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Abstract 

Two types of carbonaceous materials, graphite oxide (GOx) and thermally reduced graphite oxide 

(TRGO) were tested in the dyes removal from water. Two common synthetic aquatic pollutants, 

Orange II, an azo dye, and Rhodamine B, a xanthene dye, were selected as probe molecules and 

their bleaching was evaluated. 

We observed that the two materials act in a different way when dispersed in aqueous solution: 

TRGO acts as a good adsorbent material whereas GOx can be used as an efficient photosensitizer. 

Dye removal is almost complete in the dark in the presence of TRGO and within few minutes a 

steady-state concentration was achieved. On the contrary, in the case of GOx, adsorption is limited 

to almost 10%-20% for both dyes, but this material is able to induce dyes photodegradation and 

almost 80% of the residual dyes are abated within 5 hours of irradiation under simulated solar light. 

When the graphene derivatives were dispersed in UV-cured acrylic polymeric films, the reduction 

of the surface area dropped the adsorption properties of TRGO, whereas the photosensitizer 

properties of GOx were maintained and the bleaching of the two dyes was achieved.  

 

Keywords: graphite oxide, thermally reduced graphite oxide, dyes, UV-curing, solar light 
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1. INTRODUCTION 

 

Dyes are among common synthetic aquatic pollutants of possible environmental concern, because 

of their extensive, widespread use. These compounds are quite difficult to remove from water since 

they are resistant to light and oxidizing agents. Their presence in wastewaters has to be carefully 

considered, as not even biological degradation was effective in their elimination, the efficiency 

largely depending on the dye structure. Biodegradation of dyes is in general not efficient enough, 

due to the presence of complex and stable aromatic structures. For these reasons, the most common 

approach for water treatment involves the use of Advanced Oxidation Processes in order to obtain 

the complete abatement of dyes and possibly the mineralization of the organic carbon. Among these 

technologies, TiO2 mediated photocatalysis has been demonstrated to be efficient in decolorize dye 

effluent in the presence of UV–Visible light. Many papers in the last years dealt in particularly with 

the TiO2 assisted degradation of anthraquinone, quinoline and azo dyes [1-8], showing good results 

in both dye bleaching and mineralization.  

The use of graphene was recently proposed by several groups for the preparation of highly 

photoactive composite materials based on titanium dioxide for the catalytic oxidation of organic 

pollutants in aqueous solutions [9-12], in order to exploit the high charge mobility of graphene and 

to maximize the photocatalytic efficiency by hindering the process of charge recombination. 

Furthermore, it is well known that the band-gap of graphene derivatives, and therefore their 

photosensitizer properties, can be tuned by modifying the degree of oxidation, with a change of the 

optical gap from 3.5 eV down to 1 eV by increasing the C/O ratio. Likewise, the ability of graphite 

oxide (GOx) to act as photosensitizer when dispersed in aqueous solution or dispersed in a 

polymeric film has been very recently proved [13,14].  

An alternative method to remove pollutants from water is the adsorption process, which has been 

proved to be reliable for dye treatment [15,16]; several materials, i.e. silica aerogels [17], chitosan 

[18] and graphene [19] have been proposed as efficient absorbent materials for dye removal from 

water. Concerning graphene, the interaction between the contaminant and the adsorbent material 

can be controlled by several mechanisms, including electrostatic attraction and - stacking. 

Conversely, when employing graphite oxide as adsorbant material, surficial charge has also to be 

considering. In fact, the presence of surficial adsorption capacity is strongly linked to the presence 

of surficial negatively charged groups, that are able to promote the adsorption of cationic pollutants 

[20-22], but may hinder the adsorption of anionic pollutants.  

Taking into account the above reported literature and our previous experience in this field, we have 

investigated the role played by graphite oxide (GOx) and thermally reduced graphite oxide (TRGO) 
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in the removal from water of an anionic dye, Orange II, and a xanthene dye, Rhodamine B, holding 

both positively and negatively charged moieties. We try to exploit the key peculiarities of these 

materials to obtain materials tunable in the way of action combining the photoactivity of GOx, that 

shows a typical band-gap of semiconductor, and the high adsorption capability of TRGO. 

Furthermore we present here for the first time the possibility to use them not only dispersed in 

aqueous solution but also within a polymeric coating. 

 

 

2. EXPERIMENTAL 

 

2.1. Materials 

Orange II (OII) and Rhodamine B (RB) were purchased from Aldrich. Thermally reduced graphite 

oxide  (TRGO) were synthesized by the reduction and thermal exfoliation of graphite oxide at 1000 

°C for 30 sec. Graphite oxide (GOx) was previously obtained using natural graphite flakes (purum 

powder B0.1 mm, Sigma-Aldrich) following the Brodie method. GOx produced through this 

method leads to the formation of single graphene layers or stacks of up to seven sheets with 

hydroxyl, carbonyl, and epoxy groups on their surface [23]. A full description of the synthesis and 

characterization of the thermally reduced graphite oxide (TRGO) can be found elsewhere [24].  

The acrylic resin polyethyleneglycol diacrylate (PEGDA, Aldrich, Mw ≈ 740 g/mol, density = 1.12 

g/cm
3
) was used to prepare the crosslinked films in the presence of 2 wt% of the photoinitiator 2-

hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur® 1173, BASF®) with respect to the acrylic 

resin in order to promote the UV-curing process. 

All aqueous solutions were prepared with ultrapure water (Millipore MilliQ
TM

).  

 

2.2. Material characterization 

Raman spectroscopy was performed on a Renishaw Invia Raman Microscope, using an argon laser 

with at 514.5 nm excitation wavelength. The carbon nanoparticles were placed on a glass slide and 

air-dried before the measurements were taken. This technique allows analyzing the structural 

quality of graphitic materials since the amount of ordering and degree of sp
2
 and sp

3
 bonding 

provides a unique Raman “fingerprint” for each carbon structure. 

The morphology of the graphene was observed using a Philips XL30 environmental scanning 

electron microscopy (ESEM) at 15 kV and by transmission electron microscopy (TEM). TEM 

images were obtained with a Jeol JEM 2100 TEM apparatus using an accelerating voltage of 200 
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kV. The samples were prepared by drop-casting a dilute suspension in THF onto a carbon grid and 

allowing the solvent to evaporate. 

 

2.3. Investigation using dispersions in aqueous solution  

For the photocatalysis experiments, the dyes were irradiated under continuous stirring in the 

presence of carbonaceous materials (5 mL total volume) in closed Pyrex® cells with a Xenon lamp 

(1500W, Solarbox) equipped with a 400 nm cut-off filter. For the adsorption investigation the dyes 

were put in contact in the dark, under continuous stirring, with the adsorbent materials. 

The dyes bleaching at different irradiation time (for the photocatalysis) and at different contact time 

(for the adsorption), were followed by means of Varian CARY 100 Scan UV-Vis 

spectrophotometer using Suprasil quartz cuvettes with a path length of 1 cm. The 

spectrophotometric determination was done at 552 nm for RB and at 486 nm for OII.  

 

2.4. Investigation using PEGDA films 

For dyes removal study using PEGDA-UV cured films, the carbonaceous filler was added to the 

epoxy resin in order to prepare hybrid materials with different percentages of GOx and/or TRGO 

respect to the epoxy resin. The mixtures were stirred with Ultraturrex until a uniform dispersion was 

achieved. The photoinitiator was added at 2 wt% in each formulations, coated on glass substrate and 

UV irradiated under nitrogen atmosphere, by means of a UV-lamp, with a light intensity on the 

surface of the sample of about 30 mW/cm
2
. Free-standing UV cured films of about 100 µm were 

achieved. The kinetics of the photopolymerization was determined, both for the pristine and filled 

formulations, by real time FT-IR spectroscopy employing a Thermo-Nicolet 5700 instrument. The 

liquid formulations were coated onto a silicon wafer with a thickness of 50 m and exposed 

simultaneously to the UV light (medium pressure mercury lamp Hamamatsu LC8, light intensity on 

the surface of the sample of about 30 mW/cm
2
), which induces the polymerization, and to the IR 

beam, which analyzes in situ the extent of the reaction. Acrylic double bond conversion was 

followed by monitoring the decrease in the absorbance due to acrylic double bonds centered at 

around 1640 cm
-1

. The gel content of UV-cured acrylic films was determined by measuring the 

weight loss after 24 hours extraction with chloroform at room temperature, according to the 

standard test method ASTM D2765-84. DSC measurements were performed on cured films under 

nitrogen flux, in the range between -120 °C to 80 °C, with a DSCQ 1000 of TA Instruments 

equipped with a low temperature probe. 
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The acrylic crosslinked films were immersed into the dyes aqueous solutions and the color 

disappearance was analyzed, at different times, by means of UV–Vis spectrophotometer as 

previously described. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Material  characterization  

The XRD and XPS analysis were already published [24, 25], where the authors named TRGO as 

functionalized graphite sheets (FGS) and GOx as GO; hereafter, a brief discussion concerning these 

results follows.  

XRD measurements show that natural graphite presents a diffraction maximum at 2θ=26° 

corresponding to an interlayer spacing d=0.34 nm. After the oxidation process, the value of the 

natural graphite (NG) diffraction maximum decreases to 2θ =17° (d=0.52 nm) due to the 

intercalation of oxygen groups on the basal plane. After the thermal reduction of GOx, TRGO 

presents a broad and weak maximum around 2θ=24° indicating that most of the TRGO material 

consists on exfoliated graphite [24].  

XPS was employed to analyse the nature and the relative amount of oxygen containing functional 

groups present on the graphene surface. The C1s spectra can be deconvoluted in 4 symmetrical 

components. That is, the main intense peak at 284.8 eV is assigned to sp
2
 and sp

3
 carbon atoms, 

while the peaks on the region 286.3-286.5 eV and 288.0-289.0 eV correspond to C-O-C and O-C=O 

functional groups, respectively. It is worth noting that the peak corresponding to the signature of 

graphitic carbon (291.0-291.5 eV) is still present in the TRGO sample. This peak is known as the 

shake-up satellite of the 284.8 eV and it is characteristic of graphitic systems, which means that the 

exfoliation process at high temperatures is able to restore the graphitic structure. Although the C1s 

spectrum provides information about the plausible functional groups on TRGO, the O1s spectrum 

complements the later. Thus, the deconvolution of O1s spectrum resulted in two main peaks: one at 

531.5 eV which corresponds to O=C-O groups and other at 533.7 eV, which is assigned to C-O-C 

groups [25]. 
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Figure 1. Raman spectra of the synthesis path: natural graphite (NG), graphite oxide (GOx) and 

thermally reduced graphite oxide (TRGO).  

The significant structural changes occurring during the oxidation-reduction processing from NG to 

GOx, and then to TRGO, are reflected in their Raman spectra which are shown in Figure 1.  

The Raman spectrum of the pristine graphite displays a prominent G peak as the only feature at 

1573 cm
-1

, corresponding to the first-order scattering of the E2g phonon mode of sp
2
 C atoms. 

Specifically, from NG to GOx, the G band is broadened significantly and displays a shift to higher 

Raman shift (from 1573 cm
-1

 to 1588 cm
-1

) since GOx exhibit higher disorder than NG as a result of 

the oxidation process. In addition, the appearance of a prominent D band at 1348 cm
-1

 indicates the 

reduction in size of the in-plane sp
2
 domains, possibly due to the extensive oxidation process. 

Raman spectrum of the TRGO also contains both D and G bands (1361 and 1588 cm
-1

, 

respectively), with a decreased ID/IG intensity ratio compared to GOx which is attributed to a “self-

healing” behaviour during the thermal expansion [26] and the re-structuration of the aromatic 

structure.  
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Figure 2. SEM images of thermally reduced graphite oxide (TRGO)  

Scanning and transmission electron microscopy images (Figure 2 and 3) revealed that the 

functionalized graphene sheets are formed by randomly aggregated and very thin crumpled sheets. 

 

 

 

 

 

 

 

 

Figure 3. TEM images of thermally reduced graphite oxide (TRGO) 

 

a) b) 

a) 
b) 

c) d) 
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TEM images (Figure 3) also show the characteristic wrinkled structure of the particle due to the 

thermal shock to which it has been subjected. TRGO are composed of approximately 5-6 individual 

sheets with an interlayer distance about 0.6 nm, thus corroborating the XRD results. 

 

3.2. Removal of dyes 

OII and RB were used as probe molecules to evaluate both the adsorption in the dark and the 

photoactivity of carbon nanoparticles (CNPs). At first the carbonaceous materials were dispersed in 

water and the dyes adsorption and photodegradation were evaluated over time. Secondly, these 

materials were dispersed within a UV-cured polymeric film and the occurrence of adsorption and 

photodegradation processes were investigated.  

 

3.2.1. Carbonaceous materials dispersed in aqueous solution 

Adsorption in the dark of OII and RB with both CNPs was performed. In all cases, adsorption 

rapidly occurred and within few seconds a steady-state concentration was achieved (data not 

shown). Table 1 collects all data obtained with TRGO and GOx adsorption process is particularly 

important when employing TRGO toward RB that is almost completely removed within 1 minute. 

Adsorption trials in the presence of different concentration of RB, 2.5 mg L
-1

 and 5 mg L
-1

, and 

TRGO, from 12.5 mg L
-1

 to 50 mg L
-1

 were performed, and, as expected, the percentage of 

adsorption increased with the amount of TRGO. However, it is interesting to note that the removal 

of RB via adsorption is almost complete, even with low material amount. 

 

Table 1. Percentages of dyes adsorbed on the carbonaceous material (measured after 1 minute of 

equilibration in the dark); n.p. indicates not performed trials. 

 TRGO 12.5 mg L
-1

 TRGO 25 mg L
-1

 TRGO 50 mg L
-1

 GOx 50 mg L
-1

 

RB 2.5 mg L
-1

 70 % 90 % 95 % n.p. 

5 mg L
-1

 40 % 80 % 90 % 10 % 

OII 5 mg L
-1

 n.p. 60 % n.p. n.p. 

20 mg L
-1

 10 % n.p. 60 % 20 % 

RB + OII RB: 5 mg L
-1

 

OII: 20 mg L
-1

 

n.p. n.p. 80 % 

40 % 

5 % 

0 % 

 

In the case of OII adsorption on the carbonaceous material rapidly occurred as well, but it was 

lower than RB; for example, in the presence of 50 mg L
-1

 TRGO almost 60% of 20 mg L
-1

 OII was 

removed within 1 minute. It has to be noted that adsorption on TRGO is still an important 

mechanism for dyes removal, also in the presence of a mixture of the two dyes (Table 1). 

Conversely, in the case of GOx (50 mg L
-1

), adsorption is limited to almost 10%-20% for both dyes 
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and it decreased in the presence of the dyes mixture. These data are not surprisingly; TRGO seems 

to play a key role in dyes removal via adsorption mechanism due to its high surface area, while with 

GOx despite its high surface area, adsorption capacity is strongly linked to the presence of surficial 

negatively charged groups, that are able to promote the adsorption of cationic pollutants [20, 22], 

but in our case exerted a detrimental effect. In fact, OII in our experimental conditions (pH=6) is 

negatively charged, so prevailing the repulsion effect and therefore adsorption is hindered. RB, even 

if contains a cationic group, also possess a carboxylic group (pKa=3.1) that compete with 

adsorption process and induce repulsion, so justifying the reduced amount of removal via 

adsorption [21, 27]. 

After use, TRGO can be recovered from aqueous solution by filtration and reused; the adsorption 

and recovery processes are illustrated in Figure 4. After the dye transfer from water to TRGO the 

suspension was filtered through a cellulose acetate 0.45 m pore diameters filter and, afterwards, 

the adsorbed dye can be removed from the filter by ethanol extraction; the re-suspended TRGO 

exhibited a similar percentage of removal by adsorption as pristine material.  

 

 

 

Figure 4. Illustration of RB (5 mg L
-1

) adsorption on TRGO (50 mg L
-1

) and the recovery of the 

carbonaceous adsorbent material for reuse in a new dye-treatment.  

The results reported hereafter concern trials performed fixing the concentration of RB at 5 mg L
-1

 

and the concentration of OII at 20 mg L
-1

.  

In Figures 5 the disappearance curves for RB (a) and OII (b) in the presence of GOx (50 mg L
-1

) or 

TRGO (50 mg L
-1

) as a function of the treatment time are shown; for comparison purpose in Figure 

5a also the curve concerning the adsorption in the dark of RB on TRGO is reported. The y-axis 

shows the ratio between the absorbance at a certain time and the absorbance at time zero; the 

Abs/Abs0 at time zero corresponds to 100% of the initial dye concentration in the case of direct 
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photolysis, whereas in the other cases matches with the fraction not adsorbed on the carbonaceous 

material, i.e. 10% for the RB with TRGO, about 90% for the RB with GOx, 40% for the OII with 

TRGO and about 80% for the OII with GOx (see data collected in Table 1).  

Direct photolysis was limited for OII within the treatment time considered (below 20% after 6 

hours), whereas it contributed to RB degradation and almost 50% was abated in the considered 

time.  

Following the addition of CNPs, RB in the presence of TRGO is chiefly (and instantly, 

approximately 1 min) removed by adsorption; the remaining amount (almost 10%, 0.5 mg L
-1

) 

could be eliminated via adsorption in the dark within 30 min or via adsorption/degradation under 

visible light in 15 min. This slight difference could be ascribed to a direct photolysis process 

contribution rather than to a photoinduced process mediated by TRGO, as due its almost zero band-

gap TRGO is known to be unable to induce a degradation. As expected, OII is initially partially 

adsorbed on TRGO (60%), but no further adsorption occurs in the dark or in the dark/light; since 

direct photolysis is limited, no photo-contribution to the OII degradation is involved in the 

considered time. Therefore, considering the similarity between the dark adsorption and the 

irradiation curve, only the second one is reported in Figure 5b.  

In addition, it has to be underlined that the presence of TRGO reduces the effect of the direct 

photolysis on both molecules; this behavior is probably due to the darkening effect of TRGO that 

restricted the light penetration in the aqueous solution.  

  

Figure 5. RB (initial concentration 5 mg L
-1

, a) and OII (initial concentration 20 mg L
-1

, b) 

disappearance curves as a function of time. Direct photolysis (), 50 mg L
-1

 TRGO dark adsorption 

profile (), irradiations performed in the presence of 50 mg L
-1

 TRGO () and GOx (). 

Conversely, GOx is able to induce dyes photodegradation and almost 80% of the residual dyes (90 

% of initial RB, and 80 % of initial OII) are abated within 5 hours of irradiation under simulated 
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solar light; in this system, the corresponding pseudo-first order rate constants (k) are 0.57 h
-1

 for OII 

and 4.01 h
-1

 for RB. 

This behavior has been already assessed on the phenol degradation [14] and could be attributed to 

the different band-gap of the carbonaceous materials, as the band-gap of graphene derivatives can 

be tuned by modifying the degree of oxidation, with a change of the optical gap from 3.5 eV down 

to 1 eV by increasing the C/O ratio [28];  therefore, GOx shows typical band-gap of semiconductor.  

We try to exploit the key peculiarities of these materials to tune the way of action of these materials 

by employing TRGO and GO together. A mixture of the two dyes was treated using a combination 

of the two materials tested employing different ratios; the best performance was achieved when 

GOx:TRGO ratio is close to 1 and the results are plotted in Figure 6.  

The Abs/Abs0 at time zero corresponds to the fraction not adsorbed on the carbonaceous materials, 

i.e. 20% for RB and 60% for OII; therefore the instantaneous adsorption also in this case was 

observed. The residual dyes (about 1 mg L
-1

 of RB and 12 mg L
-1

 of OII) disappearance reached 

70% for RB and 40% for OII after three hours of irradiation. In this case, compare to trial on 

separate dyes, the corresponding pseudo-first order rate constants increase for OII (from 0.57 to 

2.14 h
-1

) and decrease for RB (from and 4.01 to 2.67 h
-1

). These results show that a mixture of 

TRGO and GOx allowed the exploitation of the adsorbent and the photosensitizer properties of the 

two materials to obtain dyes removal. 

 

Figure 6. RB (initial concentration 5 mg L
-1

, ) and OII (initial concentration 20 mg L
-1

, ) 

disappearance curves as a function of irradiation time. The two dyes were irradiated in mixture in 

the presence of GOx (50 mg L
-1

) and TRGO (50 mg L
-1

). 
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3.2. Carbonaceous materials dispersed in PEGDA crosslinked films 

The possibility to have the material in film form rather than powder dispersion into aqueous 

solution allows a reduction of the costs of disposal and recovery of the material at the end of the 

process.  

For this reason, the second step of this investigation involved the dispersion of GOx and/or TRGO 

into an UV-curable acrylic resin and the crosslinked films were investigated in the dyes removal 

from water.  

The addition of the carbonaceous filler in the photocurable PEGDA resin was varied in order to 

obtain different types of materials (see Table 2). The UV-curing process was investigated via RT-

FTIR analysis; notwithstanding the possible shielding effect of the carbon fillers towards UV-light, 

the photo-curing process and final acrylic double bond conversion are not significantly affected, and 

it is possible to achieve fully cured films, as already reported in previous investigation [29-31]. 

High gel contents (above 98%, see Table 2) were measured for all the cured films, as an indication 

of the formation of a tight crosslinked network and the absence of extractable monomers or 

oligomers in the cured system. Differential scanning calorimetry (DSC) was performed on cured 

films in order to evaluate the glass transition temperature (Tg, Table 2). It is possible to observe an 

increase of Tg by increasing the filler content into the UV-curable formulations, in accordance with 

the previous data reported in literature [30], and attributable to an hindering of the mobility of the 

PEGDA network by the carbonaceous filler with a consequent increase of Tg. Nevertheless, the 

crosslinked PEGDA films maintained its elastomeric behavior with a Tg values much below room 

temperature also in the presence of the fillers.  

 

Table 2. Properties of PEGDA based UV-curing films. 

Sample Conversion (%)
1
 Gel Content (%)

2
 Tg (°C)

3
 

PEGDA 98 100 -60 

PEGDA + 1 wt% GOx 98 99 -55 

PEGDA + 1 wt% TRGO 93 99 -55 

1
 Determined via FT-IR following the decrease of the acrylic double bond peak centered at 1640 cm

-1
. Radical 

photoinitiator concentration 2 wt%. Light intensity 30 mW/cm
2
. Film thickness 50 µm. 

2
 Measured after 24 hours extraction in chloroform, ASTM D2765-84. 

3
 Measured by DSC on crosslinked films. Film thickness 50 m. 
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The efficiency of the crosslinked films in dyes removal either via adsorption or photodegradation 

was evaluated on OII and/or RB. A blank experiment was performed as well with the pristine 

acrylic film, evidencing a negligible dyes disappearance.  

 

Figure 7. RB (5 mg L
-1

) adsorption profile as a function of contact time with PEGDA UV-cured 

films containing 1 wt% TRGO.  

 

Differently from what occurring with materials dispersed in aqueous solution, the kinetic of 

adsorption in the dark in the presence PEGDA UV-cured film containing 1 wt% TRGO becomes 

very slow and RB removal via adsorption is achieved only after very long time (20 days), as 

perceived by Figure 7. This result was expected, as the dispersion of TRGO within the polymeric 

films caused a reduction of the exposed superficial area.   

Preliminary experiments were performed in the presence of films filled with different amount of 

CNPs and efficiency was maxima with 1 wt% of CNPs. RB and OII disappearance curves obtained 

under solar light irradiation in the presence of films containing 1 wt% GOx or a mixture of 1 wt% 

GOx and 1 wt% TRGO are reported in Figures 8; for comparison purpose, also the adsorption 

profiles in the presence of film containing 1 wt% TRGO are shown. As already reported in Figure 5 

for RB, the adsorption on TRGO within 24 hours is negligible; therefore, the Abs/Abs0 at time zero 

plotted in Figure 5 corresponds to 100% of the initial dye concentration. Irradiation experiments in 

the presence of TRGO films were not performed, due to the already discussed zero band-gap. 

When employing 1 wt% of GOx film, complete bleaching was achieved within about 22 hours of 

irradiation for both RB and OII. When both CNPs are dispersed into a polymeric matrix, the 

removal of the dye can only be achieved via photodegradation. The constant rate are lowered to 



16 
 

0.24 and 0.12 h
-1

 for RB and OII, respectively. It has to be noted that not only the synergistic effect 

observed when dispersed in water was lost, but the combined addition of GOx/TRGO within the 

film exhibits a detrimental effect, reasonably attributable to a darkening effect exerted by TRGO.  

 

Figure 8. RB (5 mg L
-1

, a) and OII (20 mg L
-1

, b) disappearance curves as a function of time. 

Adsorption profile in the dark in the presence of PEGDA UV-cured films containing 1 wt% TRGO 

() and photobleaching profiles in the presence of films containing 1 wt% GOx (▲) and 1 wt% 

GOx + 1 wt% TRGO (). 

 

4. CONCLUSIONS 

 

In this paper we report the use of graphite oxide (GOx) and/or thermally reduced graphite oxide 

(TRGO) for the removal of dyes from water. We exploited the key peculiarities of the photoactivity 

of GOx and the high adsorption capability of TRGO. We demonstrated that TRGO acts as a good 

adsorbent material when dispersed in aqueous solution whereas GOx can be used as an efficient 

photosensitizer. 

Dye removal is almost complete in the dark in the presence of TRGO and within few minutes a 

steady-state concentration was achieved, with a higher efficiency in Rhodamine B (RB) removal 

with respect to Orange II (OII). Similar results were also obtained in the presence of a mixture of 

the two dyes showing that TRGO plays a key role in dyes removal via adsorption mechanism due to 

its high surface area. 

On the contrary, in the case of GOx, adsorption is limited to almost 10%-20% for both dyes, but 

this material is able to induce efficient dyes photodegradation and almost 80% of the residual dyes 

(90 % of initial RB, and 80 % of initial OII) are abated within 5 hours of irradiation under simulated 

solar light. It has also to underlined that the irradiation experiments were performed with simulated 
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solar light; GOx could be used to improve the degradation of RB, which already was degraded by 

direct photolysis, and to promote the OII abatement, exploiting the solar radiation, the cheapest and 

environmental friendly energy resource. 

Furthermore we present here, for the first time, the possibility to use these carbon nanoparticles 

(CNPs) not only dispersed in aqueous solution but also within an UV-cured polymeric coating. 

The UV-curing process was investigated when the CNPs were added in the UV-curable acrylic 

resin, the crosslinked films were fully characterized and the efficiency in dyes removal either via 

adsorption or photodegradation was evaluated. When the graphene derivatives were dispersed in 

UV-cured acrylic polymeric films, the reduction of the surface area dropped the adsorption 

properties of TRGO, whereas the photosensitizer properties of GOx were maintained and the 

bleaching of the two dyes was achieved.  
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