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Abstract 

Current agricultural practice depends upon a wide use of pesticides, bactericides and fungicides. 

Increased demand for organic products indicates consumer preference for reduced chemical use. 

Therefore, there is a need to develop novel sustainable strategies for crop protection and 
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enhancement that do not rely on harmful chemicals and/or genetic modification. Microbial 

(bacterial and fungal) volatile organic compounds (MVOCs) are intriguingly complex and 

dynamic, and can modulate the physiology of plants and microorganisms by regulating 

metabolomics, genomics and proteomics status. Hence, MVOCs can be exploited to use as an 

ecofriendly, cost effective and sustainable strategy for agricultural practices. An increasing body 

of evidence indicates that MVOCs might become alternative to harmful pesticides, fungicides 

and bactericides as well as genetic modification.  

 

Introduction 

Bacteria and fungi are the major inhabitants of soil rhizosphere, the narrow zone of soil that 

surrounds and is influenced by plant roots and which is considered to be one of the most 

dynamic interfaces on Earth. In agro-ecosystems, the rhizosphere microbiota have been shown to 

have a profound influence on plant growth, nutrition and health [1, 2]. Numerous organisms are 

responsible for these processes, partaking in innumerable interactions between plants, 

antagonists and mutualistic symbionts, both below and above ground [3-5]. To help plants to 

defend against attack from multiple pathogens, sophisticated alternative interactions involving 

plant growth promoting rhizobacteria (PGPR) and fungi (PGPF) occur, through the activation of 

induced systemic resistance (ISR) [6]. 

Many of the current insights into the above mentioned interactions and processes have originated 

from direct physical contact between interacting partners. However, in the last decade 

considerable progress is also being made in understanding the role microbial signals and 

microbial volatile organic compounds (MVOCs) in below- and above-ground multitrophic 

interactions and their roles in modulating growth, nutrition and health of interacting partners [7-

13].   

Microorganisms produce a plethora of intriguingly complex and dynamic MVOCs, which are 

defined as compounds that have high enough vapor pressures under normal conditions to 

significantly vaporize and enter the atmosphere [1]. Despite increasing attention on the 

importance of MVOCs in both atmospheric (“above-ground”) and soil (“below-ground”) 

ecosystems [7, 14-17], their functional role remains elusive. Only recently, a few studies have 
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shown the wealth of MVOCs for the modulation of crop growth, development, defense, inter- 

and intra-specific communication [2]. Recent literature reports the documentation of MVOCs 

produced by just 400 microorganisms of the 10,000 described microbial species and millions of 

species existing on earth [10].  

At the plant-microbe community level, substantial progress has been made in studying various 

strains of PGPR, PGPF and phytopathogen MVOCs multifaceted role in agro-ecosystems. 

Chemical ecologists consider MVOCs as potential semiochemicals that function as attractants 

and repellants to insects and other invertebrates. For agriculture scientists, MVOCs are seen as 

bio-control agents to control various phytopathogens and as bio-fertilizers for plant growth 

promotion. In the food industries, the MVOCs bio-control properties are used to prevent post-

harvest plant diseases. Most recently, MVOCs have been considered as a potential source of 

biofuel.  

Because many recent reviews have considered the multifaceted importance of MVOCs, 

including the regulation of VOC emissions, the role of VOC in plant rhizosphere processes (i.e. 

competence, pathogenesis, symbiosis) and their potential functions as quorum sensing signals 

both for microbial growth and regulation of root development [8-10, 18], we will not repeat this 

in detail. Instead, this article will focus on the role of MVOCs in plant growth, nutrients and 

health perspectives and possible exploitation of MVOCs significance role from lab conditions to 

the open field conditions. Here, we review recent progress in MVOCs research for crop welfare 

and suggest that a conceptual framework is needed to stimulate adoption of MVOCs at open 

field condition as a possible substitute for the hazardous chemical pesticides and fertilizer. 

 

MVOCs in the field for crop welfare 

Under highly competitive but symbiotic conditions, MVOCs are particularly important for 

antibiosis and signaling, and may serve as regulators of plant growth and development. The 

ecological functions of microbial volatiles are not understood in detail, but several functions such 

as inter and intra species communication, defense and plant growth-promotion/priming have 

been suggested. Research over the last 10 years has led to an increasingly clear conceptual 

understanding of the role MVOCs for the crop welfare. These studies demonstrated the 
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modulation of metabolomics, genomics and proteomics of crop plants upon MVOCs treatment. 

MVOCs influence on modulation of phytohormones, induction of systemic acquired resistance, 

defense and priming response, multiple pathogen resistance, and change in plant biomass, 

growth and development have been extensively studied and reviewed elsewhere [7, 9, 14, 15, 17, 

19-23]. Here, we emphasize selected examples of how microbial MVOCs modulate above 

mentioned multifaceted interactions.  

Exposure of Arabidopsis plants to MOVOCs from rhizosphere strains of Bacillus subtilis and B. 

amyloliquefaciens resulted in significant growth promotion. Further investigation on the volatile 

profile revealed that 2,3-butanediol is the major volatile compound contributing to this 

phenotypic effect [13, 24]. Similarly, exposure of tobacco plants to Pseudomonas chlororaphis 

MVOCs promoted growth via GacS kinase-dependent production of 2,3-butanediol [25]. These 

GacS kinases also regulate the synthesis of signal molecules such as acyl-homoserine lactones 

(AHL), suggesting that 2,3-butanediol and other MVOCs may belongs to a novel class of 

chemical signals that bacteria utilize to communicate with neighboring organisms [25]. B. 

subtilis emitted 2,3-butanediol contributes to salt tolerance and ISR in Arabidopsis, whereas the 

same compound produced by P. chlororaphis resulted in Arabidopsis drought tolerance and 

enhanced disease resistance against Erwinia caratovora but not against P. syringae pv. tabaci 

[12, 25-27]. Many other bacterial volatiles from species which are present in the plant 

rhizosphere, such as Burkholderia cepaci and Staphylococcus, show growth promoting features 

although their chemical structures are yet to be determined [21]. There are certain bacterial 

genera including Burkholderia, Chromobacterium, Pseudomonas, Serratia and 

Stenotrophomans, whose volatile profiles have shown to have adverse effects on plant growth 

and development [19, 22]. Transcriptional and molecular analysis of Arabidopsis exposed to 

growth inhibiting volatile profiles of Serratia plymuthica and Stenotrophomnas maltophilia 

suggest an important role of the WRKY18 transcription factor in volatile-mediated plant growth 

inhibition [28]. Growth modulation, ISR and drought tolerance observed in plants after microbial 

volatile exposure depend on genomic, metabolomic and proteomic changes, which are largely 

attributed to alterations on phytohormone levels. The influence of 2,3-butanediol from B. subtilis 

on plant growth and ISR is due to modulation of ethylene and auxin homeostasis. Similarly, 

drought tolerance induced by 2,3-butanediol from P. chlororaphis depends on jasmonic and 

salicylic acid, although the involvement other phytohormones and their cross talk could not be 
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ruled out [12, 13, 27, 29]. Transcriptomic, proteomic and metabolomic analyses of Arabidopsis 

exposed to B.subtilis suggests the involvement of different signaling pathways for enhanced 

growth, involving activity of cell wall modification, stress responses, hormone regulation, 

antioxidant enzymes activity and photosynthesis [29-31].  

Similar studies were conducted to understand the role fungal volatile profile on plant growth, 

nutrients and health. Trichoderma viride volatiles induce significant changes in Arabidopsis, 

including increased lateral roots, taller, bigger and early flowering phenotypic changes [32]. 1-

octen-3-ol is commonly produced by many fungi and contributes to enhance plant resistance to 

the necrotropic fungal pathogen Botrytis cinerea by inducing defense signaling cascades [33, 

34]. Alternaria alternata, Penicillium charlesii and P. aurantiogriseum volatile profile promote 

growth and starch accumulation in several plant species [35]. Interestingly, volatiles from a non-

pathogenic strain of Fusarium oxysporum, MSA35, associated with a group of ectosymbiotic 

bacteria promotes lettuce growth [36, 37]. Further studies on this strain revealed that 

sequiterpenes such as β-caryophyllene produced by the ectosymbiotic bacterial species are the 

major volatile compounds responsible for the enhanced growth [37]. Ectomycorrhizal truffles 

such as Tuber borchii, T. indicum and T.melanopsorum produce volatiles that mediated 

inhibition of leaf growth and root development in Arabidopsis [38].  

Collectively, these studies demonstrate that MVOCs have profound effects on plant metabolism, 

growth and health. However, many of the current insights into the role of MVOCs in modulating 

plant growth and defense are obtained from either laboratory or greenhouse experiments. Quite 

recently, a study has been conducted at the field level to induce crop defense against multiple 

pathogens and to attract natural enemies of aphids. This study provided useful insights of 

possible implementation of MVOCs as crop protection and biocontrol agents in open field 

conditions [39]. We now have the means to begin a new era of MVOCs that might potentially 

replace costly and unsustainable chemical pesticides and fertilizers and limit the use of 

genetically modified crops. Table 1 lists some bioactive MVOCs and their effects on plants. 

Deployment of MVOCs in the open field 

The search for novel molecules with biotechnological applications is termed “bioprospecting”. 

For most of the 20th century, fungal and bacterial bioprospecting has focused on the search for 
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traditional secondary metabolites with drug value (e.g. penicillin, lovastatin) or for enzymes with 

new applications (e.g. biomass degrading enzymes from thermophiles). A concerted search for 

new biotechnological products among MVOCs will require a paradigm shift in the scientific 

community’s thinking [15]. MVOCs represent a new frontier in bioprospecting. However, 

although considerable progress has been made in our understanding of MVOCs for crop welfare 

at lab conditions, we are still far from implementing them under field conditions. Relatively 

recent studies conducted on volatile application at open field condition suggest that MVOCs can 

be applied to trigger defense against both pathogens and herbivores [39]. This is just the 

beginning but we still need to optimize proper conditions for the effective implementation of 

MVOCs at the field level.  

There are many limitations of MVOCs for field applications: a) identification of bioactive 

MVOCs; b) optimization of concentration of specific volatiles or blend of volatile compounds; 

and c) application at the field level. The latter, by considering MVOCs physical and chemical 

properties, is the most difficult and challenging task. For instance, 2,3-butandiol field treatment 

on tobacco led to significant reduction in disease symptoms, whereas no significant results were 

observed when cucumber plants were treated to fight the biotrophic pathogen Pseudomonas 

syringae [39-41]. However, an artificial VOC mixture prepared on the basis of the composition 

of the VOCs (mainly alcohols and esters) mimicked the inhibitory effects of the natural MVOCs 

released by Saccharomyces cerevisiae on citrus black spot, caused by the fungus Guignardia 

citricarpa at postharvest. Thus, MVOCs produced by the yeast or the artificial mixtures might be 

a promising control method for citrus black spot or others postharvest diseases [42, 43]. So far, 

MVOCs are successfully applied at field level as a foliar spray and soil dumping [39-41] but 

there are no comparative studies using different methods of field application to provide a better 

understanding of effective and optimized methods. 

Conclusions and future perspectives 

Studies of MVOCs application at the field level are still in their infancy. More experiments and 

field trials are needed to prove their worth and provide sustained industry pipelines leading to a 

commercial production that meets farmers’ needs. Consumers are well aware of the hazardous 

effect caused to the environment and human health by pesticides and chemical fertilizers. 

Alternative to this, genetically modified crop plants and recently proposed genetically edited 
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crops [44] could provide a solution, but most countries have lengthy, cumbersome and expensive 

regulatory frameworks, which slow down the use of genetically modified crop plants. Now it is 

time to adopt emerging MVOCs, a new sustainable approach that can be available in a cheaper, 

efficient, effective and ecofriendly manner. MVOCs are equivalent to biopesticides or 

biofertlizers. The market breadth and demand for these naturally derived compounds increased 

considerably in the recent years around the world but their use is still only 4% of the global 

pesticide market [45, 46]. Researchers realized the importance of MVOCs for the crop welfare 

under lab conditions and recently extended their studies to field level with certain success. We 

are now beginning to understand the multi-facet interaction of MVOCs with microorganisms and 

crop plants and further studies should be done by field level testing different crop species and 

obtaining reproducible results which could satisfy farmers’ and consumers’ needs. However, 

several questions remain unsolved (see Box 1). 

In our opinion, MVOCs possess a high potential impact for crop welfare and sustainable 

agriculture but we are just beginning to understand their role and still far from agricultural 

applications. In the coming years we assume MVOCs will outperform chemical pesticides and 

fertilizers and will become novel candidate for sustainable agriculture. 
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Table 1. List of bioactive MVOCs and their effects on plants 

Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

Arthobacter agilis 

UMCV2 

 

Growth promotion [47] 

Bacillus 

amyloliquefaciens 

IN937a 

 

Growth promotion and induced systemic 

resistance (ISR) 

[12, 

13] 

Bacillus 

megaterium 

XTBG34 
 

Growth promotion [48] 

Bacillus subtilis 

GBO3 

 

Growth promotion and ISR 
[12, 

13] 
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Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

Fusarium 

oxysporum 

MSA 35 

 

Induced shoot length, root length and fresh 

weight of lettuce seedlings 
[37] 

Many species of 

bacteria, fungi and 

plants 

 

ISR, emission of green leaf volatiles to attract 

natural enemies of Aphid 

[24, 

39, 

53, 

54] 

Many species of 

bacteria, fungi and 

plants 
 

ISR, pheromone, in response to herbivore 

produced by plant to attract natural enemies 

[39, 

55-

58] 

Mold fungi 

 

Induced defense and protection against 

Botrytis cinerea 
[33] 

Muscodor albus 

 

Collectively they acted synergistically to kill a 

broad range of plant- and human-pathogenic 

fungi and bacteria 

[59] 
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Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

Muscodor albus 

 

Volatile mixture were effectively used to 

control postharvest plant diseases 
[64] 

Muscodor 

crispans 
Mixture of volatile compounds 

Effective against a wide range of plant 

pathogens, including the fungi Pythium 

ultimum, Phytophthora cinnamomi, 

Sclerotinia sclerotiorum and Mycosphaerella 

fijiensis (the black sigatoka pathogen of 

bananas), and the serious bacterial pathogen of 

citrus, Xanthomonas axonopodis pv. citri. In 

addition, the VOCs of M. crispans killed 

several human pathogens, including Yersinia 

pestis, Mycobacterium tuberculosis and 

Staphylococcus aureus. 

[60] 

Muscodor 

yucatanensis 
Mixture of volatile organic compounds 

Mixture of volatile organic compounds 

produced by M. yucatanensis have 

allelochemical effects against other 

endophytic fungi, phytopathogenic fungi and 

plants. 

[63] 

Phoma sp 

Unique mixture of volatile organic 

compounds, including a series of 

sesquiterpenoids, some alcohols and several 

reduced naphthalene derivatives. 

The volatiles of Phoma sp. possess antifungal 

and fuel properties Some of the test organisms 

with the greatest sensitivity to the Phoma sp. 

Volatiles were Verticillium, Ceratocystis, 

Cercospora and Sclerotinia. 

[62] 
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Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

Phomopsis sp 

 

Volatile mixture of Phomopsis sp. possess 

antifungal properties and an artificial mixture 

of the VOCs mimicked the antibiotic effects 

of this organism with the greatest bioactivity 

against a wide range of plant pathogenic test 

fungi including: Pythium, Phytophthora, 

Sclerotinia, Rhizoctonia, Fusarium, Botrytis, 

Verticillium, and Colletotrichum. 

[61] 

Pseudomanas 

aeruginosa 

PAO1, PAO14, 

Tb, TBCF10839 

and PUPa3 

HCN Growth inhibition [49] 

Pseudomanas 

chlororaphis O6 
 

Growth promotion, ISR and drought stress 

tolerant 

[25, 

27] 

Pseudomanas 

fluorescens 

A112 

Not determined Growth inhibition (shoot and root) [50] 

Pseudomanas Not determined Growth inhibition [21] 
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Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

trivialis 

3Re2-7 

Rhizosphere 

strains (isolated 

from rhizosphere 

of lemon plants) 
L263, L266, L272a, 

L254, L265a and 

L265b 

Volatile mixture 
Growth promoting and modulation of root 

architecture 
[52] 

Rhizosphere 

strains (more than 

42 strains 

predominantly 

from 

Burkholderia 

genus) 

Not determined 
Growth inhibition or promotion (dose 

dependent) 
[51] 

Serratia 

marcescens 

MG-1 

Not determined Growth inhibition [21] 

Serratia 

plymuthica 

3Re4-18, HRO-

C48, IC14 

Not determined Growth inhibition 
[21, 

49] 
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Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

Stenotrophomanas 

maltophilia 

R3089 

Not determined Growth inhibition [21] 

Stenotrophomanas 

rhizospehila 

P69 

Not determined Growth inhibition [21] 

Trametes gibbosa 

 

Serves as attractant for fungus eating beetles [65] 

Trametes 

versicolor 

 

Serves as attractant for fungus eating beetles [66] 
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Bacterial or 

Fungal species 

and strain 

Identified volatile compounds Effects on interacting organisms Ref. 

Trichoderma 

virens 

 

Growth promotion and induction of defense 

responses of Arabidopsis thaliana against 

Botrytis cinerea 

[34] 

Tuber 

melanosporum, 

Tuber indicum 

and Tuber 

borchii (truffles)  

Growth inhibition [38] 
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Outstanding Questions Box 1 

VOCs play important signaling roles for bacteria and fungi but also for other organisms in their 

natural environments. Many ecological interactions are mediated by VOCs, including those 

between fungi and plant, bacteria and plants, plant-plants, arthropods-plants, ect. The diverse 

functions of MVOCs can be exploited in biotechnological applications for biofuel, biocontrol, 

and mycofumigation. MVOCs represent a new frontier in bioprospecting, and the study of these 

gas-phase compounds promises the discovery of new products for human exploitation (medical, 

agricultural and industrial arenas) and will generate new hypotheses in fundamental biology. 

However, the mechanisms through which MVOC respond to their surrounding must be better 

understood in order to be more predictive about which role and effect on their surrounding. Some 

key questions remain to be answered: 

 

 What is the advantage of the plant to perceive (M)VOCs? 

 Which plant proteins participate in the perception of MVOCs? 

 What is the identity of MVOCs responsible for induction of plant growth/defense? 

 Are plants able to perceive MVOCs from their bacterial and fungal pathogens, and are 

they able to induce defense mechanism? 

 Are plants able make the difference between MVOCs produce by host or non host 

pathogens? 

 Can MVOCs be used as biopesticides? 
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Glossary 

Above-ground: a position measured with respect to the underlying ground surface. 

Agrochemicals: a generic term for the various chemical products used in agriculture. In most 

cases, agrichemical refers to the broad range of pesticides, including insecticides, herbicides, 

and fungicides. It may also include synthetic fertilizers, hormones and other chemical growth 

agents, and concentrated stores of raw animal manure. 

Below-ground: a position measured with respect to the upper ground surface. 

Biofertlizer: a substance containing living microorganisms which, when applied to seed, plant 

surfaces, or soil, colonizes the rhizosphere or the interior of the plant and promotes growth by 

increasing the supply or availability of primary nutrients to the host plant. 

Biofilm: any group of microorganisms in which cells stick to each other on a surface. 

Biopesticides: include several types of pest management intervention: through predatory, 

parasitic, or chemical relationships. The term has been associated historically with biological 

control and the manipulation of living organisms. 

Bioprospecting: the search for new natural and sustainable molecules in the hope of finding 

novel biotechnological applications 

Crop welfare: is the provision of a minimal level of well-being and social support for all crops. 

Info-chemical: information-conveying chemicals including kairomones, allelochemicals or 

pheromones that play a crucial role in food web interactions. 

Microorganism: a very diverse kingdom that includes all the bacteria and archaea and almost all 

the protozoa. They also include some members of the fungi, algae, and animals such as 

rotifers. 

Multitrophic interactions: incorporation of species from different trophic or nutritional levels 

interacting in the same system. 

MVOCs: microbial volatile organic compounds that have high enough vapor pressures under 

normal conditions to significantly vaporize and enter the atmosphere. 

Mycofumigation: the use of gas-producing fungi to kill other microorganisms via production of 

MVOCs. 

Plant growth inhibition: reduction of plant growth determined by environmental factors, such 

as temperature, available water, available light, carbon dioxide and available nutrients in the 

soil or by the actions of pathogenic and saprophytic organisms and herbivores.  

Priming: exposure to conditions by which the processing of a target stimulus is aided or altered 

by the presentation of a previously presented stimulus. 

Rhizobacteria: root-colonizing bacteria that form symbiotic relationships with many plants. 

Though parasitic varieties of rhizobacteria exist, the term usually refers to bacteria that form a 

relationship beneficial for both parties (mutualism). 
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Rhizosphere: a narrow region of soil that is directly influenced by root secretions and associated 

soil microorganisms. It contains many bacteria that feed on sloughed-off plant cells, termed 

rhizodeposition, and the proteins and sugars released by roots. 

Sustainable agriculture: an integrated system of plant and animal production practices having a 

site-specific application that will last over the long term. 

 

 


