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Scheduling with Structured Preferences

Roberto Micalizio and Gianluca Torta

Abstract The problem of finding a feasible schedule for a partially ordered set of
tasks can be formulated as a Disjunctive Temporal Problem (DTP). While there exist
extensions to DTPs that augment them by associating numericcosts to the violation
of individual temporal constraints, they still make the restrictive assumption that
the costs associated with constraints are independent of one another. In this paper
we propose a further extension, which enables the designer to specify (directional)
dependenciesbetween the preferences associated with the constraints. Such prefer-
ences are represented by exploiting Utility Difference Networks (UDNs) that allow
for the definition of structured objective functions based on the notion ofcondi-
tional difference independence(CDI). Thanks to such conditional independencies,
the specification of the utilities and the computation of theutility of (partial) solu-
tions explored during the search for an optimal solution, turn out to be very similar
to how probabilities are handled within a Bayesian Network.The paper presents
a branch-and-bound algorithm for solving this new class of problems, analyzes its
computational complexity and reports some encouraging experimental results.

1 Introduction

Since the seminal work by Dechter et al. [4], Temporal Constraint Satisfaction Prob-
lems (TCSPs) have drawn the attention of several AI researchers, and many problem
formulations have been proposed along the time. Notably, the notion of Disjunctive
Temporal Problems (DTPs) has been introduced in [17], in order to overcome the
limits of Simple Temporal Problems (STPs) [4] by enabling the specification of
temporal constraints consisting of disjuncts, each of which represents a temporal
interval within which legal solutions can be found. This class of problems is expres-
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sive enough to model scheduling problems [12], as well as other problems of interest
in AI (e.g., diagnosis [14, 7]). More recently, the researchhas been focused on how
to address temporalpreferences(i.e., soft constraints). Intuitively, a soft constraint
allows one to express preferences on the distance between any two time points. For
instance, in a calendar management scenario [10], relevanttime points are reason-
ably the start and end times of the activities to be scheduled. Soft constraints can
therefore be used to express the preference that some activities should last as long
as possible, or that the distance between the ending of an activity and the starting of
the subsequent one should be minimized.

While solving an STP or a DTP usually comes down to verifying the satisfiabil-
ity of the (hard) constraints specified in the problem, solving a temporal problem
with preferences requires to find an assignment of values to the time points that not
only satisfies all the hard constraints, but also maximizes agiven objective function
defined over the soft constraints.

Two main problem formulations taking into account preferences have been pro-
posed in the literature. In the first one, named Disjunctive Temporal Problem with
Preferences (DTPP) [5], each constraint is augmented with afunction that expresses
how well an assignment satisfies the constraint itself. Solving a DTTP requires to
find an assignment that maximizes the sum of the preference functions for each in-
volved constraint. In the second formulation, named ValuedDisjunctive Temporal
Problem [9], each constraint is associated with a value representing the cost “paid”
by a solution when that constraint is violated. Thus, in sucha case a constraint can
actually be violated, but its violation comes at a cost. A solution to a VDTP is there-
fore a solution whose cost is minimal1.

Both formulations, however, assume that the preferences (or costs) associated
with the constraints are independent of one another. As a consequence, given a
possible solution, its preference value can be computed by alinear function, that
aggregates the preference value of each single constraint (i.e., how well the solution
satisfies each constraint). Of course, such a function becomes the objective function
to be maximized/minimized.

Such an assumption may prove to be too stringent in many applicative domains.
Surprisingly, the problem of assessing the preference value of an assignment by tak-
ing into account dependencies among constraints has received little attention so far.
To the best of our knowledge, only in [10] the authors proposethe Multi-Criteria
extension to DTPPs (MC-DTPP). Intuitively, the problem formulation includes, be-
sides the disjunctive constraints as usual in DTPPs, also a set ofcriteria. Each crite-
rion is a subset of constraints, which are bundled together as they refer to the same
specific feature of the problem at hand. For each criterion (and pair of criteria), the
user has to specify a weight denoting how “important” a user considers the satisfac-
tion of that set of constraints.

In this paper we propose a different extension, that is suitable to capture a differ-
ent kind of dependencies. We start by observing that in many practical problems not
only there exist dependencies among the preferences, but also that such dependen-

1 Note that soft constraints can equivalently be defined in terms of preferences or costs. In this
paper we will deal with preferences.
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cies are conditional: The best choice for satisfying a constraint might be independent
on choices for the other constraintsgiventhe choices for a limited set of constraints.

We consider the VDTP formulation as our starting point. To represent causal,
directional dependencies, we complement the basic VDTP with a Utility Difference
Network (UDN) [1] that allows for the definition of structured objective functions
based on the notion ofconditional difference independence(CDI), after which we
name our extended problem formulationCDI-VDTP. Thanks to such conditional
independencies, the computation of the utility of (partial) solutions explored during
the search for an optimal solution turns out to be very similar to how probabilities
are computed from a Bayesian network.

The paper is organized as follows. After recalling background information in
section 2, we motivate our approach with an example in section 3. In section 4 we
formally define CDI-VDTPs, and in section 5 we propose a way tosolve them.
Section 6 presents experimental results, while section 7 critically discusses related
work, before concluding in section 8.

2 Background

2.1 DTPs and VDTPs

A DTP is a pair〈X, C〉 where each elementXi ∈ X designates a time point, and
each elementCi ∈ C is a constraint of the formci,1 ∨ . . . ∨ ci,ni

, and each disjunct
ci,j is of the formai,j ≤ Xi,j −X ′

i,j ≤ bi,j , with Xi,j , X
′
i,j ∈ X andai,j , bi,j ∈ ℜ.

A VDTP is a tuple〈X, C, S, ϕ〉 whereX, C are as in DTPs, whileS andϕ are
defined as follows. Thevaluation structureS is a tupleS = 〈E,⊛,≻〉 whereE is
a totally ordered (w.r.t.≻) set ofvaluationsthat can be comined with⊛, a closed,
associative, and commutative binary operator onE. Mappingϕ : C → E assigns
a coste ∈ E with (the violation of) each constraintC ∈ C. In theweightedVDTP,
structureS is 〈ℜ+ ∪ {∞},+, >〉 and the function to optimize is:

∑

i

{ϕ(Ci)|violates(S, Ci)}.

2.2 Utility Difference Networks

Given a set of finite-domain variablesA = {A1, . . . , An} (attributes), a multiat-
tribute utility functionu(A1, . . . , An) associates a numeric value with each assign-
menta = a1. . .an to the attributes. Utility Difference Networks (UDN) [1, 2]2 are a

2 Utility Difference Networks are called Marginal Utility Networks (MUT) in [2]. In this paper we
shall stick to the former name.
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graphical representation of multiattribute utility functions that exhibit strong analo-
gies and properties with the way Bayesian Networks (BN) represent joint probability
distributions.

UDNs introduce the notion of areference valuear
i

for each attributeAi. The
notion of reference utility functionof a subset of attributesH ⊆ A is defined as
ur(H) = u(Hh

r

), whereh
r

is the reference assignment for variablesH = A\H.
Based onur, the Conditional Independence relationCDIr and the UDNs are de-
fined then as follows.

Definition 1. [2] Let H1, H2, H3 be subsets of attributes. SetH1 is said to be
Conditionally Independent ofH2 givenH3 (denotedCDIr(H1,H2|H3)) if for
any assignmenth3 ∈ dom(H3), ur(H1|H2h3) = ur(H1|h3).
Let A be a set of attributes. A Utility Difference Network (UDN) isa DAG G =
(A,E) such that∀A ∈ A : CDIr(A,Co(A)|Pa(A)), wherePa(A) are the parents
of A, Dn(A) are the descendants ofA, andCo(A) = A\({A}∪Pa(A)∪Dn(A)).

UDNs decompose a multiattribute utility function into a sumas BNs decompose a
joint probability distribution into a product, namely:

u(A) =

n
∑

i=1

ur(Ai|Pa(Ai))

namely, in order to compute the utility of an assignmenta to the attributes, it is
sufficient to sum the values of the reference utility functions of each family of the
UDN. A table specifying the values ofur(Ai|Pa(Ai)) is named Conditional Utility
Table (CUT).

3 Motivating Example

DRIVE

DRILL

ANALYZE

COMM

Fig. 1 A segment of a rover plan.

Let us consider a simplified planetary rover scenario as the one discussed in [3],
and let us assume that a mission designer is finalizing the mission that a rover has to
carry out. The mission plan has already been outlined, and Figure 1 shows a portion
of interest; edges between actions represent precedence links. The basic idea is that,
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once the rover has collected a soil sample by means of theDRILL action, it ana-
lyzes the sample and moves (DRIVE) to a position suitable for uploading (COMM)
the collected data. The analysis and the movement could in principle be carried on
simultaneously. The designer has to decide the mode with which the activities in
the plan segment have to be completed. Such a decision has to be made balancing
the quality and accuracy with which some activities are performed, against the time
these activities take to be successfully completed. Figure2 reports, for each action in
the plan, the set of action modes and the associated durationintervals. Further inputs
for the designer’s decision making process are, however, global hard constraints and
preferences. The designer has in fact to take into account that the actionCOMM, must
be performed within a communication window, which opens over a precise period.
The communication window is a hard constraint since it depends on the position
of a satellite functioning as relay, and hence it is outside the control of the mission
designer. Moreover, some activity modes are usually more preferred than others.
For instance, it is usually preferred, and wiser, to performa drive action in a slow
mode; however, the fast mode can be used, if necessary, to avoid missing the com-
munication window. In the tables of Figure 2, the modes of each action, considered
individually, are ordered from the most preferred down to the least preferred.

The challenge for the designer who has to select a mode for each action arises
when we consider actions as being part of a mission. In such a case, the preferred
mode for an action might depend on the mode already selected for a previous ac-
tion. For instance, a scientist would prefer to always drillwith modality deep, be-
cause such a mode usually enables the collection of more interesting samples. On
the other hand, when such samples are collected, it is preferable to analyze them
with modality test-1which is the most accurate one. Both modes, however are very
time consuming, moreover the amount of data produced by means of test-1mode
is usually huge; this impacts the communication, since in that case the 2-channel
modech-2 would be preferable, even though the general preference is to usech-1
mode.

The problem above could actually be encoded as a VDTP, but theonly prefer-
ences one could only would be those informally expressed by the order of the action
modes within the tables in Figure 2. Solving such a problem, thus, would lead to a
solution that does not take into account the choices alreadymade. In the following
section we first introduce the CDI-VDTP formulation, and then we show how this
rover example can be modeled as a CDI-VDTP.

4 Generalizing VDTPs to CDI-VDTPs

A CDI-VDTP is an extension to VDTPs in which the evaluation structureS and
mappingϕ are substituted by a Utility Difference NetworkG, and a utility function
u overG.
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DRIVE
slow [15, 25]
fast [8, 13]

DRILL
deep [10, 13]

shallow [5, 7]

COMM
chn-1 [10, 15]
chn-2 [7, 10]

ANALYZE
test-1[7, 9]
test-2[4, 5]
test-3[3, 4]

Fig. 2 Modes with which activities can be completed and their expected interval durations.

More formally, a CDI-VDTP is a tuple〈X,C,G, u〉, whereX andC are as in
a standard VDTP; whereas,G = 〈A,E〉 is a directed acyclic graph representing a
Utility Difference Network such that:

• A is the set of network nodes (attributes). For each constraint Ci ∈ C, there is an
attributeAi ∈ A s.t.dom(Ai) consists of the set{ci,1, . . . , ci,ni

} of disjuncts in
Ci;

• E is a set of oriented edges〈A,A′〉 such thatA,A′ ∈ A. The edges inE describe
the dependencies among the attributes over which one is interested in finding an
assignment that maximizes the utilityu. For instance, the edge〈Ai, Aj〉, means
that the selection of a value forAi (disjunct for constraintCi) (possibly) affects
the utility of the value selection forAj (i.e., disjunct forCj) for maximizing the
global utility.

Thanks to the properties of UDNs, the utility functionu is compactly represented
as a set of reference utility functionsur(A|Pa(A)) for eachA ∈ A. In the follow-
ing, we shall need to compute the maximum utility achievablegiven an instancew
of a subsetH ⊆ A of variables. In analogy with the Most Probable Explanation
(MPE) for Bayesian Networks, we define the Most Preferred Completion (MPC) of
an instanceh as:

MPC (h) = argmax
h

(u(h,h)).

Namely,MPC (h) is the instanceh that completesh and yields a maximal utility.

Example 1.Let us consider again the planetary rover scenario, and see how it can be
encoded in terms of a CDI-VDTP. The set of temporal variablesX consists of a pair
of variables for each action in the plan denoting the start and end time of the action
itself. For instance, given actionDRILL, two variablesdrls anddrle are included in
X. Also the communication window is encoded by means of two variables,cws and
cwe. In addition, a variablez is used to encode the time point used as a reference.
As for the setC of constraints, we have a soft constraint for each action in the plan,
for instance theDRILL action is associated with the following constraint:

Cdrl = {[10 ≤ drle − drls ≤ 13] ∨ [5 ≤ drle − drls ≤ 7]}
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To model the preference value associated with such a constraint, however, we have
to consider the dependencies of the constraint. In particular, we can assume that
DRILL does not depend on any previous action, but it does influenceANALYZE,
which in turn influencesCOMM. On the other hand,DRIVE can be considered as in-
dependent of the other actions. Relying on these observations, in Figure 3 we sketch
the UDN for this problem: Each node corresponds to a constraint in X (including
the hard constraint on the communication window); edges between nodes denote
preference dependencies; in addition, in analogy to a Bayesian network, each node
is associated with a CUT that defines the preferences for a constraint given its parent
nodes.

In this particular case, the utility network has three roots. Two roots areCdrv
andCcw, representing the constraints associated with the drive action and the com-
munication window, respectively. Being roots, a utility value is directly assigned to
each of their disjuncts. For instance, the utility table associated withCdrv states that
slow is generally preferred tofast. In addition, since the constraint about the com-
munication window is hard, it is associated with two “fake modes”, satisfiedand
unsatisfied, this last mode has utility−∞, meaning that any solution that violates
the communication window constraint is not acceptable. Note also that these two
nodes have no relationships with the other nodes in the network. The third root is
Cdrl, which influences the constraintCanl associated with the analysis action. In this
case, the utility associated with each disjunct inCanl depends on the disjuncts that
have been selected for its parents (onlyCdrl in this example). The results, thus, is
a CUT which looks like a Conditional Probability Table in Bayesian network. The
particular table in the figure is to be interpreted as follows; independently of how
deep the drill operation is, there is a strong preference in performing test-1; how-
ever, if thetest-1is not possible,test-2should be preferred when the drill action was
deep, whereastest-3should be preferred when the drill wasshallow. Similarly,Canl
affectsCcom (i.e., the constraint associated with the communication).Note, in this
case, that when the analysis was carried out with modetest-1, the usage of modech-
1 is practically forbidden. On the other hand, the usage ofch-1should be preferred
when the analysis was conducted either withtest-2or test-3mode.

It is worth noting that at this stage of development, we assume that the utility
values indicated in these tables result from information provided by the problem de-
signer, who takes into account features of the rover that arenot explicitly addressed
by the temporal problem. For example, the preference on a slow drive could be moti-
vated by security reasons; whereas the preference of the usage ofch-1to ch-2could
depend on the fact that the second mode is more resource consuming.

5 Solving CDI-VDTPs

Search Process.To solve a CDI-VDTP problem we adopt a strategy similar to the
one proposed in [9]. The strategy recursively proceeds in a depth-first manner, and
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CdrvCdrl

Canl

Ccom

Ccw

deep 2
shallow1

deep shallow
test-1 2 2
test-2 1 0
test-3 0 1

test-1 test-2 test-3
ch-1 -∞ 1 1
ch-2 1 0 0

slow 2
fast 1

satisfied 1
unsatisfied−∞

Fig. 3 The Utility Difference Network for the rover example.

solve-CDI-VDTP(h,mpc,H, lwb,∆)
1. util← u(h,mpc)
2. if util < lwb then
3. return
4. end if
5. if H = ∅ then
6. if util > lwb then
7. ∆← ∅
8. lwb← util

9. end if
10. ∆← ∆ ∪ {h}
11. return
12. end if
13. Ai ← select-attribute(H);
14. H

′
← H− {Vi}

15. modes← dom(Ai)
16. while modes 6= ∅ do
17. m← select-mode(modes); modes← modes\{m}
18. h′ ← h ∪ {Ai ← m}
19. if consistent(h′) then
20. solve-CDI-VDTP(h′,MPC(h′),H

′
, lwb,∆)

21. end if
22. end while

Fig. 4 The solve-CDI-VDTP algorithm.

branches are pruned whenever their utility is guaranteed tofall below the cost of the
best (i.e., maximal) solution found so far.

Our search strategy is outlined in the algorithm in Figure 4.The algorithm takes
as inputs:

• h: a (partial) assignment of modes to a subset of attributesH, i.e., a (partial)
hypothesis;
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• mpc: the Most Preferred Completion ofh;
• H = A\H is the set of attributes whose mode has not been assigned yet;
• lwb: the utility of the best solution found so far;
• ∆: the set of all the best solutions found so far.

It is worth noticing that, while the first three arguments arepassed by value,
the last two arguments are passed by reference. Thereby, anychange made during
an invocation ofsolve-CDI-VDTP impacts all instances of the algorithm possibly
active on the stack. In particular, when the search terminates∆ contains the set of
best solutions andlwb their utility.

At each invocation, the algorithm determines the upper bound of the utility
achievable by completing the current (partial) solutionh (line 1), and checks
whether it is lower than the best one so far (line 2); if yes, such a branch is not
useful so it is pruned with the return statement. Otherwise,the algorithm checks
whether there are still variables to be assigned (line 5): ifH is empty, then all at-
tributes have been assigned andh is a complete solution. At this stage, the algorithm
checks whether the new complete solution is better than any other solution found so
far (lines 6-9); in the positive case,lwb is updated to be the utility ofh, and∆ is
emptied as all the solutions found so far were not optimal. Inany case,h is added
to∆ (line 10).

In caseh is still a partial solution, the algorithm tries to get closer to a solution by
selecting an attributeAi fromH (line 14). Then the algorithm considers each mode
m in dom(Ai) (lines 16-22), in the order determined by functionselect-mode(line
17), and generates new hypotheses from them. In particular,for eachm ∈ dom(Ai),
a new hypothesish′ is obtained by adding the assignmentAi ← m to h. The
temporal consistency of the new hypothesish′ is then verified by means of function
consistent(line 19), that performs an STP consistency check. Finally,functionsolve-
CDI-VSDP is recursively invoked over the new hypothesish′ and the new set of
unassigned variablesH

′
(line 20).

The choice of the next attribute/mode to assign (calls toselect-attributeand
select-mode) can benefit from the heuristics established for DTP solving[19], such
as conflict-directed backjumping, removal of subsumed variables, semantic branch-
ing, and no-good recording. However, in addition to such standard techniques, the
choice of the next modem to try for an attributeAi can be determined by exploiting
mpc. In particular, ifmpc = MPC(h) assigns modemmpc to attributeAi which
is chosen next, that should be the first mode to try forAi, since it maximizes the
utility according to the UDN. Note that, in general, given a hypothesish there may
be several completions that maximize the utility, that may assign different modes to
Ai. If the MPC computation is able to return all of them, the calls to select-mode
should return them before the other modes ofAi.

MPC Computation. As pointed out in [2], one of the most desirable character-
istics of UDNs is that most inference algorithms developed for BNs can be adapted
with small changes to perform useful inferences on UDNs.

In particular, the computation of the MPC of a hypothesish can be performed
by adapting algorithms for computing the MPE of some evidence in a BN. We have
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chosen to use the jointree algorithm (see, e.g., [16]), which is particularly well-
suited to the reuse of partial results for the incremental computation of the MPC of
a new hypothesish′.

A jointree T derived from a UDNG = 〈A,E〉 is an undirected tree whose
nodes (clusters) are subsetsCli ⊆ A s.t. each familyFam(Aj) = {Aj} ∪ Pa(Aj)
(Aj ∈ A) is associated with a clusterCli that containsFam(Aj). The computation
of MPC follows the same steps of the classic jointree algorithm for BNs, except that
the products of probabilities are replaced by sums of reference utilities, and sums of
probabilities are replaced by the computation of the max of reference utilities. For
example, thepotentialof a clusterClj is:

φi =
∑

Fam(Aj)⊆Cli

ur(Aj |Pa(Aj))

instead of being the product of the CPTs contained inCli.
After arbitrarily choosing a root, the jointree algorithm consists of an inward

and an outward message passing phase, where messages flow respectively from the
leaves to the root and vice-versa. In particular, during theinward phase, nodeCli
sends to its parent nodeClj a messageMi,j :

Mi,j = max
Cli\Si,j



φi +
∑

k 6=j

Mk,i



 (1)

whereSi,j = Cli ∩ Clj . Assume that messageMi,j has been cached during the
computation ofMPC(h), and it turns out that it does not change during the compu-
tation ofMPC(h′), whereh′ is derived fromh by adding an attribute assignment.
Then, nodeCli can avoid sending a message to nodeClj . In turn, if nodeClj does
not receive messages from its children and has an unchanged potential, it can avoid
the computation of the message for its parent.

It is easy to see that the replacement of
∑

with max in the UDN computations
greatly increases the chance that messages can be reused. Indeed, themax operator
can “absorb” changes in one or more items leavingMi,j unchanged.

Computational Complexity. Due to space reasons, we just give some insights
about the complexity of the proposedsolve-CDI-VDTP algorithm; a more detailed
analysis of a similar algorithmic approach applied to multi-agent diagnosis can be
found in [8]. First of all, we note that the algorithm adopts arecursive strategy for
exploring the search space, whose size is bounded by the sizeof the largest attribute
domain, let sayDmax, and by the number of attributes|A|, namely by the upper
boundDmax

|A| (note, however, that the exploration of the whole search space is
very unlikely to occur, since this would require that functionconsistentnever prunes
the domains of the attributes). The two main sub-functions of solve-CDI-VDTP,
namelyconsistentandMPC, can in principle hide further significant computational
cost. It is possible to show that the former is polynomial in|A| as the consistency
check can be reduced to a number of invocations of checks overa Simple Temporal
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TS1 TS2 TS3
#vars 84 164 244

#constrs 142+7282+14422+21
UDN #edges 29 59 89

Table 1 Number of constraints, and size of UDNs.

TS1 TS2 TS3
cache yes no yes no yes no

time/sol 2.6 6.1 8.8 23.3 15.4 40.9
#sols 3 3.8 3.7

Table 2 Avg time per sol (sec), and number of sols.

Network (STN) proportional to|A| (see [8]). On the other hand,MPC is more com-
plex, as we have seen, since its computation mirrors the computation of the MPE
in Bayesian networks, which, as pointed out by Park and Darwiche [13], can be
computed in space and time complexity exponential in the width of a given order of
the BN nodes, and such a width is itselfO(|A|). In our implementation, we used a
jointree algorithm, which in the worst case has complexityO(Dmax

|A|). The com-
putational complexity of thesolve-CDI-VDTP algorithm is given by multiplying
the size of the search space by the complexity ofMPC, and is therefore exponential
in the number of attributes|A|: O(Dmax

|A| ·Dmax
|A|) = O(Dmax

2|A|).

6 Experimental Results

We have implemented the approach described in this paper as aPerl 5.16 program,
exploiting the Boost::Graph module for representing STNs and checking their con-
sistency with the Johnson algorithm, and the Graph module for representing the
UDNs. Since the paper presents a new problem (namely, the CDI-VDTP), it is not
possible to compare our prototype implementation with previous approaches. There-
fore we shall focus on the feasibility of the approach and on the effectiveness of the
caching technique discussed above.

The tests have been run on a virtual machine running Linux Ubuntu 12.04,
equipped with an i7 M640 CPU at 2.80 GHz, and 4 GB RAM. We have consid-
ered three test setsTS1, TS2andTS3of increasing scale, each containing 25 cases.
Table 1 reports the following characteristics:

• number#varsof variables and number#constrsof temporal constraints;#constrs
is given as the sum of the number ofdomainconstraints, shared by all test cases,
and the number of constraints that change for each case;

• #edgesof the UDN describing the dependencies among constraints.

Note that, for both test sets, the UDN networks are non-trivial, since they contain
several dependencies among constraint preferences (represented by edges).
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In order to appreciate the effectiveness of caching in the jointree algorithm (sec-
tion 5), we have run the test cases both with and without caching. Table 2 shows the
average of the following statistics for the three test sets:

• time/sol: time to compute a solution;
• #sols: number of preferred solutions found.

Note that caching reduces the time needed for finding a solution by about66% for
TS1, and about62% for TS2andTS3.

7 Related Work

Since the first formulation of the DTP with preferences (DTPPs) presented in [17],
many alternative algorithms and techniques have been discussed in order to effi-
ciently solve the problem. A first class of solutions are based on a semi-ring struc-
ture [5], which is used for combining local preference values into a global pref-
erence, and for ordering such global preferences so as to compare alternative so-
lutions. Other approaches, such as MAXILITIS [11] are basedon SAT algorithms,
and ARIO [15] in particular is based on SAT algorithms designed for solving a given
DTPP encoded as a Mixed Logical Linear Program (MLLP).

A different formulation of the disjunctive temporal problem with preferences is
proposed in [9]. The novel formulation, dubbed Valued Disjunctive Temporal Prob-
lems (VDTPs), differs from DTTPs as it associates a single weight to each constraint
as a whole, rather than a preference function at the objective level as in a DTPP. Such
a weight has to be interpreted as a cost a solution gathers when that specific con-
straint is violated; namely, when the solution does not satisfy any of the disjuncts
mentioned in the constraint. In [9], VDTPs are solved by means of a branch-and-
bound algorithm exploiting a meta-CSP representation of the temporal problem. In
particular, each disjunctive constraint of the temporal problem is associated with a
variable of the meta-CSP whose domain corresponds to the setof disjuncts in the
constraint itself. The formulation of the CDI-VDTP presented in this paper takes a
similar approach in formulating a meta-CSP. Also in CDI-VDTP, in fact, each con-
straint in the original temporal problem is mapped into a corresponding variable in
the meta-CSP; the domain of such a meta-variable coincides with the set of disjuncts
mentioned by the constraint itself. A significant difference, however, is that we do
not associate a cost to the violation of a constraint as whole, rather we associate a
preference value to each of the disjunct of the constraint (i.e., to each value in the
domains of meta-variables). At first sight, this is what it isdone in DTPPs, but in our
CDI-VDTP the preference values are not necessarily independent of one another.

The approaches and formulations mentioned so far, however,all assume that the
preference evaluation of a constraint is independent of theassignments made for
the satisfaction of the other constraints. To the best of ourknowledge, only the
Multi-Criteria approach to DTPPs (MC-DTPPs) [10] takes up the challenge of find-
ing optimal solutions in which the preference value of a constraint does depend on
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how other constraints are actually satisfied by a given solution. More precisely, in
a MC-DTPPs, one can define a criterion as a set of constraints;the rationale is that
all the constraints related to some particular feature of the problem at hand should
be collected within a single criterion. Each criterion is therefore associated with a
weight, denoting the importance that criterion has for the user. In addition, a trian-
gular matrix of coefficients is used to represent the magnitude of correlations be-
tween any two criteria. The preference value of a solution istherefore computed as
a weighted summation of the utilities associated with each criterion. The main dif-
ference between MC-DTPP and our CDI-VDTP formulation is that in a CDI-VDTP
the dependencies among the constraint are not undirected asin a MC-DTPP. In
fact, MC-DTPP criteria define subsets of constraints that are somehow related each
other, but there is no way to express a causal directionalityof such relationships. In
many practical cases, however, such a directionality exists. (Consider for example
business process workflows [6], supply chains and production systems [18], and so
on.) The CDI-VDTP formulation takes advantage of the causaldirectionality, and
enables the user to express conditional independences among constraints by relying
on the graph-based representation of the UDNs.

8 Conclusions

In this paper we raised the issue of how dealing with preferences that are not com-
pletely independent of one another in a disjunctive temporal problem. As far as we
know, such a problem has received little attention, and onlyin [10] a Multi-Criteria
DTPP has been proposed.

In this paper we extended the VDTP formulation [9] of temporal problems
with the notion of Conditional Difference Independence. The resulting framework,
named CDI-VDTP, enables a user to take advantage of the causal dependencies be-
tween the preferences associated with the constraints, andto define an objective
function shaped over a Utility Difference Network (UDN), inwhich each node cor-
responds to a constraint and (oriented) edges between nodesrepresent causal depen-
dencies. Solving a CDI-VDTP, thus, consists in computing solutions whose utility
is optimal; this can be achieved by exploiting algorithms which are similar to those
used for computing probabilities in a Bayesian network, butapplied to the UDN. In
the paper we also presented a branch-and-bound algorithm for solving CDI-VDTPs
by exploring the space of possible solutions. Results collected by a preliminary im-
plementation have been discussed, and show that the proposed solution is actually
feasible.

As a future work, we intend to further extend the CDI-VDTP formulation with
the addition of a set of variables that, although included within the UDN, are not
associated with temporal constraints. The rationale wouldbe to explicitly model
via these variables aspects of the domain under consideration that might affect the
preference values of a subset of constraints. For instance,in the planetary rover
scenario, the level of battery power could be represented explicitly within the UDN



Roberto Micalizio and Gianluca Torta

by means of a specific variable; such a variable could then affect the duration of
actions such as drive or communicate depending on the assumed level of power.
Problems like planning and diagnosis could therefore exploit such a richer CDI-
VDTP to create expectations or verify hypotheses.
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