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Abstract: Clinical practice guidelines are widely used to support physicians, but only on individual pathologies. On 
the other hand, the treatment of patients affected by multiple diseases is one of the main challenges for the 
modern healthcare. This requires the development of new methodologies, supporting physicians in the 
detection of interactions between guidelines. In a previous work, we proposed a flexible and user-driven 
approach, helping physicians in the detection of possible interactions between guidelines, supporting 
focusing and analysis at multiple levels of abstractions. However, it did not cope with the fact that 
interactions occur in time. For instance, the effects of two actions may potentially conflict, but practical 
conflicts happen only if such effects overlap in time. In this paper, we extend the ontological model to deal 
with the temporal aspects, and the detection algorithms to cope with them. Different types of facilities are 
provided to physicians, supporting the analysis of interactions between both guidelines “per se”, and the 
concrete application of guidelines to specific patients. In both cases, different temporal facilities are 
provided to user physicians, based on Artificial Intelligence temporal reasoning techniques. 

1. INTRODUCTION 

The research about computer-interpretable 
clinical guidelines (henceforth CIGs) has gained a 
relevant role within the Medical Informatics 
community. In the last twenty years, several 
different approaches and projects have been 
developed to create domain-independent computer-
assisted tools for managing, acquiring, representing 
and executing CIGs (consider, e.g., the collections 
(Gordon & Christensen 1995; Fridsma 2001; Ten 
Teije et al. 2008; Peleg 2013)). 

 
 By definition, clinical guidelines address 

specific clinical circumstances (i.e., specific 
diseases). However, unfortunately, specific patients 
may be affected by more than one disease. The 
treatment of comorbid patients (i.e., patients affected 
by multiple diseases) is one of the main challenges 
for the modern health care, also due to the aging of 
population, and the consequent increase of chronic 
diseases. This sets up the urgent need of developing 
ways of merging multiple single-disease 
interventions to provide professionals’ assistance to 
comorbid patients (Riaño & Collado 2013). 

However, though some CIGs covering 
frequently occurring comorbidities might be 
devised, the approach of considering all the possible 
combinations of pathologies does not scale up. Thus, 
there is a need for formal methodologies to support 
physicians in the detection and resolution of 
interactions between guidelines, and, ultimately, in 
the process of merging two or more guidelines. This 
is an increasingly “hot topic” within the Medical 
Informatics community, and several approaches 
have been proposed in the last years (see Section 5).  

 
In a recent work in this context, we faced a 

central issue in the management of multiple CIGs, 
namely the interaction detection. In (Piovesan et al. 
2014), we identified three different knowledge levels 
at which interactions might occur: (i) level of the 
intentions of the CIG actions, (ii) level of the goals 
of the drug categories (recommended by the 
pharmaceutical actions in the CIGs), and (iii) level 
of drugs. We have also pointed out that, in turn, 
levels (i) and (ii) may be structured at different 
levels of detail. In (Piovesan et al. 2014), we have 
also proposed an ontological representation for the 
interactions at the different levels, as well as support 



 

for interactive physician-driven analysis of the 
interactions, at the different levels.  

Nonetheless, to the best of our knowledge, until 
now no CIG approach in the literature has focused 
on the temporal aspects of interactions. Indeed, a 
non-temporal analysis can detect a possible 
interaction between two actions in different CIGs, 
identifying, e.g., a potential conflict between their 
intentions (or effects). However, as long as no 
temporal analysis is performed, such an interaction 
is only “hypothetical”: actual interactions occur (and 
the user physician should consider it) only in the 
case that the conflicting intentions or effects overlap 
in time. The approach in this paper is, to the best of 
our knowledge, the first one starting to face such a 
challenging problem. Indeed, we aim at supporting 
physicians in the temporal analysis of interactions in 
both “abstract” analysis of CIGs (not considering 
patient data) and in the analysis during the execution 
on specific patients. 

 
In this paper, we consider time information 

about action execution, effects and goals. After 
introducing some preliminaries (Section 2), we 
propose a representation formalism to model such 
information (Section 3). Unfortunately, the only 
representation of such knowledge is not enough to 
support interaction detection: to this purpose, we 
propose correct and complete temporal constraint 
propagation techniques (Section 4). In particular, on 
top of the temporal reasoning engine, we provide 
users with different temporal facilities, to support 
different forms of interaction detection.  Finally, 
Section 5 contains related works and conclusions. 

2. PRELIMINARIES 

Though the methodology we propose in this 
paper is mostly system-independent, we based our 
approach on GLARE (Subsection 2.1). In this 
preliminary section, we also briefly describe our 
previous work about comorbidity detection. In 
Subsection 2.2 we summarize an ontology for 
interactions, and in Subsection 2.3 we mention a 
(non-temporal) detection algorithm. 

2.1 GLARE 

GLARE (Guideline Acquisition, Representation 
and Execution) has been built starting from 1997 in 
a long-term cooperation between the Department of 
Computer Science of the University of Piemonte 
Orientale, Alessandria, Italy, and the Azienda 

Ospedaliera San Giovanni Battista in Turin (one of 
the largest hospitals in Italy).  

GLARE supports the use of advanced artificial 
intelligence techniques and decision support 
techniques to assist physicians in merging two or 
more guidelines developed for the treatment of 
individual diseases.  

 
In this paper, we extend GLARE to cope with 

comorbidities. Our goal is twofold: on a side, we 
aim to build a system able to, during the merging 
process, draw “intelligent” conclusions starting from 
the knowledge about CIGs; on the other, the system 
must be “collaborative”. This last desideratum is due 
to the stance that, when facing decision making in 
medical informatics, black-box tools that take 
decisions for her/him could be not very useful for 
the user physician. Instead, a tool that guides 
her/him in the decision-making process, helping 
her/him to integrate also the knowledge that is not 
modelled in the system but that (s)he owns, is more 
useful and could improve the quality of the decisions 
obtained. This is also the underlying philosophy of 
the mixed initiative approach in artificial intelligence 
and human-computer interaction. In fact, Horvitz 
(1999) defines mixed initiative as “methods that 
explicitly support an efficient, natural interleaving of 
contributions by users and automated services 
aimed at converging on solutions to problems”.  

  
In GLARE, a CIG can be represented as a 

hierarchical graph, where nodes are the actions to be 
executed, and arcs are the control relations linking 
them. GLARE distinguishes between atomic and 
composite actions (plans), where atomic actions 
represent simple steps in a CIG, and plans represent 
actions that can be defined in terms of their 
components via the has-part relation.  

 
GLARE adopts five types of atomic actions:  

§ work actions, i.e. actions that describe a 
procedure which must be executed at a 
given point of the CIG,   

§ pharmaceutical actions, specifying a 
drug (or drug category) to be 
administered to the patient, and the 
dosage,  

§ decision actions, used to model the 
selection among different alternatives,  

§ query actions, i.e. requests of 
information (typically of patient’s 
parameters), 

§ conclusions, which explicitly identify 
the output of a decision action.  

In this paper, we focus on composite actions, and 
work and pharmaceutical atomic actions.  



 

Actions in a CIG are connected through control 
relations. Control relations establish which actions 
can be executed next and in what order. In 
particular, the sequence relation explicitly 
establishes what the following action to be executed 
is; the alternative relation describes which 
alternative paths stem from a decision action, and 
the repetition relation states that an action has to be 
repeated several times. The constrained relation is 
used in order to express more complex temporal 
relations between actions. In GLARE it is possible 
to express precise and imprecise dates, durations, 
delays, and complex forms of repetitions (Anselma 
et al. 2006). For the sake of simplicity, in this paper 
we adopt an easier approach for repetitions: we 
suppose that the exact number of repetitions of 
repeated actions is known, and explicitly express the 
constraints between repetitions using the above 
language. 

2.2 Ontology of interactions 

In a recent work (Piovesan et al. 2014) we 
detailed our preliminary semantic model for the 
description of CIG actions and for the non-temporal 

interactions occurring between them. For the sake of 
brevity, in the left part of Figure 1 we show a 
fragment of such an ontology relevant to this paper. 
In our ontological model, we focused on the goals of 
the actions and the drugs administered by the 
pharmaceutical actions, which are important sources 
of interactions between CIGs.  

In the ontology, a work, pharmaceutical or 
composite action is described according to one or 
more relations aimsTo with its goals, called 
intentions, which are represented as variations of the 
patient status. Each variation relates to exactly one 
attribute (describing the patient status) and exactly 
to one modality (of the variation). For instance, the 
intention “Decrease Blood Pressure” is modelled by 
the variation of the attribute “Blood Pressure” with 
modality “Decreasing”. 

Intentions are organized along a hierarchy of 
ISA and PART-OF relations (not shown in Figure 
1): high-level intentions can be broken up into 
lower-level intentions, and alternative 
decompositions are possible. For instance, the 
intention “Decrease Blood Pressure” can be 
decomposed into the alternatives “Decrease Blood 
Volume”, “Inhibition of Angiotensin Converting 
Enzyme (ACE)”, “Block of Calcium Channels” and 

Figure 1: Preliminary semantic model. Double-line arcs represent is-a relations. 



 

so on.    
 In addition, pharmaceutical actions are 

described by the relation substance with the drug (or 
drug category) they recommend. Drug categories 
and drugs (the bottom level) are hierarchically 
organized and each level of the hierarchy is related 
(has_effect) to its effects, which are defined as 
variations of the patient status. For the drug 
taxonomy, the ATC classification 
(http://www.whocc.no/atc/) is used; however, our 
approach is independent of the classification 
adopted. A distinguishing feature of our approach is 
that it copes with interactions at three different 
levels of abstraction: between the intentions of 
actions, between drug categories and between 
specific drugs (see concrete examples in (Piovesan 
et al. 2014)). 

Intention interactions are described by the 
relation has_element, with the two intentions they 
involve and by an interaction type, whose basic 
values are concordance, discordance and 
independence. However, further refinements are 
possible, such as opposite for interactions focusing 
on the same attribute, but discording in the modality.  

Drug interactions, besides the two drugs or drug 
categories they involve, are related to an effect (of 
one of the two drugs) and to the variation the 
interaction causes in such effect. Often, an 
interaction between two drugs is caused by an 
interaction between two of their effects. In order to 
model such information, the property caused by 
(optional) relates a drug interaction to a variation 
interaction (described by the two variations it 
involves and by a type). For instance, a drug 
interaction between the drugs nalidixic acid and 
calcium carbonate is caused by the variation 
interaction between “absorption of nalidixic acid” 
(of the first drug) and “urine alkalinization” (of the 
second), and its result is a decrease of the antibiotic 
absorption. Such example is detailed further in 
Sections 3 and 4. 

It is worth stressing that drug interactions are 
independent of a specific guideline and of a specific 
action because they do not involve actions. When a 
new CIG is introduced in the knowledge base, 
introducing the specifications of all the interactions 
between its actions and the CIGs already stored is 
not needed. Only the relations between the actions of 
the new CIG and their intentions in the ontology and 
(in the case of pharmaceutical actions) the drugs 
they recommend must be pointed out.  

Such ontological representation of intentions and 
effects allows the adoption of algorithms that, 
navigating the ontology, automatically infer the 
types of many interactions between intentions or 
drugs. More precisely, we implemented our 
ontology using OWL DL 

(http://www.w3.org/TR/owl2-overview/) and we 
expressed such a kind of basic medical knowledge 
about interaction recognition using Semantic Web 
Rules (http://www.w3.org/Submission/SWRL/). 
However, since not all the interactions can be 
inferred (especially for drug interactions) from the 
model, they can also be imported from external data 
sources. 

Interactions may occur at all the levels of detail 
adopted in CIGs. At a high level of detail, usually 
actions are composite, thus intention interactions 
may occur. On the other hand, going towards lower 
levels of detail, pharmaceutical actions prescribe the 
administration of drugs (usually drug categories, 
from which the physician can choose, depending on 
the specific patient conditions) and, at this level, 
drug interaction occurs. Thus, in our opinion, a 
“black box” system pointing out all the possible 
interactions between two CIGs (considering all the 
possible levels of detail) would be not practically 
useful for physicians, since, in general, it would 
return too many interactions. In our previous work 
(Piovesan et al. 2014), we have devised  a system 
that, collaborating with the physician to focus only 
on relevant parts of CIGs at the desired level of 
detail, helps her/him in the detection of relevant 
interactions (see Section 2.3), but we have neglected 
the temporal dimension. Modelling time, and 
extending the detection interaction system to cope 
with the temporal dimension, are the goal of this 
paper. 

2.3 Non-temporal interaction 
detection 

In the approach previously described, we have 
also proposed a flexible and interactive detection 
tool allowing physicians to navigate through the 
different abstraction levels. For instance, at the 
highest level, a physician may want to start to 
consider only the interactions between the intentions 
of the “top-level” actions of the guidelines. Then, 
focusing on a specific part of the guideline, (s)he 
may want to move down to a more detailed analysis, 
considering the decomposition of the composite 
actions into their parts, and/or the specific drugs 
category considered in order to reach the high-level 
intentions. In general, such approach provides 
physicians with the possibility of moving in both 
directions, i.e., focusing down from a general to a 
more specific analysis, or moving up, from a 
specific analysis to a higher level of abstraction. 
Additionally, the interaction detection algorithm 
maintains organized in a tree data structure (the 
navigation tree) the history of the focusing process, 
supporting both the addition of new CIG focuses, 



 

and the rollback to upper focuses. Each node of the 
tree consists of three main components: two pairs 
<CIG1, focus1>, <CIG2,focus2> determining the 
desired level of abstraction and the focused actions, 
and an interaction component, in which, for each 
pair <Ai,Aj> of actions (AiÎfocus1, AjÎfocus2), the 
interactions between their intentions (or of the drugs 
they administer, in the case of pharmaceutical 
actions) are pointed out. 

For the sake of brevity and simplicity, with no 
loss of generality, in the following we suppose that 
just two actions (one in the first CIG and one in the 
second CIG) are focused on by the user-physician, at 
the chosen level of detail.  

3. TEMPORAL 
REPRESENTATION 

3.1 Temporal Ontology 

Coping with time in the interaction detection is 
of fundamental importance. Indeed, many of the 
entities involved in such a task are characterized by 
time, and physicians must consider such information 
when they execute more than one CIG. 

In particular, actions are characterized by the 
time when they occur (or should occur), intentions 
are characterized by the time the physician expects 
they will be accomplished and effects (of drugs) are 
characterized by the time when they should happen. 
On the right side of Figure 1, we show how we 
relate such temporal information to the previous 
model. In particular, we introduce the relation 
happens, which relates an action or a variation to the 

time interval in which it takes place. A time interval 
is itself described by two time points, which 
represent the time when the interval starts and ends. 

Obviously, the various times are strictly related 
to each other (i.e., the time of the effect of a drug 
depends on the time of administering such drug). In 
order to represent such relations, we detailed in our 
model two types of constraints: qualitative (such as, 
e.g., before, after, during (Allen 1983; Vilain et al. 
1990)) and quantitative ones (such as, e.g., duration, 
delay and date). Notice that we support also 
imprecise quantitative constraints: for example, if 
the exact duration is not known, it is possible to 
express a minimum and a maximum duration (see 
Figure 2).  

3.2 Temporal constraint 
representation 

As discussed in the introduction, to deal with 
CIG interactions, three different sources of temporal 
constraints must be taken into account. In this 
section, we show how they can be represented in our 
model.  

 
(1) Knowledge about (i) the delay (with respect to 
the action execution/drug administration) and (ii) 
the duration of effects (or intentions). In many 
cases, such data can be approximately predicted. In 
our model, they are represented with two 
quantitative constraints: (i) is a delay between the 
ending (or, in some cases, the starting) point of the 
action and the starting point of the effect (or 
intention); (ii) is a duration between the starting and 
ending point of the effect (or intention). In our 
approach, such knowledge is directly expressed at 

Figure 2: Temporal constraint ontology. 



 

the ontological level. 
 

Example 1. Calcium carbonate is a gastric 
antacid and it is often prescribed in order to alleviate 
the symptoms of gastroesophageal reflux after 
meals, when needed. One of its effects is the urine 
alkalinization (variation, modelled as an increase of 
urine pH), which starts at most one hour after the 
assumption and lasts 4-5 hours. In Figure 3, we 
show how we express temporal constraints between 
the calcium carbonate administration, which 
happens in a time interval (CATI) of which only the 
end (CAE) is relevant for the example, and the urine 
alkalinisation, which is characterized by a time 
interval (UATI) with a start (UAS) and an end 
(UAE) time points. For the sake of clarity, we do not 
represent the time unit of hours.  

 
(2) Temporal constraints between actions in the 
CIGs: different types of constraints between CIG 
actions can be expressed in GLARE. All of them can 
be expressed through the model presented in this 
paper. In particular, the duration of an action can be 
expressed as a possibly imprecise quantitative 
constraint between its starting and ending points. 
Temporal constraints between two actions can be 
represented both through qualitative and quantitative 
constraints. Such constraints are directly represented 
in the CIG, as described in (Anselma et al. 2006). In 
particular, the constraint formalism has been 
designed in such a way that only the qualitative 
constraints that can be mapped to conjunctions of 
STP constraints (Dechter et al. 1991) can be 

expressed (see Section 4.2). 
 

 (3) Information about the time of execution of 
previous CIG actions on the specific patient: such 
information are modelled as absolute dates 
(expressed as distances from the start of the 
calendar). Also imprecise starting times and ending 
times are supported. Obviously, no execution time is 
provided in case an “abstract” (i.e., patient-
independent) analysis of the interactions between 
CIGs must be performed. 

 Additionally, for the sake of generality, we also 
allow the possibility of expressing any constraint in 
the above language (constraints between CIG 
actions) also between action execution times. 

4. TEMPORAL REASONING 

The goal of this work is to provide user-
physicians with a general set of facilities in order to 
enable them to look for temporal interactions 
between CIGs. In this section, we introduce such 
facilities, the constraint propagations techniques we 
propose and how the facilities are grounded on the 
constraint propagation techniques. 

4.1 Facilities 

We provide the following facilities, where the 
user-physician is enabled to: 

1. (Interaction?) check whether two 
actions in two different CIGs may 
interact, certainly interact or certainly 
do not interact; 

2. (Interaction (what-if)?) assume a 
hypothetical execution time for some 
future actions and check whether – 
given such an assumption – two 
actions in two different CIGs may 
interact, certainly interact or certainly 
do not interact; 

3. (Time of future actions to have (or to 
avoid) an interaction?) determine the 
execution times of some future actions 
in order to have or to avoid some 
interactions; 

4. (Time of future actions to have (or to 
avoid) an interaction (what-if)?), as 
(3), but assuming some temporal 
constraints concerning the execution of 
future actions. 

Notice that the answers may be not crisp, in the 
sense that an interaction between two actions can be 

Figure 3: Representation of temporal constraints for the 
effect "urine alkalinization". 



 

temporally necessary, temporally possible or 
temporally impossible. 
Taking into account the different contexts in which 
we support the temporal analysis of interactions (i.e., 
either considering the guidelines with no reference 
to specific patients or considering the actual 
execution of two CIGs on specific patients) and the 
specific temporal assumptions that we can have on 
the temporal data of the executions, we singled out 
three scenarios. In fact, different scenarios can 
induce different types of facilities available to 
physicians. The first scenario is the “no temporal 
log” scenario, where no temporal information on the 
execution of the CIGs is available. This could 
happen because either the CIGs have not been 
executed yet or no time has been recorded. The 
second scenario is the “temporally exact log”, where 
the times when the actions of the CIGs have been 
executed are known with the precision allowed by 
the granularity chosen for the log (e.g., hour or 
minute). In this scenario, for example, we assume 
that personnel records the exact time (e.g., hour or 
minute) of the start and of the end of the executed 
actions. The last scenario is the “temporally 
imprecise log”, where, because of imprecision in 
time measurement or because of lack of information, 
the log does not contain the exact start/end time of 
the clinical actions but, e.g., a range of time when 
the action has started and a range of time when the 
action has ended. 

In Table 1 we report the facilities available in 
each scenario, as detailed below.  

4.2 Temporal reasoning 

Our treatment of temporal constraints is 
grounded on the STP framework (Dechter et al. 

1991). In short, in STP a set of constraints is 
modelled as a conjunction of bounds on differences 
of the form 𝑐	 ≤ 		𝑥	– 	𝑦		 ≤ 		𝑑, which have an 
intuitive temporal interpretation, namely that the 
temporal distance between the time points x and y is 
between c (minimum distance) and d (maximum 
distance). Also strict inequalities are possible (i.e., 
<), and –¥ and +¥ can be used to denote infinite 
lower and upper bounds respectively. 

 
Temporal reasoning on STP can be 

performed/computed by an “all-pairs shortest paths” 
algorithm such as the Floyd-Warshall’s one. Such an 
algorithm provides as output the minimal network of 
the constraints, i.e., the minimum and maximum 
distance between each pair of points. A draft version 
of Floyd-Warshall’s algorithm is shown below, 
where 1, … , 𝑁 denote the time points (e.g., 
starting/ending points of actions), D[i,j] represents 
the distance (difference) between i and j, and Min is 
the function which provides the minimum between 
the two arguments. 
 
For k:=1 to N do 
  For i:=1 to N do 
    For j:=1 to N do 
    D[i,j]=Min(D[i,j],D[i,k]+D[k,j]) 

 
Property. Floyd-Warshall’s algorithm operates 

in a time cubic in the number of time points, and is 
correct and complete on STP (meaning that it 
performs all and only the correct inferences while 
propagating the STP constraints) (Dechter et al. 
1991). 

 
As mentioned above, we have chosen to design 

our high-level language for temporal information 
in such a way that all the temporal constraints can be 
mapped onto the STP framework. In particular, our 

 Query Interaction? Interaction 
(what-if)? 

Time of future 
actions to have 
(or to avoid) an 
interaction? 

Time of future actions 
to have (or to avoid) an 
interaction (what-if)? 

Scenario      

No temporal 
log 

 
N/A 

HYP_TR(O, 
G1,G2,Var1, 
Var2,Hyp) 

TR(O,G1,G2, 
Var1,Var2) 

HYP_TR(O,G1,G2, 
Var1,Var2,Hyp) 

Temporally 
exact log 

 
TR(O,G1,G2, 

Var1,Var2,Log) 

HYP_TR(O, 
G1,G2,Log, 

Var1,Var2,Hy
p) 

TR(O,G1,G2, 
Var1,Var2,Log) 

HYP_TR(O,G1,G2, 
Var1,Var2,Log,Hyp) 

Temporally 
imprecise 
log 

 TR(O,G1,G2, 
Var1,Var2,Log) ? TR(O,G1,G2, 

Var1,Var2,Log) ? 

Table 1: Facilities for temporal interaction detection and reasoning. 



 

temporal constraint language allows one to express 
both quantitative constraints such as (i) exact or 
imprecise (min/max) dates, (ii) exact or imprecise 
durations, (iii) exact or imprecise delays; and 
qualitative constraints between time points (e.g., P1 
before P2) and/or time intervals (e.g., I1 during I2) 
(restricting the language to qualitative constraints 
mappable onto STP; see (Brusoni et al. 1997)). In 
our approach, such a high-level language is 
homogeneously adopted to represent (1) temporal 
constraints between actions in the CIGs; (2) exact 
dates of actions in the log, or temporal constraints 
between them; (3) temporal constraints in the 
ontology, and (4) temporal constraints on the 
hypothesized actions, if any. 

 
The translation of the constraints of our high-

level language into STP is easy: dates are mapped 
into distances with respect to a fixed Reference 
Time (e.g., the start time of the calendar), durations 
into distances between ending and starting points, 
delays into distances between points. Also the 
translation of qualitative constraints is easy:  just as 
an example, I1 during I2 corresponds to the set of 
STP constraints {0 < 𝑆𝑡𝑎𝑟𝑡(𝐼1) − 𝑆𝑡𝑎𝑟𝑡(𝐼2) ≤
+∞, 0 < 𝐸𝑛𝑑(𝐼2) − 𝐸𝑛𝑑(𝐼1) ≤ +∞}.  

 
Property. The translation of each constraint in 

our high-level temporal language into STP can be 
performed in constant time. 

 
In order to provide the temporal facilities in 

Table 1, the first step is the collection of (relevant) 
constraints from the log (if present), from the CIGs 
and from the ontology. In the case of exact temporal 
log, each executed action is timestamped with its 
starting and ending time (which are exact dates); in 
the case of temporally imprecise log, the log 
explicitly contains temporal constraints between the 
executed actions. In both cases, temporal constraints 
are simply collected by inspecting the log. The 
collection of constraints from the CIGs involves the 
navigation of the CIGs (expressed in GLARE) from 
the starting action As to the focused action Af, and 
the collection of the constraints on the arc in the path 
connecting them. In case multiple alternative paths 
are present, each one of the paths must be 
considered independently of the others (in the rest of 
the discussion, for the sake of simplicity, we assume 
that only one path is considered). Additionally, in 
case composite actions are present in the path, also 
the constraint that the temporal extent of a 
composite action contains the extents of its 
components must be considered. Finally, the 
ontology can be easily navigated in order to retrieve 
the temporal constraints between the focused actions 
and their focused effects. Different types of arcs in 

the ontology have to be navigated, depending on the 
types of the focused action. Figure 3 shows the case 
of pharmacological prescriptions (calcium carbonate 
administration in the example). The happens and 
end (or start) arcs connect actions with the ending 
(starting) point of the time when they occur (e.g., 
CAE in Figure 3). The substance arc connects 
pharmacological actions to the drug they prescribe, 
and the has_effect arc points out the effect 
(variation) caused by such a drug. In turn, happens 
and start/end arcs relate effects to their 
starting/ending times (e.g., UAS, UAE in Figure 3). 
Temporal constraints between such endpoints (e.g., 
the delay between CAE and UAS) can then finally be 
retrieved. 

 
After the collection of constraints (from log, 

CIGs and ontology) is performed, and all constraints 
are translated onto STP constraints, temporal 
reasoning can be performed, to offer the above 
facilities to user-physicians.  

To provide the different facilities shown in Table 
1 we rely on two basic algorithms that propagate the 
temporal constraints: TR, which performs temporal 
reasoning, i.e., it checks for consistency and 
evaluates the minimal network using Floyd 
Warshall’s algorithm, and HYP_TR, which performs 
temporal reasoning assuming some hypothetical 
temporal information. The parameters O, G1, G2, 
Var1, Var2, Log, Hyp in the table represent the 
ontology, the two CIGs, the two interacting 
variations to be examined, the log and the 
hypothetical temporal constraints, respectively. 

 
Now we discuss how the different types of log 

(log with no temporal information, with exact times, 
and with imprecise temporal information) affect the 
facilities. 

 
When no information is available on the 

execution of the CIGs (“no log”, first row of the 
table), all relative temporal relations between the 
two CIGs are possible. Therefore, in order to infer 
any meaningful conclusion on the interactions, it is 
necessary to anchor a CIG to the other, otherwise 
the query cannot be answered (N/A in the table). 
Such anchoring can be made in two ways in the “no 
log” scenario: by devising an interaction between the 
two CIGs (in Time of future actions to have (or to 
avoid) an interaction?) or by assuming some 
temporal relations between the two CIGs in the 
facilities that contemplate hypothetical temporal 
constraints. 

 
When precise temporal information is available 

on the execution of the CIGs (“temporally precise 
log”, second row of the table), all types of queries 



 

can be answered. Since we know the exact time 
when the actions have been performed, it is possible 
to check whether they interact in time. Notice that 
temporal reasoning is required also in this case: in 
fact, the time of “future” actions, i.e., the time of 
actions in the CIGs not yet performed, is not exactly 
known. Therefore, the temporal constraints in the 
CIGs, along with the temporal constraints from the 
logs, have to be propagated. 

 
When temporal information on the execution of 

the CIGs is available but it is imprecise (“temporally 
imprecise log”, third row of the table), it is important 
noting that hypothetical queries may have some 
undesired side effect. In fact, in hypothetical queries, 
where some hypothetical temporal constraints are 
added to the known temporal information, the 
propagation of such new temporal information could 
cause a tightening of some imprecise log constraints. 
In this case, such constraints could take only some 
of the possible values that make the hypothetical 
query consistent. However, these constraints are not 
“controllable”, in the sense that they represent 
imprecision in the measurement of the time and it is 
not possible for the user to choose a specific time 
value. Treating this case is an open problem and it is 
left as a future work. 

 
For the sake of brevity, we illustrate in more 

detail only the facility Hypothetical Interaction? in 
the “temporally exact log” scenario (see Algorithm 
1). After extracting the temporal constraints from the 
CIGs, from the logs and from the ontology in a STP, 
the hypothetical temporal constraints are 
provisionally added to the STP. Then the constraints 
are propagated and the resulting minimal network is 
used to answer the query. Such minimal network, in 
fact, contains the strictest inferred constraints 
between the two variations under consideration. 
Thus, by examining the inferred temporal difference 

between the starting and ending points of variations 
Var1 and Var2, we can determine whether their 
overlap is certain, possible or it is certain that there 
is no overlap.  

As regards the evaluation of the algorithm, its 
computational complexity is dominated by 
HYP_TR, which operates in time cubic in the 
number of (i) the actions considered in the two CIGs 
plus (ii) the actions in the log plus (iii) the 
hypothesized actions.  

Example 2. We consider the case where a 
patient suffering from gastroesophageal reflux 
treated with calcium carbonate (see Example 1) 
contracts a urinary tract infection and, thus, the two 
pertaining CIGs have to be executed at the same 
time on this patient. In particular, the urinary tract 
infection is treated with nalidixic acid, which starts 
its “absorption of nalidixic acid” effect (modelled as 
an increase of nalidixic acid blood level) in at most 
one hour after the assumption and lasts 4 hours. We 
consider the case where the physician wants to know 
if the administration of nalidixic acid will interact 
with the assumption of calcium carbonate. The 
physician decides to focus in the CIGs on the 
pharmaceutical actions of administration of the two 
drugs. We assume that the patient takes the calcium 
carbonate after each meal (say lunch at 1 pm and 
dinner at 8 pm). The physician decides to perform a 
“what-if” analysis of interaction and to explore the 
consequences of administering the nalidixic acid at 3 
pm and (s)he asks to the system if the two focused 
actions interact. First, a non-temporal interaction is 
extracted from the ontology between the two drugs, 
caused by a variation interaction between the “urine 
alkalinization” and the “absorption of nalidixic acid” 
effects, with has_modality “decreasing” of the 
“absorption of nalidixic acid” effect. Then, in order 
to decide if the two actions temporally interact, the 
facility Hypothetical Interaction is used, with 
parameters the ontology, the two CIGs, the two 
interacting variations “urine alkalinization” and 
“absorption of nalidixic acid”, and the hypothesis of 
administration of nalidixic acid at 3 pm. The 
propagation of the temporal constraints allows the 
physician to discover that the calcium carbonate has 
effect surely between 2 pm and 5 pm and that the 
temporal intervals of effect of the two interacting 
drugs surely overlap at least from 4 pm to 5 pm. 
Thus, the facility returns YES. Because of this 
result, in order to avoid the interaction, the physician 
can decide to change one of the two drugs or the 
time of administration of the antibiotic, repeating the 
focusing and detection process.  

Hypothetical Interaction?(O, G1, G2, 
Var1, Var2, Hyp) 
Extract temporal constraints 
HYP_TR on temporal constraints 
given hypothesis Hyp 

Given minimal network: 
If there is necessarily an overlap 
between variation Var1 and 
variation Var2 then return YES 

Else If variation Var1 necessarily 
does not temporally overlap 
variation Var2 then return NO 

 Else return MAYBE  

Algorithm 1: Algorithm for detecting temporal 
interaction assuming some temporal constraints. 

 



 

5. RELATED WORKS AND 
CONCLUSIONS 

The treatment of comorbid patients is one of the 
main challenges for the modern healthcare. This is a 
hot topic in Medical Informatics, too, and several 
approaches are recently emerging. 

The approach in (Michalowski et al. 2013) and 
(Wilk et al. 2013) uses constraint logic programming 
to identify and address adverse interactions. In this 
solution, a constraint logic programming (CLP) 
model is derived from the combination of logical 
models that represent each CIG, then a mitigation 
algorithm is applied to detect and mitigate 
interactions. On the other hand, Sánchez-Garzón et 
al. (Sánchez-Garzón et al. 2013) propose an agent-
based approach to guideline merging. Each guideline 
is considered as a physician expert in the treatment 
of a single disease, and is represented by an agent 
with hierarchical planning capabilities. The result is 
obtained through the coordination of all the agents, 
and respects the recommendations of each guideline.  

Riaño et al. represent guidelines as sets of 
clinical actions that are modelled into an ontology 
(López-Vallverdú et al. 2013). To combine two 
treatments, first they are unified in a unique 
treatment and then a set of “combination rules” is 
applied to detect and avoid possible interactions. A 
model-based automatic merge of CIGs is then 
purposed in (Riaño & Collado 2013), through the  
definition of a combining operator. Jafarpour & 
Abidi (Jafarpour & Abidi 2013) use semantic-web 
rules and an ontology for the merging criteria. Given 
these, an Execution Engine dynamically merges 
several CIGs according to merge criteria. GLINDA 
proposes a wide ontology of cross-guideline 
interactions (http://glinda-
project.stanford.edu/guidelineinteractionontology.ht
ml). We recently proposed an original approach, 
supporting user-driven and interactive interaction 
detection over different levels of abstractions 
(Piovesan et al. 2014).  

However, although interactions can only occur in 
time, to the best of our knowledge no previous 
approach to the treatment of interactions (and 
comorbidities) has already provided facilities to 
address the temporal dimension. This is the goal of 
the approach in this paper, in which we proposed a 
general approach, suitable in different situations 
(e.g., either in case  a specific comorbid patient is 
considered, or in case “abstract” possible 
interactions between CIGs are taken into account), 
and providing a wide range of facilities to user-
physicians. 

Temporal issues are pervasive in the CIG context 
and many previous approaches have faced some of 

them (see, e.g., the survey in (Terenziani et al. 
2008)). In particular, in the Asbru (Shahar et al. 
1998) and in the GLARE (Anselma et al. 2006) 
projects, rich representation formalisms have been 
proposed to cope with temporal constraints in the 
CIGs, and in GLARE correct and complete temporal 
constraint propagation algorithms have been 
proposed to reason with them and to merge them 
with the time of execution of actions on specific 
patients (Anselma et al. 2006). However, to the best 
of our knowledge, no other approach to CIGs has 
explicitly addressed the treatment of time and 
temporal constraints for the detection of CIG 
interactions. In this sense, we believe that our 
approach, besides being innovative, is somehow 
complementary with respect to several other 
approaches in the literature, so that an integration 
with them can be devised as a future work (e.g., with 
Riaño’s methodology to merge CIGs (Riaño & 
Collado 2013)).  

 We are currently developing a prototypical 
implementation to demonstrate our approach, based 
on GLARE. In our short-term future work, we aim at 
extending our approach to cope also with cases not 
covered in Table 1. In our long-term future work, we 
will attempt to support physicians also in the 
interaction solving, and, finally, in merging multiple 
guidelines in the treatment of a specific patient.  
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