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Abstract: Dynamical analysis of compact groups provides important tests of models of compact group
formation and evolution. By compiling 2066 redshifts from FLWO/FAST, from the literature, and from
SDSS DR12 in the fields of compact groups in McConnachie et al. (2009), we construct the largest
sample of compact groups with complete spectroscopic redshifts in the redshift range 0.01 < z < 0.22.
This large redshift sample shows that the interloper fraction in the McConnachie et al. (2009) compact
group candidates is ∼ 42%. A secure sample of 332 compact groups includes 192 groups with four or more
member galaxies and 140 groups with three members. The fraction of early-type galaxies in these compact
groups is 62%, higher than for the original Hickson compact groups. The velocity dispersions of early-
and late-type galaxies in compact groups change little with groupcentric radius; the radii sampled are less
than 100 h−1 kpc, smaller than the radii typically sampled by members of massive clusters of galaxies.
The physical properties of our sample compact groups include size, number density, velocity dispersion,
and local environment; these properties slightly differ from those derived for the original Hickson compact
groups and for the DPOSS II compact groups. Differences result from subtle differences in the way the
group candidates were originally selected. The abundance of the compact groups changes little with
redshift over the range covered by this sample. The approximate constancy of the abundance for this
sample is a potential constraint on the evolution of compact groups on a few Gigayear timescale.
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1. INTRODUCTION

Compact groups of galaxies provide a very dense en-
vironment for the study of galaxy evolution. These
groups contain a few galaxies separated by projected
distances of only a few tens of kiloparsec, compara-
ble with the galaxy sizes. Compact groups are thus
the densest galaxy systems known. The line-of-sight
velocity dispersions of these groups (∼ 200 km s−1,
Hickson et al. 1992) are lower than those of clusters
(500 − 1000 km s−1, Rines & Diaferio 2006; Hwang
et al. 2012), but comparable with many loose groups
(Einasto et al. 2003). The high density, low velocity
dispersion, and short crossing time of compact groups
make them a test-bed for the study of galaxy interac-
tions (e.g., Hickson et al. 1992; Mendes de Oliveira &
Hickson 1994; Bitsakis et al. 2011; Sohn et al. 2013;
Bitsakis et al. 2014; Fedotov et al. 2015).

The physical processes important for the formation
and evolution of compact groups remain unclear. The
mere survival of these systems for times much longer
than a few crossing times has been a long-standing
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puzzle. Several numerical simulations showed that
galaxies within a compact group should merge and the
group should thus disappear (Barnes 1985, 1989; Ma-
mon 1987). In fact, Barnes (1989) proposed that com-
pact group galaxies merge into a single elliptical galaxy
on a very short time scale (< 0.02 Hubble time), com-
parable with the observed crossing time (Hickson et al.
1992; Pompei & Iovino 2012). Other simulations sug-
gested that compact groups can survive much longer
than the crossing time (Governato et al. 1991; Athanas-
soula et al. 1997). Governato et al. (1991) showed that
for galaxies with a mass range appropriate to com-
pact groups, some group members may remain in quasi-
stable orbits for billions of years. Athanassoula et al.
(1997) suggested that compact groups survive because
the galaxies are embedded in a common halo. In yet
another picture, Diaferio et al. (1994) proposed that
compact groups form within a single rich loose group
and they can thus acquire new members from the sur-
rounding environment thus lengthening their apparent
lifetime. The number density of compact groups as a
function of epoch may thus depend not only on the
merger rate of galaxies within them but also on the re-
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plenishment with new members accreted from the sur-
roundings.

The environments of compact groups are an impor-
tant clue to understand their formation and evolution.
Known compact groups inhabit a range of environments
ranging from clusters and rich groups to low density re-
gions. Ramella et al. (1994) found that 76% of a sam-
ple of 38 Hickson compact groups are embedded in rich
groups. Several studies showed that a significant frac-
tion of compact groups are embedded in clusters, rich
groups, less dense poor groups and in the surrounding
larger-scale structures (Rood & Struble 1994; Ribeiro
et al. 1998; Andernach & Coziol 2005; Mendel et al.
2011; Pompei & Iovino 2012). In some of these studies
neither the compact group candidates nor the environ-
ments have complete redshift measurements (e.g., see
the discussion by Mendel et al. 2011). A fuller under-
standing of the environmental issues affecting the for-
mation and evolution of compact groups requires com-
plete spectroscopy of compact group candidates within
a large volume redshift survey.

The abundance of compact groups as a function of
redshift is also a potential constraint on the evolution
of these systems. For example, Kroupa (2015) sug-
gested that the abundance of compact groups should
decline significantly over a 1 Gyr timescale for halos
composed of exotic dark matter particles. The sugges-
tion by Kroupa (2015) tacitly assumes that compact
groups do not accrete new members from the environ-
ment in contrast with the model proposed by Diaferio
et al. (1994). To date there are no direct observational
measures of the abundance evolution of compact groups
to test these conjectures.

There have been several attempts to construct larger
catalogs of compact groups (Rose 1977; Hickson 1982;
Prandoni et al. 1994; Iovino et al. 2003; Lee et al. 2004;
de Carvalho et al. 2005; McConnachie et al. 2009).
Hickson (1982) published a widely used catalog of 100
compact groups. McConnachie et al. (2009) used Hick-
son’s criteria to identify compact groups in the pho-
tometric data of the Sloan Digital Sky Survey (SDSS)
data release 6 (DR6, Adelman-McCarthy et al. 2008).
Currently the sample of McConnachie et al. (2009) is
the largest catalog of compact group candidates with
77,088 tentative groups. However, at least 55% of the
compact group candidates from the magnitude-limited
sample of 14.5 ≤ r ≤ 18.0 could be contaminated by
interlopers as a result of their selection based on photo-
metric data. This interloper fraction may be greater for
their faint sample compact groups with 14.5 ≤ r ≤ 21.0.

Redshift surveys of compact group candidates pro-
vide a basis for cleaner catalogs better suited to testing
models for the formation and evolution of these systems
(Hickson et al. 1992; Pompei & Iovino 2012). Hickson
et al. (1992) showed that 69 of the 100 compact groups
in his original catalog include four or more members
with accordant redshifts. Similarly, Pompei & Iovino
(2012) observed 138 compact group candidates drawn
from the second digital Palomar Observatory Sky Sur-
vey (Iovino et al. 2003; de Carvalho et al. 2005); 96

of these contain three or more galaxies with accordant
redshifts (DPOSS II compact groups hereafter). The
70% success rate for these two catalogs underscores the
importance of spectroscopic observations for construct-
ing a robust sample of compact groups.
We conduct a spectroscopic survey of compact group

candidates in the SDSS DR6 to construct an updated
sample of compact groups with complete redshifts. By
adding 2066 redshifts, we construct the largest cata-
log of compact groups with complete spectroscopic red-
shifts. Based on this sample, we examine the physi-
cal properties of compact groups including size, veloc-
ity dispersion, number density and local environment.
We compare these properties with the Hickson and the
DPOSS II groups. We show that the physical charac-
teristics of the groups in our catalog are not a strong
function of the redshift of the system. We also estimate
the abundance of compact groups as a function of red-
shift for the range 0.01 < z < 0.21. These estimates
are a first step toward using the abundance as a test of
models for the evolution of these systems.
Section 2 describes the basic sample used to con-

struct the compact group catalog. Section 3 explains
the method of identifying compact group members once
the redshifts are measured. We examine the physical
properties of the sample compact groups with com-
plete redshifts and compare them with other compact
group catalogs in Section 4. We summarize in Section 5.
Throughout, we adopt ΛCDM cosmological parameters
H0 = 100 h km s−1 Mpc−1, ΩΛ = 0.7, and Ωm = 0.3.

2. DATA

2.1. Parent Sample

McConnachie et al. (2009) used Hickson’s criteria
(Hickson 1982) to identify compact group candidates in
the photometric sample of SDSS DR6 galaxies. Hick-
son’s criteria can be expressed as follows: N(∆m <
3) ≥ 4, RN ≥ 3RG, and µgr < 26.0 mag arcsec−2.
N(∆m < 3) means the total number of member can-
didate galaxies within 3 mag of the brightest galaxy
in a system. RG is the angular size of the smallest
circle containing all members, and RN is the angular
size of the largest circle that includes no additional
galaxies within 3 mag of the brightest galaxy. µgr is
the mean surface brightness within the circle of radius
RG. McConnachie et al. (2009) constructed two cata-
logs of compact group candidates with different magni-
tude limits: catalog A with 14.5 ≤ r ≤ 18.0 and catalog
B with 14.5 ≤ r ≤ 21.0. Catalog A and catalog B list
2297 and 74,791 compact group candidates with 9713
and 313,508 tentative member galaxies, respectively.
Here we use catalog A as a parent sample. Despite

the bright magnitude limit for catalog A, only a small
fraction of group candidates in the catalog were previ-
ously confirmed as genuine compact groups based on
spectroscopic redshifts. There are only 70 complete
compact groups in the catalog containing four or more
members with velocity difference from the mean group
velocity less than 1000 km s−1 (see Table 1).
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Figure 1. (a) The g − r vs. r color magnitude diagram
of FLWO/FAST target galaxies compared with compact
group galaxies from SDSS DR6 (triangles, McConnachie et
al. 2009) and SDSS DR12 (crosses). Dots indicate com-
pact group candidate galaxies without redshifts. (b)-(c)
The r-band magnitude and g − r color distributions for
compact group galaxies with SDSS DR6 redshifts (filled his-
togram), those with SDSS DR12 redshifts (open histogram),
and FLWO/FAST target galaxies (hatched histogram).

2.2. Redshift Data

To construct a sample of compact groups with complete
redshifts, we conducted a redshift survey of the galax-
ies in the fields of compact group candidates in catalog
A of McConnachie et al. (2009) (see their Table 3).
Among the candidate group galaxies, we primarily tar-
geted galaxies in groups that already have two or three
members with measured redshifts. We then ranked the
targets by their apparent magnitude; the targets have
r−band magnitudes in the range 14.2 < r < 17.0. To
avoid other selection effects, we did not use any se-
lection criteria other than apparent magnitude. Fig-
ure 1 shows the color-magnitude diagram for the target
galaxies. We used the extinction-corrected Petrosian
magnitudes from the SDSS DR12. We also plot the
compact group galaxies identified with SDSS DR6 and
DR12 redshift data. The FAST target galaxies are
generally brighter than compact group galaxies with
the SDSS redshifts. The color distribution of compact
group galaxies peaks at g − r ∼ 0.8.

We obtained long-slit spectra of 193 galaxies with the
FAST spectrograph (Fabricant et al. 1998) installed on
the 1.5m Tillinghast telescope at the Fred Lawrence
Whipple Observatory (FLWO) from 2013 May to 2014
May. We used a long slit with a 3 arcsec width and a
300 line grating providing spectral resolution of 2.94 Å
and a dispersion of 1.47 Å pixel−1. The spectra cover
the wavelength range 3470−7420Å. The exposure times

range from 900 to 1800 s depending on the brightness
of the target galaxy. We reduced the data using IRAF.
We measured the redshift of each galaxy with the rvsao
(Kurtz & Mink 1998) task. During the pipeline process-
ing, we assigned a quality flag of ‘Q’ for high-quality
redshifts, ‘?’ for marginal cases, and ‘X’ for poor fits.
We obtained 193 spectra in this study. Among these,
five have an ‘X’ flag and three have a ‘?’ flag. We ex-
cluded these eight objects from the analysis. The typi-
cal velocity measurement error for the FAST spectra of
compact group galaxies is 22 km s−1.
We supplemented these data with redshifts from the

literature (see Hwang et al. 2010 for details) includ-
ing the FAST archive and the SDSS DR12 (Alam et
al. 2015). There are two redshifts from FAST obser-
vations between 2006 and 2008 measured as part of an
unpublished study of low-redshift clusters and groups
(P.I.: K. Rines). There are 161 and 1718 new redshifts
from the literature and SDSS DR12 for galaxies in the
fields of compact group candidates in McConnachie et
al. (2009). The total number of redshifts we add to the
McConnachie et al. (2009) catalog is 2066.

3. A SAMPLE OF COMPACT GROUPS WITH
REDSHIFTS

We combine the 2066 additional redshifts with the ex-
isting data for galaxies in the fields of compact group
candidates in McConnachie et al. (2009). We determine
compact group membership based only on galaxies with
a spectroscopic redshift.
We first compute the median redshift of compact

group member candidates as a tentative group red-
shift. We then calculate the line-of-sight velocity dif-
ferences between member candidates and the median
redshift, and remove foreground and background galax-
ies with line-of-sight velocity differences larger than
1500 km s−1. We use the mean velocity of the remain-
ing group galaxies as a group systemic redshift. We
finally select member galaxies in each group with con-
cordant redshifts of |vgalaxy − vgroup| ≤ 1000 km s−1,
following the velocity separation of CG galaxies used
in previous studies (Hickson et al. 1992; Mendel et al.
2011; Pompei & Iovino 2012). To check the reliability
of the cutoff velocity 1000 km s−1, we test the group
selection with the larger cutoff velocities of 1500 km s−1

and 2000 km s−1. With the larger cutoff velocities, only
a few additional compact group candidates are newly
identified as true compact groups. Thus we use cutoff
velocity 1000 km s−1 for direct comparison with other
compact groups based on the same cutoff.
We adopt galaxy morphology information for the

compact group galaxies from the Korea Institute for
Advanced Study (KIAS) DR7 value-added catalog
(VAGC) (Choi et al. 2010). Choi et al. (2010) classi-
fied early- and late-type galaxies using the u− r color,
the g − i color gradient, and the i band concentration
index following the automatic classification scheme sug-
gested by Park & Choi (2005). We visually classify the
morphology of galaxies not included in the KIAS DR7
VAGC using the SDSS images.
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Table 1
Statistics of Sample Compact Groups

Survey N ≥ 4 CGs N = 3 CGs N ≥ 3 incomplete CGs
(members) (members) (members)

McConnachie et al. (2009) 70 (291) 55 (165) 191 (573)
SDSS DR12 164 (685) 125 (375) 346 (1038)
This study 192 (799) 140 (420) 395 (1185)

There are three types of compact groups in our spec-
troscopic sample: groups with four or more members
(N ≥ 4 compact groups hereafter), groups with three
members (N = 3 compact groups hereafter), and in-
complete groups with three confirmed members plus
one or more tentative member galaxies with unknown
redshifts (N ≥ 3 incomplete compact groups hereafter).
We do not use these N ≥ 3 incomplete groups for fur-
ther analysis except when computing the group abun-
dance. It is unclear whether these N ≥ 3 incomplete
groups would be confirmed as N ≥ 4 or N = 3 groups;
thus we do not include them in the analysis. However,
these incomplete groups remain useful for determining
the abundance of N ≥ 3 compact groups. The incom-
plete compact groups consist of at least three member
galaxies and this satisfy our compact group selection
criteria. Therefore, we include them only when we com-
pute the group abundance.

Hickson (1982) originally defined compact groups
with N ≥ 4 members rather than with N ≥ 3 mem-
bers. Duplancic et al. (2013) compared the proper-
ties (i.e., stellar mass, star formation rate and color)
of compact triplets with those of larger compact group
candidates. They concluded that galaxy triplets do not
differ from more populated compact groups, but they
do differ from galaxy pairs and clusters. Many previ-
ous studies have included N = 3 compact groups when
all three galaxies have measured redshifts confirming
their membership. We thus include the N = 3 compact
groups.

Table 1 summarizes our compact group selection. In
the original catalog of McConnachie et al. (2009), there
are 70 N ≥ 4 and 55 N = 3 genuine compact groups
with 291 and 165 members, respectively. By adding
the SDSS DR12 data, the number of compact groups
increases to 164 N ≥ 4 and 125 N = 3 compact groups
with 685 and 375 members, respectively. Finally our
FLWO/FAST observations contribute an additional 28
N ≥ 4 and 15 N = 3 complete compact groups for
a final sample of 192 N ≥ 4 and 140 N = 3 compact
groups with 799 and 420 member galaxies, respectively.
Among the N ≥ 4 compact groups, there are 164, 26, 1
and 1 groups with N = 4, 5, 6 and 7 members. We also
identify 395 N ≥ 3 incomplete compact groups with a
total of 1185 member galaxies. The number of com-
pact groups with complete spectroscopic redshifts in
this study is about three times larger than the number
in the original McConnachie et al. (2009) catalog.

The new redshift data also identify many chance
alignments among the compact group candidates of Mc-

Table 2
Interloper Statistics for Compact Groups

Redshift Survey Na
tot Nint fa

int

McConnachie et al. (2009) 958 503 52.5± 1.6%
SDSS DR12 1883 815 43.3± 1.1%
FLWO/FAST 242 83 34.3± 3.2%
Total 2125 898 42.3± 1.1%

a The number of galaxies in N ≥ 4 and N = 3 compact groups,
and chance alignments.
b Error in the interloper fraction is 1σ standard deviation derived
from 1000 bootstrap resamplings.

Connachie et al. (2009). There are 144 and 9 compact
group candidates that turn out to be chance align-
ments of galaxies with discordant redshifts based on
the SDSS DR12 and FLWO/FAST data, respectively.
This substantial number of chance alignments clearly
underscores the importance of spectroscopic redshifts
for reducing the contamination of the compact group
sample.
The data yield a measure of the interloper fraction

for our sample groups. These interlopers are galaxies
initially selected as candidate group members, but the
redshifts show that they are non-members. We define
the interloper fraction as

fint = 1−
Nmembers

Ntotal candidates
, (1)

where Nmembers is the number of spectroscopically con-
firmed members and Ntotal candidates is the number of
compact group candidate galaxies in the fields of N ≥ 4
compact groups, N = 3 compact groups, and chance
alignments. We base the estimate of the interloper
fraction on the N ≥ 4 and N = 3 compact groups and
chance alignments where most candidate group galaxies
in McConnachie et al. (2009) have measured redshifts.
We exclude N ≥ 3 incomplete compact groups and
group candidates, because we do not know the exact
number of interlopers in these groups. Table 2 lists the
numbers of compact group candidate galaxies and the
number of interlopers. The interloper fraction we esti-
mate for the original McConnachie et al. (2009) catalog
is 52.5 ± 1.6%, consistent with their estimate of 55%.
The error in the interloper fraction is the 1σ standard
deviation in the interloper fraction obtained with 1000
bootstrap resamplings. The interloper fractions for the
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Table 3
A Catalog of Spectroscopically Identified Compact Groupsa

IDb R.A. Decl.
nmem zc

Rc
gr Rc

gr log ρc σc

Nearby clusterd
(J2000) (J2000) (arcmin) (h−1 kpc) (h3 Mpc−3) (km s−1)

SDSSCGA00027 5.91056 -0.78910 3 0.0633 ± 0.0003 0.325 ± 0.070 16.6 ± 3.6 5.19 ± 4.60 140± 20 SDSS-C42022
SDSSCGA00029 204.18318 -3.49931 3 0.0531 ± 0.0000 0.118 ± 0.027 5.1± 1.2 6.72 ± 6.17 14± 6
SDSSCGA00035 141.03156 13.21444 4 0.0780 ± 0.0009 0.433 ± 0.076 26.9 ± 4.7 4.69 ± 4.14 500± 69
SDSSCGA00037 10.36639 -9.23039 3 0.0470 ± 0.0001 0.263 ± 0.077 10.2 ± 3.0 5.83 ± 5.28 76± 25
SDSSCGA00042 155.54219 38.52117 4 0.0549 ± 0.0007 0.586 ± 0.131 26.3 ± 5.9 4.72 ± 4.18 470± 64 400dJ1020+3831
SDSSCGA00046 127.02769 44.76412 4 0.1465 ± 0.0004 0.267 ± 0.076 28.7 ± 8.2 4.61 ± 4.11 320± 73 Abell0667
SDSSCGA00070 157.91676 36.01777 4 0.0861 ± 0.0002 0.401 ± 0.073 27.2 ± 5.0 4.68 ± 4.14 180± 29 NSCSJ103122+355649
SDSSCGA00071 31.82000 -1.01116 4 0.1181 ± 0.0010 0.383 ± 0.072 34.3 ± 6.5 4.37 ± 3.81 600 ± 130
SDSSCGA00090 141.44824 7.72078 4 0.1360 ± 0.0008 0.333 ± 0.075 33.6 ± 7.6 4.40 ± 3.90 540 ± 120
SDSSCGA00110 147.18958 25.49768 3 0.0455 ± 0.0000 0.344 ± 0.072 12.9 ± 2.7 5.52 ± 4.95 22± 7

a The complete table is available on-line at http://astro.snu.ac.kr/~jbsohn/compactgroups/. A portion is shown here for guidance regarding its form and content.
b ID from Table 1 in McConnachie et al. (2009).
c Errors represent the 1-σ standard deviation obtained from by resampling the galaxy sample 1000 times.
d Known galaxy clusters in NED at Rprojected < 1h−1 Mpc from the group center.
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groups we complete with the SDSS DR12 and
FLWO/FAST data are slightly smaller than the esti-
mate for the McConnachie et al. (2009) catalog. We add
many redshifts of bright galaxies from FLWO/FAST
and SDSS DR12 data sets that are more likely to be
true members of the groups than the fainter candidates
also included in the McConnachie et al. (2009) estimate
(see Figure 1).
Table 3 lists 332 compact groups with N ≥ 3 includ-

ing ID, R.A., Decl., number of members, group red-
shift, group size, group number density, velocity dis-
persion, and neighboring clusters if there are any. The
group center is the mean R.A., Decl. and redshift of
the member galaxies. We examine whether there are
any compact groups close to galaxy clusters using the
NASA Extragalactic Database (NED) with the criteria
|vgroup−vcluster| < 3000 km s−1 and Rprojected < 1h−1

Mpc, typical virial radius (R200) for galaxy clusters
(Rines et al. 2013). Table 4 lists 1473 galaxies in the
fields of compact groups in Table 3 including ID, R.A.,
Decl., morphology, r−band magnitude, g − r color,
membership flag, redshifts and its source. We list only
the galaxies originally included in the compact group
catalog of McConnachie et al. (2009).
In Table 5, we also list 139 galaxies with

FLWO/FAST redshifts, not included in the N ≥ 4 and
N = 3 compact groups listed in Table 3. Among the 139
galaxies, 49 are in N ≥ 3 incomplete compact groups
and nine galaxies are in chance alignments. The other
81 galaxies are in compact group candidates that could
be confirmed as groups if we secure redshifts for the
other member galaxies. These groups require further
spectroscopy.

4. COMPACT GROUP PROPERTIES

4.1. The Compact Groups

4.1.1. Physical Properties

Figure 2 shows the absolute r−band magnitudes of in-
dividual compact group member galaxies as a function
of redshift. The sample galaxies are distributed over
a redshift range 0.015 < z < 0.212 and a magnitude
range −22.5 < Mr < −16.0. The plot shows no signif-
icant difference in redshift and magnitude distribution
for N ≥ 4 and N = 3 compact group galaxies. For
comparison, we plot the absolute r−band magnitudes
of the Hickson compact group members. The sample
here extends to a higher redshift limit than the Hick-
son sample.
Figure 3 shows the group velocity dispersion as a

function of redshift. The median redshift for our sam-
ple is z = 0.08. There are more N = 3 compact groups
than N ≥ 4 groups at z > 0.15, but the most distant
compact groups have N ≥ 4 at z = 0.211. There is ac-
tually no significant difference in the redshift distribu-
tion between the two types of compact groups. The ve-
locity dispersions of N ≥ 4 and N = 3 compact groups
appear to increase slightly with redshift, but the er-
rors in the velocity dispersion are too large to identify
a clear trend.
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Figure 2. (a) Mr – z diagrams for the galaxies in N ≥
4 compact groups (circles) and N = 3 complete compact
groups (triangles) in our catalog, and for N ≥ 3 Hickson
compact group galaxies (crosses). Small dots indicate SDSS
DR12 galaxies (we display only 1% of the data for clarity).
The box defines a volume-limited sample of SDSS DR12
galaxies used for computing surrounding galaxy densities
(see Section 4). (b) The redshift distributions and (c) the
Mr distributions for N ≥ 4 (filled histogram) and N =
3 compact groups (hatched histogram) in our sample and
for the Hickson compact group galaxies (open histogram),
respectively.

To study the cause of the possible slight increase in
the velocity dispersion of compact groups with redshift
in Figure 3, we plot the velocity dispersion of com-
pact groups as a function of the total group r−band
luminosity (Figure 4). The total luminosity is the sum
of r−band luminosities of the members. The veloc-
ity dispersion increases with total r−band luminosity;
the correlation tests including Pearson’s, Spearman’s
and Kendall’s result in correlation coefficients of 0.27-
0.38 with the two-sided significance of ∼ 0, indicating
a weak, but significant correlation. The distribution
for compact groups near galaxy clusters does not dif-
fer from the other groups. At higher redshift, compact
groups containing only low luminosity member galaxies
are undetectable because the limiting absolute magni-
tude changes with redshift. Thus compact groups at
higher redshifts tend to have greater total luminosi-
ties and larger velocity dispersion than nearby compact
groups. The slight increase in the velocity dispersion of
compact groups with redshift in Figure 3 reflects the
greater total luminosity of the higher redshift systems.
When we examine the velocity dispersions and total lu-
minosities of the DPOSS II compact groups, the com-
pact groups at higher redshift also have larger velocity
dispersion and greater luminosity for the same reason.
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Table 4
A Catalog of Galaxies in Spectroscopically Confirmed Compact Groupsa

IDb R.A. (J2000) Decl. (J2000) Morph.c r g − r Memberd z z source

SDSSCGA00027.1 5.90833 -0.78417 1 15.42 0.85 1 0.0636 ± 0.00002 SDSS
SDSSCGA00027.2 5.91375 -0.79242 1 16.47 0.90 1 0.0636 ± 0.00002 SDSS
SDSSCGA00027.3 5.90958 -0.79072 1 16.53 0.90 1 0.0627 ± 0.00001 SDSS
SDSSCGA00027.4 5.91083 -0.79033 1 16.94 1.16 0 0.2724 ± 0.00007 SDSS
SDSSCGA00029.1 204.18459 -3.49792 1 14.90 0.83 1 0.0531 ± 0.00015 NED
SDSSCGA00029.2 204.18333 -3.50086 2 15.59 0.79 1 0.0531 ± 0.00008 FLWO
SDSSCGA00029.3 204.18167 -3.49914 1 16.12 1.08 1 0.0530 ± 0.00002 SDSS
SDSSCGA00029.4 204.17500 -3.50419 1 17.58 0.86 0 0.0870 ± 0.00002 SDSS
SDSSCGA00035.1 141.03000 13.21414 1 15.52 0.88 1 0.0789 ± 0.00001 SDSS
SDSSCGA00035.2 141.03749 13.21878 2 14.32 0.90 1 0.0764 ± 0.00012 FLWO

a The complete table is available on-line at http://astro.snu.ac.kr/~jbsohn/compactgroups. A portion is shown here for guidance
regarding its form and content.
b ID from Table 3 in McConnachie et al. (2009).
c Morphology flag : 1 for early-type galaxies, 2 for late-type galaxies.
d Membership flag : 1 for members, 0 for non-members, 9 for those without redshifts.

Table 5
A Catalog of FLWO/FAST Target Galaxies, Non-Members of Compact Groupsa

IDb R.A. (J2000) Decl. (J2000) r g − r z

SDSSCGA00012.1 116.18042 16.92258 15.36 0.92 0.0751 ± 0.00009
SDSSCGA00012.2 116.17667 16.92736 15.95 0.85 0.0717 ± 0.00008
SDSSCGA00021.1 178.52542 3.92100 15.32 0.86 0.0747 ± 0.00001
SDSSCGA00023.2 130.04375 8.99811 15.75 0.96 0.0662 ± 0.00015
SDSSCGA00067.1 176.31375 11.49378 15.08 1.13 0.1141 ± 0.00002

a The complete table is available on-line at http://astro.snu.ac.kr/~jbsohn/compactgroups. A portion is shown here for guidance
regarding its form and content.
b ID from Table 3 in McConnachie et al. (2009).

4.1.2. Morphological Content

We next examine the morphological content of com-
pact groups. Both N ≥ 4 and N = 3 compact groups
show larger fractions of early-type galaxies than late-
type galaxies (Table 6): 65.3 ± 1.7% and 56.0 ± 2.3%
of N ≥ 4 and N = 3 compact group galaxies are early
types, respectively. In total, 62.1 ± 1.4% of compact
group galaxies are early types. This fraction slightly
exceeds the fraction of early-type galaxies in the Hick-
son compact groups (51 ± 2%, Hickson et al. 1988),
but it is smaller than the fraction in the DPOSS II
compact groups (81%, Pompei & Iovino 2012). How-
ever, the early- and late-type galaxies in the DPOSS II
compact groups are classified based on Hα equivalent
width, different from the morphological approach we
take. Therefore, direct comparison is not possible. The
fraction of early-type galaxies in our compact groups is
similar to the fraction in local galaxy clusters (Park &
Hwang 2009).

Figure 5 shows the rest-frame groupcentric veloci-
ties of galaxies as a function of projected groupcen-
tric radius (i.e., R-v diagram) for N ≥ 4 compact
groups. We use the group centers in Table 3 (i.e., R.A.,
Decl. and redshift) to compute the groupcentric ra-
dial velocities and the projected groupcentric distances
of member galaxies. We then superimpose the groups
directly in Figure 5. We distinguish early- and late-
type galaxies with different symbols (open circles and

Table 6
Morphological Composition of the Sample Compact

Groups

Early-type galaxies Late-type galaxies

N ≥ 4 522 (65± 1.7%) 277 (35± 1.7%)
N = 3 235 (56± 2.3%) 185 (44± 2.3%)
Total 757 (62± 1.4%) 462 (38± 1.4%)

triangles). The distribution of projected groupcentric
radius for early- and late-type galaxies are similar. The
Kolmogorov-Smirnov (K-S) test cannot reject the hy-
pothesis that the radial distributions of the two samples
are extracted from the same parent population. The
Anderson-Darling (A-D) test gives a result similar to
the K-S test. The distributions of the rest-frame group-
centric velocities also show no significant difference.
The velocity dispersions of early- and late-type galaxies
for N ≥ 4 compact groups are similar, 259 ± 9 km s−1

and 266 ± 14 km s−1, respectively. These results differ
from galaxy clusters that typically show higher velocity
dispersions for the more centrally concentrated early-
type galaxies relative to late-type galaxies (Colless &
Dunn 1996; Mahdavi et al. 1999; Hwang & Lee 2008).
However, Rines et al. (2013) showed that the velocity
distributions of the blue and red galaxies in galaxy clus-
ters are not significantly different, similar to the result
we obtain for compact groups.
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Figure 4. Velocity dispersion vs. total r-band luminosity of
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clusters, respectively. Lighter colored symbols represent
compact groups at higher redshifts.

Figure 6 shows a similar R-v diagram for N = 3
compact groups. The projected groupcentric distribu-
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Figure 5. Rest-frame groupcentric radial velocities vs. pro-
jected groupcentric distances for N ≥ 4 compact group
galaxies. Circles and triangles represent early- and late-
type galaxies, respectively. Their distributions in (b) the
projected distances and (c) the radial velocity differences
are shown with the filled and hatched histogram, respec-
tively.

tions for early- and late-type galaxies are similar to
the N ≥ 4 compact groups. However, the velocity
dispersion of early-type galaxies is significantly larger
than for the late-type galaxies (234 ± 15 km s−1 vs.
163 ± 14 km s−1) in contrast with the N ≥ 4 compact
groups.

Figure 7 displays the fraction of early-type galaxies as
a function of projected groupcentric distance for N ≥
4 and N = 3 compact groups. We set the bin size
to include a similar number of galaxies in each bin.
The fraction of early-type galaxies appears to decrease
with groupcentric radius in the range 0 < Rprojected <
70 h−1 kpc for both N ≥ 4 and N = 3 compact groups.
However, the fraction in the outermost region at 70 <
Rprojected < 150 h−1 kpc is as high as the fraction in the
very inner region. Because we have a similar number
of galaxies in each radial bin, this behavior does not
simply result from small number statistics.

We also examine the velocity dispersion of early- and
late-type galaxies as a function of groupcentric dis-
tance. The dispersion profiles do not change much with
groupcentric radius except for the innermost region of
N = 3 compact groups. This result differs from disper-
sion profiles for galaxy clusters that typically increase
with decreasing clustercentric radius (Mahdavi et al.
1999; Biviano & Katgert 2004; Hwang & Lee 2008),
but on much larger scale.

Figure 7 shows that we can explore the radial depen-
dence of properties of compact groups (including the
early-type fraction and velocity dispersion) in a radial
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Figure 6. Same as Figure 5, but for N = 3 compact groups.

range 0 < Rprojected < 150 h−1 kpc. This small range
is interesting because it is hard to sample in any other
systems. The scale is, for example, comparable to or
smaller than the typical size of the brightest cluster
galaxies (∼ 100 kpc, Newman et al. 2013; López-Cruz
et al. 2014). The morphological properties of galaxies
in these small dense regions may ultimately provide in-
teresting tests of processes involved in galaxy evolution.

4.1.3. The Abundance of Compact Groups

Figure 8 plots the abundance of compact groups as a
function of redshift. To compute the abundance, we
first count all of the compact groups in McConnachie et
al. (2009) including the N ≥ 4 compact groups, N = 3
compact groups, andN ≥ 3 incomplete compact groups
in the volume of SDSS DR7 main galaxy survey. Al-
though the N ≥ 3 incomplete compact groups are not
included in our compact group catalog, they are use-
ful for determining the abundance of N ≥ 3 compact
groups. Because we use a magnitude-limited sample
of galaxies to identify compact groups, the variation in
the absolute magnitude limit as a function of redshift
affects the observed abundance of compact groups.
To correct for this effect, we follow the method of

Barton et al. (1996), who computed the abundance
of compact groups identified by applying a friends-
of-friends method to the magnitude-limited sample of
CfA2+SSRS2 redshift survey data (Geller & Huchra
1989; Giovanelli & Haynes 1985; da Costa et al. 1994).
Barton et al. (1996) assumed that the galaxies in
their sample compact groups are randomly drawn from
a magnitude distribution Φ(M). They then calcu-
lated Pi, the probability for detecting ith brightest
member of a compact group in the absolute magni-
tude range [M,M + dM ]. The Pi is proportional
to P(i−1)<M (M)Φ(M)dM , where P(i−1)<M (M) is the
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Figure 7. (a) Fraction of early-type galaxies vs. projected
distances from the group center for N ≥ 4 compact groups.
(b) The velocity dispersion of all N ≥ 4 member galaxies
(square-solid lines), early- (circle-dashed lines), and late-
type galaxies (triangle-dotted lines). Each point is arbitrar-
ily shifted along the x-axis for clarity. (c) and (d) panels
are the same as (a) and (b), but for N = 3 compact groups.

probability that i− 1 group members are brighter than
M . They derived the P(i−1)<M (M) from the Poisson
distribution:

P(i−1)<M =
e−λMλ

(i−1)
M

(i− 1)!
, (2)

where λM is the average number of galaxies in a group
brighter than M :

λM = κ

∫ M

−∞

Φ(M ′)dM ′. (3)

Here, κ is a normalization parameter, and is a function
of redshift. Finally, they expressed the probability of
detecting ≥ i group member galaxies:

Pdetection(z) =
1

A

∫ Mlim(z)

−∞

Pi(M)dM

=
1

A

∫ Mlim(z)

−∞

e−λMλ
(i−1)
M

(i− 1)!
Φ(M)dM,

(4)

where Mlim(z) is the limiting absolute magnitudes at
the redshift, and A is the normalization factor which
makes Pdetection(z = 0) = 1.
Following the method in Barton et al. (1996), we con-

struct the selection function for our sample compact
groups. We use the luminosity function determined
from nearby galaxies in the SDSS data: a Schechter
function with α = −0.918±0.027 andMstar = −20.31±



390 Sohn et al.

10-7

10-6

10-5

10-4

lo
g 

(n
 / 

[h
-3

 M
pc

3 ])
Mendes de Oliveira & Hickson (1991)

Pompei & Iovino (2012)

Mendel et al. (2011)
All CGs in this study
N ≥ 4 CGs in this study
N=3 CGs in this study
N=3 incomplete CGs in this study

0.00 0.05 0.10 0.15 0.20
z

10-6

10-5

10-4

10-3

10-2

10-1

lo
g 

(n
 / 

[h
-3

 M
pc

3 ]) Barton et al. (1996)
Mendel et al. (2011)
This study

(a) Before completeness correction

(b) After completeness correction

Figure 8. The abundance of compact groups as a function of redshift (a) before the redshift effect correction and (b) after
the correction. The abundances of other compact groups are shown for comparison; the Hickson compact groups (diamond,
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Iovino 2012). The symbols are shown at the mean redshift for each group survey.

0.04 from a volume-limited sample of galaxies with
0.025 < z < 0.044 and Mr < −18.0 (Choi et al. 2007).
We use fixed κ, the median of the measured κ for each
compact group. To estimate the uncertainty in the se-
lection function, we determine the upper and lower lim-
its for the selection function using the 1st and 3rd quar-
tiles of κ. Then, we derive the detection probability for
compact groups Pi using Equation (3).
Finally, we calculate the volume number density of

compact groups (ncg)

ncg =
N

Ωsurvey

Ωall sky

∫ zf

zi

4
3πDc(z)3Pdetection(z)dz

, (5)

where N is the total number of N ≥ 4 and N = 3 com-
pact groups and N ≥ 3 incomplete groups in the red-
shift range. In Equation (5), Ωsurvey and Ωall sky are,
respectively, the solid angles of the SDSS DR7 (8032
deg2) and the full sky, and Dc is the comoving dis-
tance. We also calculate the 1st and 3rd quartile of the

abundance of compact groups using the corresponding
κ. We take these values as upper and lower limits.

Before we apply the completeness correction, we es-
timate the mean abundance for compact groups at the
z = 0.1 to compare with result from the literature
(Mendel et al. 2011; Pompei & Iovino 2012). We use
the Equation (1) of Lee et al. (2004) to estimate the
mean abundance. The mean abundance for our sam-
ple compact groups is 1.76 × 10−5 h3 Mpc−3, sim-
ilar to that for the sample of Mendel et al. (2011)
(∼ 2.59 × 10−5 h3 Mpc−3), but larger than for the
DPOSS II compact groups (∼ 3.32 × 10−6 h3 Mpc−3,
Pompei & Iovino 2012). We note that the DPOSS II
compact group abundance accounts only for ‘isolated’
groups. The estimate of Mendel et al. (2011) is ex-
ceeding our result even though they used only N ≥ 4
compact groups. Because Mendel et al. (2011) iden-
tified their sample groups using photometric redshifts
and did not apply a completeness correction, they may
overestimate the compact group abundance. In addi-
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tion, several studies have estimated the mean group
abundance (Mendes de Oliveira & Hickson 1991; Iovino
et al. 2003; Lee et al. 2004; de Carvalho et al. 2005;
Dı́az-Giménez et al. 2012), but it is difficult to compare
these abundances with our result because of differences
in the selection criteria and the lack of a completeness
correction.
The bottom panel shows that the abundance of our

sample compact groups as a function of redshift after
the completeness correction. We also plot the abun-
dance for the compact group sample of Mendel et al.
(2011) after a similar completeness correction. We note
that the sample from Mendel et al. (2011) is derived
from photometric redshifts, and only contains N ≥ 4
compact groups.
The abundances of compact groups in this study and

in Mendel et al. (2011) at low redshift (i.e., z ∼ 0.02)
appear smaller than the abundance of the CfA2 com-
pact groups (Barton et al. 1996). This difference could
result from the Hickson’s isolation criterion. The isola-
tion criterion requires that there be no other galaxies
within three magnitudes of the brightest group galaxy
within the isolation annulus (RG < RGCD < 3RG,
where RGCD is groupcentric distance). This criterion
was introduced to avoid very dense regions like cluster
cores, but it tends to reject some nearby groups. In
general, the spatial extent of nearby groups are larger
than for distant groups. Thus, the isolation annulus
for nearby groups is larger than that for high-redshift
groups and some nearby compact groups with large spa-
tial extent may not be selected as compact groups be-
cause there are many interlopers within the isolation
annulus. The compact groups in this study and in
Mendel et al. (2011) are identified with Hickson’s crite-
rion, but the compact groups in Barton et al. (1996) are
selected with a friends-of-friends algorithm. We plan
to examine this issue further using a method similar
to Barton et al. (1996), but with a large spectroscopic
sample of galaxies.
The abundance of our sample compact groups

changes little as a function of redshift. The sample
of Mendel et al. (2011) also changes little with redshift.
These results are consistent with Barton et al. (1996),
who showed that the abundance of compact groups does
not change in the redshift range 0.00 < z < 0.03 when
the compact groups are identified directly from a spec-
troscopic sample of galaxies using the friends-of-friends
algorithm. Kroupa (2015) suggested that there would
be more compact groups 1 Gyr ago (e.g., z ∼ 0.1) than
in the current universe if compact groups collapse into
a single elliptical galaxies on a short timescale. Our
results suggest that the abundance of compact groups
does not change significantly with redshift. Thus com-
pact groups either survive longer than 1 Gyr or they are
replenished with galaxies from the surrounding region.

4.2. Comparison with Other Compact Group Samples

To compare the physical properties of the compact
groups in this study with those in previous studies, we
use samples of compact groups based on similar selec-
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Figure 9. Distribution of group velocity dispersion (σ) for
N ≥ 4 compact groups and N = 3 compact groups in our
samples (open histogram) compared with the Hickson com-
pact groups (hatched histogram) and the DPOSS II com-
pact groups (filled histogram).

tion criteria and on redshift survey data: Hickson com-
pact groups (Hickson et al. 1992) and DPOSS II com-
pact groups (Pompei & Iovino 2012). The Hickson com-
pact groups are in the redshift range 0.003 < z < 0.333
and they include member galaxies with r < 19.5.
The DPOSS II compact groups span a redshift range
0.044 < z < 0.233 and the magnitudes of the member
galaxies are r < 19.0.

Both samples are based on Hickson’s selection crite-
ria, but the selection criteria for the DPOSS II com-
pact groups differ slightly from Hickson’s. Iovino et al.
(2003) and de Carvalho et al. (2005) used: N(∆m <
2) ≥ 4, RN ≥ 3RG, and µG ≤ 24.0 mag arcsec−2.
These criteria differ from Hickson’s in several ways.
First, Hickson used N(∆m < 3) rather than N(∆m <
2), where N(∆m < 2) refers to the total number of
galaxies within 2 mag of the brightest member galaxy.
Second, RN in Hickson’s criteria is the angular size of
the smallest circle encompassing no additional galax-
ies within 3 mag of the brightest group member, while
RN for the DPOSS II compact groups is the angular
size of the largest circle that includes no additional
galaxies within 0.5 mag of the faintest group mem-
ber. The definitions of RG are the same. Third,
the mean surface brightness limit for Hickson’s crite-
ria is 26.0 mag arcsec−2 rather than 24.0 mag arcsec−2.
These differences between the DPOSS II and the Hick-
son account for some of the differences in the physical
properties of compact groups in the two samples.
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Figure 9.

4.2.1. Physical Properties

We estimate the velocity dispersion for our sample com-
pact groups following Danese et al. (1980); the disper-
sions range from 13 km s−1 to 834 km s−1 with a typical
error of 44 km s−1 (Figure 9). The median velocity dis-
persion of all, N ≥ 4, and N = 3 compact groups are,
respectively, 207 ± 12 km s−1, 244 ± 11 km s−1 and
160 ± 14 km s−1. Here, the errors of median values in-
dicate 1σ standard deviation from 1000 times bootstrap
resamplings. These results are similar to the Hickson
compact groups (median(σ) = 204 ± 13 km s−1),
but smaller than for the DPOSS II compact groups
(median(σ) = 251 ± 22 km s−1). When we compare
the velocity dispersions of N ≥ 4 and N = 3 com-
pact groups separately, the velocity dispersions of the
DPOSS II compact groups still exceed those for other
two samples.

Figure 10 shows the distribution of the median pro-
jected separation of member galaxies in our sample
compared with the Hickson and the DPOSS II groups.
Our sample compact groups have a median projected
separation (Rsep) ranging from 11 h−1 kpc to 167 h−1

kpc; this range is similar to that of other compact
groups: 2 h−1 kpc to 135 h−1 kpc for the Hickson com-
pact groups and 12 h−1 kpc to 188 h−1 kpc for the
DPOSS II compact groups. However, the median pro-
jected separation of our sample compact groups is larger
(median Rsep ∼ 72 h−1 kpc) than that for the Hick-
son compact groups (median Rsep ∼ 39 h−1 kpc) and
the DPOSS II compact groups (median Rsep ∼ 34 h−1
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Figure 11. Distribution of the crossing time for (a) N ≥
4 compact groups and (b) N = 3 compact groups. The
histograms are as in Figure 9.

kpc). When we compare N ≥ 4 and N = 3 com-
pact groups separately, these differences remain. The
group radius of our sample compact groups (median
RG ∼ 57.8±1.5 h−1 kpc) is also larger than that of the
Hickson compact groups (median RG ∼ 38.6± 7.1 h−1

kpc), but similar to that of the our parent sample (me-
dian RG ∼ 62 h−1 kpc McConnachie et al. 2009).
We also derive the crossing times of the compact

groups (Figure 11). The crossing time is

tcr =
4Rsep

πσ3D
, (6)

where Rsep is the median galaxy-galaxy separation and
σ3D is the three-dimensional velocity dispersion (see
Equations (1) and (2) in Hickson et al. 1992). The di-
mensionless crossing time (H0tcr) for our sample com-
pact groups ranges from 0.004 to 0.469, similar to the
distributions of the Hickson and the DPOSS II compact
groups. The median crossing time (0.033 ± 0.003) for
our sample compact groups is larger than for the Hick-
son (0.016±0.131) and for the DPOSS II (0.015±0.002)
compact groups. The larger crossing time of our sam-
ple compact groups results from the larger inter-galaxy
separations compared with other compact groups.
We compute the group density as in Barton et al.

(1996)

ρ =
3N

4πR3
G

(7)

where N is the number of member galaxies, and RG is
the group radius in h−1 Mpc. Figure 12 displays the
distribution of densities for our sample and for Hick-
son’s sample. The number densities in our sample are
lower than for the Hickson compact groups because the
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Figure 12. Distribution of galaxy number density within
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pact groups. The histograms are as in Figure 9, but the
density distribution of the DPOSS II compact group is not
shown here.

sizes of our compact groups are, on average, larger than
for the Hickson compact groups. The median num-
ber density for our sample is log(ρ/[h−3 Mpc3]) =
3.65, substantially exceeding the number density for
subclusters and subgroups in the A2199 superclus-
ters (the median number density at R < 0.5 R200 is
log(ρ/[h−3 Mpc3]) = 1.97, Lee et al. 2015). Com-
pact groups are indeed much denser environments than
galaxy clusters. Table 7 summarizes the physical prop-
erties of the compact groups in this study compared
with the Hickson and the DPOSS II samples.

4.2.2. Local Environments of Compact Groups

Figure 13 displays an example of the spatial distri-
bution of compact groups relative to the surrounding
large-scale structure for a slice of 9h < α2000 < 16h and
12.5◦ < δ2000 < 13.5◦. We choose this slice to show
various environments of compact groups even though
there are only four compact groups in this thin slice.
To show homogeneous structures of galaxies regardless
of redshift, we plot galaxies in a volume-limited sample
with Mr < −20.5 and 0.00 < z < 0.14 (see the large
box in Figure 2). As expected based on previous studies
of smaller samples (Rood & Struble 1994; Ramella et
al. 1994; Ribeiro et al. 1998; Andernach & Coziol 2005;
Pompei & Iovino 2012), the environments of compact
groups are diverse (Figure 14).
In Table 3, we examine the number of compact

groups located near galaxy clusters. Using NED
and requiring |vgroup − vcluster | < 3000 km s−1 and
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Figure 13. Example cone diagram for a slice of 9h < α2000 <
16h, 12.5◦ < δ2000 < 13.5◦, and 0.00 < z < 0.14. Large
open and small filled circles indicate compact groups and
their member galaxies, respectively. Small dots denote
SDSS galaxies in a volume limited sample with Mr < −20.5
and 0.01 < z < 0.14. The Σ5 for the compact groups from
the right are Σ5 = 16.08, 0.07, 0.67 and 0.19.

Rprojected < 1 h−1 Mpc, only 69 (21%) of our sample
compact groups are near known massive clusters. With
more relaxed criteria, |vgroup − vcluster | < 6000 km s−1

and Rprojected < 1 h−1 Mpc (Mendel et al. 2011), the
number of compact groups near known massive clus-
ters changes little to 80 (i.e., 24%). These fractions
are smaller than those in previous studies; e.g., 35%
in Pompei & Iovino (2012) and 50% in Mendel et al.
(2011) based on similar criteria. Mendel et al. (2011)
used compact groups identified with photometric red-
shifts and N > 4 galaxy groups from the SDSS DR7
(Tago et al. 2010) to study the local environments
of compact groups. In contrast, we use only com-
pact groups with complete spectroscopic redshifts and
known massive galaxy clusters listed in NED; thus our
criteria are stricter than in other studies. The more re-
strictive criteria result in the lower fraction of compact
groups within known massive clusters.
We also investigate the local environments of our

sample compact groups using the parameter, Σ5, and
compare them with the environments of the Hickson
and the DPOSS II compact groups. Σ5 is the sur-
face number density defined as Σ5 = 5(πD2

p,5)
−1, where

Dp,5 is the projected distance between the center of the
compact group and the fifth nearest neighbor galaxy.
We use galaxies in the volume-limited sample to com-
pute the nearest neighbor densities and to make a fair
comparison regardless of redshift. We use neighbor
galaxies with relative velocities ∆v < 1500 km s−1,
and compute Σ5 relative to the center of each compact
group. We obtain Σ5 for 309 groups within the volume-
limited sample.
Figure 14 shows the Σ5 distribution for our sample

compact groups along with the Hickson and the DPOSS
II compact groups for the redshift range 0.01 < z <
0.14. Some groups in our study are in denser environ-
ment than the Hickson compact groups. Indeed, the
A-D test rejects the hypothesis that the distributions
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Table 7
Basic Properties of Compact Groups

Samples Types Ngr Ngal
Ra

group log ρa Ra
sep σa H0 tacr

(h−1 kpc) (h3Mpc
−3

) (h−1 kpc) (km s−1)

This study Total 332 1129 57.8± 1.5 3.65 ± 0.03 71.7 ± 1.4 207.± 12. 0.033 ± 0.003
(0.016 < z < 0.211) N ≥ 4 192 799 62.4± 2.0 3.64 ± 0.04 70.5 ± 1.9 244.± 11. 0.028 ± 0.002

N = 3 140 420 54.1± 2.4 3.66 ± 0.05 73.4 ± 2.4 160.± 14. 0.042 ± 0.005
Hickson Compact Groups Total 92 382 38.6± 7.1 4.27 ± 0.09 39.8 ± 2.4 204.± 13. 0.016 ± 0.131
(0.003 < z < 0.333) N ≥ 4 69 313 40.1± 9.1 4.21 ± 0.11 39.9 ± 2.6 209.± 15. 0.012 ± 0.138

N = 3 23 69 30.2± 5.6 4.4 ± 0.17 38.0 ± 6.7 123.± 26. 0.025 ± 0.325
DPOSS II Compact Groups Total 96 370 −− −− 34.2 ± 2.3 251.± 22. 0.015 ± 0.002
(0.044 < z < 0.233) N ≥ 4 63 271 −− −− 31.4 ± 1.9 278.± 32. 0.012 ± 0.002

N = 3 33 99 −− −− 40.4 ± 5.4 215.± 30. 0.020 ± 0.006

a The median of each parameter are listed. The errors are 1σ standard deviations derived from 1000 bootstrapping resamplings.
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Figure 14. (a) Cumulative distribution of the surrounding
surface number density (Σ5) and (b) the distribution of
Σ5 for our sample compact groups (solid line, open his-
togram) the Hickson compact groups (dashed line, hatched
histogram), the DPOSS II compact groups (dotted line,
filled histogram).

of all three samples are extracted from the same parent
population with a low p-value (< 0.1).

Figure 14 suggests that the Σ5 distribution of com-
pact groups can be divided into two as many previous
studies suggested: ‘isolated’ and ‘embedded’ compact
groups. To examine the multiplicity of the Σ5 distri-
bution, we use a statistical test, the Gaussian mix-
ture model (GMM, Muratov & Gnedin 2010). The
GMM evaluates whether the data are more consis-
tent with a multimodal Gaussian distribution rather
than a unimodal Gaussian distribution. If the data
consist of multiple populations, the GMM returns 1)
a low parametric bootstrap method probability, 2) a
large separation (D > 2) between multiple Gaussian
peaks, 3) a negative kurtosis of the input distribu-
tion, and 4) a larger enhancement of the likelihood
for the multimodal case than for the unimodal case
(−2 ln(Lunimodal/Lmultimodal)).

We assume that there are two populations of com-

pact groups with high and low Σ5, and apply the GMM.
The GMM test indicates that the Σ5 distribution may
have a bimodal distribution with low probability p =
6.97×10−6, kurtosis k = 0.186±0.824, large separation
between peaks D = 3.68±0.53, and large enhancement
of the likelihood −2 ln(Lunimodal/Lmultimodal) = 29.3.
This means that the Σ5 distribution is consistent with
bimodal distribution. The two populations of compact
groups are divided at log(Σ5) = 0.62, and 91% (281
out of 309) of compact groups belong to a population
with low Σ5. If we accept this bimodal distribution of
Σ5 and Σ5 traces the local environments of compact
groups, only ∼ 9% of compact groups are in dense en-
vironments. This fraction is much lower than in previ-
ous studies (33 − 50%), but our division is based on a
statistical test that is very strict compared with other
studies based on different local environment indicators
(e.g., distance to nearby galaxy groups). Hereafter, we
refer the compact groups in dense environments as ‘em-
bedded’ groups, and the others as ‘isolated’ groups.

Figure 15 plots the physical properties of the isolated
and the embedded compact groups including group
radius, velocity dispersion, crossing time, and num-
ber density. The median size of embedded groups
(43.3± 4.0 h−1 kpc) is smaller than for isolated groups
(57.8± 1.4 h−1 kpc). The discrepancy also exists even
when we compare the N ≥ 4 and N = 3 compact
groups separately. This result is consistent with pre-
vious studies based on different compact group sam-
ples (Mendel et al. 2011; Dı́az-Giménez & Zandivarez
2015). The smaller sizes of embedded groups result in
lower number densities than for isolated groups (Fig-
ure 15 (d)). The size and density distributions of the
two groups are drawn from significantly different dis-
tributions as the A-D test suggests with low p-value
< 0.01. The median velocity dispersion of embedded
groups (316 ± 25 km s−1) is significantly larger than
that of isolated groups (219 ± 8 km s−1). The distri-
butions of velocity dispersions of the two groups are
also different. This is also consistent with the results
in Pompei & Iovino (2012) for the DPOSS II com-
pact groups. Therefore, the median crossing time of
embedded compact groups is shorter than the isolated
compact groups. The distributions of crossing time for
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Figure 15. The physical properties of embedded (hatched histograms) and isolated (open histograms) compact groups
including (a) group radius, (b) velocity dispersion, (c) crossing time, and (d) density. The embedded groups represent
compact groups that have log(Σ5) larger than 0.62.

the two groups are also significantly different (p-value
from A-D test << 0.01). When we divide the compact
groups into isolated and embedded systems based on
the distance to nearby galaxy clusters, the difference in
physical properties between the two types remains.
Compact groups based on Hickson’s selection crite-

ria, including our original catalog of McConnachie et
al. (2009), reflect a selection bias against dense local
environments as a result of the isolation criterion. In
other words, embedded compact groups may not fully
represent the compact group population in high-density
regions because many compact groups are missed in or
near high-density regions as a result of the isolation cri-
terion. The impact of this criterion is a function of the
redshift of the group (Barton et al. 1996).

5. SUMMARY

By measuring new redshifts and incorporating redshifts
from SDSS DR12 and other literature, we construct a
catalog of 192 N ≥ 4 compact groups with 799 mem-
ber galaxies and 140 N = 3 complete compact groups
with 420 member galaxies at 0.01 < z < 0.21. In this

catalog, all member galaxies have spectroscopic red-
shifts. To date this catalog is the largest spectroscopi-
cally complete sample of these unusually dense systems.
We explore the physical properties of the groups in this
catalog and compare them with previous samples.

We examine the redshift dependence of physical
properties of compact groups in the redshift range
0.01 < z < 0.21. The velocity dispersion of com-
pact groups changes little with redshift, indicating no
significant evolution of dynamical masses of compact
groups in this redshift range. The abundance of com-
pact groups also shows no significant change with red-
shift. Thus it appears that either compact groups can
survive longer than 1 Gyr or they continually reform
by accreting new members from their surroundings.

The early-type fraction in our sample compact groups
is 62%, slightly exceeding the fraction in the Hickson
compact groups. We superimpose all of the compact
groups in our sample to investigate the radial behavior
of the velocity dispersion and morphological fraction.
The velocity dispersion of early- and late-type galaxies
are similar inN ≥ 4 compact groups, but the dispersion
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for the early-type galaxies is larger than for late-type
galaxies in N = 3 compact groups. The velocity disper-
sions of early- and late-type galaxies in compact groups
do not change much as a function of groupcentric ra-
dius. Compact groups enable examination of these is-
sues at a galaxy density and spatial scale that are hard
to access with any other systems.
We compare the catalog we construct with the Hick-

son and the DPOSS II samples that also have complete
spectroscopy. We compare sizes, number densities, ve-
locity dispersions and environments as measured by the
fifth nearest neighbor to the group. The physical prop-
erties of our sample groups are similar to those for the
Hickson compact groups, but they differ from those of
the DPOSS II compact groups. The differences result
from differences in the selection criteria for the DPOSS
II and the Hickson compact groups. The parent cat-
alog we use, McConnachie et al. (2009), is based on
Hickson’s criteria.
The local environments of compact groups are di-

verse. The Σ5 distribution of compact groups is bi-
modal and 9% of compact groups are located in the
denser region. This ‘embedded’ group fraction is lower
than previous studies based on different local density
tracers. The embedded compact groups are smaller and
have larger velocity dispersion than the isolated com-
pact groups on average.
Compact groups are a fascinating laboratory for

studying galaxy evolution. Examination of the abun-
dance of these systems over a larger redshift range and
comparison with simulations may further constrain the
formation and evolution of these systems. It is also im-
portant to clarify the subtle issues in the identification
of the compact systems. Further exploration of identi-
fication directly from complete spectroscopic surveys in
the nearby and moderate redshift universe would pro-
vide a further foundation for understanding the nature
of these systems.
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