp in M such thap[..k] = 7, M, p™ = ¢.

Now suppose that; is a loop. Then eithem < k and M, =" mtl = aorm =
k andw(k) = w(l) and M, ™! =4 . By the inductive hypotheS|s it follows

88

that eitherm < k and M, o(m)™*! = a orm = k and M, o(m)"*! =
Sinceg(m)**! = o(m)!**, from M, o(m)™ = o we getM, o(m)"+! =
Eventually, eithern < k andM, o(m)™*! = corm = k andM, o(m)* ! =
Hence, M, o(m)™ ! = a. Thus,M, o(m)™ k= ¢.

. ¢ = aUf. Assume thatr; is not a loop. Ther{3m < j < k)(j € I + m and
M,n Ei Band(Vm < i < j)(M,n =i «). By inductive hypothesis, for every
pathp in M such thatp[.k] = 7, @m <j<k)(j € I +mandM,p’ =
and(Vm < i < j)M, p* = «). Thus, for every path in M such thatpl..k] = ,
M, p™ .

Now assume that; is aloop. Thert < m andn (k) = 7(l) and(3l < j < m)(j +
k—lel+mandM,r] =, Band(Vl < i < j)M,n} = aand(Vm <i < k)
M, 7} =i, «). By inductive hypothesis, 3l < j < m)(j + k —1 € I +m and
M, o(m) E Band(Vl < i <)M, o(m)" = aand(Vm <i < k)M, o(m)’ |
). Since for each € IN, o(m;)!*™ = o(m)**", it follows that M, o(m,)7+~ =
Band(Vk < i < j+k—1)(M,o(m)" E) and(¥m < i < k)(M, o(m)! E
). Hence,o(m)tF=t = Band(Ym <i < j+k—1)(M,o(m)" E «). Thus,
M, o(m)™ [.

. ¢ = Gra. Assume thatr; is not a loop. Thet > right(I +m) and(Vj € I +m)
(M, m =i «). By inductive hypothesis, for every paitin M such thapl..k] = =,
(Vj € I+m)(M,p’ | «). Thus, for every pathp in M such thatp[..k] = =,
M, p™ .

Now assume thatr; is a loop, andmax = maz(left(I + m),m). Then,
k < right(I + m) andn(k) = w(l) and (Vmaz < j < k)M, w i, « and
M <j<max)(j+k—1€l+mimpliesM, 7le =i «). By inductive hypoth-
esis,(Vmaz < j < k) M,o(m) = acand(VI <j <maz)(j+k—-1€T+m
implies M, o(m;)’ = «). Since for eacn € IN, o(m) 4" = o(m)*+", it follows
that(vn € IN)(Vj = 1 +n)(j + k —1 € I + mimpliesM, o(m)’ = «). Thus,
M, o(m)™ = .

. p = Kea. From M, 7n]" =i o it follows that (3, € II(¢))(30 < j < k)
(M, w{,j = candm(m) ~. 7'(5)). Assume that both; andr;, are not loops. By
inductive hypothesis, for every pathin M such that'[..k] = 7/, (30 < j < k)
(M,p” &= «andw(m) ~. p'(j)). Further, for every pathy in M such that
pl..k] = =, we have thap(m) ~. p'(j)). Thus, for every path in M such that
pl-k]=m M, p™ |= .

Now assume that;, is not a loop, andr; is a loop. By inductive hypothesis, for
every patty’ in M such thap'[..k] = ', (30 < j < k)(M, p"”’ E aandr(m) ~.
0'(4)). Further, observe tha{m;)(m) = 7(m), thusM, o(m)™ E .

Now assume that botty andx;, are loops. By inductive hypothesi§0 < j < k)
(M, o(m;))” E aandw(m) ~. o(n},)(4)). Further, observe thai(m;)(m) =
m(m), thusM, o(m)™ = .

Now assume that;, is a loop, andr; is not a loop. By inductive hypothesis,
(30 < j < k) (M, o(m))’ = avandm(m) ~. o(m},)(4)). Further, for every path
in M such thap]..k] = =, we have thap(m) ~. o(n7;)(j)). Thus, for every path
pin M such thapl..k] = 7, M, p™ = .

SRl

89

— — ~d
7. Lety =Y ra, whereY € {D,E,C}, orp = O.a, orp = K_a. These cases can
be proven analogously to the case 6.

Lemma 2. Given an LTL formulax and a modelM . Then, the following implication
holds: if M =7 «, then there exists < [M| - |a/ - 21¢ with M |=} a.

Proof. In [9] it is shown that the existential model checking prabléor an LTL for-
mulaa can be reduced to checking for the emptiness of the praBwaftthe original
model and the Bchi automaton with at most| - 2! states. So, if the LTL formula
« is existentially valid inM, then there exists a path in the prodiitthat starts with
an initial state and ends with a cycle in the strongly coneecomponent of accepting
states. This path can be chosen to be a loop Wwitlounded by M| - |« - 21*!, which

is the size of the produgg. If we project this path onto its first component, the origina
model, then we get a path of the lendthhat is a loop and in addition fulfile. By
definition of the bounded semantics this also impliés=3 a.

Lemma 3. Given are a modelM, an EMTLKD formulap, and a pathr. Then the
following implication holds:M,n = ¢ implies that there exist& > 0 such that

M7=k .

Proof. In [8] it was shown that MTL is simply LTL, but with an exponéailty succinct
encoding. In [10] it was shown that it is possible to redue @KL, model checking
problem to the LTL model checking problem. The reductiondsdxd on Proposition 1
of [6], which states that each epistemic modalify.(E -, Cr, andDr) is expressible in
the Logic of Local Propositions. The CKlis the LTL logic augmented by an indexed
set of modal operator . with their diamond<{,, one for each agent € Ag, and
common knowledge operatofg- with their diamond<C -, wherel” C Ag.

Now, note that EMTLK language is an “epistemically existarifragment of CKL,
augmented by the diamonds 5 andE -, representing distributed knowledge in the
groupI’, and “everyone if” knows”. Thus, to prove that the EMTLK model checking
problem can be reduced to the LTL model checking problens, @riough to observe
thatDra = A . Kca andEpa = \/, - Kca. Further, the EMTLKD language is a
deontic extension of EMTLK, which augments EMTLK by the dimds for the deon-
tic modalities®. andK¢9. Thus, to prove that the EMTLKD model checking problem
can be reduced to the LTL model checking problem, it is endogéxpress deontic
modalities in the Logic of Local Propositions. This can beelan a similar way as
presented in [10]. Consequently, by using Lemma 2, we canlada thatM, 7 | ¢
implies M, 7 = ¢ for somek > 0.

The following theorem states that for a given model and fdathere exists a bound
k such that the model checking proble®¥ (=7) can be reduced to the bounded
model checking problem\{ =3 ¢).

Theorem 1. Let M be a model angb an EMTLKD formula. Then, the following equiv-
alence holdsM =3 ¢ iff there exists: > 0 such thatM =3 .

Proof. (“="). This implication follows directly from Lemma 3. ¢"). This implica-
tion follows directly from Lemma 1.

90

Further, by straightforward induction on the length of an HMD formula ¢, we
can show thatp is k-true in M if and only if ¢ is k-true in M with a number ofk-
paths reduced t@ (¢), where the functiorf, : EMTLKD — IN gives a bound on the
number ofk-paths, which are sufficient to validate a given EMTLKD forau

In the definition of f;, we assume that each EMTLKD formula is preceded by the
“path” quantifierE with the meaning “there exists a path iy (¢)”; this assumption
is only technical and it makes the definition ff easy to implement. Note that in the
BMC method we deal with the existential validiti=€) only, so the above assumption
is just another way to express this fact. More preciselyplbe an EMTLKD formula.
To calculate the value ofy.(¢), we first extend the formula to the formulay’ = E¢p.
Next, we calculate the value gf. for ¢’ in the following way: fi.(Ep) = fr(v) + 1;
if p € PV, then fi(true) = fi(false) = fi(p) = fu(-p) = 0; frla A B) =
fie(a) + fu(B); frlaV B) = maz{ fe(a), fe(B)}; fru(Xa) = fr(a); fr(aUrB) = k-
Ji(@)+fe(B); fe(Gra) = (k+1)-fe(a); fe(Cra) = fe(a)+k; fe(Ya) = fe(a)+1
forY € {K.,0,,K. Dr. Er}.

4 SAT-based BMC for EMTLKD

Let M = (0,59, T,{~c}ceag, {Pc}ccag, V) be a modely an EMTLKD formula,
andk > 0 a bound. The proposed BMC method is based on the BMC encodéig p
sented in [26], and it consists in translating the problenstadcking whethed/ =,
¢ holds, to the problem of checking the satisfiability of th@gwsitional formula
(M, @lk == [M?*]x A [¢]mk. The formula[M¥+*];, encodes sets df-paths of)M,
whose size equals tf).(¢), and in which at least one path starts at the initial stathef t
modelM . The formuldy] s, encodes a number of constraints that must be satisfied on
these sets of-paths fory to be satisfied. Note that our translation, like the transhat
from [26], does not require that either all the k-paths usetié translation are loops or
none is a loop. Once this translation is defined, checkingfidility of an EMTLKD
formula can be done by means of a SAT-solver.

In order to define the formul@\/, ¢}, we proceed as follows. We begin with an
encoding of states of the given moadél. Since the set of states 8f is finite, each state
s of M can be encoded by a bit-vector, whose lengtlepends on the number of agents’
local states. Thus, each statef M can be represented by a vector= (w1, ..., w,)
(called asymbolic statgof propositional variables (callestate variables The set of
all the propositional state variables we will denotediy.

Since anyk-path (, 1) is a pair consisting of a finite sequence of states of length
k and a numbel < k, to encode it by propositional formula, it suffices to take a
finite sequence of symbolic states of lendgtland a formula that encodes the posi-
tion I < k. The designated positiohcan be encoded as a bit vector of the length
t = maz(1, [log2(k + 1)7). Thus, the positiord can be represented by a valuation
of a vectoru = (uy,...,u;) (called asymbolic numbgrof propositional variables
(called propositional natural variables which not appear among propositional state
variables. The set of all the propositional natural vagablve will denote byNV/,
and we assume tha#fV N NV = (. Given the above we can definesgmbolick-
path as a pair((wo, ..., wy),u) consisting of a finite sequence of symbolic states

91

of lengthk and a symbolic number. Since in general we may need to cansides
than one symboli&-path, therefore we introduce a notion of thth symbolick-path
w; = ((wo,j,. .., wk;),u;), wherew; ; are symbolic states far < j < fx(¢) and
0 <1 < k, andu; is a symbolic number fob < j < fx(¢). Note that the exact num-
ber of symbolick-paths depends on the checked formpland it can be calculated by
means of the functiotf.

Let PV = SVUNV,andV : PV — {0,1} be avaluation of propositional
variables(a valuationfor short). Each valuation induces the functioBs: SV"™ —
{0,1}"and J : NV — IN defined in the following way:

S((wi,..oywr)) = (V(wi),..., V(w,)), I(u1,...,u)) = Zle V(u;) - 2071,

Moreover, for a symbolic state and a symbolic number, by SV (w) and NV (u) we
denote, respectively, the set of all the state variablesroiog in w, and the set of all
the natural variables occurringin Next, letw andw’ be two symbolic states such that
SV (w) NSV (w') = 0, andu be a symbolic number. We define the following auxiliary
propositional formulae:
e [, (w) is aformula oveSV (w) thatis true for a valuatiol’ iff S(w) = s.
e p(w) is a formula overSV (w) that is true for a valuatio® iff p € V(S(w))
(encodes a set of statesf in whichp € PV holds).
e H(w,w') is a formula overSV (w) U SV (w') that is true for a valuatiof iff
S(w) = S(w’) (encodes equality of two global states).
e H.(w,w’) is a formula overSV (w) U SV (w') that is true for a valuatiov iff
l.(S(w)) =1.(S(w)) (encodes equality of local states of agent
e HO.(w,w') is a formula overSV (w) U SV (w’) that is true for a valuatio’
iff 1.(S(w’)) € G. (encodes an accessibility of a global state in which agesat
functioning correctly).
o Hi(w,w') = H,(w,w') AN HOg(w,w").
e 7(w,w') is a formula overSV (w) U SV (w’) that is true for a valuatiof" iff
(S(w), S(w")) € T (encodes the transition relation bf).
e B7(u) is aformula ovetNV (u) thatis true for a valuatio®” iff j ~ J(u), where
~ef{<g, g = 2, >
o Li(m)) = By (u) N H(wi g, wi).
e Letj € IN, andI be an interval. Thedn(j,I) := true if j € I, andIn(j,1I) :=
falseif j & I.
LetW = {SV(w;;) | 0 <i<kandd < j < fr(p)} U{NV(y;) |0<j<
fx(¢)} be a set of propositional variables. The propositional fdef/ #-*], is defined
over the set? in the following way:

Fr(9)=1 k-1 frlo)=1
[Afcp,L]k =]L(wO,O) A /\ /\ T(’u}i’j,’wi+17j) A /\ \/ Bl:(uj)
j=0 =0 j=0 1=0

The next step of the reduction to SAT is the transformaticenpEMTLKD formula
¢ into a propositional formulap] . :=)"+ whereF(p) = {j e N | 0 <

J < fe(e)}, and[ap]gn’”’A] denotes the translation gfalong the symbolic pattr,,, ,,

with starting pointn by using the set.

92

For every EMTLKD formulay the function f;, determines how many symbolic
k-paths are needed for translating the formglaGiven a formulapy and a setd of
k-paths such thatd| = fi(¢), we divide the setd into subsets needed for translating
the subformulae of. To accomplish this goal we need some auxiliary functios th
were defined in [26]. We recall the definitions of these fumtti First, the relatior is
defined on the power set & as follows:A < B iff for all natural numberg: andy, if
x € Aandy € B, thenz < y.

Now, let A C IN be a finite nonempty set, amdd € IN, whered < |A|. Then,
g1(4, d) denotes the subsé& of A such thatB| = dandB < A\ B.

gr(A, d) denotes the subsétof A such thatC| = dandA\ C < C.

gs(A) denotes the set \ {min(A)}.

if n divides|A|—d, thenhp(A, d, n) denotes the sequen¢By, . .., B,,) of subsets
of AsuchthatJj_, B; = A, |Bo| = ... = |Bu-1l, |Bs| = d, andB; < B; for
every0 <i < j < n.

Nowlethl(A,d) £ hp(A,d, k)andh$(A) £ hp(A,0, k+1). Note thatifhl (A, d) =
(Bo, ..., By), thenh¥ (A, d)(j) denotes the sdB;, for every0 < j < k. Similarly, if
h$(A) = (B, ..., Brt1), thenh§ (A)(j) denotes the sek;, for everyd < j < k+1.

The functionsg; andg, are used in the translation of the formulae with the main
connective being either conjunction or disjunction: foinseeg EMTLKD formulaaA g,
if a setA is to be used to translate this formula, then thegsed, fi(a)) is used to
translate the subformutaand the sey,.(A, fx(3)) is used to translate the subformula
3; for a given EMTLKD formulax V 3, if a setA is to be used to translate this formula,
then the sey; (A, fir(«)) is used to translate the subformuland the sey; (A, f+(5))
is used to translate the subformyia

The functiong, is used in the translation of the formulae with the main catine

Q € {K.,K.,0.,Dp,BEr}: for a given EMTLKD formulaQa, if a setA is to be used
to translate this formula, then the path of the numiagn(A) is used to translate the
operatorQ and the set;(A) is used to translate the subformula

The functionk is used in the translation of subformulae of the fomti;3: if
a setA is to be used to translate the subformald, 5 at the symbolid-pathr,, (with
starting pointm), then for every;j such thatn < j < k, the sethY (4, fx(8))(k)
is used to translate the formufalong the symbolic pathr,, with starting pointj;
moreover, for every such thatn < i < j, the seth} (A, f,(3))(i) is used to translate
the formulaa along the symbolic pattr,, with starting pointi. Notice that ifk does
not divide |A| — d, thenh}(A,d) is undefined. However, for every sdt such that
|A| = fx(aU;p), itis clear from the definition of;, thatk divides|A| — fi.(5).

The functionh{ is used in the translation of subformulae of the fain: if a setA
is to be used to translate the subform@lax along a symbolié-path,, (with starting
pointm), then for everyj such thatn < j < k andj € I, the seth{ (4)(j), is used to
translate the formula along the symbolic paths,, with starting pointj; Notice that if
k + 1 does not divideA|, thenh{ (A) is undefined. However, for every sétsuch that
|A| = fr(Gra), itis clear from the definition of ;. thatk + 1 divides|A|.

Let ¢ be an EMTLKD formula, and > 0 a bound. We can define inductively the
translation ofp over path numben € Fj () starting at symbolic state,, ,, as shown
below. Letmin(A) = A’, then:

93

[true] Lm ™A= true, [false]Lm’n’A] := false,
P = pwn), LA = (),

k
[A 6]E€m,n,A] = [a] [m,n,91(A, fr(a))] [mgcm g (A, fk(ﬁ))]
[CY iV, ﬁ][m ,n, Al = [O‘]Ecm 1,91 (A, fr ()] v [ﬂ} m,n,g1 (A, fk(g))]

Jifm <k
ViZo (Lh(mn) A [l), i m = & o |
U8y = e (I, T +m) A [ﬁ]gg’"’hk (AiBNEN \ AT—L [limhi (A (BN O]y
. U
\/((ﬁl (1)) V (B>(un) A [ﬁ]bmahk (Aﬁfk(ﬂ))(k)]/\

Vit (Bl (un) A In(j +k—l I+ m)))A

[X]mnA] ,_[][m+1nA
T k

/\J 1(B>() — |]E: ki (A, £ (8)) (3)]) A/\-, [a]gjﬂnvh’g(‘q’fk(ﬁ))(i)]))
[Gla]Lm,n,A] = A;—fﬁfiﬂﬁium m)[a][j,n,hf(f\)(j)]’ if right(I +m) < k

- kS (A) (5
l=01(£§c(7rn)) A /\] maw(left(I+m), m)[a}b % ()(])]/\

max(left(I4+m),m > mazx(left(I+m),m)—1 —
P U2 () A (7071 5)

In(j+k—1,I1+m)))) — [a]Ej’"”LE(A)U)]), otherwise

m,n,A i Al

Kol = 1 wo) AV (P45 NN H (w1, w5,0)),

— m,n,A i, A gs

[OCO‘]L b= I (wo,ar) A V?:o([a]gg’A 9+ (A A HO(wm,n, wj,ar)),

d mm Al k A g (A, Frd

Kca]k[: | - IL (wO7AI) A Vj:o([a] A H (wm ny wj,A')):
m,n,A k VA gs(A)]

[DmJ[k = L (wo.ar) Ao ([AN e He(Wim i, wj a0)),

n,A _ k VA gs(A)]

[Er }g" = L(wo.ar) ANS_o ([P 5NN o Ho (i w.00)),

— m,n,A k ; m,n,A

[Cral, = Ve Bryalmm?,

Now let o be an EMTLKD formula. For every subformula of «, we denote
by [¢]l*™ ™4 the propositional formuldM]**) A [o]™™ 4] where[a] (@) =
/\fk(‘*) YAy T(wig,wien) ANV BE(u;). We write V I € to mean
that the valuatlorV satisfies the prop05|t|onal formufa Moreover, we writes; ; in-
stead of S(w;,;), andi; instead of J(u,).

Thelemmas below state the correctness and the completditeegpresented trans-
lation respectively.

Lemma4 (Correctness of the trandation). Let M be a modelp an EMTLKD for-
mula, andk € IN. For every subformula of the formulax, every(m, n) € {0, ..., k}x
Fi(a), everyA C Fi(a) \ {n} such thafA| = fi(y), and every valuatioiV, the

following condition holds¥” IF [¢]\™"™ ™) implies M, ((so.n, - - - » Sk.n)s n)™ Ek .

Lemma5 (Completeness of the trandation). Let M be a modelt € IN, anda an
EMTLKD formula such thafy («) > 0. For every subformula of the formulax, every
(m,n) € {(0,0)}U{0, ..., k} x Fr(a), everyA C Fi(a)\{n} suchthatA4| = fi(v),
and everyk-pathm;, the following condition holdsM, 7* k=, ¢ implies that there ex-
ists a valuationV such thatr; = ((s0.n, - -, Skn)s ln) @andV - [go]}f’m’"’A].

94

Theorem 2. Let M be a model, angb an EMTLKD formula. Then for everly € IN,
M =3 ¢if, and only if, the propositional formul@\/,], is satisfiable.

Proof. (=) Letk € IN andM, 7, =1, ¢ for somen; € 1 (t). By Lemma 5 it follows
that there exists a valuatidri such thatr; = ((so,0,-- -, Sk,0),l0) With S(wp o) =
s00 = v andV IF [l 00) Hence,V IF T(woo) A M) A [0,
ThusV I [M*#4].

(<) Let k € IN and[M¥"];, is satisfiable. It means that there exists a valuation
such that/ I [M#+],. S0,V I I(wo o) andV’ I [M]F+9) A [o] O 0Fx9)] Hence, by
Lemma 4 it follows thatV/, ((so,0, - - -, Sk,0),l0) FEx ¢ and S(wo0) = so,0 = ¢. Thus
M o

Now, from Theorems 1 and 2 we get the following.

Corollary 1. Let M be a model, angp an EMTLKD formula. Then)/ |:3 p if, and
only if, there existé € IN such that the propositional formula/, ¢]; is satisfiable.

5 Experimental Results

Our SAT-base BMC method for EMTLKD is, to

our best knowledge, the first one formally pre-

sented in the literature, and moreover there is no

any other model checking technique for the con- |™ “5”"‘;,\’{'"“ \"”%\
sidered EMTLKD language. Further, our imple- are foutdont (&Y i ine
mentation of the presented BMC method uses Re- [o, outs
duced Boolean Circuits (RBC) [1] to represent ‘

the propositional formul&\/, ¢],.. An RBC rep-
resents subformulae df/,] by fresh propo-

sitions such that each two identical subformulagig. 1. An DIIS of FTC for two trains
correspond to the same proposifioRor the tests

we have used a computer with Intel Core i3-2125

processor, 8 GB of RAM, and running Linux 2.6. We set the tiotgo 5400 seconds,
and memory limit to 8GB, and we used the state of the art SAfesMiniSat 2. The
specifications for the described benchmark are given in tiaetsal form, for which
we verify the corresponding counterexample formula, itee formula which is negated
and interpreted existentially.

To evaluate our technique, we have analysed a scalable-agdltit system, which
is a faulty train controller system (FTC). Figure 1 presen3llS composed of three
agents: a controller and two trains, but in general the aystensists of a controller,
andn trains (forn > 2) that use their own circular tracks for travelling in oneadition

! Following van der Meyden at al. [11], instead of using RBCs, eould directly encode
[M, o]k in such a way that each subformulaof [M, ¢], occurring within a scope of &-
element disjunction or conjunction is replaced with a psiponal variablep,, and the re-
duced formuld M, ¢]i is conjuncted with the implicatiop,, =). However, in this case our
method, as the one proposed in [11], would not be complete.

95

(states Away (A)). At one point, all trains have to pass tigtoa tunnel (states Tunnel
'T"), but because there is only one track in the tunnel, sairriving from each direction
cannot use it simultaneously. There are colour light sigpalboth sides of the tunnel,
which can be either red (state 'R’) or green (state 'G’). Adlibs notify the controller

when they request entry to the tunnel or when they leave thieelu The controller

controls the colour of the colour light signals, howeveihde faulty (state 'F’), i.e., a
faulty traffic light remains green when a train enters thengipand thereby it does not
serve its purpose. In the figure, the initial states of thearodler and the trains are 'G’

and "W’ (Waiting in front of the tunnel) respectively, ancettransitions with the same
label are synchronised. Null actions are omitted in the &égur

Let PV = {inTy,...inT,, Red} be a set of propositional variables, which we find
useful in analysis of the scenario of the FTC system. A vauadtinction) : S — 27V
is defined as follows. Letlg = {T'rainl (T'1),...,TrainN (T'N), Controller (C)}.
Then,inT,. € V(s) if l.(s) = T andc € Ag \ {C}; Red € V(s) if lc(s) = R. The
specifications are the following:

¢1 = Gio,o) Oc(NIS Nj—i1 ~(InT; A InTj)). “Always whenControlleris func-
tioning correctly, trains have exclusive access to theelinn

2 = Go,00) (inTy = KF (Al (—inT}))). “Always whenTrainlis in the tunnel, it
knows under assumption th@ontroller is functioning correctly that none of the
other trains is in the tunnel”.

w3 = Go,00) (inT1 = K¢, (Red)). “Always whenTrainl is in the tunnel, it knows
under assumption thaontroller is functioning correctly that the colour of the
light signal for other trains is red”.

04 = Gpo,oo)(InT1 = Kr1(Fins11(Viey InT3))). “Always whenTrainl is in the
tunnel, it knows that either he or other train will be in thanel during the next
n + 1 time units”.

Y5 = G[Opo](ITLTl = KT1 (G[gm_2’3m_2]InT1 VF[LM—H(VLQ I?’LTJ)), Wherem 2
2. “Always whenTrainl is in the tunnel, it knows that either he is in the tunnel
every3m — 2 time units or other train will be in the tunnel during the next+ 1
time units”.

All the above properties are false in our DIIS model of the FSyStem.

Since there is no model checker that supports the EMTLKD ¢nigs, we were
not able to compare our results with others for the above ditamy MCMAS [22] is
the only model checker that supports deontic modalitieselver it is designated for
branching time logics only. Thus, we present results of oethmd only. An evaluation
is given by means of the running time and the memory used,tasgiesented on the
included line-charts. It can be observed that¢ar ¢, 3, ¢4 andes we managed
to compute the results for 130, 1300, 2900, 8, and 22 tra@gspectively, in the time
of 5400 seconds. The exact data for the mentioned maximabaupof trains are the
following:

01 k=4, fr(ps) =2, bmcTis 5.44, bmcM is 14.00, satT is 483.61, satM is 632.00,
bmcT+satT is 489.05, max(bmcM,satM) is 632.00;

w2 k = 4, fr(pa) = 2, bmcT is 148.02, bmcM is 909.00, satT is 3850.09, satM
1511.00, bmcT+satT is 3998.11, max(bmcM,satM) is 1511.00;

96

Memory usage for FTC Total time usage for FTC
2000 T T T T T 4000
.

T T T
1 Formula 1 —*—

1800 - L 3500 - i Formula 2 ---&--- |
1600 - - = 1 | Formula3 -
@ 1400 - o LA 8000 - i 1
2 1200} i § 2500 - ;
< d o i
z 1000 o o £ 2000 »
§ 8swop o £ 1500 7
= 600 | 2} - 4 {
o] 1000 |- g
400 o - Formula 1 —— o
200 - Formula 2 - | 500 —f s B
gy Al _ Formula3 - N o . masadtunn
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Number of Trains Number of Trains

Memory usage for FTC Total time usage for FTC

1600 T T
Formula 4 —o—
1400 |- Formula 5 ---e--- R
200
1200 |-
o
= g L 1
2 150 / | § 1000
z ! S 800 R
é 100 A q E o0t q
,"l 400 s
50 - b P
" Formula4 —e— 200 - d —
..... % e
o oa-vet Formula s ---e- o N)
0 5 10 15 20 2 0 5 10 15 20 25

Number of Trains Number of Trains

w3: k=1, fr(ps) = 2, bmcT is 98.89, bmcM is 1114.00, satT is 9.69, satM 1869.00,

bmcT+satT is 108.58, max(bmcM,satM) is 1869.00;
w4 k = 24, fr(ps) = 2, bmcT is 2.00, bmcM is 3.57, satT is 1401.24, satM 93.00,

bmcT+satT is 1403.24, max(bmcM,satM) is 93.00;

5. k=65, fi,(ps) = 2,bmcT is 281.50, bmcM is 18.13, satT is 149.59, satM 249.00,

bmcT+satT is 431.10, max(bmcM,satM) is 249.00,
wherek is the bound,fx(¢) is the number of symbolic paths, bmcT is the encoding
time, bmcM is memory use for encoding, satT is satisfiabiitgcking time, satM is
memory use for satisfiability checking.

The formulaep;, v2 andps corroborates the efficiency of the SAT-based BMC
methods when the length of the counterexamples does not githwthe number of
agents (trains). On the other hand the formylaeand s demonstrate that SAT-based
BMC becomes inefficient when the the length of the countergtas grows with the
number of agents (trains).

Our future work will involve an implementation of the methaldo for other models
of multi-agent systems, for example for standard integatelystems. Moreover, we are
going to define a BDD-based BMC algorithm for EMTLKD, and campit with the
method presented in this paper.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachgkalinalysis based on SAT-solvers.
In Proc. of TACAS’00Qvolume 1785 of.NCS pp. 411-425. Springer-Verlag, 2000.

2. R. Alurand T. Henzinger. Logics and models of real timeuAvsy. InProceedings of REX
Workshop ‘Real Time: Theory and Practiceblume 600 ofLNCS pp. 74-106. Springer-
Verlag, 1992.

3. L. Agqvist. Deontic logic. In D. Gabbay and F. Guenthneitad, Handbook of Philosophical
Logic: Volume II: Extensions of Classical Logjgp. 605—714. Reidel, Dordrecht, 1984.

97

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

E. Clarke and E. Emerson. Design and synthesis of synicatmn skeletons for branching-
time temporal logic. InProceedings of Workshop on Logic of Programslume 131 of
LNCS pp. 52-71. Springer-Verlag, 1981.

. E. A. Emerson. Temporal and modal logic.Handbook of Theoretical Computer Science

volume B, chapter 16, pp. 996-1071. Elsevier Science Fhésks 1990.

. K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledgethe logic of local propo-

sitions. InProc. of TARK'98pp. 29-41, 1998.

. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. VarBieasoning about Knowledg®lIT Press,

Cambridge, 1995.

. C. A. Furia and P. Spoletini. Tomorrow and all our yestgsdTL satisfiability over the

integers. InProc. of ICTAGC volume 5160 oL NCS pp. 253-264. Springer-Verlag, 2008.

. P. Gastin and D. Oddoux. Fast LTL to Biichi automata tedimsi. InProc. of CAV volume

2102 ofLNCS pp. 53—-65. Springer-Verlag, 2001.

W. van der Hoek and M. Wooldridge. Model checking knowkeénd time. IrProc. of
SPIN 2002.

X. Huang, C. Luo, and R. van der Meyden. Improved boundedeichecking for a fair
branching-time temporal epistemic logic. Pnoc. of MoChArt'2010volume 6572 of NAI,
pp. 95-111. Springer, 2011.

A. Jones and A. Lomuscio. A BDD-based BMC approach fowv#rdication of multi-agent
systems. IrProc. of CS&R volume 1, pp. 253264. Warsaw University, 2009.

M. Kacprzak, A. Lomuscio T. Lasica, W. Penczek, and Me8ar Verifying multiagent
systems via unbounded model checking.Phoc. of FAABS Il) volume 3228 oLNCS pp.
189-212. Springer-Verlag, 2004.

R. Koymans. Specifying real-time properties with neetiemporal logicReal-Time Systems
2(4):255-299, 1990.

H. Levesque. A logic of implicit and explicit belief. Proc. of the 6th National Conference
of the AAA) pp. 198-202. Morgan Kaufman, 1984.

A. Lomuscio, W. Penczek, and H. Qu. Partial order redadtr model checking interleaved
multi-agent systems. IRroc. of AAMAS, IFAAMAS Presqp. 659-666, 2010.

A. Lomuscio and M. Sergot. Deontic interpreted syste®hsdia Logica75(1):63—-92, 2003.
A. Meski, W. Penczek, and M. Szreter. Bounded modellihgdinear time and knowledge
using decision diagrams. Froc. of CS&R pp. 363-375. Biatystok University of Technol-
ogy, 2011.

W. Penczek and A. Lomuscio. Verifying epistemic projesrbf multi-agent systems via
bounded model checking. Froc. of AAMASpp. 209-216. ACM, 2003.

W. Penczek, B. Wozna-Szczesniak, and A. Zbrzezny.aldsvSAT-based BMC for LTLK
over interleaved interpreted systems.Froc. of CS&R pp. 565-576. Biatystok University
of Technology, 2011.

J. P. Quielle and J. Sifakis. Specification and verificatf concurrent systems in CESAR.
In Proc. of the 5th International Symposium on Programmwgume 131 ofLNCS pp.
337-351. Springer-Verlag, 1981.

F. Raimondi and A. Lomuscio. Symbolic model checkingexfmtic interpreted systems via
OBDDs. InProc. of DEONO4volume 3065 oL NCS pp. 228-242. Springer Verlag, 2004.
F. Raimondi and A. Lomuscio. Automatic verification of lthagent systems by model
checking via OBDDsJournal of Applied Logigc5(2):235-251, 2005.

M. Wooldridge.An introduction to multi-agent systemiohn Wiley, England, 2002.

B. Wozna, A. Lomuscio, and W. Penczek. Bounded modedkthg for deontic interpreted
systems. IrProc. of LCMAS’2004volume 126 oENTCS pp. 93-114. Elsevier, 2005.

A. Zbrzezny. A new translation from ECTL* to SAT. IRroc. of CS&R pp. 589-
600, http://csp2011.mimuw.edu.pl/proceedings/PDFZIBR589.pdf. Biatystok University
of Technology, 2011.

98

Some Thoughts about Commitment Protocols
(Position Paper)

Matteo Baldoni and Cristina Baroglio

Universita degli Studi di Torino
Dipartimento di Informatica
c.so Svizzera 185, 1-10149 Torino (Italy)
{matteo.baldoni,cristina.baroglio}@unito.it

1 Introduction

Practical commitments lie at the level of regulative (or preservative) norms that,
in turn, impact on the agents’ behavior, creating social expectations, that should
not be frustrated. By a practical commitment, in fact, an actor (debtor) is com-
mitted towards another actor (creditor) to bring about something [6, 17], i.e. to
act either directly or by persuading others so as to make a condition of interest
become true. Due to their social nature, practical commitments are a powerful
tool that helps to overcome the controversial assumptions of the mentalistic ap-
proach that mental states are verifiable and that agents are sincere. Moreover,
they support an observational semantics for communication that allows verifying
an agent’s compliance with its commitments based on observable behavior.

From the seminal paper by Singh [18], commitments protocols have been rais-
ing a lot of attention, see for instance [23,14,21,9,20, 11, 3]. The key feature of
commitment protocols is their declarative nature, which allows specifying them
in a way which abstracts away from any reference to the actual behaviour of the
agents, thus avoiding to impose useless execution constraints [24]. By doing so,
commitment-based protocols respect the autonomy of agents because whatever
action they decide to perform is fine as long as they accomplished their com-
mitments, satisfying each others’ expectations. Now, after more than ten years
from the introduction of commitments, it is time to ask (i) if a “commitment
to do something” is the only kind of regulative norm, that we need in order to
give a social semantics to a physical action, and (4i) if they realize what they
promised. To this aim, we think that there are four intertwined aspects to be
considered:

Agent Coordination: how to account for coordination patterns?
Infrastructure for Execution: which is the reference execution infrastructure?
Observability of Events: are events really observable by all agents?

=W e

Composition of Coordination Patterns: is composition influenced by the pre-
vious aspects?

99

Agent

ﬁ; Coordination

Infrastructure Composition of
for Execution Coordination Patterns
Observability J
of Events

Fig. 1. The four considered intertwined aspects.

2 Agent Coordination

Commitment protocols leave the choice of which action to execute and when,
totally up to the single agents. From a more general perspective, they do not
impose constraints on the possible evolutions of the social state. However, in
many practical cases there is the need to capture regulative aspects of agent
coordination. For instance, a customer and a merchant may agree that payment
should be done before shipping but how to represent this socially agreed con-
straint in commitment protocols? When a similar coordination is desired by the
parties, one feels the lack of the means for capturing them as regulations inside
the protocol. Notice that the desired coordination patterns, though restricting
the choices up to the agents, would not prevent flexibility because, for instance,
it is not mandatory that payment and shipping are one next to the other. What
matters is their relative order. More importantly, an agreed coordination pat-
tern establishes the boundaries within which each party can exercise his/her own
autonomy without compromising the aims for which the agreement was taken.
Citing Dwight Eisenhower!' “To be true to one’s own freedom is, in essence, to
honor and respect the freedom of all others.” As long as agents respect such con-
straints, they are free to customize the execution at their will, e.g. by interleaving
the two actions with others (like sending a receipt or asking a quote for another
item). This need is felt by the research community, see [3] for an overview.
When regulations are expressed, agents can individually check whether their
behavior conforms to the specification [2]. But in order to guarantee to the others
that one will act in a way that conforms to the regulation, an agent should for-
mally bind its behavior to the regulation itself. The proposal in [3], for instance,
allows the representation of temporal regulations imposed on the evolution of
the social state, however, it does not supply a deontic semantics to the con-
straints. Therefore the agents’ behavior is not formally bound to them. On the
other hand, the REGULA framework [16] uses precedence logic to express tem-
poral patterns that can be used as antecedent (or consequent) conditions inside

! State of the Union Address, Feb. 2, 1953.

100

commitments. Since patterns may involve various parties, the framework also
introduces a notion of condition control and of commitment safety, in order to
allow agents to reason about the advisability of taking a commitment. However,
patterns are not generally expressed on the evolution of the social state but are
limited to events.

3 Infrastructure for Execution and Observability of
Events

Commitments were introduced to support run-time verification in contrast to
the mentalistic approach but despite this, they still lack of a reference infras-
tructure that practically enables such a verification. Verification is supported
by proposals like [1,7], although the authors do not draft an infrastructure,
while commitment machines [24,21,19] have mainly been used to provide an
operational semantics. Normative approaches, e.g. institutions [13, 14], provide
an answer but with some limitation. Indeed, they tend to implicitly assume a
centralized vision, often realized by introducing a new actor, whose task is to
monitor the interaction: the institution itself. This assumption is coherent with
the fact that commitment protocols tend to assume that events are uniformly
observed by all the agents although in the real world this seldom happens; for
instance, communications tend to be point-to-point. We need the infrastructure
to support this kind of interaction and to monitor, in this context, the on-going
enactment, checking whether it respects all the regulative aspects — that the
designer identified as relevant or that the agents agreed. Chopra and Singh [8]
addressed the issue of realizing an architecture that relaxes the centralization
constraint by incorporating the notion of commitment alignment. In this way
it becomes possible to answer to questions like “how to decide whether agents
are acting in a way that complies to the regulations or not?”, “How to know
that an agent satisfied one of its commitments?” in contexts where events are
not uniformly observable. Nevertheless, they relegated commitment alignment
to the middleware, shielding the issue of observability of events from the agents
and from the designer. Our claim is that this is a limitation and that in many
real-world situations it is more desirable to have the means of making clear who
can access to what information and who is accountable for reporting what event.
This is especially true in the case when the protocol allows the representation of
coordination patterns: there is the need of mechanisms for expressing who can
observe what, tracking which part of a pattern was already followed, which is
left to be performed, who is in charge of the next moves, and so on. As a con-
sequence, we think that the specification of the coordination patterns and the
design of the infrastructure cannot leave out the observability of events, which
plays a fundamental role at the level of the protocol specification and, for this
reason, it should be captured by first-class abstractions and appropriate regula-
tions. Such abstractions/regulations should be represented in a way that makes
them directly manipulable by the agents [4].

101

4 Composition of Coordination Patterns

Most of the works concerning software engineering aspects of commitment proto-
col specification focus on the formal verification to help the protocol designer to
get rid of or to enforce given behaviors, [22,15,5,12,11]. An aspect that is not to
be underestimated is the realization of a development methodology for commit-
ment protocols. The most relevant representative is the Amoeba methodology
[10], which allows the design of commitment protocols and their composition
into complex business processes. With respect to the aspects that we are dis-
cussing, this methodology, however, has two main limits. On the one hand, when
two or more protocols are composed, the designer is requested to define a set of
temporal constraints among events and of data flow constraints to combine the
various parts. However, such constraints do not have any regulatory flavour nor
they have a deontic characterization. On the other hand, since a wider number
of roles are involved, which of the actors of one protocol is entitled to (and phys-
ically can) observe events generated inside another protocol? The methodology
does not explicitly account for this problem in the description of the various
steps that compose it. For instance, suppose of composing a protocol that allows
a merchant and a supplier to interact with one that allows the same merchant to
interact with a customer. It is unrealistic to suppose that the client can observe
events involving the supplier, even though after the composition both actors will
play in the same protocol. Actually, it would be useful to incorporate in the
protocol the means for letting the merchant tell the client that it received items
from the supplier in a way that makes it accountable for its declarations.

References

1. M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Torroni. Compli-
ance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence, 20(2-4):133-157, 2006.

2. M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, and M. P. Singh.
Choice, Interoperability, and Conformance in Interaction Protocols and Service
Choreographies. In K. Decker, J. Sichman, C. Sierra, and C. Castelfranchi, edi-
tors, Proceedings of the 8th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2009, pages 843-850, Budapest, Hungary, May 2009.
IFAAMAS.

3. M. Baldoni, C. Baroglio, E. Marengo, and V . Patti. Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach. ACM TIST,
Spec. Iss. on Agent Communication, 2011.

4. M. Baldoni, C. Baroglio, E. Marengo, V. Patti, and A. Ricci. Back to the future:
An interaction-oriented framework for social computing. In First Int. Workshop
on Req. Eng. for Social Computing, RESC, pages 2-5. IEEE, 2011.

5. J. Bentahar, J.-J. Ch. Meyer, and W. Wan. Model checking communicative agent-
based systems. Knowl.-Based Syst., 22(3):142-159, 2009.

6. C. Castelfranchi. Commitments: From Individual Intentions to Groups and Orga-
nizations. In Proc. of ICMAS, pages 41-48, 1995.

102

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

F. Chesani, P. Mello, M. Montali, and P. Torroni. Commitment Tracking via the
Reactive Event Calculus. In C. Boutilier, editor, Proc. of the 21st International
Joint Conference on Artificial Intelligence, IJCAI, pages 91-96, Pasadena, Cali-
fornia, USA, July 2009.

A. K. Chopra and M. P. Singh. An Architecture for Multiagent Systems: An
Approach Based on Commitments. In Proc. of ProMAS, volume 5919 of LNAI,
pages 148-162, Heidelberg, 2009. Springer.

A K. Chopra. Commitment Alignment: Semantics, Patterns, and Decision Pro-
cedures for Distributed Computing. PhD thesis, North Carolina State University,
Raleigh, NC, 2009.

N. Desai, A.K. Chopra, and M.P. Singh. Amoeba: A methodology for modeling
and evolving cross-organizational business processes. ACM Trans. Softw. Eng.
Methodol., 19(2), 20009.

M. El-Menshawy, J. Bentahar, and R. Dssouli. Verifiable Semantic Model for Agent
Interactions Using Social Commitments. In Proc. of LADS, volume 6039, pages
128-152, 2010.

M. El-Menshawy, J. Bentahar, and R. Dssouli. Symbolic Model Checking Commit-
ment Protocols Using Reduction. In Declarative Agent Languages and Technologies
VIII - 8th International Workshop, DALT 2010, volume 6619 of Lecture Notes in
Computer Science, pages 185—203. Springer, 2011.

N. Fornara. Interaction and Communication among Autonomous Agents in Mul-
tiagent Systems. PhD thesis, Universita della Svizzera italiana, Facolta di Scienze
della Comunicazione, June 2003.

N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. In Proc. of AAMAS, pages
520-527. ACM, 2003.

A. Mallya and M. Singh. An algebra for commitment protocols. Autonomous
Agents and Multi-Agent Systems, 14(2):143-163, 2007.

E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P. Singh.
Commitments with Regulations: Reasoning about Safety and Control in REGULA.
In Proc. of AAMAS, pages 467-474, 2011.

M. P. Singh. An Ontology for Commitments in Multiagent Systems. Artificial
Intelligence and Law, 7(1):97-113, 1999.

Munindar P. Singh. Agent communication languages: Rethinking the principles.
IEEE Computer, 31(12):40-47, 1998.

Munindar P. Singh. Formalizing Communication Protocols for Multiagent Systems.
In Proc. of IJCAI pages 1519-1524, 2007.

P. Torroni, F. Chesani, P. Mello, and M. Montali. Social Commitments in Time:
Satisfied or Compensated. In Proc. of DALT, volume 5948, pages 228-243, 2010.
M. Winikoff, W. Liu, and J. Harland. Enhancing Commitment Machines. In J. A.
Leite, A. Omicini, P. Torroni, and P. Yolum, editors, Proc. of DALT, volume 3476
of LNCS, pages 198-220, New York, NY, USA, July 2005. Springer.

P. Yolum. Design time analysis of multiagent protocols. Data Knowl. Eng.,
63(1):137-154, 2007.

P. Yolum and M. P. Singh. Designing and Executing Protocols Using the Event
Calculus. In Agents, pages 27-28, New York, NY, USA, 2001. ACM.

P. Yolum and M. P. Singh. Commitment Machines. In Proc. of ATAL, pages
235-247, 2002.

103

Semantic Web and Declarative Agent Languages
and Technologies: Current and Future Trends
(Position Paper)

Viviana Mascardi', James Hendler?, and Laura Papaleo®

1 DISI, University of Genova, Italy
viviana.mascardiQunige.it
2 Rensselaer Polytechnic Institute, Troy, NY, USA
hendler@cs.rpi.edu
3 ICT Department, Provincia di Genova, Genova, Italy
papaleo@disi.unige.it

1 Introduction

One of the first discussions about a Web enriched with semantics and its re-
lationships with artificial intelligence (and hence, with intelligent agents) dates
back to 1998 [4], but it was only ten years ago that the idea of a Semantic Web on
top of which agent-based computing would have allowed computer programs to
interact with non-local web-based resources, became familiar to a wide audience
of scientists [5, 10].

The integration of Semantic Web concepts as first class entities inside agent
languages, technologies, and engineering methodologies has different levels of
maturity: many AOSE methodologies, organizational models and MAS archi-
tectures seamlessly integrate them (for example, [20], [19], and the FIPA “On-
tology Service Specification”, www.fipa.org/specs/fipa00086/, respectively),
but few languages do.

In this position paper we review the state of the art in the integration of se-
mantic web concepts in declarative agent languages and technologies and outline
what we expect to be the future trends of this research topic.

2 State of the Art

Agent Communication Languages. In agent communication, the assumption that
ontologies should be used to ensure interoperability had been made since the
very beginning of the work on ontologies, even before they made the basis for
the Semantic Web effort. Both KQML [15] and FIPA-ACL [9] allow agents to
specify the ontology they are using, although none of them forces that. Agent
communication languages were born with the Semantic Web in mind. The same
does not hold for agent programming languages, that only recently started to
address ontologies as first class objects.

104

Agent Programming Languages. AgentSpeak [17] underwent many extensions
over time. However, what was considered only with the work [16] discussing
AgentSpeak-DL, is that ontological reasoning could facilitate the development of
AgentSpeak agents. The implementation of AgentSpeak-DL concepts is given in
JASDL [12]. CooL-AgentSpeak [14], the “Cooperative Description-Logic AgentS-
peak” language integrating Coo-BDI [1] and AgentSpeak-DL and enhancing
them with ontology matching capabilities [8] is a further effort on this subject.
The authors of [6] and [7] explore the use of a formal ontology as a constraining
framework for the belief store of a rational agent and show the implementation
of their proposal in the Go! multi-threaded logic programming language [6]. We
are not aware of similar attempts made with non-declarative ones, apart from
the support that JADE [3] offers to ontologies, which is limited to boosting agent
communication by allowing the agents to refer to concepts belonging to ontolo-
gies in the messages they exchange, and is hence due to the respect of FIPA-ACL
specifications.

Proof and Trust in MASs. Even if the Semantic Web is often incorrectly reduced
to reasoning on semantic markups, it actually goes far beyond that, coping with
proof and trust as well. Both these topics are extremely hot within the agent
community, and on the DALT’s one in particular. In the literature we can find
dozens of works on trust and reputation in agent societies, and research on for-
mally proving that an agent can enter an organization without damaging it has
already produced many valuable results. Model checking declarative agent lan-
guages has a long tradition too (see for example the “MCAPL: Model Checking
Agent Programming Languages” project, http://cgi.csc.liv.ac.uk/MCAPL/
index.php/Main_Page, and [11]).

3 Future Trends

There are many promising directions that the research on integration of Semantic
Web technologies and DALTs could take.

Semantic- Web based Proof and Trust. Although the maturity level of the aspects
concerned with proof and trust in DALTS is satisfactory, mechanisms that give
the developer the real power or putting all together are still missing. For example,
to design and build MASs where agents can trust each other, the consistency
of the agents’ beliefs represented as ontologies should be always preserved, and
formally demonstrated if required by the application.

Semantic-Web based Mediation. In [2], a semantic mediation going beyond the
integration of ontologies within traditional message-based communication was
envisaged. Mediation should occur at the level that characterizes the social ap-
proach where it is required to bind the semantics of the agent actions with their
meaning in social terms (ontology-driven count-as rules).

105

Semantic Representation of the Environment. Although not yet formalized in
published papers, the A&A model [18] is moving towards integrating semantic
web concepts as first class objects for semantically representing the environment
and the artifacts available to the agents'. This line of research should be pursued
by other declarative approaches as well, where the environments is explicitly
represented. Formally proving the consistency of the “Environment Ontology”
should be possible, as well as evolving it, and learning it from sources of semi-
structured information.

Adoption of Semantic-Web enriched DALTs for Real Applications. Many real
applications involve scenarios where procedural rules for achieving a goal are
expressed in an informal and fully declarative way, may require to achieve sub-
goals, and the domain knowledge is hard-wired within the rules themselves,
making them barely re-usable in other domains, even if they could. Think of the
rules for getting a new identity card issued by Genova Municipality, which are
declaratively defined by conditions to be met, other documents to be obtained
before, and exactly the same as those for obtaining the document in another
municipality, but nevertheless would be hard to compare. Expressing procedural
rules of this kind using declarative agent languages fully integrated with semantic
web concepts might help comparing and composing them in an automatic way,
moving a step forward the automation of many services that are still completely
performed by human agents.

Discussion. The first problem that the Semantic Web and Declarative Agent
Languages and Technologies communities should struggle to solve together, is
bringing usability to the world. Forthcoming technologies should be not only
secure, efficient, self-*, etc. It is mandatory that they will be usable by average
computer scientists, average professionals and even average users. “Making intel-
ligent software agents both powerful and easy to construct, manage, and maintain
will require a very rich semantic infrastructure” [13], and the rich semantic in-
frastructure seething with agents, must be there for anyone. In a few years, it
must become a commodity, clearing the boundaries of academic research once
and for all.

References

1. D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI model with cooper-
ativity. In Proc. of the 1st Int. Workshop on Declarative Agent Languages and
Technologies, volume 2990 of LNCS, pages 109-134. Springer Verlag, 2003.

2. M. Baldoni, C. Baroglio, F. Bergenti, A. Boccalatte, E. Marengo, M. Martelli,
V. Mascardi, L. Padovani, V. Patti, A. Ricci, G. Rossi, and A. Santi. MERCURIO:
An interaction-oriented framework for designing, verifying and programming multi-
agent systems. In Proc. of the 11th WOA Workshop. CEUR-WS.org, 2010.

! Private communication of one of the authors of this paper with the authors of the
A&A model.

106

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
JADE. In Intelligent Agents VII, pages 89-103. Springer Verlag, 2001. LNAI 1986.
T. Berners-Lee. An parenthetical discussion to the web architecture at 50,000 feet
and the semantic web roadmap. Online at www.w3.org/DesignIssues/RDFnot.
html. Accessed on 2011-10-10, 1998.

. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-

can, pages 29-37, May 2001.

K. L. Clark and F. G. McCabe. Go! a multi-paradigm programming language for
implementing multi-threaded agents. Ann. Math. Artif. Intell., 41:171-206, 2004.
K. L. Clark and F. G. McCabe. Ontology schema for an agent belief store. Int. J.
Hum.-Comput. Stud., 65:640-658, July 2007.

J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.

Foundation for Intelligent Physical Agents. FIPA ACL message structure specifi-
cation. Approved for standard, Dec. 6", 2002.

J. A. Hendler. Agents and the semantic web. IEEFE Intelligent Systems, 16(2):30—
37, 2001.

S.-S. T. Q. Jongmans, K. V. Hindriks, and M. B. van Riemsdijk. Model checking
agent programs by using the program interpreter. In Proc. of the 11th Int. Work-
shop on Computational Logic in Multi-Agent Systems, pages 219-237. Springer,
2010.

T. Klapiscak and R. Bordini. JASDL: A practical programming approach com-
bining agent and semantic web technologies. In Proc. of the 6th Int. Workshop
on Declarative Agent Languages and Technologies, volume 5397 of LNCS, pages
91-110. Springer Verlag, 2009.

J. Krupansky. Richness of semantic infrastructure,
2011. Online http://semanticabyss.blogspot.com/2011/06/
richness-of-semantic-infrastructure.html. Accessed on 2011-10-10.

V. Mascardi, D. Ancona, R. H. Bordini, and A. Ricci. CooL-AgentSpeak: Enhanc-
ing AgentSpeak-DL agents with plan exchange and ontology services. In Proc. of
the Int. Conf. on Intelligent Agent Technology, pages 109-116. IEEE Computer
Society, 2011.

J. Mayfield, Y. Labrou, and T. Finin. Evaluation of KQML as an agent communi-
cation language. In Proc. of the 2nd Int. ATAL Workshop, pages 347-360. Springer
Verlag, 1995.

A F. Moreira, R. Vieira, R. H. Bordini, and J. F. Hiibner. Agent-oriented program-
ming with underlying ontological reasoning. In Proc. of the 3rd Int. Workshop on
Declarative Agent Languages and Technologies, volume 3904 of LNCS, pages 155—
170. Springer Verlag, 2006.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Agents Breaking Away, pages 42-55. Springer Verlag, 1996. LNATI 1038.

A. Ricci, M. Viroli, and A. Omicini. Programming MAS with artifacts. In Pro-
grammang Multi-Agent Systems, volume 3862 of LNCS, pages 206-221. Springer
Verlag, 2006.

B. L. Smith, V. A. M. Tamma, and M. Wooldridge. An ontology for coordination.
Applied Artificial Intelligence, 25(3):235-265, 2011.

Q.-N. N. Tran and G. Low. Mobmas: A methodology for ontology-based multi-
agent systems development. Information & Software Technology, 50(7-8):697—722,
2008.

107

Designing and Implementing a Framework for
BDI-style Communicating Agents in Haskell
(Position Paper)

Alessandro Solimando and Riccardo Traverso*

Dipartimento di Informatica e Scienze dell’Informazione, Universita di Genova, Italy
{alessandro.solimando,riccardo.traverso}@disi.unige.it

Abstract. In this position paper we present the design and prototypical
implementation of a framework for BDI-style agents defined as Haskell
functions, supporting both the explicit representation of beliefs and back-
tracking (at the level of individual agents), and asynchronous communi-
cation via message passing. The communication layer is separated from
the layers implementing the features of individual agents through dif-
ferent stacked monads, while beliefs are represented through atomic or
structured values depending on the user’s needs. Our long-term goal is
to develop a framework for purely functional BDI agents, which is cur-
rently missing, in order to take advantage of the features of the functional
paradigm, combined with the flexibility of an agent-oriented approach.

1 Introduction

The Belief-Desire-Intention (BDI) model is a well-known software model for
programming intelligent rational agents [10]. Only a few frameworks that imple-
ment the BDI approach are developed directly on top of logical languages [7], but
most of those exploiting imperative or object oriented languages, such as Jason
[2] that exploits Java’s inheritance and overriding to define selection functions
and the environment in a very convenient and flexible way, have to re-implement
many features that are natively available in the logic programming paradigm.
For example, in Jason unification is needed to find plans relevant to a triggering
event, and to resolve logical goals in order to verify that the plan context is a
logical consequence of the belief base. BDI-style agents are usually described in
a declarative way, no matter how the language interpreter is implemented. The
functional paradigm supports pattern matching for free and gives all the advan-
tages of declarativeness; moreover, the use of types for typing communication
channels may provide great benefits to guarantee correctness properties both a
priori, and during the execution. Nevertheless, to the best of our knowledge no
functional frameworks for BDI-style communicating agents have been proposed
so far.

* Both authors of this paper are Ph. D. students at the University of Genova, Italy.

108

In order to fill this gap, we propose a framework for functional agents tak-
ing inspiration from the BDI model (although not implementing all of its fea-
tures), and supporting communication and backtracking. A generic and easily
composable architecture should partition the agents’ functionalities into several
well-separated layers, and in functional programming monads are a powerful ab-
straction to satisfy these needs. Intuitively, in our solution agents are monadic
actions provided with local backtracking features and point-to-point message
passing primitives. Their local belief base is stored within variables that are
passed down through execution steps. Goals are defined with functions from be-
liefs to booleans. When it comes to monadic computations, Haskell [3], being
strongly based on them, is the best fit.

Our work is a generalization of [11], where the authors describe a single-agent
monadic BDI implementation relying on CHR [6]; we share with [11] the idea of
a BDI architecture based on monads, but instead of relying on CHR to represent
beliefs and their evolution, the aim of our work is to provide a better integration
with the language by handling them directly as Haskell values and expressions.

In [13] agents executing abstract actions relative to deontic specifications
(prohibition, permission, and obligation) are simulated in Haskell. Although close
to our approach up to some extent, that work does not take the BDI model into
account. We are not aware of other proposals using functional languages to
represent BDI-style agents.

2 Owur Framework

In this section we first provide a very brief overview of Haskell’s syntax [8], to
allow the reader to understand our design choices.

The keyword data is used to declare new, possibly polymorphic, data types. A
new generic type may be, e.g., data MyType a b = MyType a a b: a and b are two
type variables, and the constructor for new values takes (in the order) two a ar-
guments and one b. A concrete type for MyType could be, e.g., MyType Int String.
A type signature for f is written £ :: a, where a is a type expression; an arrow
— is a right-associative infix operator for defining domain and codomain of
functions. A type class is a sort of interface or abstract class that data types
may support by declaring an instance for it. A special type (), called unit, acts
as a tuple with arity 0; its only value is also written ().

In our framework, we split the definition of the capabilities of the agents in
different layers by means of monads. The innermost one, Agent, provides support
for the reasoning that an agent may accomplish in isolation from the rest of the
system, that is without any need to communicate. On top of it we build another
monad CAgent for communicating agents that provides basic message-passing
features.

data Agent s a = Agent (s = (s,a))
instance Monad (Agent s) where {- omitted -}

The declaration of Agent follows the definition of the well-known state monad
[4]. Tt is parameterized on two types: the state s of the agent, containing its

109

current beliefs, and the return type a of the action in the monad. Each action is
a function from the current state to the (possibly modified) new one, together
with the return value.

At this layer it is safe to introduce goal-directed backtracking support, be-
cause computations are local to the agent and no interaction is involved. In
Haskell, one could provide a basic backtracking mechanism for a monad m by
defining an instance of the MonadPlus type class. MonadPlus m instances must
define two methods, mzero :: m aandmplus :: m a —+ m a — m a, that respec-
tively represent failure and choice. Infinite computations, i.e. with an infinite
number of solutions, can not be safely combined within MonadPlus because the
program could diverge. In order to address this problem the authors of [5] propose
a similar type class — along with a comparison between different implementations
— where its operators behave fairly, e.g. solutions from different choices are se-
lected with a round robin policy. In our work we plan to exploit their solutions to
give Agent the possibility to handle backtracking even in such scenarios. Goals
can be defined as predicates pred :: Agent s Bool to be used in guards that
may stop the computation returning mzero whenever the current state does not
satisfies pred. It is worth noting how this concept of goals fits well into Haskell:
such guards are the standard, natural way to use MonadPlus.

type Agentld = String
data Message a — Message AgentId AgentId a
data AgentChan a = {- omitted -}

Another building block for our MAS architecture is the FIFO channel AgentChan.
We omit the full definition for the sake of brevity: it is sufficient to know that
messages have headers identifying sender and receiver agents and a payload of
arbitrary type a.

data CAgentState a = CAgentState AgentId (AgentChan a)
data CAgent s a b = CAgent (CAgentState a — Agent s (CAgentState a, b))
instance Monad (CAgent s a) where {- omitted -}

A CAgent is, just like before, defined by means of a state monad. It only needs
to know its unique identifier and the communication channel to be used for
interacting with other agents. This is why, unlike before, the type that holds
the state is fixed as CAgentState. The function wrapped by CAgent, thanks to its
codomain Agent s (CAgentState a, b), is able to merge an agent computation
within a communicating agent. Intuitively, a CAgent can be executed by taking in
input the initial CAgentState and beliefs base s, producing at each intermediate
step a value b and the new CAgent and Agent states. The execution flow of
a CAgent may use functionalities from Agent; once the computation moves to
the inner monad we gain access to the beliefs base, goals, and backtracking,
but all the interaction capabilities are lost until the execution reaches CAgent
again. Both monads may be concisely defined through the use of the Monad
Transformer Library [4], thus many type class instances and utility functions
are already given.

110

A CAgent may interact using point-to-point message exchange. The commu-
nication interface is summarized below; all functions are blocking and asyn-
chronous, with the exception of tryRecvMsg that is non-blocking.

myId :: CAgent s a AgentId
sendMsg :: AgentIld » a— CAgent s a ()
recvMsg :: CAgent s a (Message a)

tryRecvMsg :: CAgent s a (Maybe (Message a))

Given a set of communicating agents, it is straightforward to define a simple
module that manages the threads and the synchronization between them.

3 Conclusion and Future Work

We presented a basic architecture based on monads for MAS composed of Haskell
agents. Similarly to other solutions, our system provides backtracking capabili-
ties, even if they are limited to the decisions taken between two communication
acts.

We have been able to show how the concepts behind MAS can be naturally
instantiated in a purely functional language without any particular influence
from other paradigms or solutions that may undermine the integration of the
framework with the Haskell standard library.

This is still a preliminary work, as the architecture may change to better ad-
dress the objectives and the prototype of this framework needs to be developed
further in order to provide full support for all the described features. Some ideas
for future extensions are (1) integrating the backtracking capabilities described
in [5], (2) supporting event-based selection of plans, (3) adding communica-
tion primitives (e.g. broadcast, multicast), and (4) enriching the communication
model with session types [12] in order to check the correctness of ongoing com-
munication along the lines of [1] and [9].

References

1. D. Ancona, S Drossopoulou, and V Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In In this volume:
Proceedings of DALT 2012, 2012.

2. R.H. Bordini, J.F. Hiibner, and M. Wooldridge. Programming multi-agent systems
in AgentSpeak using Jason, volume 8. Wiley-Interscience, 2008.

3. P. Hudak, J. Hughes, S.P. Jones, and P. Wadler. A history of Haskell: being lazy
with class. In HOPL III: Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pages 12—-1, 2007.

4. M. Jones. Functional programming with overloading and higher-order polymor-
phism. Advanced Functional Programming, pages 97-136, 1995.

5. O. Kiselyov, C. Shan, D.P. Friedman, and A. Sabry. Backtracking, interleaving,
and terminating monad transformers: (functional pearl). In Proceedings of the
tenth ACM SIGPLAN international conference on Functional programming, ICFP
’05, pages 192-203, New York, NY, USA, 2005. ACM.

111

10.

11.
12.

13.

E.S.L. Lam and M. Sulzmann. Towards agent programming in CHR. CHR, 6:17—
31, 2006.

V. Mascardi, D. Demergasso, and D. Ancona. Languages for programming BDI-
style agents: an overview. In Proceedings of WOA 2005, pages 9-15. Pitagora
Editrice Bologna, 2005.

. B. O’Sullivan, D.B. Stewart, and J. Goerzen. Real World Haskell. O’Reilly Media,

2009.

R. Pucella and J.A. Tov. Haskell session types with (almost) no class. In Haskell,
pages 2536, 2008.

A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proceedings of the 7th European workshop on Modelling autonomous agents in a
multi-agent world : Agents Breaking Away, MAAMAW ’96, pages 42-55, Secaucus,
NJ, USA, 1996. Springer-Verlag New York, Inc.

M. Sulzmann and E.S.L. Lam. Specifying and Controlling Agents in Haskell.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In PARLE, pages 398413, 1994.

A.Z. Wyner. A functional program for agents, actions, and deontic specifications.
In Matteo Baldoni and Ulle Endriss, editors, DALT, volume 4327 of Lecture Notes
in Computer Science, pages 239-256. Springer, 2006.

112

Author Index

Ancona, Davide, 1 Mascardi, Viviana, V, 1, 104
Baldoni, Matteo, V, 18, 99 Papaleo, Laura, 104
Baroglio, Cristina, 18, 99 Patti, Viviana, 18

Bistarelli, Stefano, 35
))) Santini, Francesco, 35
Capuzzimati, Federico, 18 Solimando, Alessandro, 108

Dennis, Louise, V

Tr Ri do, 108
Drossopoulou, Sophia, 1 averso, fuccardo,

Vasconcelos, Wamberto, V

i Ak 1
Giinay, Ak, 5 Visser, Wietske, 67

Gosti, Giorgio, 35

Hendler, James, 104 Winikoff, Michael, 51
Hindriks, Koen, 67 Wozna-Szczesniak, Bozena, 83
Jonker, Catholijn, 67 Yolum, Pmar, 51

Marengo, Elisa, 18 Zbrzezny, Andrzej, 83

113

