
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Identifying critical nodes in undirected graphs: Complexity results and polynomial algorithms for
the case of bounded treewidth

Published version:

DOI:10.1016/j.dam.2013.03.021

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/143774 since 2016-06-29T10:58:25Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is
posted here by agreement between Elsevier and the University of Turin. Changes resulting
from the publishing process - such as editing, corrections, structural formatting, and other
quality control mechanisms - may not be reflected in this version of the text. The definitive
version of the text was subsequently published in DISCRETE APPLIED
MATHEMATICS, 161 (16-17), 2013, 10.1016/j.dam.2013.03.021.

You may download, copy and otherwise use the AAM for non-commercial purposes
provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the
CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and
publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en),
10.1016/j.dam.2013.03.021

The publisher's version is available at:
http://linkinghub.elsevier.com/retrieve/pii/S0166218X13001686

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/143774

Identifying critical nodes in undirected graphs: complexity

results and polynomial algorithms for the case of bounded

treewidth

Bernardetta Addis∗ Marco Di Summa† Andrea Grosso∗

Abstract

We consider the problem of deleting a limited number of nodes from a graph in order
to minimize a connectivity measure of the surviving nodes. We prove that the problem
is NP -complete even on quite particular types of graph, and define a dynamic program-
ming recursion that solves the problem in polynomial time when the graph has bounded
treewidth. We extend this polynomial algorithm to several variants of the problem.

Keywords: Critical node problem, treewidth, complexity, dynamic programming.

1 Introduction

This paper deals with the following type of problems, called Critical Node Problems (CNPs):
given an undirected graph G = (V,E) with nodes V = {1, 2, . . . , n} and edges E ⊆ {uv : u, v ∈
V }, delete a “limited” subset of nodes S ⊆ V in order to minimize a connectivity measure
in the residual subgraph G[V \ S] (i.e., the subgraph of G induced by V \ S). We call the
elements of S critical nodes, since their removal maximally impairs the connectivity of G.

In this work we focus on a CNP where a cost wi is specified for deleting each node i ∈ V ,
and a budget W > 0 for such operations is given as input. If removing S ⊆ V induces
a residual graph G[V \ S] whose connected components have node sets (depending on S)
C1, C2, . . . , Cp, the problem calls for determining S in order to

minimize f(S) =

p∑

i=1

(
|Ci|

2

)
(1)

subject to
∑

i∈S

wi ≤ W. (2)

The non-linear objective function (1) counts the number of node pairs that are still connected
by at least one path in G after the nodes in S have been deleted. Throughout the paper we
refer to formulation (1)–(2) as CNP, unless otherwise stated.

The issue of removing elements from a graph in order to impair its connectivity appears
in a number of problems, in the literature as well as in practical applications.

∗Dipartimento di Informatica, Università degli Studi di Torino, Italy ({addis, grosso}@di.unito.it).
†Dipartimento di Matematica, Università degli Studi di Padova, Italy (disumma@math.unipd.it).

1

The so-called flow-interdiction models, since the seminal work of Wollmer [23], deal with
deleting arcs in order to minimize the maximum amount of flow that can be shipped through
a network, a finite resource budget being allocated for arc deletion operations. The basic
interdiction models deal with a single commodity source-sink flow on a directed capacitated
network. Wood [24] also considers extensions to undirected graphs and multicommodity
flows. Recently Smith and Lim [11] specifically tackle multicommodity interdiction models.
Interdiction models usually call for a multi-level mixed-integer linear program to be solved;
the inner max-flow problem is often handled by dualizing it.

The problem of determining the maximum network fragmentation under removal of nodes
appears in the study of complex networks, e.g. in Albert et al. [2]. Borgatti [9] formulated a
family of problems — also covering the CNP — for identifying key players in social networks;
the key players are those whose absence induces maximum fragmentation in the network.

From the point of view of combinatorial optimization, problem (1)–(2) is formalized by
Arulselvan et al. [4] in the special case where wi = 1 for all i ∈ V . These authors envisage
applications in the development of immunization strategies for populations against diseases
and for computer networks against malicious software or viruses. Immunizing the critical
nodes limits the ability of the virus to spread along the paths of the underlying network. In [4]
the CNP is suggested, among other applications, as an alternative to classical immunization
strategies (see, e.g., [10, 25]) that usually focus on immunization of nodes with high degree, a
greedy policy that can be short-sighted. Boginski and Commander [8] apply the same model
to locate the critical nodes in protein-protein interaction graphs, with applications in biology.

From an engineering point of view, deleting nodes or edges from a graph in order to induce
maximum fragmentation is of interest in assessing the robustness of a network structure when
an attack is deployed on its elements. An edge-deletion problem with objective function (1)
is modeled in [17] in order to investigate the robustness of a transportation infrastructure.
Myung and Kim [18] propose a branch-and-cut approach for the same problem. With similar
motivations, Dinh et al. [13] work on telecommunication networks, and tackle the problem
of detecting subsets of node or arcs (they call them node-disruptors and arc-disruptors) in
a directed network, in order to determine the minimum number of (ordered) pairs of nodes
that are still able to establish a connection between each other after deletion of such subsets.

Objective function (1) is not the only (dis-)connectivity measure considered in the litera-
ture. Known variants of the problem call for minimizing max{|C1|, . . . , |Cp|} (i.e., the size of
the largest surviving connected component, see [19]) or maximizing the number p of surviving
connected components. Smith and Shen [21] offer algorithms for polynomially solvable special
cases of such problem variants, along with an accurate literature survey. Van der Zwaan et
al. [22] discusses approximability (and inapproximability) of maximizing p on several classes
of graphs. Arulselvan et al. [5] again also consider applications in telecommunications where a
network has to be fragmented in connected components of limited size through node deletions.

The CNP (1)–(2) is known to be NP -hard on general graphs [4] and polynomially solvable
on trees via dynamic programming [12]. A greedy procedure is proposed by Borgatti [9]; a
slightly more sophisticated but quite effective heuristic is developed by Arulselvan et al. [4]
for the case of unit deletion costs.

We note that, as far as objective (1) is considered, the CNP could be transformed into
a multicommodity network interdiction problem. The same is not true (or, at least, not
straightforward) for the other connectivity measures cited above. In our analysis, we avoid
network flows and the linear programming framework of the interdiction problems, while
focusing on the combinatorial structure of the CNP itself.

2

This paper offers complexity results and exact algorithms for the CNP. In Section 2 we es-
tablish the NP -hardness of the CNP even on graphs with very special structure (split graphs,
bipartite graphs and complements of bipartite graphs) and give inapproximability results on
general graphs. In Section 3, after recalling the basics of tree decompositions and introducing
the key concept of connected component configuration, we provide a dynamic programming
recursion that solves the CNP when a tree decomposition of the graph is available. The
algorithm runs in polynomial time for the class of graphs with treewidth bounded by a given
constant, which include, among the others, the trees, all series-parallel graphs, all outerplanar
graphs and Halin graphs (a longer list is given in [6]). This generalizes and extends the re-
sults given in [12] for the case of a tree. Finally, we show in Section 4 that the same dynamic
programming scheme can be adapted to handle the different objective functions mentioned
above, as well as certain edge-deletion (instead of node-deletion) problems.

2 Complexity and inapproximability results

Throughout this section we consider the CNP in the special case where wi = 1 for all i ∈ V ;
hence the budget constraint (2) amounts to requiring |S| ≤ K, with a given K = W ≤ |V |.
The value K will be called budget . Establishing NP -hardness for this case obviously handles
the complexity of the more general formulation (1)–(2).

It can be easily argued that the CNP generalizes the well-known vertex cover problem
on a graph G = (V,E): indeed i ∈ V , a subset S ⊆ V with |S| ≤ K satisfies f(S) = 0 if
and only if S is a vertex cover of G of cardinality at most K. This immediately establishes
that the CNP is NP -hard on general graphs (a somewhat more complicated proof appears
in [4]). Furthermore, this implies that it is NP -complete to decide whether the optimal value
of the CNP is zero. As a consequence, it is NP -hard to approximate an optimal solution
of the CNP within any factor (in polynomial time), even if the factor is allowed to be a
value γ(I) ≥ 1 depending on the specific instance I of the CNP. In other words, unless
P = NP , there is no polynomial-time approximation algorithm that returns a solution such
that APX(I) ≤ γ(I) · OPT (I) for all instances I (where APX(I) and OPT (I) denote the
approximate and optimal value respectively). With little more effort, one can prove that the
same result holds even if an asymptotic approximation algorithm is accepted.

Proposition 1 Unless P = NP , there is no polynomial-time approximation algorithm that
returns a solution to the CNP such that

APX(I) ≤ γ(I) · OPT (I) + δ (3)

for all instances I, constant δ ≥ 0 and γ(I) ≥ 1.

Proof. For easiness of notation, we drop every dependence on I. Assume that an algorithm
satisfying (3) exists, with δ being an integer wlog. For a graph G = (V,E) with |V | = n ≥ 2δ,
consider the problem of finding the maximum stable set in G. For an integer 2δ ≤ k ≤ n, let
I be the instance of the CNP on G with budget n− k. We run the approximation algorithm
on instance I and denote by T the set of nodes that are kept in the graph according to the
approximate solution (thus |T | = k wlog). Two cases are possible.

If APX ≤ δ, then T induces a subgraph of G in which at most 2δ nodes have positive
degree (the upper bound 2δ is achieved when the edges in G[T] form a matching of cardinality
δ). Then the isolated nodes in G[T] form a stable set of G with at least k − 2δ nodes.

3

If APX > δ, then OPT ≥ APX−δ
γ

> 0, hence G does not contain a stable set of size k.
Summarizing, for 2δ ≤ k ≤ n we can solve the following problem: either find a stable

set in G whose size is at least k − 2δ, or prove that G does not contain any stable set of
size k. By running the algorithm a polynomial number of times, one finds the maximum
number k̄ such that a stable set S̄ with k̄ − 2δ ≤ |S̄| ≤ k̄ is returned. In particular, no
stable set of size k̄ + 1 exists in G. If S∗ denotes a maximum stable set in G, we then have
|S∗| − |S̄| ≤ k̄ − (k̄ − 2δ) = 2δ. This means that we could solve the stable set problem in
polynomial time within polynomial absolute error, which is possible only if P = NP . �

The above proof immediately implies the following.

Corollary 2 Let F be a family of graphs over which it is NP -hard to solve the maximum
stable set problem within polynomial absolute error. Then, unless P = NP , there is no
polynomial-time asymptotic approximation algorithm for the CNP restricted to F .

Together with [14], the above result implies that there is no polynomial-time asymptotic
approximation algorithm for the CNP even in the special cases of planar graphs, graphs with
bounded degree, and even cubic planar graphs (unless P = NP).

As noted above, the CNP generalizes the vertex cover problem. It is well-known that the
vertex cover problem is polynomially solvable on some special classes of graphs. The most
important case is probably that of bipartite graphs. We prove that, on the contrary, the CNP
on bipartite graphs is NP -hard. We establish NP -hardness also on other classes of graphs
(split graphs and complements of bipartite graphs), for which the vertex cover is trivial.

2.1 Split graphs

A split graph is a graph G = (V1, V2;E) whose vertex set V can be partitioned into two subsets
V1, V2 such that V1 induces a clique and V2 is a stable set. Establishing the NP -completeness
of the CNP on split graphs is an instrumental result for handling the bipartite case. Moreover,
it is a model for situations where the network underlying G is partitioned into a fully-meshed
backbone network G[V1] of hubs and a set of client nodes V2 exchanging traffic only through
the hubs — this happens for example in certain telecommunication networks.

Given a split graph G and S ⊆ V , the induced subgraph G[V \ S] has at most one
connected component containing more than one node. We call this component the nontrivial
connected component of G[V \S] (if such a component exists). Then the CNP on a split graph
amounts to finding a subset S ⊆ V of given cardinality such that the nontrivial connected
component of G[V \ S] is as small as possible (or all surviving nodes are isolated).

Lemma 3 Let G = (V1, V2;E) be a split graph and consider the CNP on G where the budget
K satisfies 0 ≤ K ≤ |V1|. Then there is an optimal solution such that only nodes in V1 are
removed from G. Furthermore, given any optimal solution, an equivalent solution satisfying
this condition can be constructed in polynomial time.

Proof. Given an optimal solution to the CNP, let S be the set of nodes that are removed from
G. Suppose that S ∩ V2 6= ∅ and let v ∈ S ∩ V2. Since S is an optimal solution, the residual
graph G[V \S] contains at least one neighbor of v (otherwise it would be more convenient to
keep v in the graph and remove any node belonging to the nontrivial connected component
of the residual graph). Let w be a neighbor of v in the residual graph. If we keep v in the

4

graph and remove w instead, we find a solution S′ which is at least as good as the original
one. Thus, since S was optimal, S′ is optimal as well. Note that |S′ ∩ V2| = |S ∩ V2| − 1. By
iterating this procedure we eventually find an optimal solution S∗ such that S∗ ∩ V2 = ∅. �

Proposition 4 The CNP is NP -hard even on split graphs.

Proof. We show that if there exists a polynomial-time algorithm that solves the CNP on
split graphs, then there is also a polynomial-time algorithm for the maximum edge biclique
problem (MEBP), which is known to be NP -hard [20].

The MEBP is as follows: given a bipartite graph G = (V1, V2;E), find a biclique (i.e., a
complete bipartite subgraph) in G with the maximum number of edges. Clearly, the MEBP
can be solved in polynomial time if for each k = 1, . . . , |V1| the following subproblem Pk can
be solved in polynomial time: find a biclique B in G satisfying |V (B)∩V1| = k, such that the
number of edges in E(B) is maximized. (In order to always have a feasible solution to Pk, we
allow a biclique B to have no nodes in one of the two sides of the bipartition —in this case
the number of edges of B is equal to zero.) Note that in Pk the condition that the number of
edges in E(B) is maximized can be replaced with the condition that the number of nodes in
V (B) is maximized. Next we show that Pk is an instance of the CNP on a split graph.

Fix k ∈ {1, . . . , |V1|} and define Sk = {S ⊆ V1 : |S| = k}. We formulate problem Pk by
defining a function fk as follows: for S ∈ Sk, fk(S) is the maximum number of nodes in a
biclique B of G such that V (B) ∩ V1 = S. Note that solving problem Pk is equivalent to
finding a set S ∈ Sk maximizing fk.

Let Ḡ be the bipartite complement of G (i.e., Ḡ = (V, Ē) with Ē = {v1v2 : v1 ∈ V1, v2 ∈
V2, v1v2 /∈ E}), and let G′ be the split graph obtained from Ḡ by placing an edge between
every pair of nodes in V1. Let I be the instance of the CNP on G′ with budget |V1| − k. By
Lemma 3, we can restrict our attention to those solutions of I in which only nodes of V1 are
removed from G′. We can also assume wlog that exactly |V1| − k nodes of V1 are removed
from G′ in an optimal solution. In other words, there is an optimal solution of instance I in
which the set of nodes kept in the graph is S ∪ V2 for some S ∈ Sk. Now, for S ∈ Sk, define
f ′(S) as the number of connected pairs of nodes in G′[S ∪ V2]. The above discussion shows
that solving I is equivalent to finding a set S ∈ Sk minimizing f ′.

For every integer t ≥ k and for every S ∈ Sk, we have

fk(S) = t ⇐⇒ in G there are exactly t− k nodes in V2

that are adjacent to all nodes in S

⇐⇒ in Ḡ there are exactly |V2| − (t− k) nodes in V2

that are adjacent to at least one node in S

⇐⇒ the nontrivial connected component of G′[S ∪ V2]

contains exactly |V2| − (t− k) + k nodes

⇐⇒ f ′(S) =
(|V2|+2k−t

2

)
.

This shows that S maximizes fk is and only if S minimizes f ′. Therefore solving Pk is
equivalent to solving an instance of the CNP on a split graph. �

5

2.2 Bipartite graphs

We consider bipartite graphs of a special form, obtained as follows. Let G = (V1, V2;E) be
a split graph, where V1 is a clique and V2 is a stable set. We construct a bipartite graph G′

replacing every edge ij of the clique G[V1] with a chain i− vij − j, where vij is a new vertex.
Note that this operation is not performed for the edges linking a node in V1 to a node in V2.
Let V ′ be the set of

(|V1|
2

)
nodes that have been added. Then G′ is a bipartite graph, where

the two classes are V1 and V ′ ∪ V2. We say that G′ is the bipartite left-subdivision of G.

Lemma 5 Let G′ be the bipartite left-subdivision of a split graph G = (V1, V2;E) and consider
the CNP on G′ with budget 0 ≤ K ≤ |V1| − 2. Then there is an optimal solution such that
only nodes in V1 are removed from G′. Furthermore, given any optimal solution, an equivalent
solution satisfying this condition can be constructed in polynomial time.

Proof. First we show that if at most |V1| − 2 nodes are removed from G′, then all the nodes
in V1 that are still in the graph belong to the same connected component. To see this, fix
i, j ∈ V1. In G′ there exist |V1| − 1 internally disjoint paths connecting i and j, namely the
paths i− vij − j and i− vih−h− vhj − j for all h ∈ V1 \{i, j}. It follows that it is not possible
to disconnect i and j by removing at most |V1| − 2 nodes (unless i or j is removed).

Now consider the CNP on G′ with budget 0 ≤ K ≤ |V1| − 2, and let S be the set of K
nodes removed according to an optimal solution. As shown above, the nodes in V1 \S belong
to the same connected component of the residual graph (and this component has more than
one node). Moreover, there is a single nontrivial connected component in the residual graph.

Assume that S ∩ V ′ 6= ∅ and let vij ∈ S ∩ V ′. If both i, j ∈ S, then the solution cannot
be optimal, as it would be more convenient to keep vij in the graph and remove some other
node. If exactly one of i, j is in S (say i ∈ S), then the solution cannot be optimal, as it would
be more convenient to remove j instead of vij. Therefore both i and j are in the residual
graph. Then, since i, j belong to the same connected component of the residual graph, we
can equivalently remove i instead of vij. In other words, by replacing S with S \ {vij} ∪ {i}
we still have an optimal solution, where the number of nodes in S ∩ V ′ has decreased by one.
By iterating this process, we eventually obtain an optimal solution S ⊆ V1 ∪ V2.

Now, since S ⊆ V1∪V2 and there is a single nontrivial connected component in the residual
graph, in order to show that there is an equivalent solution such that only nodes in V1 are
removed from G′, one can replicate the argument used in the proof of Lemma 3. �

Proposition 6 The CNP is NP -hard even on bipartite graphs.

Proof. We show that the CNP on split graphs (which is NP -hard by Proposition 4) polyno-
mially reduces to the CNP on bipartite graphs. More specifically, we prove that if G is a split
graph and G′ is the bipartite left-subdivision of G, then an optimal solution to the CNP on
G′ would immediately give an optimal solution to the CNP on G (with the same budget).

Let G = (V1, V2;E) be a split graph and let G′ be its bipartite left-subdivision (with vertex
set V (G′) = V1 ∪ V2 ∪ V ′). Consider the CNP on G with budget K ≤ |V1| − 2. Take S ⊆ V1

with |S| = K and let t be the number of nodes in the nontrivial connected component of
G[V \ S]. Then the number of nodes in the nontrivial connected component of G′[V (G′) \ S]
is t + |V ′| −

(
K
2

)
= t + c, where c is a constant depending only on the instance. Since, by

Lemma 3 (resp., Lemma 5) there is an optimal solution to the CNP on G (resp., G′) such

6

that only nodes in V1 are removed, we see that an optimal solution to the latter problem gives
an optimal solution to the former problem whenever K ≤ |V1| − 2.

To conclude, observe that if K ≥ |V1| then the solution of the CNP on G is trivial (remove
at least all the nodes in V1), and if K = |V1| − 1 an optimal solution to the CNP on G can be
found by testing the |V1| subsets of V1 containing exactly K nodes. �

2.3 Complements of bipartite graphs

Similarly to the case of split graphs, this case can be relevant in telecommunications environ-
ments where two fully meshed (sub)networks are connected to each other. The complement
of a bipartite graph is a graph G = (V1, V2;E) such that each of V1, V2 induces a clique,
while there are arbitrary connections between the nodes in V1 and those in V2. Given such
a graph G, we define G− as the bipartite graph obtained by removing all the edges between
nodes in V1 and all the edges between nodes in V2. In other words, G− = (V1, V2;E

−), where
E− = {v1v2 ∈ E : v1 ∈ V1, v2 ∈ V2}.

Lemma 7 Let G = (V1, V2;E) be the complement of a bipartite graph and consider the CNP
on G with budget K ≤ |V1|+ |V2| − 2. Two cases are possible:

(i) if G− does not admit a vertex cover with at most K nodes, then removing any subset S
of nodes with |S| = K gives an optimal solution to the CNP on G;

(ii) if G− admits a vertex cover with at most K nodes, then every optimal solution to the
CNP on G consists in removing a subset S of nodes such that S is a vertex cover of G−

with |S| = K minimizing the following expression:

∣∣|V1 \ S| − |V2 \ S|
∣∣. (4)

Proof. If G− does not admit a vertex cover with at most K nodes, then it is not possible
to create two distinct connected components in G by removing only K nodes, as some edges
connecting a node in V1 to a node in V2 will always survive.

If G− admits a vertex cover with at most K nodes, then it is possible (and indeed conve-
nient) to create two distinct connected components V1 \S and V2 \S by removing the nodes in
a vertex cover S with exactly K nodes (note that if K ≤ |V1|+ |V2| − 2, exactly K nodes will
be removed in any optimal solution). Since the total number of nodes in the two connected
components is fixed, the best choice is to make them as balanced as possible (see [4]). �

Proposition 8 The CNP is NP -hard even on the complements of bipartite graphs.

Proof. We show that if the CNP on the complements of bipartite graphs can be solved
in polynomial time, then the constrained vertex cover problem on bipartite graphs (CVCB),
which is NP -complete [16], can also be solved in polynomial time. The CVCB is the following
problem: given a bipartite graph H = (V1, V2;E) and two nonnegative integers k1 ≤ |V1|,
k2 ≤ |V2|, determine whether there is a vertex cover of H containing at most (equivalently,
exactly) k1 nodes from V1 and at most (equivalently, exactly) k2 nodes from V2.

By adding isolated nodes to either V1 or V2, one can always assume that in the CVCB the
value of |V1| − |V2| is equal to some given number (provided that this number is polynomial
in the input size). For our purpose, it is convenient to assume that |V1| − |V2| = k1 − k2. We

7

can also assume that k1 + k2 ≤ |V1| + |V2| − 2, as otherwise the existence of a vertex cover
with at most k1 nodes from V1 and k2 nodes from V2 can be checked in polynomial time.

Given an instance of the CVCB as above, let G be the graph such that G− = H, where
G is the complement of a bipartite graph. We consider the CNP on G with budget K =
k1 + k2 ≤ |V1|+ |V2| − 2. Let S be the set of nodes removed according to an optimal solution.
By Lemma 7, S is a vertex cover of G− = H if and only if H admits a vertex cover with at
most K nodes. Thus, if S is not a vertex cover of H then the answer to the CVCB is negative.

Now assume that S is a vertex cover of H. By Lemma 7, S minimizes expression (4). We
claim that the answer to the CVCB is positive if and only if the value of (4) is zero. To see
this, recall that |V1| − k1 = |V2| − k2 and |S| = k1 + k2, hence (4) is equal to zero if and only
if S contains exactly k1 nodes from V1 and k2 nodes from V2. Then there is a vertex cover
of H containing exactly k1 nodes from V1 and k2 nodes from V2 if and only if every optimal
solution S to the CNP on G is such that expression (4) is zero.

This shows that the CVCB on H can be solved by solving the CNP on G. �

3 Dynamic programming algorithm

In this section we introduce a dynamic programming algorithm that uses a tree decomposition
of the graph G. Such a decomposition is supposed to be available as part of the input, and
is indeed obtainable in polynomial time for relevant classes of graphs.

A nice tree decomposition of a graph G = (V,E) is a rooted tree T whose vertices
X1, . . . ,XN (also called bags) are subsets of V , satisfying the following properties (see also [15]):

(a)
⋃N

i=1 Xi = V ;

(b) for each edge uv ∈ E, there exists a bag Xi containing both u and v;

(c) for each node u ∈ V , the subtree of T induced by the bags {Xi : u ∈ Xi} is connected.

(d) every bag of T has at most two children;

(e) if Xi has two children Xi1 ,Xi2 , then Xi = Xi1 = Xi2 (Xi is called a join bag);

(f) ifXi has exactly one child Xj, then either Xi = Xj\{v} for some v ∈ Xj , orXi = Xj∪{v}
for some v ∈ V \Xj (Xi is called a forget bag or an introduce bag, respectively);

(g) every leaf of T has cardinality one (a start bag).

We will always assume that T is rooted at X1. A nice tree decomposition is a special
case of the more general concept of tree decomposition, which only requires (a)–(c). The
width of T is defined as maxi |Xi| − 1. The treewidth of G is the minimum width of a tree
decomposition of G. Finding the treewidth of a general graph is an NP -hard problem [3].
However, for any given constant κ, there is a linear time algorithm that checks whether the
treewidth of G is at most κ, and (if this is the case) constructs a tree decomposition of G
of width at most κ [7]. Given a tree decomposition of G of width τ , one can construct in
polynomial time a tree decomposition of G of width τ that satisfies (d)–(f), where the number
of bags is O(n) (see, e.g., [15]). If condition (g) is also required, then the number of bags is
O(τn) [15].

Given a bag Xi of T , we denote by Vi the set of nodes (of G) obtained by merging all the
bags being descendants of Xi (including Xi itself).

8

G

C1 C2

4 1

5 3 2

6 8

7 9

S = {1, 2, 3, 5, 6, 7}

A1 = C1 ∩ S = {1, 2, 3, 5}

A2 = C2 ∩ S = {6, 7}

α = {(A1, 1), (A2, 2)}

Figure 1: Illustration of the definition of CCC: α is the CCC of S with respect to the graph
G, which has two connected components C1, C2.

The following properties are known (and easy to see): (S1) for an introduce bag Xi =
Xj ∪ {v}, N(v) ∩ Vj ⊆ Xj ; (S2) for a join bag Xi = Xi1 = Xi2 , (Vi1 \Xi) ∩ (Vi2 \Xi) = ∅

and no path in G[Vi] connects the two subgraphs G[Vi1 \Xi], G[Vi2 \Xi].
From now on we consider the CNP in a complementary form: we want to select S ⊆ V ,

with w(S) ≥ W , such that the number of connected pairs in G[S] is as small as possible, where
W = w(V)−W . Our dynamic programming algorithm will traverse a nice tree decomposition
T of G, from the leaves up to the root. States of the dynamic program will refer to bags of
T . The information that we need to store in the states includes:

• a partial solution S — basically, the intersection of a full solution with some bag Xi;

• a partition of S establishing which pairs of nodes in a partial solution belong to the
same connected component;

• how many nodes in Vi \ S are connected to such connected components.

We store the above information in a structure called Connected Component Configuration
(CCC in the following). Given a graph G and a subset S of its nodes, we define the CCC of
S with respect to G as the following unordered sequence of ordered pairs:

α =
{(

C1 ∩ S, |C1 \ S|
)
, . . . ,

(
Cp ∩ S, |Cp \ S|

)}
,

where C1, . . . , Cp are the connected components of G that have nonempty intersection with
S. In other words, for every Cℓ, α indicates which nodes of S and how many nodes of V \ S
belong to Cℓ (see Figure 1 for an example).

Given S ⊆ V and a nonnegative integer r, we denote by Γ(S, r) the set of all objects α of
the form α = {(A1, a1), . . . , (Ap, ap)}, where

(i) A1, . . . , Ap are nonempty subsets that form a partition of S;

(ii) a1, . . . , ap are nonnegative integers such that a1 + · · · + ap ≤ r.

We call the elements of Γ(S, r) r-potential CCCs of S; (i)–(ii) are necessary (but not sufficient)
conditions for the existence of a subgraph G[R], with S ⊆ R ⊆ V and |R \ S| ≤ r, such that
α is the CCC of S with respect to G[R]. Any such G[R] will be called a realization of α.

9

The proposed algorithm will recursively compute

fi(S, α,m) = max
{
w(R) : S ⊆ R ⊆ Vi \ (Xi \ S),

G[R] is a realization of α,

the number of connected pairs in G[R] is m
} (5)

for every i = 1, . . . , N , S ⊆ Xi, α ∈ Γ(S, |Vi \ Xi|) and every integer 0 ≤ m ≤
(
|Vi|
2

)
, with

fi(S, α,m) = −∞ when there is no subset R satisfying the above conditions.1

We define a few operations to correctly modify and compose CCCs while moving towards
the root of T .
Restriction and extension Let α = {(A1, a1), . . . , (Ap, ap)} ∈ Γ(S, r) be an r-potential
CCC of a nonempty subset S ⊆ V .

Let v ∈ S; assuming wlog that v ∈ A1, we define the restriction of α to S \ {v} as the
following r-potential CCC of S \ {v}:

α− v = {(A1 \ {v}, a1 + 1), (A2, a2), . . . , (Ap, ap)}, (6)

where the first pair (A1 \ {v}, a1 + 1) should be omitted if A1 = {v}.
Let v ∈ V \ S and define L = {ℓ : Aℓ ∩N(v) 6= ∅}. We define the extension of α to v as

the following r-potential CCC of S ∪ {v}:

α+ v = {(Aℓ, aℓ) : ℓ ∈ L} ∪
{(

{v} ∪
⋃

ℓ∈LAℓ,
∑

ℓ∈L aℓ
)}

. (7)

Lemma 9 Let Xi,Xj be a parent-child pair of bags in T . Given S ⊆ Xj , suppose there exists
R such that S ⊆ R ⊆ Vj \ (Xj \ S), and α is the CCC of S with respect to R.

(a) If Xi = Xj \ {v}, v ∈ S, then α− v is the CCC of S′ = S \ {v} with respect to G[R], and
S′ ⊆ R ⊆ Vi \ (Xi \ S) holds.

(b) If Xi = Xj ∪ {v}, then α + v is the CCC of S′ = S ∪ {v} with respect to G[R′], with
R′ = R ∪ {s}, and S′ ⊆ R′ ⊆ Vi \ (Xi \ S) holds.

Proof. (a) S′ ⊆ R ⊆ Vi\(Xi \S) holds because Vi = Vj and (Xi \S) = (Xj \S). By computing
the intersections of the connected components C1, . . . , Cp of G[R] with S′, one observes that
C1 ∩ S′ = A1 \ {v} and |C1 \ S

′| = |C1 \ S|+ 1, while all the other (Ai, ai)’s are unchanged.
(b) Note that N(v) ∩ Vj ⊆ Xj because of (S1), and since S ⊆ Xj , all the neighbors of v

in G[R] are in S. With L = {ℓ : Aℓ ∩N(v) 6= ∅}, ℓ ∈ L if and only if Aℓ contains a neighbor
of v in G[R′]. Since v merges all those connected components Cℓ (resp., sets Aℓ of α) that
intersect N(v), while it does not affect the Cℓ’s (resp., Aℓ’s) that do not intersect N(v), the
CCC of S′ with respect to G[R′] is exactly α+ v. Obviously S′ ⊆ R′, and R′ ⊆ Vi \ (Xi \ S

′)
because of R ⊆ Vj \ (Xj \ S), v ∈ Vi and v ∈ S′. �

Sum of two potential CCCs In order to develop a dynamic programming algorithm for
the CNP, we need to define an operation for combining two potential CCCs β1, β2 into a new
potential CCC α in such a way that α is uniquely determined by the information in β1, β2. We
call such α the sum of β1, β2 — denote it by α = β1+β2. The sum is defined by Algorithm 1.

1Though fi(S, α,m) is finite only if m ≤
(

|Vi\(Xi\S)|
2

)

, for easiness of notation we allow m to take values

from 0 up to
(

|Vi|
2

)

.

10

Algorithm 1 Computing the CCC α = β1 + β2.

1: Input: two CCCs βt = {(Bt
1, b

t
1), . . . , (B

t
pt , b

t
pt)} for t = 1, 2.

2: Construct an auxiliary graph H = (S,E′) with vertex set S and edge set defined as

E′ = {uv : u, v are in the same Bt
k for some k, t}.

3: Compute the (node sets of) the connected components of H, A1, . . . , Ap.

4: Define aℓ =
∑

k:B1
k
⊆Aℓ

b1k +
∑

k:B2
k
⊆Aℓ

b2k for ℓ = 1, . . . , p.

5: return α = {(A1, a1), . . . , (Ap, ap)}.

Lemma 10 Let Xi be a join bag of T with children Xi1 = Xi2 = Xi. Let S ⊆ Xi. If there
exist R1, R2 such that S ⊆ R1 ⊆ Vi1 \ (Xi \ S), S ⊆ R2 ⊆ Vi2 \ (Xi \ S), β1 is the CCC of S
with respect G[R1] and β2 is the CCC of S with respect G[R2], then α = β1 + β2 is the CCC
of S with respect to G[R′], with R′ = R1 ∪R2, and S ⊆ R′ ⊆ Vi \ (Xi \ S) holds.

Proof. We use the notation introduced in Algorithm 1. First we prove that if u, v ∈ Aℓ for
some ℓ, then u, v belong to the same connected component of G[R′]. If u, v ∈ Aℓ, then there
exists a path P in H with u and v as endpoints. Let xy be any edge of P . Since xy is an
edge of H, x and y belong to the same connected component of either G[R1] or G[R2]. In
both cases G[R′] contains a path connecting x and y. Since this holds for all the edges of P ,
we can argue that u and v are connected by a path in G[R′], i.e., u and v belong to the same
connected component of G[R′].

We now show that if u, v are nodes in S that belong to the same connected component of
G[R′], then u, v ∈ Aℓ for some ℓ. Let P be a path in G with endpoints u, v. We assume wlog
that the node of P that is a neighbor of u belongs to R1. Let P ′ be a maximal subpath of
P starting at u such that all the nodes of P ′ belong to R1, and let w be the last node of P ′.
Note that P ′ contains at least one edge. Also note that w ∈ S: if not, then w 6= v (as v ∈ S)
and by the maximality of P ′ the successor of w in P (z, say) would belong to R2 \S; however
this is not possible, as wz would be an edge linking a node in R1 \ S to a node in R2 \ S, a
contradiction to (S2). Thus w ∈ S. Further, since P ′ is contained in G[R1], u and w belong
to the same connected component of G[R1], i.e., H contains edge uw. Now we consider the
path P ′ \P (which starts at w and ends at v) and define P ′′ as the maximal subpath of P \P ′

starting at w such that all the nodes of P ′′ belong to R2. Again, P ′′ contains at least one
edge. By iterating this process (alternating subpaths in G[R1] and G[R2]), we reach the final
node v. This proves that there is a path in H connecting u and v, i.e., u, v ∈ Aℓ for some ℓ.

The above shows that {A1, . . . , Ap} = {C1 ∩ S, . . . , Cp ∩ S}, where C1, . . . , Cp are the
connected components of G[R′] that have nonempty intersection with S. In order to conclude
that α is the CCC of S with respect to G, we prove that aℓ = |Cℓ \ S| for ℓ = 1, . . . , p. Note
that each Aℓ is the union of some sets Bt

k and recall that (R1 \ S) ∩ (R2 \ S) = ∅ because of
(S2). Then the number of nodes in V \ S that are connected to Aℓ is precisely aℓ.

Finally, S ⊆ R′ ⊆ Vi \ (Xi \ S) easily follows from the assumptions. �

We now describe the recursion of the dynamic programming algorithm. A nice tree de-
composition T of G is assumed to be part of the input. The values of fi are calculated starting
from the start bags of T and proceeding in postorder. We state all recursive formulas below
and postpone the proof of their correctness to the appendix.

11

Initial conditions Let Xi = {v} be a start-bag. We set

fi(S, α,m) =

wv if S = {v}, α = {({v}, 0)}, m = 0

0 if S = ∅, α = ∅, m = 0

−∞ in all other cases.

(8)

Join bag recursion Let Xi be a join bag with two children Xi1 = Xi2 = Xi. We compute

fi(S, α,m) = max
{
fi1(S, β1,m1) + fi2(S, β2,m2)− w(S) :

βt ∈ Γ(S, |Vit \Xi|), 0 ≤ mt ≤
(|Vit

|
2

)
for t = 1, 2,

β1 + β2 = α, Φ(β1, β2,m1,m2) = m
}
,

(9)

where, assuming that βt = {(Bt
1, b

t
1), . . . , (B

t
pt
, btpt)} for t = 1, 2, and α = β1 + β2 =

{(A1, a1), . . . , (Ap, ap)}, function Φ is defined as follows:

Φ(β1, β2,m1,m2) = m1 +m2 −

p1∑

ℓ=1

(
|B1

ℓ |+ b1ℓ
2

)
−

p2∑

ℓ=1

(
|B2

ℓ |+ b2ℓ
2

)
+

p∑

ℓ=1

(
|Aℓ|+ aℓ

2

)
. (10)

Note that we do not have α as an argument of Φ: in fact Φ does not really depend on α, as
α = β1 + β2 can be computed through Algorithm 1.

Introduce bag recursion Let Xi,Xj be a parent-child pair of bags, with Xj = Xi \ {v}
for some v ∈ Xi. We compute

fi(S, α,m) =

fj(S, α,m) if v /∈ S,

wv +max
{
fj(S

′, α′,m′) :

α′ ∈ Γ(S′, |Vj \Xj |), 0 ≤ m′ ≤
(|Vj |

2

)
,

α′ + v = α, Ψ(α′,m′) = m
}

if v ∈ S,
(11)

where S′ = S \ {v} and, assuming that α′ = {(A′
1, a

′
1), . . . , (A

′
p′ , a

′
p′)} and α = α′ + v =

{(A1, a1), . . . , (Ap, ap)}, Ψ(α′,m′) is defined as follows:

Ψ(α′,m′) = m′ −

p′∑

ℓ=1

(
|A′

ℓ|+ a′ℓ
2

)
+

p∑

ℓ=1

(
|Aℓ|+ aℓ

2

)
. (12)

Note that Ψ does not really depend on α, as α = α′ + v.

Forget recursion Let Xi,Xj be a parent-child pair of bags, with Xj = Xi ∪ {v} for some
v ∈ V \Xi. Defining S′ = S ∪ {v}, we compute

fi(S, α,m) = max

{
fj(S, α,m)

max
{
fj(S

′, α′,m) : α′ ∈ Γ(S′, |Vj \Xj|), α
′ − v = α

}
.

(13)

12

Optimal value Recalling that T is rooted at X1, the optimal value is given by

min
{
m : f1(S, α,m) ≥ W, S ⊆ X1, α ∈ Γ(S, |V \X1|), 0 ≤ m ≤

(|V |
2

)}
. (14)

As usual in dynamic programming, an optimal solution can be recovered by backtracking.
We defer to the appendix the proof of the following technical result.

Proposition 11 The dynamic program described by formulas (8)–(14) solves the node-weighted
CNP, once a nice tree decomposition of the graph is given.

We now show that if the width of a given tree decomposition of G is bounded by a constant,
then the dynamic program described above requires only a polynomial number of operations.

Proposition 12 The node-weighted CNP can be solved in polynomial time on the family of
graphs that have treewidth bounded by a given constant κ.

Proof. If the treewidth of G is at most κ, then one obtains in polynomial time a nice tree
decomposition of G of with at most κ, where the number of bags is O(κn) = O(n) [15].

The recursive function fi(S, α,m) must be computed for all bags Xi of T , all S ⊆ Xi, all
α ∈ Γ(S, |Vi \ Xi|) and all integers 0 ≤ m ≤

(|Vi|
2

)
. We now bound the number of possible

choices of these parameters.
There are O(n) possible choices for the index i. Since, for each fixed i, bag Xi contains

at most κ + 1 nodes of V , there are at most 2κ+1 possible choices of a subset S ⊆ Xi. As
|Vi| ≤ n, at most

(
n
2

)
+ 1 values of m need to be considered.

We now prove that for a fixed S ⊆ Xi, the number of potential CCCs in Γ(S, |Vi \Xi|) is
bounded by a polynomial in n. It is obviously enough to prove this for the potential CCCs in
Γ(S, n). Recall that an r-potential CCC of S is an object of the form {(A1, a1), . . . , (Ap, ap)}
satisfying properties (i)–(ii) given in this section. Since A1, . . . , Ap are nonempty subsets
forming a partition of S, and since |S| ≤ κ+1, we have at most a constant number of possible
partitions A1, . . . , Ap. To complete a potential CCC we have to assign a nonnegative number
aℓ to each subset Aℓ, where a1 + · · · + ap ≤ n. Since 0 ≤ aℓ ≤ n for all ℓ, for each partition
A1, . . . , Ap of S there are at most (n+1)p ways of choosing a1, . . . , ap. As each Aℓ is nonempty,
p ≤ |S| ≤ κ+ 1. Then (n+ 1)p ≤ (n+ 1)κ+1, which is a polynomial in n, as κ is a constant.

We have shown that the recursive function needs to be calculated only for polynomially-
many choices of the parameters. To conclude, we observe that each application of the formulas
(8)–(14) requires only a polynomial number of operations. For instance, when applying (9),
we can enumerate all the polynomially-many pairs β1, β2 with βt ∈ Γ(S, |Vit \Xi|) for t = 1, 2,
and check whether β1 + β2 = α through Algorithm 1. Similarly, one can check in polynomial
time whether Φ(β1, β2,m1,m2) = m for all quadruples of candidates β1, β2,m1,m2. �

4 Remarks and extensions

Other node deletion problems Some variants of the CNP were studied in the literature:
given a graph G = (V,E) with weights wv on the vertices and a budget W , one wants to
remove a subset of nodes S ⊆ V of total weight w(S) ≤ W so that g(G[V \ S]) is minimized,
with g being a function that measures the connectivity of a graph. In the complementary
form, we look for S ⊆ V with w(S) ≥ W minimizing g(G[S]), where W = w(V) −W . The
recursion of Section 3 can be extended to such problems if the objective function satisfies
some conditions. Let T be a nice tree decomposition of G with the usual notation.

13

(i) We require that some set Λ(G) ⊇ {g(G[S]) : S ⊆ V } be known and contain only a
polynomial number of elements.

(ii) For a join bag Xi with two children Xi1 ,Xi2 (thus Xi1 = Xi2 = Xi), take S ⊆ Xi; for
t = 1, 2, let Rt be such that S ⊆ Rt ⊆ Vit \ (Xi \ S), let βt be the CCC of S with
respect to G[Rt] and set mt = g(G[Rt]). We require that the value g(G[R1 ∪ R2]) can
be expressed as a function Φ(β1, β2,m1,m2) that does not depend on R1 and R2. Also,
we need that the value of Φ(β1, β2,m1,m2) can be computed in polynomial time. (This
function plays the role of that defined by equation (10).)

(iii) For an introduce bag Xi with a single child Xj = Xi \{v} for some v ∈ Xi, take S ⊆ Xi;
let R′ be such that S ⊆ R′ ⊆ Vj \ (Xj \S

′) (where S′ = S \{v}), let α′ be the CCC of S′

with respect to G[R′] and set m = g(G[R′]). We require that the value g(G[R′ ∪ {v}])
can be expressed as a function Ψ(α′,m′) that does not depend on R′. Also, we need
that the value of Ψ(α′,m′) can be computed in polynomial time. (This function plays
the role of that defined by equation (12).)

The recursion given in Section 3 works correctly under the above conditions by changing
the recursive function (5) and the initial conditions (8) to

fi(S, α,m) = max
{
w(R) : S ⊆ R ⊆ Vi \ (Xi \ S),

R is a realization of α, g(G[R]) = m
}
,

(5′)

fi(S, α,m) =

wv if S = {v}, α = {({v}, 0)}, m = g(G[{v}])

0 if S = ∅, α = ∅, m = g(G[∅])

−∞ in all other cases.

(8′)

Formulas (9), (11) and (13) are unchanged, except that the functions Φ and Ψ now have a
different definition that depends on the specific function g. The optimal value is given by

min
{
m : f1(S, α,m) ≥ W, S ⊆ X1, α ∈ Γ(S, |V \X1|), m ∈ Λ(G)

}
.

The correctness and polynomiality of the algorithm can be proven as in Propositions 11–12.
Table 1 describes how the recursion should be modified in order to handle (a) minimization

of the size of the largest connected component (studied in [5, 19, 21]), (b) minimization of
the number of “large” (|Ci| ≥ c, for given c) connected components, (c) maximization of
the number of “small” connected components (|Ci| ≤ c). If c = |V | the problem calls for
maximizing the number of surviving connected components (studied, e.g., in [21, 22]; the
result for the case of bounded treewidth is mentioned without proof in [22]).
Edge deletion problems As pointed out in the introduction, problems where edges instead
of nodes are removed from the graph in order to maximally disconnect its structure are also
considered in the literature. We now draw some links between node-deletion and edge-deletion
problems, and show that our results give also some insights into the latter type of problems.

Let G = (V,E) be an undirected graph, and let cuv be the cost of deleting an edge uv ∈ E.
Given B > 0, we now consider the problem of deleting a subset of edges S ⊆ E in order to

minimize

k∑

i=1

(
|C̃i|

2

)
(1′)

subject to
∑

uv∈S

cuv ≤ B, (2′)

14

g(S) Φ(β1, β2,m1,m2) Ψ(α′,m′)

max{|C1|, . . . , |Cp|} max{m1,m2, |A1|+ a1, . . . , |Ap|+ ap} max

{
m′, 1 +

∑

ℓ : Aℓ∩N(v)6=∅

(|Aℓ|+ aℓ)

}

|{Ci : |Ci| ≥ c}| m1 +m2 − p1 − p2 + |{ℓ : |Aℓ|+ aℓ ≥ c}| m′ − p′ + |{ℓ : |Aℓ|+ aℓ ≥ c}|
−|{Ci : |Ci| ≤ c}| −m1 −m2 + p1 + p2 − |{ℓ : |Aℓ|+ aℓ ≤ c}| −m′ + p′ − |{ℓ : |Aℓ|+ aℓ ≤ c}|

Table 1: Adaptation of the recursion to different objective functions. Here the subgraph G[S]
has connected components with node sets C1, . . . , Cp. In the second column, α = {(Ai, ai)}

p
i=1

is the sum of two suitable CCCs: α = β1+β2, βt = {(Bt
i , b

t
i)}

pt
i=1, t = 1, 2. In the third column,

α′ = {(A′
i, a

′
i)}

p′
i=1 is a CCC such that α = {(Ai, ai)}

p
i=1 = α′ + v.

where C̃1, . . . , C̃k are the node sets of the connected components of the residual graph G\S =
(V,E \ S). Problem (1′)–(2′) is NP -hard on general graphs even if cuv = 1 for all edges uv:
this follows easily from [13, Theorem 1], where a slightly different problem (called β-edge
disruptor problem) is considered. However, we show that the algorithm of Section 3 can be
adapted to handle this variant of the CNP, provided that the concept of CCC is slightly
extended. The edge-deletion problem can be transformed into a CNP. Also, we note that the
other objective functions mentioned above can be easily handled by similar transformations.

Given the graph G, we solve a CNP on its bipartite subdivision G′: formally, we consider
the CNP on the bipartite graph G′ = (V ′ = VB ∪ VR, E

′) whose nodes are partitioned into
Blue nodes and Red nodes:

VB = V, VR = {e = uv : uv ∈ E}, E′ = {ev : uv ∈ E for some u ∈ V }.

Blue nodes represent the original nodes of G, while red nodes represent the edges of G. All
red nodes have degree two. Two blue nodes u, v ∈ VB are neighbors of some red node e in G′

if and only if the corresponding edge links u and v in G. Note that, according to Kloks [15],
treewidth(G′) ≤ treewidth(G). We set deletion costs for nodes in G′

we = cuv for all uv = e ∈ VR (red nodes),

wu = ∞ for all u ∈ VB (blue nodes),

and keep the same deletion budget W = B. This ensures that in the resulting CNP only red
nodes can be removed: deleting a red node e in G′ corresponds to deleting the corresponding
edge in G. Now, in order to minimize the original objective function (1′), since only the pairs
of blue nodes should be counted in the objective, we have to

minimize

k∑

i=1

(
|Ci ∩ VB |

2

)
,

where the sets C1, . . . , Ck represent the connected components of G′[V ′ \ S].
We redefine a CCC of a subset of nodes S with respect to G′ as

{(C1 ∩ S, a1), . . . , (Cp ∩ S, ap)} with ai = |(Ci \ S) ∩ VB |, i = 1, . . . , p,

where C1, . . . , Cp are the connected components of G′ having nonempty intersection with S.
Note that the sets Ci ∩ S contain both red and blue nodes, whereas the ai’s count only the

15

number of blue nodes not belonging to S in each Ci. An r-potential CCC α of S is defined as
in Section 3, but a realization of α is also required to include exactly

∑p
i=1 ai blue nodes not

belonging to S. The operations on CCCs can be consistently extended to this new definition.
A polynomial algorithm is obtained similarly to the node deletion case.

Proposition 13 The edge-deletion problem (1′)–(2′) can be solved in polynomial time on the
family of graphs that have treewidth bounded by a given constant.

The details of the proof are left to the reader (see also [1]) — note that the bipartite subdivision
is not a generic bipartite graph, hence this result is not in contrast with Proposition 6.

Acknowledgements

This work was mostly carried out while the second author was a postdoctoral fellow in the Dis-
crete Optimization group at EPFL (École Polytechnique Fédérale de Lausanne, Switzerland),
partially supported by the DFG Focus Program 1307, grant EI 677/2-2. We are grateful to
Laura Sanità and Alex Popa for their hints.

A Proof of Proposition 11

Proof. We prove the correctness of the recursive formulas given in Section 3. In what follows
we denote by Pi(S, α,m) the optimization problem (5).

Initial conditions If Xi = {v} is a start-bag, then Vi = Xi, thus the only feasible solution
to problem Pi(S, α,m) is R = S. When S = {v}, the solution R = S is feasible if and only
if α = {({v}, 0)} (as G[R] must be a realization of α) and m = 0 (no connected pairs); when
S = ∅, the solution R = S is feasible if and only if α = ∅ and m = 0.

Join bag recursion In order to show that the left-hand side of (9) is at most as large as
the right-hand side, we prove that if fi(S, α,m) is finite then there exist β1, β2,m1,m2 as in
(9) such that fi(S, α,m) ≤ fi1(S, β1,m1) + fi2(S, β2,m2) − w(S). Afterwards, in order to
show that the left-hand side of (9) is at least as large as the right-hand side, we prove that if
fi1(S, β1,m1) and fi2(S, β2,m2) are finite for some β1, β2,m1,m2 as in (9), then fi(S, α,m) ≥
fi1(S, β1,m1) + fi2(S, β2,m2)− w(S).

Assume that fi(S, α,m) is finite. Then there exists R such that S ⊆ R ⊆ Vi \ (Xi \ S),
α is the CCC of S with respect to G[R], and the number of connected pairs in G[R] is m.
For t = 1, 2, define Rt = R ∩ Vit , let βt be the CCC of S with respect to G[Rt], and let
mt be the number of connected pairs in G[Rt]. We have to show that (i) β1 + β2 = α, (ii)
Φ(β1, β2,m1,m2) = m and (iii) fi(S, α,m) ≤ fi1(S, β1,m1) + fi2(S, β2,m2)− w(S).

(i) Since R1 \ S ⊆ Vi1 \Xi1 = Vi1 \Xi and R2 \ S ⊆ Vi2 \Xi2 = Vi2 \Xi, by (S2) R1 \ S
and R2 \ S are disjoint subsets of nodes, and there is no edge linking a node in the former
set to a node in the latter set. By Lemma 10, β1 + β2 is the CCC of S with respect to
G[R1 ∪R2] = G[R], i.e., α = β1 + β2.

(ii) To see that Φ(β1, β2,m1,m2) = m, the crucial observation is that every connected
component of G[R1] or G[R2] which does not intersect S is also a connected component of
G[R] that does not intersect S, and viceversa. Let us analyze the right-hand side of (10). The
first two terms (i.e., m1 +m2) give the number of connected pairs in G[R1] plus the number
of connected pairs in G[R2]. With the two subsequent summations we are subtracting the
connected pairs belonging to a component of G[R1] or G[R2] that intersects S. Thus we are

16

so far counting exactly the connected pairs belonging to components of G[R1] or G[R2] that
are disjoint from S, i.e., the connected pairs belonging to a component of G[R] that is disjoint
from S. We now have to add the number of connected pairs belonging to a component of
G[R] that intersects S, which is given by the last summation.

(iii) By construction of β1, β2,m1,m2, we have that R1 (resp., R2) is a feasible solution to
problem Pi1(S, β1,m1) (resp., Pi2(S, β2,m2)). Therefore, since R1∪R2 = R and R1∩R2 = S,
we have fi(S, α,m) = w(R) = w(R1)+w(R2)−w(S) ≤ fi1(S, β1,m1)+fi2(S, β2,m2)−w(S).

The above arguments show that the left-hand side of (9) is at most as large as the right-
hand side. To prove the other inequality, assume that both fi1(S, β1,m1) and fi2(S, β2,m2)
are finite for some β1, β2,m1,m2 as in (9). Then, for t = 1, 2, there exists Rt such that
S ⊆ Rt ⊆ Vit \ (Xi \ S), βt is the CCC of S with respect to G[Rt], and mt is the number
of connected pairs in G[Rt]. Define R = R1 ∪ R2 and α = β1 + β2. Then, by Lemma 10,
α is the CCC of S with respect to R. Also, by setting m = Φ(β1, β2,m1,m2), m is the
number of connected pairs in G[R]. Then R is a feasible solution to problem Pi(S, α,m) and
fi(S, α,m) ≥ w(R) = w(R1) + w(R2)−w(S) = fi1(S, β1,m1) + fi2(S, β2,m2)− w(S).

Introduce bag recursion For v /∈ S, (11) is correct because the subproblems Pi(S, α,m)
and Pj(S, α,m) have the same feasible solutions. Thus in the following we assume that v ∈ S.

We first prove that the left-hand side of (11) is at most as large as the right-hand side.
Assume that fi(S, α,m) is finite. Then there exists R such that S ⊆ R ⊆ Vi \ (Xi \ S), α is
the CCC of S with respect to G[R], and the number of connected pairs in G[R] is m. Define
R′ = R \ {v}, let α′ be the CCC of S′ with respect to G[R′], and let m′ be the number of
connected pairs in G[R′]. We have to show that (i) α = α′ + v, (ii) Ψ(α′,m′) = m and (iii)
fi(S, α,m) ≤ wv + fj(S

′, α′,m′).
(i) Refer to the definition of nice tree decomposition (see Section 3). By property (c),

recalling that Xj = Xi \ {v}, we have v /∈ Vj . Further, using also property (b), for the set of
neighbors N(v) of v in G[Vi] we have N(v) ⊆ Xi. Moreover, since S ⊆ R ⊆ Vi \ (Xi \ S), the
set of neighbors of v in G[R] is contained in S. Then, by Lemma 9 (b), α′ + v is the CCC of
S with respect to G[R], i.e., α = α′ + v.

(ii) To see that the Ψ(α′,m′) = m, use again the facts that N(v) ⊆ Xi and Xj = Xi \{v}.
With this in mind, the basic idea is a counting argument as in the join bag recursion.

(iii) By construction of α′ and m′, we have that R′ is a feasible solution to problem
Pj(S

′, α′,m′). Then fi(S, α,m) = w(R) = wv + w(R′) ≤ wv + fj(S
′, α′,m′).

To prove that the left-hand side of (11) is at least as large as the right-hand side, assume
that fj(S

′, α′,m′) is finite for some α′ and m′ as in (11). Then there exists R′ such that
S′ ⊆ R′ ⊆ Vj \ (Xj \ S

′), α′ is the CCC of S′ with respect to G[R′], and m′ is the number
of connected pairs in G[R′]. Define R = R′ ∪ {v}, α = α′ + v and m = Ψ(α′,m′). Since, by
Lemma 9 (b), α is the CCC of S with respect to R, and since m is the number of connected
pairs in G[R], R is a feasible solution to problem Pi(S, α,m). Hence fi(S, α,m) ≥ w(R) =
wv + w(R′) = wv + fj(S

′, α′,m′).

Forget bag recursion We first prove that the left-hand side of (13) is at most as large
as the right-hand side. Assume that fi(S, α,m) is finite. Then there exists R such that
S ⊆ R ⊆ Vi \ (Xi \S), α is the CCC of S with respect to G[R], and the number of connected
pairs in G[R] is m. If v /∈ R, then R is a feasible solution to problem Pj(S, α,m) and thus
fi(S, α,m) = w(R) ≤ fj(S, α,m). Now assume v ∈ R and let α′ be the CCC of S′ with respect
to G[R]. By Lemma 9, α′ − v is the CCC of S with respect to G[R], i.e., α′ − v = α. Since
R is a feasible solution to problem Pj(S

′, α′,m), we have fi(S, α,m) = w(R) ≤ fj(S
′, α′,m).

17

Thus the left-hand side of equation (13) does not exceed the right-hand side.
Now assume that the right-hand side of (13) is finite. If fj(S, α,m) is finite, then there

exists R such that S′ ⊆ R ⊆ Vj \ (Xj \ S′), α is the CCC of S′ with respect to G[R], and
m is the number of connected pairs in G[R]. In this case R is clearly a feasible solution to
problem Pi(S, α,m), thus fi(S, α,m) ≥ w(R) = fj(S, α,m). Now assume that fj(S

′, α′,m)
is finite for some α′ as in (13). Then there exists R′ such that S′ ⊆ R′ ⊆ Vj \ (Xj \ S′), α′

is the CCC of S′ with respect to G[R′], and m is the number of connected pairs in G[R′].
Since, by Lemma 9, α′ − v = α, R′ is a feasible solution to problem Pi(S, α,m). Then
fi(S, α,m) ≥ w(R) = fj(S

′, α′,m).

Optimal value Recall that we are interested in a subset R∗ ⊆ V with weight w(R∗) ≥ W
such that G[R∗] contains the minimum number of connected pairs, which we denote by m∗.

To see that m∗ is at least as large as the expression in (14), let S = R∗∩X1, α be the CCC
of S with respect to R∗ and m = m∗. Then R∗ is a feasible solution to problem P1(S, α,m),
thus f1(S, α,m) ≥ w(R∗) ≥ W . Hence m∗ is at least as large as the minimum in (14).

To see that m∗ is at most as large as the expression in (14), let S, α,m be parameters for
which the minimum is attained, and let R be a corresponding optimal solution of problem
P1(S, α,m). Then w(R) ≥ W and G[R] contains m connected pairs, thus m∗ ≤ m. �

References

[1] B. Addis, M. Di Summa, and A. Grosso. Removing critical nodes from a graph: complex-
ity results and polynomial algorithms for the case of bounded treewidth. Optimization
online (www.optmization-online.org), 2011.

[2] R. Albert, H. Jeong, and A. L. Barabási. Error and attack tolerance of complex networks.
Nature, 406:378–382, 2000.

[3] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

[4] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos. Detecting critical
nodes in sparse graphs. Computers & Operations Research, 36:2193–2200, 2009.

[5] A. Arulselvan, C. W. Commander, O. Shylo, and P. M. Pardalos. Cardinality-constrained
critical node detection problem. In Nalân Gülpnar, Peter Harrison, and Beŗc Rüstem,
editors, Performance Models and Risk Management in Communications Systems, vol-
ume 46 of Springer Optimization and Its Applications, pages 79–91. Springer New York,
2011.

[6] H. L. Bodlaender. Some classes of graphs with bounded treewidth. Bulletin of the
EATCS, 36:116–125, 1988.

[7] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

[8] V. Boginski and C. W. Commander. In S. Butenko, W. Art Chaovalitwongse, and P. M.
Pardalos, editors, Clustering challenges in biological networks, chapter 7: Identifying
critical nodes in protein-protein interaction networks, pages 153–167. World Scientific,
2009.

18

[9] S. P. Borgatti. Identifying sets of key players in a social network. Computational and
Mathematical Organization, 12:21–34, 2006.

[10] R. Cohen, D. Ben Avraham, and S. Havlin. Efficient immunization strategies for com-
puter networks and populations. Physical Review Letters, 91:247901–247905, 2003.

[11] J. Cole Smith and C. Lim. Algorithms for discrete and continuous multicommodity flow
network interdiction problems. IIE Transactions, 39:15–26, 2007.

[12] M. Di Summa, A. Grosso, and M. Locatelli. The critical node problem over trees.
Computers and Operations Research, 38:1766–1774, 2011.

[13] T. N. Dinh, Y. Xuan, M. T. Thai, E. K. Park, and T. Znati. On approximation of
new optimization methods for assessing network vulnerability. In Proceedings of the 29th
IEEE Conference on Computer Communications (INFOCOM), pages 105–118, 2010.

[14] M. R. Garey and D. S. Johnson. Some simplified NP-complete graph problems. Theo-
retical Computer Science, 1:237–267, 1976.

[15] T. Kloks. Treewidth: Computations and Approximations, volume 842 of Lecture Notes
in Computer Science. Springer, 1994.

[16] S.-Y. Kuo and W. K. Fuchs. Efficient spare allocation for reconfigurable arrays. Design
& Test of Computers, IEEE, 4:24–31, 2007.

[17] T. C. Matisziw and A. T. Murray. Modeling s-t path availability to support disaster
vulnerability assessment of network infrastructure. Computers and Operations Research,
36:16–26, 2009.

[18] Y.-S. Myung and H. Kim. A cutting plane algorithm for computing k-edge survivability
of a network. European Journal of Operational Research, 156(3):579 – 589, 2004.

[19] M. Oosten, J. H. G. C. Rutten, and F. C. R. Spieksma. Disconnecting graphs by removing
vertices: a polyhedral approach. Statistica Neerlandica, 61(1):35–60, 2007.

[20] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics, 131:651–654, 2003.

[21] S. Shen and J. Cole Smith. Polynomial-time algorithms for solving a class of critical
node problems on trees and series-parallel graphs. Networks, 60(2):103–119, 2012.

[22] R. van der Zwaan, A. Berger, and A. Grigoriev. How to cut a graph into many pieces. In
Mitsunori Ogihara and Jun Tarui, editors, Theory and Applications of Models of Com-
putation, volume 6648 of Lecture Notes in Computer Science, pages 184–194. Springer
Berlin / Heidelberg, 2011.

[23] R. Wollmer. Removing arcs from a network. Operations Research, 12:934–940, 1964.

[24] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modelling,
17:1–18, 1993.

[25] T. Zhou, Z.-Q. Fu, and B.-H. Wang. Epidemic dynamics on complex networks. Progress
in Natural Science, 16:452–457, 2006.

19

