
23 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Deriving Session and Union Types for Objects

Published version:

DOI:10.1017/S0960129512000886

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/140330 since 2021-09-26T22:11:11Z



This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

L. Bettini; S. Capecchi; Mariangiola Dezani; E. Giachino; B. Venneri.
Deriving Session and Union Types for Objects. MATHEMATICAL
STRUCTURES IN COMPUTER SCIENCE. 23 (6) pp: 1163-1219.
DOI: 10.1017/S0960129512000886

The publisher's version is available at:
http://www.journals.cambridge.org/abstract_S0960129512000886

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/140330



Under consideration for publication in Math. Struct. in Comp. Science

Deriving Session and Union Types for Objects†

Lorenzo Bettini1, Sara Capecchi1, Mariangiola Dezani-Ciancaglini1, Elena Giachino2, Betti Venneri3

1(dezani@di.unito.it) Dipartimento di Informatica, Università di Torino, corso Svizzera 185, 10131 Torino
2Focus Research Team, Università di Bologna/INRIA, mura Anteo Zamboni 7, 40127 Bologna
3Dipartimento di Sistemi e Informatica, Università di Firenze, viale Morgagni 65, 50134 Firenze

Received 20 December 2010; Revised 24 September 2011

Guaranteeing that the parties of a network application respect a given protocol is a crucial issue.
Session types offer a method for abstracting and validating structured communication sequences
(sessions). Object-oriented programming is an established paradigm for large scale applications.
Union types, which behave as the least common supertypes of a set of classes, allow implementing
unrelated classes with similar interfaces without additional programming. We have previously
developed an integration of the features above into a class-based core language for building network
applications, which successfully amalgamates sessions and methods in order to flexibly exchange
data according to communication protocols (session types).
The first aim of this work is to provide a full proof of the type safety property for that core
language, by renewing syntax, typing and semantics. Hence static typechecking guarantees that,
after a session has started, computation cannot get stuck on a communication deadlock.
The second aim is to define a constraint-based type system which reconstructs the appropriate
session types of session declarations, instead of assuming that session types are explicitly given by
the programmer; such algorithm can save programming work, and automatically presents an
abstract view of the communications of the sessions.

Keywords: Sessions, Object Oriented Programming, Session Types, Union Types.

1. Introduction

When developing network applications it is crucial to have a linguistic mechanism to write safe
communication protocols. The current mainstream programming languages, such as, e.g., Java,
still leave to the programmer most of the responsibility in guaranteeing that the communication
will evolve as agreed by all the involved agents. The standard type systems can only provide a
way of declaring the types of the exchanged data, but they cannot guarantee that a communication
protocol is respected, thus avoiding that a client-server application gets stuck because of an error
in the communication sequence.

Session types (Honda, 1993; Honda et al., 1998) were introduced as a mechanism for abstract-
ing structured communication sequences (sessions) and for validating communication protocols.

† This work has been partially supported by MIUR Projects DISCO - Distribution, Interaction, Specification, Com-
position for Object Systems, and IPODS - Interacting Processes in Open-ended Distributed Systems, and by EU
Collaborative project n. 257414 ASCENS - Autonomic Service-Component Ensembles.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 2

In this approach communication channels are given types representing the values sent or re-
ceived. For instance, the type ?int.!bool expresses that an integer will be received and then a
boolean value will be sent (as it is usual in process calculi, ? and ! are used for input and output,
respectively). A session, in order to respect a communication protocol, must involve channels
of dual session types, thus guaranteeing that, after a session has started, the values sent and re-
ceived will be of the appropriate type and the communication will not get stuck. For instance, if
one channel has the above type ?int.!bool, the other one must have the dual type !int.?bool.
Since the specification of a session is a type, the conformance test of programs with respect to
specifications becomes type checking.

Furthermore, in network applications, it is important to rely on type safe flexibility of ex-
changed data; thus, we need a mechanism to abstract over the actual types that are commu-
nicated over a network protocol. This is even more crucial when execution paths are chosen
according to the run-time type of the exchanged objects. For this reason, it seems natural to try
to merge communication mechanisms into the popular object-oriented programming paradigm;
in mainstream object-oriented class-based programming languages writing network communica-
tion programs typically involves relying on specific libraries, but these languages do not provide
linguistic constructs to directly deal with communications and protocols. Instead, we would like
to write class definitions which naturally include communication primitives. With this respect,
an amalgamation of communication centred and object-oriented programming has been first pro-
posed in (Drossopoulou et al., 2007), where methods are unified with sessions and choices are
based on the classes of exchanged objects.

In an object-oriented class-based context, reusability is based both on subclassing and on the
substitutability implied by subtyping, which coincides with subclassing (or interface implemen-
tation) in Java-like languages. Thus, this form of reuse must be designed from the start, choosing
the right base classes or interfaces, since, although two classes may share some features (meth-
ods and fields), if they do not belong to the same hierarchy, their reuse will require refactoring of
existing code. A solution to deal with these problems is provided by union types, which represent
the set unions of objects of several types: a union type behaves as the least common supertype of
a set of objects, without requiring to write a specific base class or interface. With union types, in
an object-oriented programming scenario, developing independent classes with similar interfaces
requires no additional programming (Igarashi and Nagira, 2007).

For these reasons, union types seem to be very useful when communications involve data
exchange in the shape of objects as class instances: we can express communications between
parties which manipulate heterogeneous objects just by sending and receiving objects which
belong to subclasses of one of the classes in the union type. For instance, consider a communi-
cation between a bank and a client: the bank can answer yes or no to a client request, according
to the account balance. If yes and no are objects of classes OK and NoMoney, respectively, then
the class of the object answer is naturally the union of the two classes OK and NoMoney, i.e.
OK∨ NoMoney. Without union types typing answer would require a superclass of both OK and
NoMoney to be already defined; besides manual programming, and possible code refactoring, this
superclass could also include unwanted objects. This does not happen with a union type (least
common supertype). In this way the flexibility of object-oriented depth-subtyping is enhanced,
by strongly improving the expressiveness of choices based on the classes of sent/received objects.

In this paper we merge union types in the amalgamation of sessions and methods, in order to



Deriving Session and Union Types for Objects 3

enhance the network communications of class-based programs relying on session types: in (Bet-
tini et al., 2008a) we presented FSAM∨ (Featherweight Sessions Amalgamated with Methods
plus union types) which formalises the use of union types for session-centred communications
in a core object-oriented calculus. FSAM∨, as the language of (Drossopoulou et al., 2007), is
agnostic w.r.t. to the remaining aspects of the language, such as whether the language is dis-
tributed or concurrent, and the features for synchronisation. In FSAM∨, sessions are defined
in a class (which can have also fields). Sessions and methods are “amalgamated”: invocation is
made on an object and the execution takes place immediately and concurrently with the request-
ing thread (indeed, FSAM∨ is multi-threaded and the communication is asynchronous). Thus,
it keeps the method-like invocation mechanism while involving two threads, typical of session
based communication mechanisms. Just like dynamic binding of object-oriented method invoca-
tion, the body is determined by the class of the receiving object (avoiding in this way the usual
branch/select primitives (Honda et al., 1998)), and any number of communications interleaved
with computation is possible. We believe that the above amalgamated model of session naturally
reflects our intuition of services. Furthermore, it can neatly encode “standard” methods.

This paper is an extension of (Bettini et al., 2008a) in many respects. First of all, the syn-
tax (and consequently the typing and semantics) was slightly modified. Second, we present the
full formalisation of FSAM∨, together with the proofs of the type soundness property (from a
technical point of view, the amalgamation of union types and session-centred communications
poses specific problems in formulating reduction and typing rules to ensure that communica-
tions are safe while flexible). Finally, we also introduce a type inference system for the session
types of the sessions in classes. In particular, while the type system derives session types for
expressions assuming that all session declarations are decorated with explicit session types (and
expressions can have many types due to the presence of subsumption), the inference algorithm
gives an expression its minimal type and calculates the constraints that must be satisfied in order
to reconstruct the related session type (which will be proved unique).

With the type inference system, the programmer is no longer responsible for declaring the ses-
sion types. Therefore, this inference has a pragmatic motivation, since, due to their “behavioural”
nature, session types might tend to be quite long to write, when the communication protocol is not
a simple one (especially when recursive types are involved). Thus, having a type inference sys-
tem for session types can save some programming work, and automatically presents an abstract
view of the communications of the sessions. However, in an implementation of our approach, the
inference algorithm might not necessarily prevent the programmer from writing session types.
For instance, the programmer might decide to write the session types explicitly, and use the in-
ference system as a tool for verifying the written protocols. Alternatively, the inference system
might insert the inferred types in the text of the program, so that the programmer can have the
abstract view of the protocol, and verify that the protocol is as it was intended. Finally, a mixed
approach can be employed: the programmer can write the explicit session types for at least one
side of the protocol, and have the type inference system generate the session type for the other
part. Summarising, in an implementation, the session type inference system does not necessarily
impose to remove all the session type declarations from a program, but it is meant as a tool which
should help the programmer while designing and implementing communication protocols. The
aim of the presentation of the type inference system in this paper is only to study its theory and
properties: how it will be employed by a language designer is out of our scope.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 4

(type) T ::= C | T∨T
(class) L ::= class C C D { Tf; S }
(session) S ::= Tts{ e }
(expression) e ::= x | this | contT | o | e; e | e.f:= e | e.f | new C(e)

| e.s{e} | e•s{ k }
| k. sendC(e){C1⇒ e8C2⇒ e}
| k. recvC(x){C1⇒ e8C2⇒ e}
| k. sendW(e){C1⇒ e8C2⇒ e}
| k. recvW(x){C1⇒ e8C2⇒ e}

(parallel threads) P ::= e | P || P
(session type) t ::= ε | t.t | α | †{C1⇒ t8C2⇒ t} | µα.†{C1⇒ t8C2⇒ t} | �

Fig. 1. Syntax, where syntax occurring only at run time appears shaded .

Paper Structure. The description of the calculus FSAM∨ with its operational semantics is
given in Sections 2, 3 and 4. Section 5 presents the type system, whose properties are in Section 6.
Sections 7 and 8 are devoted to the type inference system. Finally, in Sections 9 and 10 we discuss
related works and draw some conclusions.

2. The calculus: FSAM∨

This section presents the syntax of FSAM∨ (Figure 1), a minimal concurrent and impera-
tive core calculus, based on Featherweight Java (Igarashi et al., 2001) (abbreviated with FJ).
FSAM∨ supports the basic object-oriented features and session request, a form of session dele-
gation, branching sending/receiving and loops.

In Figure 1 we use grey to indicate run-time expressions, that are produced during the reduction
process and do not occur in the user expressions. We use the standard convention of denoting with
ξ a sequence of elements ξ1, ...,ξn.

Types, ranged over by T, are defined as in (Igarashi and Nagira, 2007): they are built out of
class names by the union operator (denoted by ∨ ).

Programs are defined from a collection of classes. The metavariables C and D, possibly with
subscripts, range over class names. Each class has a suite of fields of the form Tf, where f rep-
resents the field name and T its type, and a suite of session declarations S. As in FJ, the fields
declared by a class are added to the ones of the superclass and the resulting sequence of fields is
assumed to contain no duplicate names. We declare sessions just like as we declare methods in
Java classes, with the new remarkable feature that their bodies can include communication opera-
tions. Since sessions can encode methods, as we shall see at the end of this section, for simplicity
we omit standard methods in our classes. Session declarations are of the form Tts{ e }, where
s is the session name, e the session body, T the return type, and t is the session type which de-
scribes the communication protocol in the way standard method types describe the protocols for
method-call interactions. For the sake of conciseness the symbol C represents class extension, as
in (Igarashi et al., 2001). The class Object is implicitly defined in every program; it has no fields
and no sessions. A class definition always includes the superclass (even when it is Object).



Deriving Session and Union Types for Objects 5

Expressions include variables, that are both standard term variables x and the special variables
this and contT. The variable this is considered implicitly bound in any session declaration.
sendW and recvW are the only binders for the free occurrences of contT inside their bodies,
where contT represents the continuation by recursive computation. The intuition is that sendW
and recvW expressions will be unfolded, when necessary, during evaluation by replacing the
free occurrences of contT in their bodies with the whole expressions. Note that, for any type T, a
special variable contT is provided: it is decorated by the type T in order to represent the recursive
computation of an expression of type T.

As usual, an expression is closed if it does not contain free variables.
Object identifiers, denoted by o, are generated at run time when creating objects (by new

expressions).
The expression e.s{e′} is a session request where e′ is called the co-body of the request;

by operational rules, e is evaluated to an object o, and the session body of s in o’s class is
executed concurrently with e′, by introducing a new pair of fresh channels, k and the dual k̃
(one for each communication direction), to perform communications between the session body
and the co-body. Then the evaluation of session requests has a crucial effect on the syntax: it
generates parallel threads and introduces communication channels (which are implicit in the
source language).

The expression e•s{k} represents the session delegation in the sense that the execution of the
session s is delegated to the object resulting from the evaluation of e. This means that the current
object in order to safely continue the communication with its partner needs to borrow a capability
from another object. In this sense we kept the term “delegation” usually encountered in the
session types literature. Our notion of delegation diverges slightly from the standard one. In our
case the current object asks another object to provide a functionality in its place, without releasing
the control of the session: the session channel is not moved around and the current thread executes
the code of the delegated object. Technically this is very close to the standard method invocation.
The standard session delegation, on the contrary, requires that a private channel is sent to another
thread that will be taking care of the session communication on the received channel, while the
current thread is excluded from the session. This higher order use of channels cannot be easily
expressed in our setting where channels are only created at run time. The channel k corresponds
to the subject of communication expressions inside the session body. We refer to Section 4 (in
particular the explanation of reduction rule SESSDEL-R) for further details.

The body of a communication expression is a pair of alternatives {C1 ⇒ e1 8 C2 ⇒ e2},
whose choice depends on the class of the object that is sent or received. The expression
sendC(e){C1 ⇒ e1 8 C2 ⇒ e2} evaluates e to an object and sends it on the active channel,
and then continues with ei, where Ci is the class that best fits the class of the object sent (if
C1 = C2, then the whole expression evaluates to e1). The counter part of sendC is the expres-
sion recvC(x){C1 ⇒ e1 8 C2 ⇒ e2}, where the choice is based on the class of the object re-
ceived. The expression sendW(e){C1 ⇒ e1 8 C2 ⇒ e2} (where W means While) is similar to
sendC(e){C1 ⇒ e1 8 C2 ⇒ e2}, except that it allows for enclosed contT, which continues the
execution at the nearest enclosing sendW. The expression recvW(x){C1⇒ e1 8C2⇒ e2} has the
obvious meaning.

Note that recursion on objects (via this) is not suitable in our setting for expressing cycles
inside single sessions, since it would give rise to different sessions.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 6

Parallel threads, ranged over by P, are run-time expressions or parallel compositions of run-
time expressions, where a run-time expression is either a user expression (i.e. an expression in
Figure 1 without shaded syntax) or an expression containing channels and/or object identifiers.

In session types we use † as a symbol that stands for either ! or ?. By ε we denote the empty
communication, and the concatenation t1.t2 expresses the communications in t1 followed by
those in t2. Concatenation of session types is used for typing sequential composition of expres-
sions, see rule SEQ-T in Figure 9. The session type ε is the neutral element of concatenation, so
that ε.t= t= t.ε for all t.

The types !{C1 ⇒ t1 8 C2 ⇒ t2} and ?{C1 ⇒ t1 8 C2 ⇒ t2} express the sending and the
receiving of an object, respectively: depending on the class Ci of this object the communica-
tion will proceed with the one of type ti. In µα.†{C1⇒ t1 8C2⇒ t2} the session type vari-
able α can occur inside ti with the usual meaning of representing the whole session type.
We consider recursive session types modulo fold/unfold: i.e., µ α.t = [µ α.t/α]t. So we equate
µα.†{C1⇒ t1 8C2⇒ t2} to †{C1⇒ t1 8C2⇒ t2} when α does not occur in †{C1⇒ t1 8C2⇒
t2}.

The type � is used only as session type for contT: it plays the role of a place holder which
will be replaced by a type variable when the while expression is completed (see rules SENDW-T
and RECEIVEW-T in Figure 9).

The following example shows the expressiveness of FSAM∨ in a typical collaboration pat-
tern. We refer to (Bettini et al., 2008a) for further motivating examples of our language con-
structs.

Example 2.1. The interaction we show is between a calculator and a client (Figures 2 and 3).
The Client sends integer values which are summed by the Calculator; this interaction iterates
until the Client sends a character to notify that the addends are over. Then the Client sends to
the Calculator an object indicating the display-mode of the result (Paper or Video); finally
the Calculator displays the result.

The session types Sum ST and Print ST (Figure 2) describes the protocol from the point of
view of the Calculator. The recursive type

µα. ?{Int⇒ α,Char⇒?{Paper⇒ ε, Video⇒ ε}}

describes the Calculator getting the addends from the Client. The first branch represents the
case in which the Calculator receives an integer from the Client; in this case the iteration
goes on, i.e. the Calculator receives the next input. The second branch represents the case in
which the Client sends to the Calculator a character to signal that addends are over: in this
case a further object is expected indicating the mode in which the result must be displayed. In the
two branches {Paper⇒ ε , Video⇒ ε} there is no further communications (the session type is
ε), since the only action is the print (or display) of the result.

In Figure 2 we find the implementation of the class Calculator. It has the field value used
to store the sum of the addends. The class supports two sessions called sum and print. The
session sum has session type Sum ST and return type Video∨Paper: this union type represents
the possible results of the session, i.e. the display modes of the result of the sum. Notice that
the return type of the session represents the type of the session body (exactly as return types in



Deriving Session and Union Types for Objects 7

1 sessiontype Sum ST = µα.?{Int ⇒ α, Char ⇒ ?{Paper ⇒ ε, Video ⇒ ε} }

2

3 sessiontype Print ST = ?{Paper ⇒ ε, Video ⇒ ε}

4

5 class Calculator{

6 Int value;

7 Video∨Paper Sum ST sum{
8 recvW(x){

9 Int ⇒ value:=value+x; contVideo∨Paper;

10 8
11 Char ⇒ this•print;
12 }

13 }

14 Video∨Paper Print ST print{
15 recvC(y){

16 Paper ⇒ ...; new Paper(); // print the result on paper

17 8
18 Video ⇒ ...; new Video(); // print the result on the screen

19 }

20 }

21 }

Fig. 2. The class Calculator.

standard object-oriented languages). Indeed, it is used for dealing with session delegation, when
the body of the session is incorporated in the current execution. In this case, we know that the
execution of the session body of sum will reduce to a value of type Video∨Paper. The session
type, on the contrary, is needed to deal with session invocation and to check the correctness of
the communication. In this case we see that an invocation of the session summust perform a dual
communication w.r.t. its session type Sum ST. The session print has session type Print ST and
return type again Video∨Paper. In the body of sum the Calculator receives an object (line 8)
which can be i) of type Int, in which case it will be summed to value and then the recursion
will continue (contVideo∨Paper) or ii) of type Char. In the second case the remaining part of
the session is delegated to the Calculator itself which goes on with session print (line 10).
The body of the session print begins receiving an object indicating the display mode (line 15):
according to the class of the received object the field value will be printed on paper or displayed
on the video.

The session type Request ST (Figure 3) describes the protocol from the point of view of the
Client. The recursive type

µα. !{Int⇒ α, Char⇒!{Paper⇒ ε, Video⇒ ε}}

describes the Client sending the addends to the Calculator: the first branch represents the
case in which the Client sends an integer to the Calculator; in this case the iteration goes
on updating and sending the next message; the second branch represents the case in which the
Client sends to the Calculator a character to signal that addends are over: in this case a



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 8

1 sessiontype Request ST = µα.!{Int ⇒ α, Char ⇒ !{Paper ⇒ ε, Video ⇒ ε} }

2

3 class Client{

4 Int∨Char msg;
5 Paper∨Video mode;
6 Calculator c;

7 . . .

8

9 c.sum{

10 sendW(msg){

11 Int ⇒ update(msg); contVideo∨Paper; // update the content of msg

12 8
13 Char ⇒ sendC(mode){

14 Paper ⇒ ...;

15 8
16 Video ⇒ ...;

17 }

18 }

19 }

20 . . .

21 }

Fig. 3. The class Client.

further object is sent indicating in which mode the result must be displayed. In Figure 3 we
find the implementation of the class Client. It has a field of type Calculator and two fields
msg and mode used to store the values sent to the Calculator. Their types, Int∨Char and
Paper∨Video, respectively, describe the possible classes of the sent values. At line 9 we find
an example of session invocation: the Client invokes on the Calculator c the session sum. The
body of the session invocation (lines 10-16) has session type Request ST. It will be executed in
parallel with the body of the session sum in the class Calculator. Notice that the class Client is
not fully specified, we just show the code of the session invocation, that must appear somewhere
inside a session declaration of the Client.

Clearly this example would no longer be typeable if we replaced Char by another type, say
Bool, in the code of the Client.

In FSAM∨ we adopt some simplifications. First of all, unary choices and n-ary choices
are omitted since they can be simply encoded with binary choices (as shown in (Bettini et al.,
2008a)). Moreover, types used for selecting branches in a choice are required to be class names,
instead of union types. This is not a limitation, since for instance, {C1 ∨C2⇒ e 8C3⇒ e′} can
be encoded as {C1⇒ e8C2⇒ e8C3⇒ e′}.

With respect to FJ, in FSAM∨ we do not have cast and overriding, which are orthogonal to our
issues. We do not have explicit constructors, then in the object instantiation expression new C(e),
the values o to which e reduce are the initial values of the fields. Furthermore, we omit standard
methods since they are seen as special cases of sessions. In fact, a method declaration can be



Deriving Session and Union Types for Objects 9

T<: T
T<: T′ T′ <: T′′

T<: T′′
class C C D { Tf; S }

C<: D

T<: T∨T′ T′ <: T∨T′
T′ <: T T′′ <: T

T′∨T′′ <: T

Fig. 4. Subtyping.

encoded as a session with nested recvCs (one for each parameter) and with one sendC returning
the method body. Similarly, method calls are special cases of session requests: the passing of
arguments is encoded as nested sendCs (one for each argument) and the object returned by the
method body is retrieved via one recvC.

3. Auxiliary Functions

As in FJ, a class table CT is a mapping from class names to class declarations with domain
dom(CT). Then a program is a pair (CT,e) of a class table (containing all the class definitions of
the program) and an expression e (an expression belonging to the source language representing
the program’s main entry point). The class Object does not appear in CT. We assume a fixed CT
that satisfies some usual sanity conditions as in FJ (Igarashi et al., 2001). Thus, in the following,
instead of writing CT(C) = class . . . we will simply write class C . . ..

From any CT we can read off the subtype relation between classes, as the transitive closure of
C clause; moreover, subtyping is extended to union types as in Figure 4. As usual considering

union types modulo the equivalence relation induced by <: we get the commutativity and asso-
ciativity of ∨ . Therefore each union type can be written as C1∨ . . .∨Cn for n≥ 1: we say that the
classes C1, . . . ,Cn build the union type C1∨ . . .∨Cn. A union type C1∨ . . .∨Cn is proper if n > 1.

We define auxiliary functions (see Figure 5) to lookup fields and sessions from CT; these
functions are used in the typing rules and in the operational semantics. As in FJ these functions
may have to inspect the class hierarchy in case the required element is not present in the current
class. The difference is that all these functions - but function sbody - take a type as argument (not
simply a class name) because the receiver expression of a field/session access may be of a proper
union type.

As for field type lookup, we distinguish between the contexts where the field is used for reading
(ftyper) from those where it is used for writing (ftypew). When the field is used in read mode, in
case of a proper union type, we simply return the union type of the result of ftyper invoked on
the argument types (if both retrievals succeed). On the contrary, when a field is updated, due
to the contravariance relation, in case of a proper union type we must return the intersection of
the results of ftypew on the arguments. However, in the absence of multiple inheritance, either
the results are related by subtyping, that is the intersection is exactly one of the classes, or they
are not related at all, that is the intersection is empty, thus we can avoid introducing intersection
types. For example if objects of class Ci have a field f of class Di for i ∈ {1,2} with D1 <: D2,
then ftyper(C1∨C2) = D1∨D2 and ftypew(C1∨C2) = D1. Instead if D1 and D2 are unrelated we get
again ftyper(C1∨C2) = D1∨D2, but ftypew(C1∨C2) is undefined.

The functions stype and rtype return a set of session types and the return type of a session,



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 10

fields(Object) = •
fields(D) = T′ f′ class C C D { Tf; S }

fields(C) = Tf,T′ f′

fields(C) = Tf

ftypew(fi,C) = ftyper(fi,C) = Ti

ftyper(f,T1∨T2) = ftyper(f,T1)∨ ftyper(f,T2)

ftypew(f,Ti)<: ftypew(f,T j) i , j i, j ∈ {1,2}
ftypew(f,T1∨T2) = ftypew(f,Ti)

class C C D { Tf; S } Tts{ e } ∈ S
stype(s,C) = {t}

class C C D { Tf; S } s < S

stype(s,C) = stype(s,D)

stype(s,T1∨T2) = stype(s,T1)∪ stype(s,T2)

class C C D { Tf; S } Tts{ e } ∈ S
rtype(s,C) = T

class C C D { Tf; S } s < S

rtype(s,C) = rtype(s,D)

rtype(s,T1∨T2) = rtype(s,T1)∨ rtype(s,T2)

class C C D { Tf; S } Tts{ e } ∈ S
sbody(s,C) = e

class C C D { Tf; S } s < S

sbody(s,C) = sbody(s,D)

Fig. 5. Lookup Functions.

respectively, while sbody returns the body of a session. The stype function will return a singleton,
in case it is invoked with a class name as argument. The interesting case is when it is invoked
with a proper union type: it will return the union of the sets corresponding to the types of the
classes that build the union type, so that we have all the session types (see how it is used in the
type system, Figures 9 and 12). The rtype function behaves in a covariant way since the resulting
object cannot be used in writing mode. Note that sbody is only invoked with a class name as type
argument, since we invoke sessions on objects only, and an object has a class name as type.

It is easy to verify that all lookup functions applied to equivalent union types return either
equivalent union types or the same sets of session types, whenever they are defined.

4. Operational Semantics

Objects passed in asynchronous communications are stored in a heap. A heap h is a finite map-
ping whose domain consists of objects and channel names. Its syntax is given by:

h ::= [] | o 7→ (C,f = o) | k 7→ o | h ::h

where :: denotes heap concatenation.
During evaluation, any expression new C(o) will be replaced by a new object identifier o. The



Deriving Session and Union Types for Objects 11

eNkO=



e1NkO;e2NkO if e= e1;e2,

e1NkO.f if e= e1.f,

e1NkO.f:=e2NkO if e= e1.f:=e2,

e1NkO.s{e2} if e= e1.s{e2},
e1NkO•s{k} if e= e1•s{ },
k.sendC(e0){C⇒ eNkO} if e= sendC(e0){C⇒ e},
k.recvC(x){C⇒ eNkO} if e= recvC(x){C⇒ e},
k.sendW(e0){C⇒ eNkO} if e= sendW(e0){C⇒ e},
k.recvW(x){C⇒ eNkO} if e= recvW(x){C⇒ e},
e otherwise.

Fig. 6. Channel Addition.

heap will then map the object identifier o to the pair (C,f = o) which consists of its class name C
and the list of its fields with corresponding objects o; this mapping is denoted by o 7→ (C,f = o).

The form h[o 7→ h(o)[f 7→ o′]] denotes the update of the field f of the object o with the object
o′.

Channel names are mapped to queues of objects: k 7→ o. The heap produced by h[k 7→ o] maps
the channel k to the queue o. With some abuse of notation we write o :: o and o :: o to denote the
queue whose first and last element is o, respectively.

Heap membership for object identifiers and channels is checked using standard set notation,
by identifying h with its domain, we can also write o ∈ h, and k ∈ h.

The queues of dual channels are used to exchange messages. A message receive on channel k
takes the top object in the queue associated to k, while a message send will add the object to the
queue associated to k̃. As usual ˜... is an involution: ˜̃k= k.

The values that can result from normal termination are parallel threads of objects.
In the reduction rules we make use of the special channel addition operation N...O: its formal

definition is in Figure 6, where {C⇒ e} is short for {C1⇒ e1 8C2⇒ e2}. We denote by eNkO the
source expression e in which all occurrences of communication (receive, send) and delegation
expressions which are not within the co-body of a session request are extended, so that they
explicitly mention the channel k they will use (remember that channel names are not written by
the programmer).

We use also ebe′/contc to denote the expression e in which all expressions contT which
are free in e, independently of the type annotations T, are replaced by e′. Thus this substitution
preserves the correct nested structure of while expressions. We point out that the type annotation
T of contT plays no role in the evaluation, it is only used to guide the typechecker.

For example,

recvC(x){C1⇒ x8C2⇒ contT}NkObe′/contc= k.recvC(x){C1⇒ x8C2⇒ e′}.

The reduction is a relation between pairs of threads and heaps:

P,h−→ P′,h′

Reduction rules use evaluation contexts (based on run-time syntax) that capture the notion of



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 12

PAR-R
e,h−→ P,h′

e || P1,h−→ P || P1,h′

SEQ-R
E [o;e],h−→ E [e],h

FLD-R
h(o) = (C,f = o)

E [o.fi],h−→ E [oi],h
NEWC-R

fields(C) = Tf o < h

E [new C(o)],h−→ E [o],h :: [o 7→ (C,f = o)]

FLDASS-R
E [o.f := o′],h−→ E [o′],h[o 7→ h(o)[f 7→ o′]]

SESSREQ-R
h(o) = (C, ) sbody(s,C) = e′ k, k̃ < h

E [o.s{e}],h−→ E [eNkO] || [o/this]e′Nk̃O,h[k, k̃ 7→ ()]

SESSDEL-R
h(o) = (C, ) sbody(s,C) = e

E [o•s{k}],h−→ E [[o/this]eNkO],h
SENDCASE-R

h(k̃) = o h(o) = (C, ) C ⇓ {C1,C2}= Ci

E [k.sendC(o){C1⇒ e1 8C2⇒ e2}],h−→ E [ei],h[k̃ 7→ o :: o]

RECEIVECASE-R
h(k) = o :: o h(o) = (C, ) C ⇓ {C1,C2}= Ci

E [k.recvC(x){C1⇒ e1 8C2⇒ e2}],h−→ E [[o/x]ei],h[k 7→ o]

SENDWHILE-R
E [k.sendW(e){C1⇒ e1 8C2⇒ e2}],h−→ E [k.sendC(e){C1⇒ e′1 8C2⇒ e′2}],h

where e′i = eibk.sendW(e){C1⇒ e1 8C2⇒ e2}/contc

RECEIVEWHILE-R
E [k.recvW(x){C1⇒ e1 8C2⇒ e2}],h−→ E [k.recvC(x){C1⇒ e′1 8C2⇒ e′2}],h

where e′i = eibk.recvW(x){C1⇒ e1 8C2⇒ e2}/contc

Fig. 7. Reduction Rules.

the “next subexpression to be reduced”:

E ::= [−] | E ;e | E .f | new C(o,E ,e)| E .f := e | o.f := E | E .s{e} |
E •s{k} | k.sendC(E ){C1⇒ e1 8C2⇒ e2}

Reduction rules are presented in Figure 7, where any reducible expression is expressed as a
composition of an evaluation context and a redex expression. The explicit mention of the evalu-
ation context is needed in rule SESSREQ-R, in which a new thread is generated in parallel with
the evaluation context. It is easy to verify that the set of redexes is defined by:

o;e | o.f | new C(o) | o.f := o | o.s{e} | o•s{k}
k.sendC(o){C1⇒ e1 8C2⇒ e2} | k.recvC(x){C1⇒ e1 8C2⇒ e2}
k.sendW(e){C1⇒ e1 8C2⇒ e2} | k.recvW(x){C1⇒ e1 8C2⇒ e2}

We call delegation redexes those of the shape o•s{k} and communication redexes those of the
last four shapes.

An arbitrary expression is equal to at most one evaluation context filled with one redex, and
if it reduces, then there is exactly one reduction rule that applies. So the evaluation strategy is
deterministic.

Rule PAR-R models the execution of parallel threads. In this rule parallel composition is con-



Deriving Session and Union Types for Objects 13

sidered modulo structural equivalence. As usual, we define structural equivalence rules asserting
that parallel composition is associative and commutative:

P || P1 ≡ P1 || P P || (P1 || P2)≡ (P || P1) || P2 P≡ P′ ⇒ P || P1 ≡ P′ || P1

Rule SESSREQ-R models the connection between the co-body e of a session request o.s{e}
and the body e′ of the session s, in the class of the object o. This connection is established
through a pair of fresh channels k, k̃. For this purpose the expression o.s{e} reduces, in the
same context, to its own co-body eNkO and in parallel, outside the context, it spawns the body
[o/this]e′Nk̃O of the called session. The explicit substitution of k in e and of k̃ in e′ ensures that
the communication uses the fresh dual channels k and k̃. Thus, an object can serve any number
of session requests. For example,

o.s{sendC(5){C1⇒ e1 8C2⇒ e2}};new C( )−→
k.sendC(5){C1⇒ e1NkO8C2⇒ e2NkO};new C( ) ||
k̃.recvC(x){C′1⇒ [o/this]e′1Nk̃O8C

′
2⇒ [o/this]e′2Nk̃O}

if recvC(x){C′1⇒ e′1 8C′2⇒ e′2} is the body of session s in the class of the object o.
Rule SESSDEL-R replaces the session delegation o • s{k} by [o/this]eNkO, where e is the

body of the session s, in the class of the object o. This allows the current session to be enriched
by the capabilities provided by the session s of the object o. The current thread executes the
body e in which the current session channel k is used as subject for the communication, so that
the delegation remains transparent for the thread using the dual channel k̃. When the delegated
job is over, the communication may continue within the current session, possibly using the value
of [o/this]eNkO. Notice that, since the value produced by the execution of the delegated session
body may be used after the delegation is over, we need both the return type and the session type of
that body. And this is why we kept them both in the declaration of a session. See the explanation
of Example 2.1 and the session declaration syntax in Figure 1. For instance

o•s{k} −→ k.recvC(x){C1⇒ [o/this]e1NkO8C2⇒ [o/this]e2NkO}

if recvC(x){C1⇒ e1 8C2⇒ e2} is the body of session s in the class of the object o.

To sum up we can say that:

— session invocation creates a new channel and spawns the body of the called session;
— session delegation gives the active channel to another session whose body is executed in the

same thread.

Since channels are implicit, only one session can be executed at a given time and the only pos-
sible interleaving of session is nesting. A session can be started while executing another session,
but must complete before resuming the (outer scoped) previous session, hence we have nest-
ing, but not general interleaving. This is the main reason why the progress property holds for
communications in our calculus (see Theorem 6.2).

The communication rule for sendC, SENDCASE-R, puts the object o in the queue associated
to the dual channel k̃ of the communication channel k. The computation then proceeds with the
expression ei, if C1 , C2 and Ci is the smallest class in {C1,C2} to which the object o belongs.
Otherwise, if C1 = C2 and o belongs to C1, then the computation proceeds with e1. This is given
by the condition h(o) = (C, ) and by the following definition of C ⇓ {C1,C2} = Ci, using the



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 14

subtyping relation (Figure 4):

C ⇓ {C1,C2}=


Ci if C<: Ci and [C<: C j with i , j implies C j 6<: Ci],

C1 if C<: C1 = C2,

⊥ otherwise.

Notice that the only motivation for selecting the smallest index is to avoid introducing non-
deterministic choices. In a more realistic context, for instance, we could adopt linguistic restric-
tions on the expressions ei, e.g., the condition e1 = e2 whenever C1 = C2. Dually the receive
communication rule takes an object o from the queue associated to the channel k and returns the
expression [o/x]ei, if h(o) = (C, ) and C ⇓ {C1,C2}= Ci.

In rules SENDCASE-R and RECEIVECASE-R it is understood that the transition cannot fire
if C ⇓ {C1,C2} = ⊥. However we will see that C ⇓ {C1,C2} is always defined in well-typed
expressions.

Rules SENDWHILE-R and RECEIVEWHILE-R simply realise the repetition using the case
communication expressions, in which the sendW and recvW expressions are unfolded in e1 and
e2. Observe that sendW(E ){C1 ⇒ e1 8 C2 ⇒ e2} is not an evaluation context, since we do not
reduce the expression which controls the loop before the application of rule SENDWHILE-R.
Then the application of rules SENDWHILE-R and RECEIVEWHILE-R cannot create any free
occurrence of contT.

We will write P,h−→ P′,h′ to mean that either P is a parallel composition and P,h−→ P′,h′

is obtained by rule PAR-R (i.e. by reducing one of the expressions that are in parallel in P ) or P
is an expression e which reduces to P′ by a reduction rule different from PAR-R.
As standard, the multi-step reduction −→∗ is the reflexive, transitive closure of −→.

We point out that communication and delegation expressions are reduced if and only if they
contain explicit channels. So, for example, sendC(o){. . .} and o•s{} are stuck. We say that an
expression e is channel-complete if all communication and delegation expressions of e without
explicit channels occur inside session co-bodies. The shapes of closed and channel-complete
expressions can be easily characterised by looking at the syntax of FSAM∨ (Figure 1).

Proposition 4.1. A closed and channel-complete expression is either an object identifier or an
evaluation context filled with one redex.

By inspecting rules in Figure 7, it is easy to verify that no reduction can create new free variables
or destroy the channel-completeness starting from the empty heap.

Proposition 4.2. If e is closed and channel-complete and e, [ ] −→∗ e′ || P,h, then e′ is closed
and channel-complete.

5. Typing

We consider two type systems, the first one for user expressions with occurrences of object iden-
tifiers, which are not directly expressible in the user syntax. We call these expressions channel
free expressions. The second system types run-time expressions. The choice of considering chan-
nel free expressions instead of user expressions simplifies the formulation of the run-time typing
rules, as we will see in Subsection 5.2.



Deriving Session and Union Types for Objects 15

ε Z ε α Z α
t1 Z t

′
1 t2 Z t

′
2

t1.t2 Z t
′
1.t
′
2

C1∨C2 <: C′1∨C′2 Ci ⇓ {C′1,C′2}= C′j⇒ ti Z t
′
j C

′
l ⇓ {C1,C2}= Ck⇒ tk Z t

′
l

µα.!{C1⇒ t1 8C2⇒ t2}Z µα.?{C′1⇒ t′1 8C′2⇒ t′2}

Fig. 8. Duality Relation.

We say that a session type is cont-free if it does not contain occurrences of free session type
variables and of �. Therefore, each cont-free session type has one of the following shapes:
— ε;
— µα.†{C1⇒ t1 8C2⇒ t2} or †{C1⇒ t1 8C2⇒ t2};

or a concatenation of the session types above. For simplicity we will use in definitions unfolded
recursive types whenever possible.

5.1. Typing of Channel Free Expressions

In this subsection we consider channel free expressions. The term environments therefore will
contain also type assignments to object identifiers. The typing judgement has the shape

Γ ` e : T # t

where Γ is a term environment, which maps this, standard term variables and objects to types
T, and t represents the session type of the (implicit) active channel. We observe that closed
expressions can contain object identifiers, and therefore term environments having those object
identifiers in their domain are required to type them (differently from the usual notion of closed
expressions, which are typable from empty environments).

To guarantee a safe communication between two threads we must require their session types
to be dual, i.e., that each send will correspond to a receive and vice-versa. The duality is then
the symmetric relation generated by the rules of Figure 8, in which we consider folded recursive
types, otherwise the definition would not be well founded. The exchanged values must also be of
one of the classes expected by the receiver. All possible choices on the basis of the class of the
exchanged value must continue with session types which are dual of each other. For this reason
we have to perform checks on the type of the exchanged values in both directions:
— for any sent value of type Ci such that Ci ⇓ {C′1,C′2} = C′j for some 1 ≤ j ≤ 2 we require
ti Z t′j;

— for any received value of type C′l such that C′l ⇓ {C1,C2}= Ck for some 1≤ k ≤ 2 we require
tk Z t

′
l .

For instance, let us consider the session types !{Shape ⇒ t1 8 String ⇒ t2} and
?{Triangle⇒ t3 8 Object⇒ t4} where Triangle <: Shape. At run time a Triangle can
be sent as a Shape, thus the types t1 and t3 have to be dual. Moreover, both a Shape, which is
not a subclass of Triangle, and a String can be seen as Objects, thus both t1 and t2 must be
dual of t4. Notice that, thanks to the absence of generics we can be more flexible than (Capecchi
et al., 2009): the types used in the choices (actually their union) of a send can be subtypes of the
ones expected (in the dual receive).



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 16

AXIOM-T
Γ ` z : Γ(z) # ε

CONT-T
Γ ` contT : T # �

SUB-T
Γ ` e : T # t T<: T′

Γ ` e : T′ # t
NEWC-T
fields(C) = Tf Γ ` ei : Ti # ε

Γ ` new C(e) : C # ε

FLD-T
Γ ` e : T # t

Γ ` e.f : ftyper(f,T) # t
SEQ-T
Γ ` e : T # t Γ ` e′ : T′ # t′

Γ ` e;e′ : T′ # t.t′

FLDASS-T
Γ ` e : T # t Γ ` e′ : ftypew(f,T) # t

′

Γ ` e.f := e′ : ftyper(f,T) # t.t
′

SESSREQ-T
Γ ` e : T # t Γ ` e′ : T′ # t′ t′ Z t′′ ∀t′′ ∈ stype(s,T)

Γ ` e.s{e′} : T′ # t

SESSDEL-T
Γ ` e : T # t stype(s,T) = {t′} t′ , ε rtype(s,T) = T′

Γ ` e•s{} : T′ # t.t′

SENDC-T
Γ ` e : C1∨C2 # ε Γ ` ei : T # ti

Γ ` sendC(e){C1⇒ e1 8C2⇒ e2} : T # !{C1⇒ t1 8C2⇒ t2}
RECEIVEC-T

Γ,x : Ci ` ei : T # ti

Γ ` recvC(x){C1⇒ e1 8C2⇒ e2} : T #?{C1⇒ t1 8C2⇒ t2}
SENDW-T
Γ ` e : C1∨C2 # ε Γ ` ei : T # ti T<: T′ ∀T′ ∈ tc(e1)∪ tc(e2) α fresh in t1,t2

Γ ` sendW(e){C1⇒ e1 8C2⇒ e2} : T # µα.!{C1⇒ [α/�]t1 8C2⇒ [α/�]t2}
RECEIVEW-T
Γ,x : Ci ` ei : T # ti T<: T′ ∀T′ ∈ tc(e1)∪ tc(e2) α fresh in t1,t2

Γ ` recvW(x){C1⇒ e1 8C2⇒ e2} : T # µα.?{C1⇒ [α/�]t1 8C2⇒ [α/�]t2}

Fig. 9. Typing Rules for Channel Free Expressions. The function tc is defined in Figure 10.

tc(e) =



tc(e1)∪ tc(e2) if e= e1;e2,

e= e1.f:=e2,

e= e1.s{e2},
e= k.sendC(e0){C1⇒ e1 8C2⇒ e2},
e= k.recvC(x){C1⇒ e1 8C2⇒ e2},

tc(e1) if e= e1.f,

e= e1•s{k},
{T} if e= contT,
/0 otherwise.

Fig. 10. The function tc.

Typing rules for channel free expressions are in Figure 9.
By axiom CONT-T, contT has type T from any Γ, since it is explicitly decorated by its type T.



Deriving Session and Union Types for Objects 17

Following the standard notion of object instantiation, in rule NEWC-T we require that the
initialisation of an object does not involve communications.

In rule SEQ-T we use session type concatenation to represent that first the communications in
e and then those in e′ are performed.

Rule FLDASS-T exploits the writing and reading uses of e′.
The rule for session request SESSREQ-T relies on the duality relation (Figure 8) to ensure that

all the bodies of the session s in the classes which build the type T and the co-body e′ of the
request will communicate properly. Since � has no dual session type, this rule ensures that there
are no free occurrences of contT in session bodies and co-bodies. For this reason, in well-typed
expressions the reduction rules SENDWHILE-R and RECEIVEWHILE-R never replace contT in
session bodies and co-bodies.

In typing session delegation (rule SESSDEL-T) we take into account that the whole expres-
sion will be replaced by the session body defined in the class of the expression to which the
session is delegated (cf. the reduction rule SESSDEL-R, Figure 7). Notice that the condition
stype(s,T)={t′} does not imply T be one class, but only that all definitions of s in the classes
which build T have the same session types. Moreover, if a session has session type ε , then it is
meaningless to use it in a delegation (while it is sensible to use it in a request). For this reason
we require t′ , ε in rule SESSDEL-T.

In the rules for communication expressions (SENDC-T, RECEIVEC-T, SENDW-T and
RECEIVEW-T) the alternative branches ei are both given type T; however, this does not re-
quest both to have the same type, since T can be a proper union type. For instance, we may
have that Γ ` e1 : T1 # t1 and Γ ` e2 : T2 # t2; by subsumption (rule SUB-T) we also have that
Γ ` e1 : T1∨T2 # t1 and Γ ` e2 : T1∨T2 # t2. Then, T= T1∨T2. Without union types the typing
rules for these constructs in (Drossopoulou et al., 2007) were much more demanding and less
clear.

Rules SENDW-T and RECEIVEW-T take into account that the free occurrences of contT in
the bodies are used to make recursive calls of the whole expression. This means that the type
decorations of all these occurrences must be greater than or equal to the resulting type of the
whole expression. This property is checked by the condition T <: T′ for all T′ ∈ tc(e1)∪ tc(e2),
using the function tc (defined in Figure 10). Moreover, the resulting session type is obtained by
replacing the occurrences of � by a fresh variable α which is bound by the µ operator.

Observe that, in rules SENDC-T and SENDW-T, typing e with session type ε prevents e from
containing occurrences of communications and contT. This restriction is not significant. If e con-
tained communications, a possible dual for the sendW expression should be able to perform the
dual communications at each iteration, before receiving the object that would select its continu-
ation; such a dual should be of the form e′;receiveW(x){C1⇒ . . . ;e′;contT; ....8C2⇒ . . . ;},
where e′ contains the dual communications of e. This suggests how a sendW expression with
communications inside the argument can be encoded in our system. In order to maintain a sort
of symmetry, we have the above restriction also in the typing of sendC. Let us notice that this
problem concerns only communications in the current sessions but does not involve new sessions
opened in e: in fact, the typing allows e to contain session requests.

Figure 11 defines well-formed class tables. Rule SESS-WF says that a session declaration in
a class C is well typed if its body has the declared return type and session type by assuming that
this is of type C. Notice that � has no dual type, so sessions whose bodies would be typed



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 18

SESS-WF
{this : C} ` e : T # t t is cont-free

Tts{ e } ok in C

CLASS-WF
D ok S ok in C

class C C D { Tf; S } ok

Fig. 11. Well-formed Class Tables.

with types containing � would be useless. This justifies the condition that t must be cont-free in
rule SESS-WF, which implies that well-typed session bodies do not contain free occurrences of
contT.

We conclude the subsection by observing that the system presented in Figure 9, given a typable
expression e and the related class table, actually infers the session type of e. As a matter of fact,
that system is itself an inference algorithm of the session type of an expression, that expects
session types of sessions to be declared in the class table.

It is easy to prove by induction on typing rules that:

Proposition 5.1. If Γ ` e : T # t and Γ ` e : T′ # t′, then t= t′.

The unicity of session types follows from the fact that receiving actions are modelled through
expressions in which the classes of received objects are explicitly declared. This is a characteris-
ing feature of our approach to session types w.r.t. to standard systems (Yoshida and Vasconcelos,
2007).

In Section 7 we will present an inference algorithm that reconstructs the session types of
session declarations, given a class table where these session types are omitted.

5.2. Typing of Run-time Expressions

During evaluation of well-typed programs, channel names are made explicit in send and re-
ceive expressions, as well as in session delegation expressions. Thus, in order to show how
well-typedness is preserved under evaluation, we need to define new typing rules for run-time
expressions. Furthermore, in typing run-time expressions, we must take into account the session
types of more than one channel: run-time expressions contain explicit channel names (used for
communications), thus session types must be associated with channel names in an appropriate
way. Then judgements have the form

Γ r̀ e : T # Σ

where Σ denotes a session environment which maps channels to session types.
A session environment maps only a finite set of channels to session types different from ε , and

all the remaining to ε . We can then represent one session environment with an infinite number of
finite sets which give all the meaningful associations and some of the others. For example {k : t}
and {k : t,k′ : ε} represent the same environment. This choice avoids an explicit weakening rule
for session environments.

Figure 12 gives the typing rules for run-time expressions, which differ from those for channel
free expressions by having session environments instead of a unique session type. For this reason
we extend the concatenation of session types to session environments as follows:

Σ.Σ′(k) = Σ(k).Σ′(k).



Deriving Session and Union Types for Objects 19

AXIOM-RT
Γ r̀ z : Γ(z) # /0

CONT-RT
Γ r̀ cont

T : T # {k : �}

SUB-RT
Γ r̀ e : T # Σ T<: T′

Γ r̀ e : T′ # Σ

NEWC-RT
fields(C) = Tf Γ r̀ ei : Ti # Σi

Γ r̀ new C(e) : C #
⋃

i
Σi

FLD-RT
Γ r̀ e : T # Σ

Γ r̀ e.f : ftyper(f,T) # Σ

SEQ-RT
Γ r̀ e : T # Σ Γ r̀ e

′ : T′ # Σ
′

Γ r̀ e;e
′ : T′ # Σ.Σ′

FLDASS-RT
Γ r̀ e : T # Σ Γ r̀ e

′ : ftypew(f,T) # Σ
′

Γ r̀ e.f := e′ : ftyper(f,T) # Σ.Σ′

SESSREQ-RT
Γ r̀ e : T # Σ Γ ` e′ : T′ # t′ t′ Z t′′ ∀t′′ ∈ stype(s,T)

Γ r̀ e.s{e′} : T′ # Σ

SESSDEL-RT
Γ r̀ e : T # Σ stype(s,T) = {t} t , ε rtype(s,T) = T′

Γ r̀ e•s{k} : T′ # Σ.{k : t}
SENDC-RT

Γ r̀ e : C1∨C2 # Σ Γ r̀ ei : T # {k : ti}
Γ r̀ k.sendC(e){C1⇒ e1 8C2⇒ e2} : T # Σ,{k :!{C1⇒ t1 8C2⇒ t2}}
RECEIVEC-RT

Γ,x : Ci r̀ ei : T # {k : ti}
Γ r̀ k.recvC(x){C1⇒ e1 8C2⇒ e2} : T # {k :?{C1⇒ t1 8C2⇒ t2}}

SENDW-RT
Γ r̀ e : C1∨C2 # /0

Γ r̀ ei : T # {k : ti} T<: T′ ∀T′ ∈ tc(e1)∪ tc(e2) α fresh in t1,t2

Γ r̀ k.sendW(e){C1⇒ e1 8C2⇒ e2} : T # {k : µα.!{C1⇒ [α/�]t1 8C2⇒ [α/�]t2}}
RECEIVEW-RT

Γ,x : Ci r̀ ei : T # {k : ti} T<: T′ ∀T′ ∈ tc(e1)∪ tc(e2) α fresh in t1,t2

Γ r̀ k.recvW(x){C1⇒ e1 8C2⇒ e2} : T # {k : µα.?{C1⇒ [α/�]t1 8C2⇒ [α/�]t2}}

Fig. 12. Typing Rules for Run-time Expressions.

In rule NEWC-RT the expressions for field initialisation can be partially evaluated, and for this
reason they can contain channel names. For example

new C(o.s{sendC(5){C1⇒ e1 8C2⇒ e2}})

evaluates to

new C(k.sendC(5){C1⇒ e1NkO8C2⇒ e2NkO}) || k̃.recvC(x){C′1⇒ [o/this]e′1Nk̃O8C
′
2⇒ [o/this]e′2Nk̃O}

if recvC(x){C′1⇒ e′1 8C′2⇒ e′2} is the body of session s in the class of object o.
In rule SESSREQ-RT we are making use of the judgement Γ ` e′ : T # t′, where the expression
e′ does not contain channels, but it can contain object identifiers. For example by reducing

k.recvC(x){C⇒ o.s{sendC(x){ }}8 },h

where h(k) = o′ and h(o′) = (C, ), we get o.s{sendC(o′){ }}. This justifies our choice of con-



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 20

sidering channel free expressions instead of user expressions in the typing rules of the previous
subsection.

In the typing of communications expressions, observe that the expressions e1 and e2, in the
two branches, only contain the current channel k as subject, since channels are only created at
run time and these expressions will never be reduced before the selection has been done. In rule
SENDC-RT we know that the session environment Σ, obtained by typing the expression e, cannot
contain occurrences of the channel k, since e is obtained by reducing a channel free expression
with session type ε , as prescribed by rule SENDC-T. In rule SENDW-RT we can assume the
emtpy session environment for typing the expression e, since the evaluation of e cannot start
before the sendW expression has been unfolded to a sendC.

The following lemma gives the weakening property for term environments.

Lemma 5.1 (Weakening). Let Γ r̀ e : T # Σ.

1 If x < dom(Γ) then Γ,x : T′ r̀ e : T # Σ.
2 If o < dom(Γ) then Γ,o : C r̀ e : T # Σ.

Proof. By induction on the derivation of Γ r̀ e : T # Σ.

The typing rules for run-time expressions differ from the ones for user expressions only in
assigning the session type to explicit channels, not in the type T.

The relation between the two systems is clarified by the following proposition that will be
useful in showing the subject reduction property.

Proposition 5.2. Γ ` e : T # t implies Γ r̀ eNkO : T # {k : t}.

We notice that Γ r̀ e : T # /0 is equivalent to Γ r̀ e : T # {k : ε} by our convention on session
environments. Analogously, Σ = Σ. /0 = /0.Σ for any Σ.

As a final remark, we observe that we do not provide an explicit rule for typing parallel threads.
Typing rules give type to single (run-time) expressions only, while expressions can reduce also to
parallel threads by reduction rules. Indeed, in this case, we only use the notion of well-typedness:
a parallel composition of expressions is considered to be well typed (in the environment Γ) if
each single expression is typed (in Γ). We will take this point into account when formulating the
subject reduction property in Section 6, where we prove that semantics preserves typing.

6. Properties

In this section we show the fundamental property ensuring that our system is well founded: type
safety.

A program consists of a set of declarations and a main expression to be evaluated. Then a
well-typed executable program means that the induced class table is well formed and the main
expression is typed, using that class table, according to rules of Figure 9. We require the main
expression to be a typable closed user expression; furthermore, all communication and delegation
expressions must occur inside session co-bodies. It is easy to verify that this is equivalent to
require typability in the system of Section 5.1 from the empty term environment with an empty
session type, using a well-formed class table. Then we introduce the notion of initial expression
as follows.



Deriving Session and Union Types for Objects 21

Definition 6.1. An initial expression e is such that /0 ` e : T # ε for some T.

Proposition 6.1. An initial expression e is a closed and channel-complete user expression.

For example, the expressions sendC(o){. . .} and o•s{} are not initial expressions since if they
are typed, then their term environments and their session types are not empty.

Proposition 5.2 guarantees that initial expressions are given the same type, with no assumption
on communications, also by using the typing for run-time expressions.

The type safety property ensures that the evaluation of an initial expression cannot get stuck.
We split the proof into two steps. First, we state the subject reduction property: namely, we
prove that not only types are preserved but also the heap evolves in a consistent way with term
and session environments, along the evaluation. Next, we prove type safety, dealing with the
crucial case of communication expressions in order to show that they cannot get stuck on a
communication deadlock.

6.1. Subject Reduction

For the proof of the Subject Reduction Theorem, we need some preliminary definitions and
lemmas.

The first definition formalises the evolution of session types and session environments.

Definition 6.2.
1 A session type t′ is at a later stage than another session type t, t v t′, if that is deducible

from the following rules.
LATER-0

tv ε

LATER-1

tv t

LATER-2
tv t′′ t′′ v t′

tv t′

LATER-3
tv t′

t.t′′ v t′.t′′

LATER-4

†{C1⇒ t1 8C2⇒ t2} v ti

2 A session environment Σ′ is at a later stage than another session environment Σ, Σ v Σ′, if
k : t ∈ Σ and t , ε imply k : t′ ∈ Σ′ and tv t′.

Evolution of session environments takes also into account that new channels can be created by
session calls, so for example assuming that t3 and t4 are dual:

{k :!{Shape⇒ t1 8String⇒ t2}} v {k : t1,k1 : t3, k̃1 : t4}.

The second definition gives standard conditions on heap well-formedness and agreement be-
tween heaps and term environments.

Definition 6.3 (Well-Formed Heap and Agreement). A term environment Γ and a heap h
agree, written ag(Γ;h), if:

1 h is well formed:
h(o) = (C,f = o), ftyper(C,fi) = T ⇒ h(o)(fi) = (C′, ), C′ <: T and

2 the classes of objects in h are the classes associated to them by Γ:
∀o ∈ dom(Γ), h(o) = (Γ(o), ).

In point 1 of the above definition, recall that ftyper(C,fi)=ftypew(C,fi), being C a class.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 22

The following lemma states the obvious property that, in any type derivation ending by rule
SUB-RT, there is a subderivation giving a subtype to the same expression such that its final rule
is different from SUB-RT.

Lemma 6.1. In any derivation of Γ r̀ e : T′ # Σ there is a subderivation of Γ r̀ e : T # Σ, with
T<: T′, where the last applied rule is different from SUB-RT.

Proof. By straightforward induction on the derivation of Γ r̀ e : T # Σ.

Hence, by Lemma 6.1, in the following proofs we will assume without loss of generality that the
given typing derivations end with a rule different from SUB-RT.

In order to simplify the proof of Subject Reduction, it is handy to preliminarily show preserva-
tion of typing under substitution of subexpressions. In our calculus, the difficulty is that we must
deal carefully with session environments in substitutions.

Lemma 6.2 uses evaluation contexts as defined in Section 4. Note that this lemma does not
require that the expression in the hole of the context be a redex.

Lemma 6.2 (Evaluation Context Substitution). In any derivation of Γ r̀E [e] : T # Σ, there
exist Σ1, Σ2, T′, such that

1 there is a subderivation of Γ r̀ e : T′ # Σ1 and Σ = Σ1.Σ2,
2 Γ r̀E [e′] : T # Σ′1.Σ2, for any e′ such that Γ r̀ e

′ : T′ # Σ′1 with Σ1 v Σ′1.

Proof. By induction on the definition of E . The base case, that is when E is the empty con-
text, is trivial. In the induction step, each case proceeds by analysing the final rule, used in the
derivation of Γ r̀E [e] : T # Σ, which is assumed to be different from SUB-RT by Lemma 6.1.

— E [e] = E ′[e];e′′. Immediate from rule SEQ-RTand the induction hypothesis.
— E [e] = E ′[e].s{e′′}. The final rule SESSREQ-RT implies that Σ = Σ′.Σ′′ and there is a

subderivation of Γ r̀E ′[e] : T1 # Σ′. Then, by the induction hypothesis, we have Γ r̀ e :
T′ # Σ1 where Σ′ = Σ1.Σ

′
2, i.e. Σ = Σ1.Σ2 by taking Σ2 = Σ′2.Σ

′′. Moreover, by the induction
hypothesis, Γ r̀E ′[e] : T1 # Σ′ implies Γ r̀E ′[e′] : T1 # Σ′1.Σ

′
2. Hence, we can substitute a

derivation of Γ r̀E ′[e′] : T1 # Σ′1.Σ
′
2 for the subderivation of Γ r̀E ′[e] : T1 # Σ1.Σ

′
2, into the

derivation of Γ r̀E [e] : T # Σ1.Σ2. Rule SESSREQ-RT still applies since the other premises
stay the same. So we obtain Γ r̀E [e′] : T # Σ′1.Σ2.

— E [e] = E ′[e] • s{k}. The final rule SESSDEL-RT implies that there is a subderivation of
Γ r̀E ′[e] : T1 # Σ′, such that Σ = Σ′.{k : t}, stype(s,T1) = {t} and rtype(s,T1) = T. Then,
by the induction hypothesis, we have a subderivation of Γ r̀ e : T′ # Σ1 where Σ′ = Σ1.Σ

′
2 for

some Σ′2; thus Σ = Σ1.Σ2 by defining Σ2 = Σ′2.{k : t}. Moreover, by the induction hypothesis,
Γ r̀E ′[e] : T1 # Σ′ implies Γ r̀E ′[e′] : T1 # Σ′1.Σ

′
2. Hence we can replace Γ r̀E ′[e] : T1 # Σ1.Σ

′
2

with Γ r̀E ′[e′] : T1 # Σ′1.Σ
′
2 into the derivation of Γ r̀E [e] : T # Σ1.Σ2 and rule SESSDEL-RT

still applies. So we obtain Γ r̀E [e′] : T # Σ′1.Σ2.
— E [e] = k.sendC(E ′[e]){C1⇒ e18C2⇒ e2}. The final rule is SENDC-RT which implies that

there is a subderivation of Γ r̀E ′[e] : C1∨C2 # Σ′, such that Σ=Σ′,{k :!{C1⇒ t1 8C2⇒ t2}}
and Γ r̀ ei : T # {k : ti}. Then, by the induction hypothesis, there is a subderivation
of Γ r̀ e : T′ # Σ1 where Σ′ = Σ1.Σ

′′, for some Σ′′, that is Σ = Σ1.Σ2 by taking Σ2 =

Σ′′,{k :!{C1⇒ t1 8C2⇒ t2}}. Moreover, the induction hypothesis on
Γ r̀E ′[e] : C1∨C2 # Σ1.Σ

′′ tells us that Γ r̀E ′[e′] : C1∨C2 # Σ′1.Σ
′′. Hence, since



Deriving Session and Union Types for Objects 23

Γ r̀ ei : T # {k : ti}, we obtain Γ r̀ k.sendC(E ′[e′]){C1⇒ e1 8C2⇒ e2} : C1∨C2 # Σ′1.Σ2, by
rule SENDC-RT.

The remaining cases are straightforward, following the proof pattern of the cases above.

Lemma 6.3 (Term Substitution).

1 If Γ,z : C r̀ e : T # Σ and Γ r̀ o : C # /0, then Γ r̀ [o/z]e : T # Σ.
2 If Γ r̀ k.sendW(e){C1 ⇒ e1 8 C2 ⇒ e2} : T # {k : µα.!{C1⇒ t1 8C2⇒ t2}}, then, for i ∈
{1,2},

Γ r̀ eibk.sendW(e){C1⇒ e1 8C2⇒ e2}/contc : T # {k : t′i}
where t′i = [µα.!{C1⇒ t1 8C2⇒ t2}/α]ti.

3 If Γ,x : Ci r̀ k.recvW(x){C1⇒ e1 8C2⇒ e2} : T # {k : µα.?{C1⇒ t1 8C2⇒ t2}}, then, for
i ∈ {1,2},

Γ,x : Ci r̀ eibk.recvW(x){C1⇒ e1 8C2⇒ e2}/contc : T # {k : t′i}

where t′i = [µα.?{C1⇒ t1 8C2⇒ t2}/α]ti.

Proof.

1 Immediate by substituting Γ r̀ o : C # /0 for Γ,z : C r̀ z : C # /0, in any derivation of
Γ,z : C r̀ e : T # Σ.

2 By rule SENDW-RT

Γ r̀ k.sendW(e){C1⇒ e1 8C2⇒ e2} : T # {k : µα.!{C1⇒ t1 8C2⇒ t2}}

implies Γ,x : Ci r̀ ei : Ti # {k : t′′i }, for t′′i = [�/α]ti, and T<: T′ for all T′ ∈ tc(e1)∪ tc(e2).
This last condition and the definition of tc ensure that if contT

′
occurs free in e1 or e2, then

T<: T′. Therefore any free occurrence of contT
′

in ei is given type by
Γ r̀ cont

T′ : T′ # {k : �}.
From Γ r̀ k.sendW(e){C1 ⇒ e1 8 C2 ⇒ e2} : T # {k : µα.!{C1⇒ t1 8C2⇒ t2}} we derive
Γ r̀ k.sendW(e){C1⇒ e1 8C2⇒ e2} : T′ # {k : µα.!{C1⇒ t1 8C2⇒ t2}} by rule SUB-RT.
Observe that the only constraint satisfied by � and which appears in the premises of typing
rules is �, ε , since no session type is dual of �. Thus, if we replace Γ r̀ cont

T′ : T′ # {k :�}
by Γ r̀ k.sendW(e){C1 ⇒ e1 8 C2 ⇒ e2} : T′ # {k : µα.!{C1⇒ t1 8C2⇒ t2}}, inside the
derivation of Γ,x : Ci r̀ ei : Ti # {k : t′′i }, we obtain a derivation of
Γ,x : Ci r̀ eibk.sendW(e){C1⇒ e1 8C2⇒ e2}/contc : T # {k : t′i}.

3 Similar to the previous point, using RECEIVEW-RT in place of SENDW-RT.

Lemma 6.4 (Typing of Session Bodies). If sbody(s,C) = e, stype(s,C) = t and rtype(s,C) = T,
then {this : C} ` e : T # t.

Proof. By induction on the definition of sbody(s,C), using the definitions of stype and rtype.
In the base case, s is defined in C and then the proof follows from rule SESS-WF. The induction
step is straightforward.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 24

We can now prove the Subject Reduction Theorem. We type only single expressions, but they
can result in parallel threads. Since we do not have a typing for parallel threads we require each
single expression to be well typed. Moreover we want to get our property in the most general
form, allowing the property to hold for all well-typed expressions, which sometimes can be
generated by initial expressions only in parallel with other expressions. For example, no initial
expression can reduce to the expression

e= o.s{sendC(5){e1}};k.sendC(3){e2NkO},

but

e0 = o
′.s′ {o.s{sendC(5){e1}};sendC(3){e2}}

reduces to e || k̃.recvC(x){[o′/this]e′Nk̃O} if recvC(x){e′} is the body of session s′ in the class
of the object o′.

Notice also that receive expressions can never get objects of wrong types. For example the
execution of k.recvC(x){Bool⇒ ¬x 8 Int⇒−x} if h(k)="a" is simply stopped, i.e. it does
not produce a run-time error. In fact the reduction rule RECEIVECASE-R requires the class of the
object in the heap to be a subclass of at least one of the classes declared in the recvC expression.
Note that such a configuration cannot be generated starting from an initial expression. For this
reason, in contrast to the calculus of (Coppo et al., 2007), we do not need to require agreement
between the objects in the queues associated to channels by the heap and the session types of the
same channels in the session environment.

Theorem 6.1 (Subject Reduction). If ag(Γ;h) and Γ r̀ e : T # Σ then
1 e,h −→ e′,h′ implies that there exist Σ′, Γ′ such that Γ ⊆ Γ′ and Σ v Σ′, and ag(Γ′;h′), and

Γ′ r̀ e
′ : T # Σ′.

2 e,h −→ e1 || e2,h′ implies that h′ = h[k, k̃ 7→ ()] for some fresh k, and ag(Γ;h′), and that
there exist T′,t,t′ such that Γ r̀ e1 : T # Σ∪{k : t}, and Γ r̀ e2 : T′ # {k̃ : t′}, and tZ t′.

Proof. By induction on the definition of −→. We proceed by case analysis.
By Lemma 6.1 we consider typing derivations of Γ r̀ e : T # Σ where the last applied rule is

different from SUB-RT.

Case SESSREQ-R.

h(o) = (C, ) sbody(s,C) = e′ k, k̃ < h

E [o.s{e}],h−→ E [eNkO] || [o/this]e′Nk̃O,h[k, k̃ 7→ ()]

By h(o) = (C, ) and ag(Γ;h) we get that Γ r̀ o : C # /0 using AXIOM-RT.
Since, by hypothesis Γ r̀E [o.s{e}] : T # Σ, by Lemma 6.2(1), we have that
Γ r̀ o.s{e} : T′ # Σ1 and Σ = Σ1.Σ2. From rule SESSREQ-RT we have that Σ1 = /0, Σ2 = Σ,
Γ ` e : T′ # t′, stype(s,C) = t and tZ t′.
By Proposition 5.2 we get Γ r̀ eNkO : T′ # {k : t′}.
By Lemma 6.2(2), we have that Γ r̀E [eNkO] : T # {k : t′}.Σ.
Let rtype(s,C) = T0, then this : C ` e′ : T0 # t by Lemma 6.4, which implies
this : C r̀ e′Nk̃O : T0 # {k̃ : t}, by Proposition 5.2. Therefore, by Lemmas 5.1 and 6.3(1), we



Deriving Session and Union Types for Objects 25

conclude Γ r̀ [o/this]e
′Nk̃O : T0 # {k̃ : t}.

Notice that the new heap h[k, k̃ 7→ ()] still agrees with Γ since the only changes are about
channels.

Case SESSDEL-R.

h(o) = (C, ) sbody(s,C) = e

E [o•s{k}],h−→ E [[o/this]eNkO],h

By h(o) = (C, ) and ag(Γ;h) we get that Γ r̀ o : C # /0 using AXIOM-RT.
Since, by hypothesis Γ r̀E [o•s{k}] : T # Σ, by Lemma 6.2(1), we have that
Γ r̀ o • s{k} : T′ # Σ1 and Σ = Σ1.Σ2. From rule SESSDEL-RT we have that Σ1 = {k : t},
stype(s,C) = t and rtype(s,C) = T′.
By Lemma 6.4, this : C ` e : T′ # t, and then by Proposition 5.2
this : C r̀ eNkO : T′ # {k : t}. Therefore, by Lemmas 5.1 and 6.3(1), we have that
Γ r̀ [o/this]eNkO : T′ # {k : t}. By Lemma 6.2(2), we conclude Γ r̀E [[o/this]eNkO] : T # Σ.

Case SENDCASE-R.

h(k̃) = o h(o) = (C, ) C ⇓ {C1,C2}= Ci

E [k.sendC(o){C1⇒ e1 8C2⇒ e2}],h−→ E [ei],h[k̃ 7→ o :: o]

By h(o) = (C, ) and ag(Γ;h) we get that Γ r̀ o : C # /0 using AXIOM-RT.
Since, by hypothesis Γ r̀E [k.sendC(o){C1⇒ e1 8C2⇒ e2}] : T # Σ, by Lemma 6.2(1), we
have that Γ r̀ k.sendC(o){C1⇒ e1 8C2⇒ e2} : T′ # Σ1 and Σ= Σ1.Σ2. From rule SENDC-RT
we have that Σ1 = {k :!{C1⇒ t1 8C2⇒ t2}} and Γ r̀ ei : T′ # {k : ti}.
By Lemma 6.2(2), we have that Γ r̀E [ei] : T # Σ′, where Σ′ = {k : ti}.Σ2.
From Definition 6.2 (LATER-3 and LATER-4) we conclude Σv Σ′.
Notice that the new heap h[k̃ 7→ o :: o] still agrees with Γ since the only changes are about
channels.

Case RECEIVECASE-R.

h(k) = o :: o h(o) = (C, ) C ⇓ {C1,C2}= Ci

E [k.recvC(x){C1⇒ e1 8C2⇒ e2}],h−→ E [[o/x]ei],h[k 7→ o]

By h(o) = (C, ) and ag(Γ;h) we get that Γ r̀ o : C # /0 using AXIOM-RT. Applying rule
SUB-RT, we get Γ r̀ o : Ci # /0.
Since, by hypothesis Γ r̀E [k.recvC(x){C1 ⇒ e1 8 C2 ⇒ e2}] : T # Σ, by Lemma 6.2(1),
we have that Γ r̀ k.recvC(x){C1 ⇒ e1 8 C2 ⇒ e2} : T′ # Σ1 and Σ = Σ1.Σ2. From rule
RECEIVEC-RT we have that Σ1 = {k :?{C1⇒ t1 8C2⇒ t2}} and Γ,x : Ci r̀ ei : T′ # {k : ti}.
By Lemma 6.3(1), we have that Γ r̀ [o/x]ei : T′ # {k : ti}.
By Lemma 6.2(2), we have that Γ r̀E [[o/x]ei] : T # Σ′, where Σ′ = {k : ti}.Σ2.
From Definition 6.2 (LATER-3 and LATER-4) we conclude Σv Σ′.
Notice that the new heap h[k 7→ o] still agrees with Γ since the only changes are about chan-
nels.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 26

Case SENDWHILE-R.

E [k.sendW(e){C1⇒ e1 8C2⇒ e2}],h−→ E [k.sendC(e){C1⇒ e′1 8C2⇒ e′2}],h

where e′i = eibk.sendW(e){C1⇒ e1 8C2⇒ e2}/contc.
Since, by hypothesis Γ r̀E [k.sendW(e){C1⇒ e1 8C2⇒ e2}] : T # Σ, by Lemma 6.2(1), we
have that Γ r̀ k.sendW(e){C1⇒ e18C2⇒ e2} : T′ # Σ1 and Σ=Σ1.Σ2. From rule SENDW-RT
we have that Σ1 = {k : µα.!{C1⇒ [α/�]t1 8C2⇒ [α/�]t2}} and Γ r̀ e : C1 ∨ C2 # /0 and
Γ r̀ ei : T′ # {k : ti} and α fresh in t1,t2 and T′ <: T′′ for all T′′ ∈ tc(e1)∪ tc(e2).
Let t′i = [(µα.!{C1⇒ [α/�]t1 8C2⇒ [α/�]t2})/�]ti. By Lemma 6.3(2), we have that Γ r̀ e

′
i :

T′ # {k : t′i}.
By rule SENDC-RT, we get that

Γ r̀ k.sendC(e){C1⇒ e′1 8C2⇒ e′2} : T′ # k :!{C1⇒ t′1 8C2⇒ t′2}.

By Lemma 6.2(2), we conclude Γ r̀E [k.sendC(e){C1⇒ e′1 8C2⇒ e′2}] : T # Σ′, where Σ′ =

{k :!{C1⇒ t′1 8C2⇒ t′2}}.Σ2 and Σv Σ′ by Definition 6.2 (LATER-1 and LATER-3), since
we consider recursive types modulo fold/unfold.

Case RECEIVEWHILE-R.

E [k.recvW(x){C1⇒ e1 8C2⇒ e2}],h−→ E [k.recvC(x){C1⇒ e′1 8C2⇒ e′2}],h

where e′i = eibk.recvW(x){C1⇒ e1 8C2⇒ e2}/contc.
Since, by hypothesis Γ r̀E [k.recvW(x){C1 ⇒ e1 8 C2 ⇒ e2}] : T # Σ, by Lemma 6.2(1),
we have that Γ r̀ k.recvW(x){C1 ⇒ e1 8 C2 ⇒ e2} : T′ # Σ1 and Σ = Σ1.Σ2. From rule
RECEIVEW-RT we have that Σ1 = {k : µα.?{C1⇒ [α/�]t1 8C2⇒ [α/�]t2}} and
Γ,x : Ci r̀ ei : T′ # {k : ti}, and α fresh in t1,t2 and T′ <: T′′ for all T′′ ∈ tc(e1)∪ tc(e2).
Let t′i = [(µα.?{C1⇒ [α/�]t1 8C2⇒ [α/�]t2})/�]ti. By Lemma 6.3(3), we have that
Γ,x : Ci r̀ e

′
i : T′ # {k : t′i}.

By rule RECEIVEC-RT, we get that

Γ r̀ k.recvC(x){C1⇒ e′1 8C2⇒ e′2} : T′ # k :?{C1⇒ t′1 8C2⇒ t′2}.

By Lemma 6.2(2), we conclude Γ r̀E [k.recvC(x){C1⇒ e′1 8C2⇒ e′2}] : T # Σ′, where Σ′ =

{k :?{C1⇒ t′1 8C2⇒ t′2}}.Σ2 and Σv Σ′ by Definition 6.2 (LATER-1 and LATER-3), since
we consider recursive types modulo fold/unfold.

The remaining cases easily follow from the induction hypothesis.

Using the Subject Reduction theorem we show that expressions, which are obtained by reduc-
ing initial expressions, are typed from environments which agree with the current heap.

Corollary 6.1. If e is an initial expression and e, [ ] −→∗ e′ || P,h, then Γ r̀ e
′ : T # Σ for some

Γ, T, Σ such that ag(Γ,h).

Proof. The proof is by induction on −→∗. The basic case is immediate by definition of
initial expression. In the induction case by definition e, [ ] −→∗ e′ || P,h means e, [ ] −→∗
e1 || e2 || . . . || en,h′ and either e1,h′ −→ e′,h and P≡ e2 || . . . || en or e1,h′ −→ e′ || e′′,h and
P ≡ e′′ || e2 || . . . || en. By the induction hypothesis, e1 is well typed from a term environment



Deriving Session and Union Types for Objects 27

which agrees with h′. Therefore e′ is well typed from a term environment which agrees with h
by Theorem 6.1.

6.2. Type safety

The run-time errors which our type system has to prevent are:

1 the selection of a field and the request of a session which do not belong to the class of the
current object;

2 the creation of a pair of dual channels whose communication sequences do not perfectly
match.

In particular, concerning the second point, we want to show that communications of well-
typed sessions cannot be in a stuck situation. To this aim we have to study global properties of
type preservation during the reduction of parallel threads, namely we need to take into account
the objects in the queues associated to channels and their relations with the session types of the
channels themselves.

In the following definition we extend the notion of duality between session types taking into
account also the objects already sent by a thread, and waiting to be read by the thread which has
the dual channel.

Definition 6.4. Let h be a heap, o be a queue of objects in h and t,t′ two session types. The
relation tXoh t

′ is defined by:

1 tX()
h t
′ if tZ t′,

2 ti.t
′ Xo::oh t′′ for i ∈ {1,2} if !{C1⇒ t1 8C2⇒ t2}.t′ Xoh t′′ and h(o) = (C, ) and C ⇓

{C1,C2}= Ci.

Intuitively, the definition above describes an agreement between the session type t of a channel
k and the session type t′ of k̃ after the objects o have been put in the queue associated with k̃ in h
(recall that communication is asynchronous and that only one between the queues h(k) and h(k̃)
can be nonempty). Thus, when the queue is empty (case (1) of the definition), t′ and t agree if
they are dual. When the queue is o :: oi (case (2)), if the session type t′′ agrees with
!{C1⇒ t1 8C2⇒ t2}.t′ after the objects o have been put in the queue, then it also agrees with
the type ti.t

′, where ti is the session type of the branch obtained after putting in the queue the
object oi.
For instance, t′′ agrees with t1.t

′ via the queue "a"::true::3 (notation t1.t
′ X"a"::true::3h t′′)

if it agrees with !{Int⇒ t1 8Object⇒ t2}.t′ via the queue "a"::true: indeed after branch
selection (the sent value 3 is an Int) the continuation of !{Int⇒ t1 8Object⇒ t2}.t′ is t1.t

′.
The main lemma concerning the above relation says that if the type t of a channel k agrees with

the type ?{C1⇒ t1 8C2⇒ t2}.t′ of k̃ when h maps k̃ to the queue o :: o, and C ⇓ {C1,C2}= Ci,
where i ∈ {1,2} and C is the class of o in h, then t agrees with ti.t

′ when h maps k̃ to the queue
o.

Lemma 6.5. Let tXo::oh ?{C1⇒ t1 8C2⇒ t2}.t′, and h(o) = (C, ), and C ⇓ {C1,C2}= Ci, then
tXoh ti.t

′.

Proof. By induction on the length of o.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 28

In the base case o= () the relation tXoh?{C1⇒ t1 8C2⇒ t2}.t′ can only have been obtained
by case (2) of Definition 6.4. So we have t= t′j.t

∗ for some t′j ( j ∈ {1,2}) and t∗ and

C ⇓ {C′1,C′2} = C j and !{C′1 ⇒ t′1 8C′2 ⇒ t′2}.t∗ X()
h ?{C1 ⇒ t1 8C2 ⇒ t2}.t′. By case (1) of

Definition 6.4 we get !{C′1⇒ t′18C′2⇒ t′2}.t∗Z?{C1⇒ t18C2⇒ t2}.t′. From C⇓ {C1,C2}=
Ci and C⇓ {C′1,C′2}= C j we can derive either Ci ⇓ {C′1,C′2}= C j or C j ⇓ {C1,C2}= Ci, which imply
ti Z t′j and t∗ Z t′ by definition of duality. Therefore we conclude ti.t

∗ Z t′j.t
′ which gives

ti.t
∗ X

()
h t
′
j.t
′ by Definition 6.4(1).

For the induction case assume o= o′ :: o+: thus the hypothesis becomes
t Xo::o

′::o+
h ?{C1 ⇒ t1 8 C2 ⇒ t2}.t′. This relation can only have been obtained by case (2) of

Definition 6.4. So we have t = t+j .t
′′ for some t+j ( j ∈ {1,2}) and t′′ and h(o+) = (C+, )

and C+ ⇓ {C+1 ,C
+
2 } = C

+
j and !{C+1 ⇒ C

+
2 8 t+1 ⇒ t

+
2 }.t′′ Xo::o

′
h ?{C1 ⇒ t1 8 C2 ⇒ t2}.t′. By

the induction hypothesis we have C ⇓ {C1,C2} = Ci and !{C+1 ⇒ C
+
2 8 t

+
1 ⇒ t

+
2 }.t′′ Xo

′
h ti.t

′.
Applying again Definition 6.4(2) we get the result.

We now extend the definition of agreement to session environments.

Definition 6.5.
1 The predicate ag(Σ;h) is defined by:

ag(Σ;h) if

{
k∈dom(Σ) ⇔ k∈dom(h),

∀k∈dom(Σ) : h(k) = () ⇒ Σ(k)X
h(k̃)
h Σ(k̃).

2 ag(Γ;Σ;h) if ag(Γ;h) and ag(Σ;h).

Then a session environment and a heap agree if:

— the same set of channels occurs in the session environment and in the heap,
— when the queue of a channel k is empty, then the queue of k̃ relates the session type of k with

the session type of k̃.

A term environment, a session environment and a heap agree if both the heap with the standard
environment and the heap with the session environment agree.

The following key lemma generalises Theorem 6.1, asserting that the above agreement is pre-
served under reduction of well-typed parallel threads.

Lemma 6.6 (Subject Reduction Generalisation). Let Γ r̀ ei : Ti # Σi, (1≤ i≤ n), and assume
ag(Γ;Σ;h) where Σ =

⋃
1≤i≤n Σi. Then if

e1 || . . . || en,h −→ e′1 || . . . || e′n′ ,h
′ where 1≤ n≤ n′,

then there exist Γ′ and Σ′i such that Γ′ r̀ e
′
i : Ti # Σ′i (1 ≤ i ≤ n′) and ag(Γ′;Σ′;h′), where Σ′ =⋃

1≤i≤n′ Σ
′
i.

Proof. We have that, for some i (1 ≤ i ≤ n), either ei,h −→ e′i || e′′i ,h′ by an application of
rule SESSREQ-R or ei,h−→ e′i,h′ by the application of any one of the other reduction rules. In
the first case the proof follows immediately by Theorem 6.1(2) and Definition 6.5.

So let ei,h −→ e′i,h′. If this reduction has not been obtained by a communication rule the
proof is trivial by Theorem 6.1(1). The interesting cases are when the reduction ei,h−→ e′i,h′ is



Deriving Session and Union Types for Objects 29

obtained by a communication rule. By Theorem 6.1 we immediately obtain Γ′ r̀ e
′
i : Ti # Σ′i and

ag(Γ′;h′), thus we only have to show ag(Σ′;h′), which implies ag(Γ′;Σ′;h′).

Case SENDCASE-R. Assume ei = E [k.sendC(o){C1⇒ e′′1 8C2⇒ e′′2}]. We have that

E [k.sendC(o){C1⇒ e′′1 8C2⇒ e′′2}], h −→ E [e′′j ], h′ with j ∈ {1,2}

where h(k̃) = o, and h(o) = (C, ), and h′ = h[k̃ 7→ o :: o], and C ⇓ {C1,C2}= C j.
Since Γ r̀ ei : Ti # Σi, by the proof of the same case in Theorem 6.1 we get
Σi = {k :!{C1⇒ t18C2⇒ t2}}.Σ′′i and Γ r̀E [e′′j ] : T# Σ′i where Σ′i = {k : t j}.Σ′′i for j∈{1,2}.
So we derive Σ′(k)X

h′(k̃)
h′ Σ′(k̃) from Σ(k)X

h(k̃)
h Σ(k̃) by Definition 6.4(2), and we conclude

ag(Σ′;h′).
Case RECEIVECASE-R. Assume ei = E [k.recvC(x){C1⇒ e′′1 8C2⇒ e′′2}]. We have that

E [k.recvC(x){C1⇒ e′′1 8C2⇒ e′′2}], h −→ E [[o/x]e′′j ], h′ with j ∈ {1,2}

where h(k) = o :: o, and h(o) = (C, ), and h′ = h[k 7→ o], and C ⇓ {C1,C2}= C j.
Since Γ r̀ ei : Ti # Σi, by the proof of the same case in Theorem 6.1 we get
Σi = {k :?{C1 ⇒ t1 8 C2 ⇒ t2}}.Σ′′i and Γ r̀E [[o/x]e′′j ] : T# Σ′i where Σ′i = {k : t j}.Σ′′i for

j ∈ {1,2}. So we derive Σ′(k̃) X
h′(k)
h′ Σ′(k) from Σ(k̃) X

h(k)
h Σ(k) by Lemma 6.5, and we

conclude ag(Σ′;h′).

It is handy to take into account the order in which communication and delegation redexes
(see Section 4) which occur in the same expression are reduced. To this aim we introduce the
“follows” relation between redexes.

Definition 6.6. Let e be an expression and r1, r2 be two different occurrences of communica-
tion or delegation redexes in e. We say that r2 follows r1 in e if there is a subexpression e′ of e
such that e′ = E [r1] and r2 occurs in e′.

Note that by definition of evaluation context r1 cannot be a subexpression of r2, while r2 can be
a subexpression of r1.

It is easy to check that, if r1 and r2 are as in the previous definition, then r1 needs to be reduced
before r2, since r1 occurs in the hole of an evaluation context E , while r2 occurs elsewhere in
the same expression.

We convene that all fresh channels created reducing parallel threads take successive indexes
according to the order of creation, i.e. they are named k0, k1, . . .. This means that if

P,h−→∗ Q,h′ −→∗ Q′,h′′

and ki is a channel created in the reduction P,h −→∗ Q,h′, and k j is a channel created in the
reduction Q,h′ −→∗ Q′,h′′, then i < j.

The subject of a communication or delegation redex is the channel specified in its syntax on
which the communication takes place. The index of a communication or delegation redex is the
index of its subject.

The following crucial lemma states that a channel and its dual cannot occur in the same thread.
Moreover it states that the order on indexes of communication and delegation redexes agrees with
the “follows” relation between redexes.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 30

Lemma 6.7. Let e be an initial expression and e, [ ]−→∗ e1 || . . . || en,h. Then:

1 no expression ei can contain occurrences of both k and k̃ for some channel k,
2 if r1, r2 are two different occurrences of communication or delegation redexes in ei (i ∈
{1, . . . ,n}) and r2 follows r1, then the index of r1 is greater than or equal to the index of r2.

Proof.

1 Straightforward, noting that the channels k and k̃ are introduced by the rule SESSREQ-R in
two different parallel threads.

2 /0 ` e : T # ε implies that no channel occurs in e and so the property trivially holds. We now
prove that the reduction preserves the property, namely if all the channels in the subexpres-
sions of an expression are indexed in a not increasing order, starting from the redex to all
the following redexes, in the sense of Definition 6.6, then after one step of reduction we get
expressions that have the same property. The proof is by case analysis on the definition of
−→.

Case SESSREQ-R. We have that

h(o) = (C, ) sbody(s,C) = e′′ k, k̃ < h

E [o.s{e′}],h−→ E [e′NkO] || [o/this]e′′Nk̃O,h[k, k̃ 7→ ()]

Let E [o.s{e′}] be an expression in which the desired property holds. After one step of
reduction, in the expression e′NkO the new channel k is the one with the highest index
and no other channel occurs in it. Moreover all communication and delegation redexes
occurring in E follow all communication and delegation redexes in e′NkO. Lastly, note
that by the induction hypothesis the desired property holds for all communication and
delegation redexes occurring in E .
In parallel we have the expression [o/this]e′′Nk̃O, where e′′ is a session body, so the only
channel in this expression is k̃. Then this reduction rule preserves the property.

Case SESSDEL-R. We have that

h(o) = (C, ) sbody(s,C) = e′

E [o•s{k}],h−→ E [[o/this]e′NkO],h

Let E [o • s{k}] be an expression in which the desired property holds. Since o • s{k}
is the redex, then k is the channel with the highest index. After one step of reduction,
[o/this]e′NkO is the first expression to be reduced next, and k is still the only channel
which occurs in it.

Case SENDCASE-R. We have that

h(k̃) = o h(o) = (C, ) C ⇓ {C1,C2}= Ci

E [k.sendC(o){C1⇒ e′1 8C2⇒ e′2}],h−→ E [e′j],h[k̃ 7→ o :: o]

If the expression E [k.sendC(o){C1⇒ e′18C2⇒ e′2}] is an expression in which the desired
property holds, then k is the channel with the highest index. The channel k is the only
channel which occurs in the expressions e′1,e

′
2. Then, after one step of reduction the



Deriving Session and Union Types for Objects 31

expression e′j can contain only the channel k, that is the one with the highest index, or it
can contain no channel, then the property still holds.

Cases RECEIVECASE-R, SENDWHILE-R and RECEIVEWHILE-R. The proof is similar
to the previous one.

In all the remaining cases no channel is introduced or modified, therefore the property is
trivially preserved.

The above lemma is a technical step to prove the deadlock freedom property for communica-
tion expressions. Indeed, it is easy to verify that well-typed sending redexes always reduce, as
well as while-receiving redexes. Then the crucial case is when we obtain a parallel composition
of case-receiving redexes: in the following lemma we prove that these receiving actions are not
stuck, since their expectations match the values on the channel queue.

Lemma 6.8 (Deadlock Freedom). Let e be an initial expression and

e, [ ]−→∗ o1 || . . . || om || e1 || . . . || en,h,

such that m≥ 0 and for all i (1≤ i≤ n) ei = Ei[ri], where Ei is an evaluation context and ri is a
case-receiving redex. Then there is i (1≤ i≤ n), such that ei,h−→ P,h′ for some P,h′.

Proof. By Corollary 6.1, each ei is well typed from a term environment Γ which agrees with
h.

Let j be the highest among the indexes of the channels occurring in e1 |...| en.
If both kj and k̃j occur in e1 |...| en, then by Lemma 6.7(1) they occur in two different expres-

sions, let them be ep and eq with 1≤ p, q≤ n. By Lemma 6.7(2) the subjects of the two redexes
rp and rq are the channels kj and k̃j. Moreover we must have that Σp(kj), Σq(k̃j) are of the forms
?{D1⇒ t1 8D2⇒ t2}.t, ?{D′1⇒ t′1 8D′2⇒ t′2}.t′, since rp and rq are case-receiving redexes.
If h(kj) is not empty, then let h(kj) = o :: o′, and by Lemma 6.5 h(o) = (C, ) and C ⇓ {D1,D2}
is defined, so rp can perform a RECEIVECASE-R step against the hypothesis. Similarly if h(k̃j)

is not empty. Otherwise, if both h(kj) and h(k̃j) are empty, then by Lemma 6.6 we get ag(Σ;h),
where Σ is the session environment of e1 |...| en. This implies Σ(k) X

()
h Σ(k̃) by Definition 6.5

and then Σq(k̃j)Z Σp(kj) by Definition 6.4(1). But this is impossible since Σp(kj) and Σq(k̃j) are
of the forms ?{D1⇒ t1 8D2⇒ t2}.t, ?{D′1⇒ t′1 8D′2⇒ t′2}.t′.

If only kj occurs in e1 |...| en, then we must have Σ(kj) , ε , Σ(k̃j) = ε . From ag(Σ;h), by

Definition 6.5, we get that Σ(k̃j) = ε implies h(k̃j) = () and then ε X
h(kj)

h Σ(kj). We conclude
that h(kj) is not empty, so we can proceed as before.

Theorem 6.2 (Type safety). If e is an initial expression and e, [ ]−→∗ e1 || . . . || en,h, then one
of the following conditions holds:

— there is i (1≤ i≤ n), such that ei,h−→ P,h′ for some P,h′,
— for all i (1≤ i≤ n), ei is an object.

Proof. By Proposition 6.1 e is closed and channel-complete, so by Proposition 4.2 each ei is
closed and channel-complete. Therefore, by Proposition 4.1, either ei is an object identifier or
ei = Ei[ri], for some evaluation context Ei and some redex ri. If ei = Ei[ri] then, by Corollary 6.1,



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 32

ei can be typed from a term environment Γ which agrees with h, hence ri can be typed from Γ

too, by Lemma 6.2(1).
If some ri is of one of the shapes o;e′ or new C(o) or k.sendC(o){C ⇒ e 8 C ⇒ e} or

k.sendW(e){C ⇒ e 8 C ⇒ e} or k.recvW(x){C ⇒ e 8 C ⇒ e}, then it is immediate to verify
that ei reduces.

Otherwise, let some ri be of one of the shapes o.f or o.f := o′ or o.s{e′} or o•s{k}. Since
an object identifier cannot occur in an initial expression, then the run-time expression o has been
obtained by reducing new C(o) for some C, f : o, which implies h(o) = (C,f : o) by rule (NewC-
R). By Definition 6.3(2) this implies Γ(o) = C. If ri = o.f, then rule (FLD-RT) has been applied
with a premise Γ r̀ o : T # /0 for some T such that C<: T and f ∈ fields(T), therefore f ∈ fields(C).
If ri = o.s{. . .}, then rule (SESSREQ-RT) has been applied with a premise Γ r̀ o : T # /0 for
some T such that C<: T and stype(s,T) is defined. Therefore also stype(s,C) is defined, and then
sbody(s,C) is defined. Similarly one can show that sbody(s,C) is defined when ri = o•s{. . .}.
Then, in all the cases above, we can conclude that ei reduces.

The only remaining alternative when all ri are case-receiving redexes follows from
Lemma 6.8.

7. Session Type Reconstruction

The type system presented in Figure 9 derives session types for expressions assuming that all
session declarations are decorated with explicit session types; moreover, expressions can have
many types due to the presence of the subsumption rule. In this section, we present an inference
algorithm (Figure 13) which

i) gives an expression its minimal type;
ii) calculates the constraints that must be satisfied in order to reconstruct the related session type

(which is unique as stated in Proposition 5.1).

Thus the programmer is no longer responsible for declaring the session types.
We define an inference class table ICT as a class table in which each session declaration s, in

each class C, is decorated by the session-in-class variable χsC representing the session type that
will be inferred by the algorithm.

Then we extend the syntax of session types to session type schemes in order to include session-
in-class variables:

θ ::= t | χsC | θ .θ | †{C1⇒ θ 8C2⇒ θ} | µα.†{C1⇒ θ 8C2⇒ θ}

If CT is a class table, we denote by CT− the inference class table obtained by replacing in CT
the declared session type of any session s in any class C by χsC .

In order to reconstruct session types of session declarations, we use two kinds of constraints.
A set of equality (and disequality) constraints, denoted by C , will collect assertions of the shape
χsC = θ and χsC , ε . A set of duality constraints, denoted by D , will collect assertions of the shape
χsC Z θ .

The constraint-based type inference system is presented in Figure 13. We notice that, if a
session-in-class variable χsC occurs in a session type that is inferred for an expression, then χsC

has been introduced by rule SESSDEL-T-I; therefore the related set of constraints must contain



Deriving Session and Union Types for Objects 33

AXIOM-T-I
Γ `I z : Γ(z) # ε B /0, /0

CONT-T-I
Γ `I cont

T : T # � B /0, /0

NEWC-T-I
fields(C) = Tf Γ `I ei : T′i # ε B Ci, Di T′i <: Ti

Γ `I new C(e) : C # ε B
⋃

i
Ci,

⋃
i

Di

FLD-T-I
Γ `I e : T # θ B C , D

Γ `I e.f : ftyper(f,T) # θ B C , D

SEQ-T-I
Γ `I e : T # θ B C , D Γ `I e

′ : T′ # θ
′ B C ′, D ′

Γ `I e;e
′ : T′ # θ .θ ′ B C ∪C ′, D ∪D ′

FLDASS-T-I
Γ `I e : T # θ B C , D Γ `I e

′ : T′ # θ
′ B C ′, D ′ T′ <: ftypew(f,T)

Γ `I e.f := e′ : ftyper(f,T) # θ .θ ′ B C ∪C ′, D ∪D ′

SESSREQ-T-I
Γ `I e : C1∨·· ·∨Cn # θ B C , D Γ `I e

′ : T′ # θ
′ B C ′, D ′

D ′′ = D ∪D ′∪{χsCi
Z θ

′|i ∈ {1, . . . ,n}}
Γ `I e.s{e′} : T′ # θ B C ∪C ′, D ′′

SESSDEL-T-I
Γ `I e : C1∨·· ·∨Cn # θ B C , D

rtype(s,C1∨·· ·∨Cn) = T C ′ = C ∪{χsC1
, ε}∪{χsCi

= χ
s
C j
|i , j ∈ {1, . . . ,n}}

Γ `I e•s{} : T # θ .χsC1
B C ′, D

SENDC-T-I
Γ `I e : T # ε B C , D Γ `I ei : Ti # θ i B Ci, Di T<: C1∨C2

Γ `I sendC(e){C1⇒ e1 8C2⇒ e2} : T1∨T2# !{C1⇒ θ 1 8C2⇒ θ 2} B C ∪C1∪C2, D ∪D1∪D2

RECEIVEC-T-I
Γ,x : Ci `I ei : Ti # θ i B Ci, Di

Γ `I recvC(x){C1⇒ e1 8C2⇒ e2} : T1∨T2#?{C1⇒ θ 1 8C2⇒ θ 2} B C1∪C2, D1∪D2

SENDW-T-I
Γ `I e : T # ε B C , D Γ `I ei : Ti # θ i B Ci, Di

α fresh in θ 1,θ 2 T1∨T2 <: T′ ∀T′ ∈ tc(e1)∪ tc(e2) T<: C1∨C2

Γ `I sendW(e){C1⇒ e1 8C2⇒ e2} : T1∨T2 # µα.!{C1⇒ [α/�]θ 1 8C2⇒ [α/�]θ 2} B C ∪C1∪C2, D ∪D1∪D2

RECEIVEW-T-I
Γ,x : Ci `I ei : Ti # θ i B Ci, Di α fresh in θ 1,θ 2 T1∨T2 <: T ∀T ∈ tc(e1)∪ tc(e2)

Γ `I recvW(x){C1⇒ e1 8C2⇒ e2} : T1∨T2 # µα.?{C1⇒ [α/�]θ 1 8C2⇒ [α/�]θ 2} B C1∪C2, D1∪D2

Fig. 13. Constraint-based Typing Rules for Channel Free Expressions.

χsC , ε . Then, no derived session type can be equated to ε by a substitution which satisfies the
set of constraints. For this reason we write explicitly ε , when required, in the antecedents of the
inference rules.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 34

SESS-WF-I
{this : C} `I e : T # θ B C ′, D C = C ′∪{χsC = θ} � does not appear in θ

Tχ
s
C s{ e } ok in C with C ,D

CLASS-WF-I
D ok Si ok in C with Ci,Di

class C C D { Tf; S } ok with
⋃

i
Ci,

⋃
i

Di

Fig. 14. Well-formed Inference Class Tables.

In the communication rules the resulting minimal type is the union of the types of the two
branches, i.e. their least supertype.

Rules for well-formedness of session and class declarations are in Figure 14. The declaration
of a session s in a class C is well formed under the constraints C and D if the body e is well
typed under constraints C ′ and D . The set C includes the constraints collected typing the body e
(C ′) and the equation χsC = θ which assigns to the session variable χsC the session type scheme θ

representing the communications performed in the body e. As for rule SESS-WF, the condition
that � does not appear in θ is justified by the fact that � has no dual type, so sessions whose
bodies would be typed with types containing � would be useless.

The well-formedness of a class declaration is checked under the union of the constraints col-
lected checking the well-formedness of session declarations in C.

We define the set of constraints of an inference class table ICT as the pair 〈
⋃

i∈I Ci;
⋃

i∈I Di〉,
where Ci for i ∈ I is the set of classes defined in ICT and class Ci . . . ok with Di,Ci.

8. Properties of the Constraint-Based Typing

In this section we prove that the constraint typing rules of Figure 13 are sound and complete
w.r.t. the typing rules of Figure 9.

Indeed, given an inference class table ICT, which is well formed under constraints 〈C ;D〉, if σ

is a substitution which satisfies C and D , then σ(ICT) gives a well-formed class table according
to the type derivation ` (Soundness).

Conversely, for any well-formed class table CT, the corresponding inference class table CT−

results to be well formed under constraints 〈C ;D〉 such that there is a unique substitution σ

which satisfies C and D (Completeness). Furthermore, we prove that σ(CT−) = CT.

Definition 8.1 (Type substitution). A type substitution σ is a finite mapping from sessions type
variables to session types. The application of a substitution to a session type scheme is defined
as follows:

σ(t) = t

σ(χsC ) =

{
t if (χsC 7→ t) ∈ σ

χsC if χsC < dom(σ)

σ(θ .θ ′) = σ(θ).σ(θ ′)

σ(†{C1⇒ θ 1 8C2⇒ θ 2}) = †{C1⇒ σ(θ 1)8C2⇒ σ(θ 2)}
σ(µα.†{C1⇒ θ 1 8C2⇒ θ 2}) = µα.†{C1⇒ σ(θ 1)8C2⇒ σ(θ 2)}.



Deriving Session and Union Types for Objects 35

Substitutions on inference class tables are defined as expected.

In the soundness property formulation it suffices to consider expressions which occur in class
tables.

Theorem 8.1 (Soundness). Let ICT be an inference class table with set of constraints 〈C ′;D ′〉.
If Γ `I e : T # θ B C , D using ICT is such that C ⊆ C ′ and D ⊆D ′ and σ is a substitution that
satisfies C ′ and D ′, then Γ ` e : T # σ(θ) using the class table σ(ICT).

Proof. By induction on the type derivation of Γ `I e : T # θ B C , D , with a case analysis on
the final rule. We only consider the most interesting cases.

Notice that σ satisfies C ′ and D ′, and then σ (ICT) is a class table and σ (θ ) is a session type.

Case FLDASS-T-I. We have that Γ `I e1.f := e2 : T # θ B C , D . From rule FLDASS-T-I we
have that T= ftyper(f,T1), C =C1∪C2, D =D1∪D2, θ = θ 1.θ 2, Γ`I e1 : T1 # θ 1 B C1, D1,
and Γ `I e2 : T2 # θ 2 B C2, D2, for some C1,C2,D1,D2,T1 and some T2 such that
T2 <: ftypew(f,T1) . Since C1 ⊆ C ⊆ C ′, C2 ⊆ C ⊆ C ′, D1 ⊆ D ⊆ D ′, and D2 ⊆ D ⊆ D ′,
by the induction hypothesis, Γ ` e1 : T1 # σ(θ 1) and Γ ` e2 : T2 # σ(θ 2) using the class
table σ(ICT). By applying rules SUB-T (since ftypew(f,T1) <: ftyper(f,T1) by definition)
and FLDASS-T, we get the result: Γ ` e1.f := e2 : T # σ(θ) using the class table σ(ICT).

Case SESSREQ-T-I. We have that Γ `I e1.s{e2} : T # θ B C , D . From rule SESSREQ-T-I we
have that C = C1 ∪C2, D = D1 ∪D2 ∪ {χsC Z θ

′|C ∈ T′}, Γ `I e1 : T′ # θ B C1, D1 and
Γ `I e2 : T # θ

′ B C2, D2, for some C1,C2,D1,D2,T
′. Since C1 ⊆ C ⊆ C ′, C2 ⊆ C ⊆ C ′,

D1 ⊆D ⊆D ′, and D2 ⊆D ⊆D ′, by the induction hypothesis Γ ` e1 : T′ # σ(θ) and Γ ` e2 :
T# σ(θ ′). Moreover, the fact that σ satisfies D , implies that σ(χsC )Zσ(θ ′), for all C∈ T′, and
{σ(χsC ) |C ∈ T′} = stype(s,T′), using the class table σ(ICT). By applying rule SESSREQ-T
we get the result: Γ ` e1.s{e2} : T # σ(θ) using the class table σ(ICT).

Case SESSDEL-T-I. We have that Γ `I e0 • s{} : T # θ B C , D . From rule SESSDEL-T-I we
have that C = C1∪{χsC1

, ε}∪{χsCi
= χsC j

|i , j ∈ {1, . . . ,n}}, Γ `I e0 : T′ # θ B C1, D and
rtype(s,T′)=T, and T′ = C1 ∨ ·· · ∨ Cn, for some C1,T

′,C1, · · · ,Cn. Since C1 ⊆ C ⊆ C ′, by
the induction hypothesis Γ ` e0 : T′ # σ(θ) and stype(s,T′) = {σ(χsC1

)}, with σ(χsC1
) , ε ,

using the class table σ(ICT). By applying rule SESSDEL-T we get the result: Γ ` e0 •s{} :
T # σ(θ) using the class table σ(ICT).

Case SENDC-T-I. We have that Γ `I sendC(e0){C1⇒ e1 8C2⇒ e2} : T1∨T2 # θ B C , D . From
rule SENDC-T-I we have that θ =!{C1⇒ θ 1 8C2⇒ θ 2}, C = C1∪C2∪C3, D = D1∪D2∪
D3 and Γ`I ei : Ti # θ i B Ci, Di (i∈ {1,2}) for some θ 1,θ 2,C1,C2,C3,D1,D2,D3. Moreover
Γ `I e0 : T′ # ε B C3, D3 for some T′ <: C1 ∨ C2. Since C j ⊆ C ⊆ C ′, D j ⊆ D ⊆ D ′, for
j ∈ {1,2,3}, by the induction hypothesis Γ ` e0 : T′ # ε and Γ ` ei : Ti # σ(θ i) using the class
table σ(ICT). By applying rule SUB-T, we get Γ` e0 : C1∨C2 # ε and Γ` ei : T1∨T2 # σ(θ i).
Then SENDC-T applies, and we obtain Γ ` sendC(e0){C1⇒ e1 8C2⇒ e2} : T1∨T2 # σ(θ)

using the class table σ(ICT).
Cases RECEIVEC-T-I, SENDW-T-I, RECEIVEW-T-I are similar.

Theorem 8.2 (Completeness). Let CT be a well formed class table and σ be a substitution such
that {σ(χsC )}= stype(s,C), for any s,C ∈ CT.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 36

For any expression e, if Γ ` e : T # t using CT, then

i) Γ `I e : T′ # θ B C , D using CT−;
ii) T′ <: T;

iii) σ satisfies C and D ;
iv) σ(θ) = t;

for some C ,D ,T′.

Proof. By induction on the type derivation of Γ ` e : T # t, with a case analysis on the final
rule. We only consider the most interesting cases.

Case FLDASS-T. We have that Γ ` e1.f := e2 : T # t. From rule FLDASS-T we have that T =
ftyper(f,T1), t= t1.t2, Γ ` e1 : T1 # t1, and Γ ` e2 : ftypew(f,T1) # t2 for some T1, t1, t2.
By the induction hypothesis, we have:

1) Γ `I e1 : T′1 # θ 1 B C1, D1 and Γ `I e2 : T2 # θ 2 B C2, D2,

2) σ satisfies C1, C2, D1, D2, and σ(θ 1) = t1 and σ(θ 2) = t2,

for some T′1 <: T1, T2 <: ftypew(f,T1), θ 1, θ 2, C1, C2,D1, and D2.
The condition T2 <: ftypew(f,T

′
1) holds by T2 <: ftypew(f,T1), since T′1 <: T1 im-

plies ftypew(f,T1) <: ftypew(f,T
′
1) by definition of ftypew. Therefore we can apply

rule FLDASS-T-I to 1) getting Γ `I e1.f := e2 : ftyper(f,T
′
1) # θ 1.θ 2 B C1 ∪C2, D1 ∪D2.

Note that T′1 <: T1 implies ftyper(f,T
′
1) <: ftyper(f,T1) by definition of ftyper. From 2) we

conclude that σ satisfies C1∪C2 and D1∪D2, and that σ(θ 1.θ 2) = t.
Case SESSREQ-T. We have that Γ ` e1.s{e2} : T # t. From rule SESSREQ-T we have that

Γ ` e1 : T1 # t, Γ ` e2 : T # t2 and t2 Z t′, for some T1, t2 and for all t′ such that
t′ ∈ stype(s,T1). By the induction hypothesis, we have:

1) Γ `I e1 : T′1 # θ 1 B C1, D1 and Γ `I e2 : T2 # θ 2 B C2, D2,

2) σ satisfies C1, C2, D1, D2, and σ(θ 1) = t and σ(θ 2) = t2,

for some T′1 <: T1, T2 <: T, θ 1, θ 2, C2, C2, D1, D2.
Let T1 = C1 ∨ . . . ∨ Cn. From rule SESSREQ-T-I and 1) we have that Γ `I e1.s{e2} :
T2 # θ 1 B C , D , where C = C1 ∪C2 and D = D1 ∪D2 ∪{χsCi

Z θ 2|i ∈ {1, . . . ,n}}. Since
by hypothesis {σ(χsC )} = stype(s,C) for all s,C ∈ CT, and by definition stype(s,T1) =⋃

i∈{1,...,n} stype(s,Ci), then by 2) the condition t2 Z t′, for all t′ ∈ stype(s,T1), implies
σ(χsCi

) Z σ(θ 2), for all i ∈ {1, . . . ,n}. Then from 2) we conclude that σ satisfies C and
D .

Case SESSDEL-T. We have Γ` e0•s{} : T# t. From rule SESSDEL-T we have that Γ` e0 : T0 #
t0, stype(s,T0) = {t′}, t′ , ε , t = t0.t

′ and rtype(s,T0) = T. By the induction hypothesis,
we have that

1) Γ `I e0 : T′0 # θ 0 B C0, D ,

2) σ satisfies C0 and D and σ(θ 0) = t0,

for some T′0 <: T0, θ 0, C0, D .
Let T0 = C1 ∨ . . . ∨ Cn. From rule SESSDEL-T-I and 1) we have Γ `I e0 • s{} :
rtype(s,T′0) # θ 0.χ

s
C1
B C , D , where C = C0 ∪{χsC1

, ε}∪ {χsCi
= χsC j

|i , j ∈ {1, . . . ,n}}.
Since stype(s,T0) = {t′} implies stype(s,Ci) = {t′} for i ∈ {1, . . . ,n} and by hypothesis



Deriving Session and Union Types for Objects 37

{σ(χsCi
)}= stype(s,Ci) we get σ(χsCi

) = t′. Therefore σ(θ .χsC1
) = t0.t

′ and σ satisfies C .
From T′0 <: T0 we have rtype(s,T′0)<: rtype(s,T0), then we obtain the result.

Case SENDC-T. We have Γ ` sendC(e0){C1⇒ e1 8C2⇒ e2} : T # t. From rule SENDC-T we
have that t=!{C1⇒ t1 8C2⇒ t2}, and Γ ` e0 : C1∨C2 # ε , and Γ ` ei : T # ti for i ∈ {1,2}.
By the induction hypothesis:

1) Γ `I e0 : T′ # ε B C , D ,

2) Γ `I ei : Ti # θ i B Ci, Di,

3) σ satisfies C , D , Ci, Di and σ(θ i) = ti,

for some T′ <: C1∨C2, C , D , Ti <: T, θ i, Ci, and Di with i ∈ {1,2}.
We can apply rule SENDC-T-I to obtain Γ `I sendC(e0){C1 ⇒ e1 8 C2 ⇒ e2} : T1 ∨
T2# !{C1 ⇒ θ 1 8 C2 ⇒ θ 2} B C ∪C1 ∪C2, D ∪D1 ∪D2. Since T1 <: T and T2 <: T, we
get T1 ∨ T2 <: T. From 3) we conclude that σ(!{C1 ⇒ θ 1 8 C2 ⇒ θ 2}) = t and σ satisfies
D ∪D1∪D2, C ∪C1∪C2.

Cases RECEIVEC-T-I, SENDW-T-I, RECEIVEW-T-I are similar.

It is interesting to notice that we do not need to consider principal solutions as in the standard
approach ((Pierce, 2002), Chapter 22). The reason is that the classes of exchanged objects are
explicit in communication expressions.

Corollary 8.1 (Uniqueness of the solution). Let CT be a class table, and CT− be the corre-
sponding inference class table with constraints (C ,D). Let σ(CT−) = CT. For any substitution
σ ′ that satisfies (C ,D) and such that dom(σ) = dom(σ ′) we get σ ′ = σ .

Proof. Let us suppose ad absurdum that σ ′ , σ , i.e. σ ′(CT−) = CT′ , CT. The only differ-
ence between CT′ and CT concerns the session types declared in the sessions definitions. This
contradicts Proposition 5.1 and rule SESS-WF.

Summarising, when read from bottom to top, the constraint typing rules determine an algo-
rithm which calculates the constraints that must be satisfied in order for a class table ICT to be
well formed. If a solution exists then it is the (unique) substitution σ which verifies both C and
D . The procedure for finding this substitution σ consists of two steps. First we apply a standard
unification algorithm on first-order type expressions (see Chapter 22 of (Pierce, 2002)) to solve
equality constraints of C . Then we verify that σ satisfies all duality constraints of D . If this pro-
cedure succeeds, then σ gives the session types which decorate all session declarations in such a
way that σ(ICT) is well formed.

9. Related work

Union types have been shown useful for enhancing the flexibility of subtyping in various settings:
for functional languages (Barbanera et al., 1995; Frisch et al., 2008), for object-oriented lan-
guages (Igarashi and Nagira, 2007), for languages manipulating semi-structured data (Gapeyev
and Pierce, 2003) and for the π-calculus (Castagna et al., 2008; Castagna et al., 2009).

It is interesting to compare FSAM∨ with FJ∨ , an extension of FJ with union types, pro-
posed by Igarashi and Nagira in (Igarashi and Nagira, 2007). They define union types as in the



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 38

present paper: the essential difference is that they have traditional methods instead of sessions.
The method signatures are of the shape T→ T. The method type lookup function applied to a
method name m and to a type T gives a set of method signatures, i.e. all the signatures of m in the
classes which build T. This is similar to our stype function, which returns a set of session types.
The rule of method call checks that the types of the parameters agree with all the signatures found
by the method type lookup function for the type of the object. Also our rule SESSREQ-T requires
the session type of the co-body be dual to all the session types returned by the stype function. It is
easy to check that the encoding of methods by sessions sketched at the end of Section 2 extends
without changes to methods with union types.

Session types have been first introduced to model communication protocols between π-
calculus processes (Honda, 1993; Takeuchi et al., 1994; Honda et al., 1998). They have been
made more expressive by enriching them with correspondence assertions (Bonelli et al., 2005),
subtyping (Gay and Hole, 2005), bounded polymorphism (Gay, 2008), higher-order processes
(Mostrous and Yoshida, 2007; Mostrous and Yoshida, 2009), exceptions (Carbone et al., 2008b),
concurrent constraints (Coppo and Dezani-Ciancaglini, 2009), and safer by assuring deadlock-
freedom (Dezani-Ciancaglini et al., 2008; Bettini et al., 2008b). Session types have also been ex-
tended to multi-party communications (Bonelli and Compagnoni, 2008; Carbone et al., 2008a),
with action permutations (Honda et al., 2009), design by contracts (Bocchi et al., 2010), de-
pendent types for parametricity (Yoshida et al., 2010), upper bounds on buffer sizes (Deniélou
and Yoshida, 2010) and access/information flow control (Capecchi et al., 2010a; Capecchi et al.,
2011). Session types have been developed also for CORBA (Vallecillo et al., 2002), for func-
tional languages (Gay et al., 2003; Vasconcelos et al., 2006; Bhargavan et al., 2009), for boxed
ambients (Garralda et al., 2006), for the W3C standard description language for Web Services
CDL (Carbone et al., 2007; Web Services Choreography Working Group, 2002; Sparkes, 2006;
Honda et al., 2007), and for object-oriented programming languages.

The remaining of this section is devoted to the literature on session types in the object-oriented
paradigm.

The papers (Dezani-Ciancaglini et al., 2005; Dezani-Ciancaglini et al., 2006; Coppo et al.,
2007; Dezani-Ciancaglini et al., 2007; Dezani-Ciancaglini et al., 2009) discuss a multi-threaded
object-oriented calculus augmented with session primitives, which supports session names as
parameters of methods, spawning, iterative sessions and delegation.

The language Sing# (Fähndrich et al., 2006) is a variant of C# which combines session types
with ownership types (Clarke et al., 2001), supports message-based communication via a de-
signed heap area (shared memory), and allows interfaces between OS-modules to be described
as message passing conversations. CoreSing# (Bono et al., 2011) is a core calculus inspired by
the main features of Sing#. CoreSing# is equipped with a type system which uses session types
and a novel form of ownership types to ensure the absence of communication errors, memory
faults, and memory leaks in a communication model based on copyless message passing.

SJ (Hu et al., 2008) is an extension of Java with syntax for session types and structured commu-
nication operations. The main features of SJ are asynchronous message passing, delegation, ses-
sion subtyping, interleaving, class downloading, and failure handling. (Hu et al., 2010) presents
an extension of SJ which allows type-safe event-driven session programming.

(Gay et al., 2010) formalises a core distributed class-based object-oriented language with a
static type system that combines session-typed channels and a form of typestates. Each class



Deriving Session and Union Types for Objects 39

definition has a session type which specifies the possible sequences of method calls. Channels
can be stored in object fields, and separated methods implement parts of sessions. The availability
of methods depends on the state of objects.

The amalgamation of the notion of session-based communication with that of object-oriented
programming was first developed in (Drossopoulou et al., 2007). Characteristic of this design is
that channel names are only generated at run time, and as a consequence only delegation of a
session to another session within the same thread is expressible. Since the delegating and the del-
egated sessions can have different objects as receivers, this delegation is related for this respect
to the delegation of method execution in object based calculi (Lieberman, 1986). FSAM∨ ex-
tends the calculus of (Drossopoulou et al., 2007) with union types and with a cleaner and simpler
typing and operational semantics, since delegation in (Drossopoulou et al., 2007) requires ad hoc
run time constructors. In (Capecchi et al., 2009) generic types are added to a language/calculus
based on the approach of (Drossopoulou et al., 2007); we claim that union types fit better than
generic types our communication primitives based on classes of exchanged objects. We think that
the present type reconstruction cannot be easily adapted to the session types of (Capecchi et al.,
2009) by intrinsic difficulties of the type inference with generic types. Giachino in (Giachino,
2009) presents an extension of FSAM∨ with intersection and negation types which allows a
service-oriented interpretation of session overloading.

10. Conclusion

The core language FSAM∨, firstly presented in (Bettini et al., 2008a), showed how the addition
of union types to an object oriented language with session types enhances flexibility.

In this paper we presented the full formalisation of the language and we proved that the lan-
guage is type safe. Moreover, we presented an inference algorithm which gives an expression
its minimal type and calculates the constraints that must be satisfied in order to reconstruct the
related (unique) session type for each session declaration.

The language FSAM∨can be also viewed as a kernel proposal for generalising the standard
notion of session-less methods in the object-oriented framework, where method-call interaction
between two objects is limited to the initial sending of argument values for parameters. Once the
syntax of the expressions is extended to send/receive operations, a method definition can include
a sequence of interactions. The typechecking will be responsible for deriving session types for
methods, so determining the appropriate evaluation rule to be used for method invocation: an
empty session type will cause a standard semantics, while a non-empty one will use the evalua-
tion rules defined in the present paper.

The amalgamation of communication centred and object oriented programming, as it has been
developed in (Drossopoulou et al., 2007; Capecchi et al., 2009) and in the present paper, does not
allow to express naturally some common patterns of concurrent programming. Session nesting
is a strong limitation in the programming design, as for example the only way of having a “for-
warder” is by creating a new session for each forwarded message. Our restricted delegation does
not allow to write in a straightforward way a server that does load-balancing by delegation to
worker threads. We plan to remove these drawbacks presumably by adding explicit channels and
to extend our approach in various directions. In particular we plan to integrate this approach with
multi-party session communication (Carbone et al., 2008a; Bettini et al., 2008b), with access



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 40

and information flow control (Capecchi et al., 2010a; Capecchi et al., 2011) and with exception
handling (Capecchi et al., 2010b).

We plan to develop a prototype implementation of a language based on the approach presented
in this paper; a possible tool for the implementation of the run-time system of our language could
be IMC, http://imc-fi.sourceforge.net, a Java framework for implementing network ap-
plications, which provides reusable mechanisms to deal with the implementation of communi-
cation protocols. Indeed, IMC has already been used for implementing the run-time system of
calculi with session-based communication primitives (Bettini et al., 2008c). This would also al-
low us to embedd our type system for session types in a distributed setting; we do not see crucial
issues when transposing our session type setting to a distributed context, since our approach, as
stated in the Introduction, is agnostic w.r.t. to the remaining aspects of the language. Of course,
our session types do not deal with network failures, but only with the correctness of the commu-
nication protocols.

Acknowledgements We thank the anonymous referees for comments and suggestions, which
significantly contributed to improving the earlier draft.

References

Barbanera, F., Dezani-Ciancaglini, M., and de’Liguoro, U. (1995). Intersection and Union Types:
Syntax and Semantics. Information and Computation, 119:202–230.

Bettini, L., Capecchi, S., Dezani-Ciancaglini, M., Giachino, E., and Venneri, B. (2008a). Session
and Union Types for Object Oriented Programming. In Concurrency, Graphs and Models,
volume 5065 of LNCS, pages 659–680. Springer.

Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., and Yoshida, N.
(2008b). Global Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR’08,
volume 5201 of LNCS, pages 418–433. Springer.

Bettini, L., De Nicola, R., and Loreti, M. (2008c). Implementing Session Centered Calculi. In
COORDINATION’08, volume 5052 of LNCS, pages 17–32. Springer.

Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., and Leifer, J. J. (2009). Cryptographic
Protocol Synthesis and Verification for Multiparty Sessions. In CSF’09, pages 124–140.
IEEE Computer Society.

Bocchi, L., Honda, K., Tuosto, E., and Yoshida, N. (2010). A Theory of Design-by-Contract for
Distributed Multiparty Interactions. In CONCUR’10, volume 6269 of LNCS, pages 162–
176. Springer.

Bonelli, E. and Compagnoni, A. (2008). Multipoint Session Types for a Distributed Calculus. In
TGC’07, volume 4912 of LNCS, pages 240–256. Springer.

Bonelli, E., Compagnoni, A., and Gunter, E. (2005). Correspondence Assertions for Process
Synchronization in Concurrent Communications. Journal of Functional Programming,
15(2):219–248.

Bono, V., Messa, C., and Padovani, L. (2011). Typing Copyless Message Passing. In ESOP’11,
volume 6602 of LNCS, pages 57–76. Springer.

Capecchi, S., Castellani, I., and Dezani-Ciancaglini, M. (2011). Information Flow Safety in
Multiparty Sessions. In EXPRESS’11, volume 64 of EPTCS, pages 16–31.



Deriving Session and Union Types for Objects 41

Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., and Rezk, T. (2010a). Session Types for
Access and Information Flow Control. In CONCUR’10, volume 6269 of LNCS, pages 237–
252. Springer.

Capecchi, S., Coppo, M., Dezani-Ciancaglini, M., Drossopoulou, S., and Giachino, E. (2009).
Amalgamating Sessions and Methods in Object Oriented Languages with Generics. Theo-
retical Computer Science, 410:142–167.

Capecchi, S., Giachino, E., and Yoshida, N. (2010b). Global Escape in Multiparty Sessions. In
FSTTCS’10, volume 8 of LIPIcs, pages 338–351. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

Carbone, M., Honda, K., and Yoshida, N. (2007). Structured Communication-Centred Program-
ming for Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17. Springer.

Carbone, M., Honda, K., and Yoshida, N. (2008a). Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM Press.

Carbone, M., Honda, K., and Yoshida, N. (2008b). Structured Interactional Exceptions for Ses-
sion Types. In CONCUR’08, volume 5201 of LNCS, pages 402–417. Springer.

Castagna, G., De Nicola, R., and Varacca, D. (2008). Semantic Subtyping for the π-calculus.
Theoretical Computer Science, 398(1-3):217–242.

Castagna, G., Dezani-Ciancaglini, M., Giachino, E., and Padovani, L. (2009). Foundations of
Session Types. In PPDP’09, pages 219–230. ACM Press.

Clarke, D., Noble, J., and Potter, J. (2001). Simple Ownership Types for Object Containment. In
ECOOP’01, volume 2072 of LNCS, pages 53–76. Springer.

Coppo, M. and Dezani-Ciancaglini, M. (2009). Structured Communications with Concurrent
Constraints. In TGC’08, volume 5474 of LNCS, pages 104–125. Springer.

Coppo, M., Dezani-Ciancaglini, M., and Yoshida, N. (2007). Asynchronous Session Types and
Progress for Object-Oriented Languages. In FMOODS’07, volume 4468 of LNCS, pages
1–31. Springer.

Deniélou, P.-M. and Yoshida, N. (2010). Buffered Communication Analysis in Distributed Mul-
tiparty Sessions. In CONCUR’10, volume 6269 of LNCS, pages 343–357. Springer.

Dezani-Ciancaglini, M., de’ Liguoro, U., and Yoshida, N. (2008). On Progress for Structured
Communications. In TGC’07, volume 4912 of LNCS, pages 257–275. Springer.

Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E., and Yoshida, N. (2007). Bounded Ses-
sion Types for Object-Oriented Languages. In FMCO’06, volume 4709 of LNCS, pages
207–245. Springer.

Dezani-Ciancaglini, M., Drossopoulou, S., Mostrous, D., and Yoshida, N. (2009). Session Types
for Object-Oriented Languages. Information and Computation, 207(5):595–641.

Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., and Drossopoulou, S. (2006). Session Types
for Object-Oriented Languages. In ECOOP’06, volume 4067 of LNCS, pages 328–352.
Springer.

Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., and Drossopoulou, S. (2005). A Distributed
Object Oriented Language with Session Types. In TGC’05, volume 3705 of LNCS, pages
299–318. Springer.

Drossopoulou, S., Dezani-Ciancaglini, M., and Coppo, M. (2007). Amalgamating the Session
Types and the Object Oriented Programming Paradigms. Presented at MPOOL’07.



L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, B. Venneri 42

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G. C., Larus, J. R., and Levi, S.
(2006). Language Support for Fast and Reliable Message-based Communication in Singu-
larity OS. In EuroSys2006, ACM SIGOPS, pages 177–190. ACM Press.

Frisch, A., Castagna, G., and Benzaken, V. (2008). Semantic Subtyping: Dealing Set-
theoretically with Function, Union, Intersection, and Negation Types. Journal of the ACM,
55(4):1–64.

Gapeyev, V. and Pierce, B. C. (2003). Regular Object Types. In ECOOP’03, volume 2743 of
LNCS, pages 151–175. Springer.

Garralda, P., Compagnoni, A., and Dezani-Ciancaglini, M. (2006). BASS: Boxed Ambients with
Safe Sessions. In PPDP’06, pages 61–72. ACM Press.

Gay, S. (2008). Bounded Polymorphism in Session Types. Mathematical Structures in Computer
Science, 18(5):895–930.

Gay, S. and Hole, M. (2005). Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191–225.

Gay, S., Vasconcelos, V. T., and Ravara, A. (2003). Session Types for Inter-Process Communi-
cation. TR 2003–133, Department of Computing, University of Glasgow.

Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N., and Caldeira, A. Z. (2010). Modular
Session Types for Distributed Object-oriented Programming. In POPL’10, pages 299–312.
ACM Press.

Giachino, E. (2009). Session Types: Semantic Foundations and Object-Oriented Applications.
PhD thesis, Università degli Studi di Torino – Université Paris 7.

Honda, K. (1993). Types for Dyadic Interaction. In CONCUR’93, volume 715 of LNCS, pages
509–523. Springer.

Honda, K., Mostrous, D., and Yoshida, N. (2009). Global Principal Typing in Partially Com-
mutative Asynchronous Sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332.
Springer.

Honda, K., Vasconcelos, V. T., and Kubo, M. (1998). Language Primitives and Type Disciplines
for Structured Communication-based Programming. In ESOP’98, volume 1381 of LNCS,
pages 22–138. Springer.

Honda, K., Yoshida, N., and Carbone, M. (2007). Web Services, Mobile Processes and Types.
EATCS Bulletin, 91:160–188.

Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., and Honda, K. (2010). Type-Safe Eventful Ses-
sions in Java. In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer.

Hu, R., Yoshida, N., and Honda, K. (2008). Session-Based Distributed Programming in Java. In
ECOOP’08, volume 5142 of LNCS, pages 516–541. Springer.

Igarashi, A. and Nagira, H. (2007). Union Types for Object Oriented Programming. Journal of
Object Technology, 6(2):31–52.

Igarashi, A., Pierce, B. C., and Wadler, P. (2001). Featherweight Java: a Minimal Core Calculus
for Java and GJ. ACM TOPLAS, 23(3):396–450.

Lieberman, H. (1986). Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems. In OOPSLA’86, volume 21(11), pages 214–223. ACM Press.

Mostrous, D. and Yoshida, N. (2007). Two Sessions Typing Systems for Higher-Order Mobile
Processes. In TLCA’07, volume 4583 of LNCS, pages 321–335. Springer.

Mostrous, D. and Yoshida, N. (2009). Session-Based Communication Optimisation for Higher-
Order Mobile Processes. In TLCA’09, volume 5608 of LNCS, pages 203–218. Springer.



Deriving Session and Union Types for Objects 43

Pierce, B. C. (2002). Types and Programming Languages. MIT Press.
Sparkes, S. (2006). Conversation with Steve Ross-Talbot. ACM Queue, 4(2):14–23.
Takeuchi, K., Honda, K., and Kubo, M. (1994). An Interaction-based Language and its Typing

System. In PARLE’94, volume 817 of LNCS, pages 398–413. Springer.
Vallecillo, A., Vasconcelos, V. T., and Ravara, A. (2002). Typing the Behavior of Objects and

Components using Session Types. In FOCLASA’02, volume 68(3) of ENTCS, pages 439–
456. Elsevier.

Vasconcelos, V. T., Gay, S., and Ravara, A. (2006). Typechecking a Multithreaded Functional
Language with Session Types. Theorical Computer Science, 368(1-2):64–87.

Web Services Choreography Working Group (2002). Web Services Choreography Description
Language. http://www.w3.org/2002/ws/chor/.

Yoshida, N., Deniélou, P.-M., Bejleri, A., and Hu, R. (2010). Parameterised Multiparty Session
Types. In FOSSACS’10, volume 6014 of LNCS, pages 128–145. Springer.

Yoshida, N. and Vasconcelos, V. T. (2007). Language Primitives and Type Discipline for Struc-
tured Communication-Based Programming Revisited: Two Systems for Higher-Order Ses-
sion Communication. In SecRet’06, volume 171(4) of ENTCS, pages 73–93. Elsevier.


