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Scheduling with Structured Preferences

Roberto Micalizio and Gianluca Torta

Abstract The problem of finding a feasible schedule for a partiallyeved set of
tasks can be formulated as a Disjunctive Temporal ProblerPjDWhile there exist
extensions to DTPs that augment them by associating numsts to the violation
of individual temporal constraints, they still make thetriesve assumption that
the costs associated with constraints are independenteoéoother. In this paper
we propose a further extension, which enables the desigrsgretcify (directional)
dependencieBetween the preferences associated with the constrainth. [Befer-
ences are represented by exploiting Utility Differencevideks (UDNSs) that allow
for the definition of structured objective functions basedtlee notion ofcondi-
tional difference independen¢€DI). Thanks to such conditional independencies,
the specification of the utilities and the computation of iiéity of (partial) solu-
tions explored during the search for an optimal solutiom twt to be very similar
to how probabilities are handled within a Bayesian Netwditke paper presents
a branch-and-bound algorithm for solving this new classrobfems, analyzes its
computational complexity and reports some encouragingraxgntal results.

1 Introduction

Since the seminal work by Dechter et al. [4], Temporal CaistiSatisfaction Prob-
lems (TCSPs) have drawn the attention of several Al resesscand many problem
formulations have been proposed along the time. Notaldynttion of Disjunctive

Temporal Problems (DTPs) has been introduced in [17], iroto overcome the
limits of Simple Temporal Problems (STPs) [4] by enabling #pecification of

temporal constraints consisting of disjuncts, each of whipresents a temporal
interval within which legal solutions can be found. Thisssaf problems is expres-
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sive enough to model scheduling problems [12], as well aarqiioblems of interest
in Al (e.g., diagnosis [14, 7]). More recently, the resednel been focused on how
to address temporalreferencegi.e., soft constraintys Intuitively, a soft constraint
allows one to express preferences on the distance betwgdwartime points. For
instance, in a calendar management scenario [10], reléva@tpoints are reason-
ably the start and end times of the activities to be sched@®ett constraints can
therefore be used to express the preference that sometiaststiould last as long
as possible, or that the distance between the ending of &ityaend the starting of
the subsequent one should be minimized.

While solving an STP or a DTP usually comes down to verifying $htisfiabil-
ity of the (hard) constraints specified in the problem, sava temporal problem
with preferences requires to find an assignment of valugssttirne points that not
only satisfies all the hard constraints, but also maximizgisen objective function
defined over the soft constraints.

Two main problem formulations taking into account prefeesihave been pro-
posed in the literature. In the first one, named Disjunctiemporal Problem with
Preferences (DTPP) [5], each constraint is augmented Viithaion that expresses
how well an assignment satisfies the constraint itself. i8gha DTTP requires to
find an assignment that maximizes the sum of the preferemeidms for each in-
volved constraint. In the second formulation, named ValDé&junctive Temporal
Problem [9], each constraint is associated with a valueesgmting the cost “paid”
by a solution when that constraint is violated. Thus, in saciase a constraint can
actually be violated, but its violation comes at a cost. AiIsoh to a VDTP is there-
fore a solution whose cost is minimal

Both formulations, however, assume that the preferenaesd&ts) associated
with the constraints are independent of one another. As aeguence, given a
possible solution, its preference value can be computed Imear function, that
aggregates the preference value of each single constirainhpw well the solution
satisfies each constraint). Of course, such a function besdine objective function
to be maximized/minimized.

Such an assumption may prove to be too stringent in manycgtipe domains.
Surprisingly, the problem of assessing the preferenceevalan assignment by tak-
ing into account dependencies among constraints has eeclile attention so far.
To the best of our knowledge, only in [10] the authors proptbeeMulti-Criteria
extension to DTPPs (MC-DTPP). Intuitively, the problemrmfiodation includes, be-
sides the disjunctive constraints as usual in DTPPs, alsba sriteria. Each crite-
rion is a subset of constraints, which are bundled togethéney refer to the same
specific feature of the problem at hand. For each criteriod (ir of criteria), the
user has to specify a weight denoting how “important” a usaeiseers the satisfac-
tion of that set of constraints.

In this paper we propose a different extension, that is Slgitep capture a differ-
ent kind of dependencies. We start by observing that in maastical problems not
only there exist dependencies among the preferences,dauttedt such dependen-

1 Note that soft constraints can equivalently be defined in terhpederences or costs. In this
paper we will deal with preferences.
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cies are conditional: The best choice for satisfying a gaigtmight be independent
on choices for the other constraigisenthe choices for a limited set of constraints.

We consider the VDTP formulation as our starting point. Tpresent causal,
directional dependencies, we complement the basic VD TR auiltility Difference
Network (UDN) [1] that allows for the definition of structdebjective functions
based on the notion afonditional difference independen@eDl), after which we
name our extended problem formulati@DI-VDTP. Thanks to such conditional
independencies, the computation of the utility of (payalutions explored during
the search for an optimal solution turns out to be very simidehow probabilities
are computed from a Bayesian network.

The paper is organized as follows. After recalling backgbinformation in
section 2, we motivate our approach with an example in se@&idn section 4 we
formally define CDI-VDTPs, and in section 5 we propose a wagdtve them.
Section 6 presents experimental results, while sectiorti¢ally discusses related
work, before concluding in section 8.

2 Background

2.1 DTPsand VDTPs

A DTP is a pair(X, C) where each element; € X designates a time point, and
each elemertd; € C is a constraint of the form; ; V...V ¢; ,,,, and each disjunct
Cij is of the formam < Xi,j — Xz'/,j < bq’,’j' with Xz'_’j, Xz(}j eX andai,j, bi,j e R.
AVDTP is a tuple(X, C, S, ¢) whereX, C are as in DTPs, whil& andy are
defined as follows. Thealuation structureS is a tupleS = (E, ®, >~) whereE is
a totally ordered (w.r.t-) set ofvaluationsthat can be comined with, a closed,
associative, and commutative binary operatorfarMappinge : C — E assigns
a coste € F with (the violation of) each constraigt € C'. In theweightedVDTP,
structureS'is (R U {oo}, 4, >) and the function to optimize is:

Z{w(ci)|violates(5, Ci)}.

2.2 Utility Difference Networks

Given a set of finite-domain variables = {4, ..., A,} (attributeg, a multiat-
tribute utility functionu(A,, ..., A,) associates a numeric value with each assign-
menta = a, .. .a, to the attributes. Utility Difference Networks (UDN) [1,24re a

2 Utility Difference Networks are called Marginal Utility Neorks (MUT) in [2]. In this paper we
shall stick to the former name.
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graphical representation of multiattribute utility fuiwsts that exhibit strong analo-
gies and properties with the way Bayesian Networks (BN)asgnt joint probability
distributions.

UDNSs introduce the notion of eeference valueaf for each attributed;. The
notion of reference utility functiorof a subset of attributeEl C A is defined as
u-(H) = u(Hh"), whereh' is the reference assignment for variabi€s= A\ H.
Based ornu,., the Conditional Independence relatiéfD I, and the UDNs are de-
fined then as follows.

Definition 1. [2] Let H,, H,, H3 be subsets of attributes. SH; is said to be
Conditionally Independent df» given Hs (denotedC'DI,.(H,, H2|Hy)) if for
any assignmeriis € dom(Hg), u,.(H1|H2hs) = u,.(Hy |hg).

Let A be a set of attributes. A Utility Difference Network (UDN) &DAG G =
(A,E)suchthavA € A : CDI,.(A,Co(A)|Pa(A)), wherePa(A) are the parents
of A, Dn(A) are the descendants df andCo(A4) = A\({A} U Pa(A)UDn(A)).

UDNs decompose a multiattribute utility function into a samBNs decompose a
joint probability distribution into a product, namely:

u(A) = Z up(Ai| Pa(Ay))

namely, in order to compute the utility of an assignmerib the attributes, it is
sufficient to sum the values of the reference utility functi@f each family of the
UDN. A table specifying the values af.(4;| Pa(4;)) is named Conditional Utility
Table (CUT).

3 Motivating Example

ANALYZE

SN

Fig. 1 A segment of a rover plan.

DRILL COMM

Let us consider a simplified planetary rover scenario as tigediscussed in [3],
and let us assume that a mission designer is finalizing th&ionishat a rover has to
carry out. The mission plan has already been outlined, aguar&il shows a portion
of interest; edges between actions represent precedekseTihe basic idea is that,
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once the rover has collected a soil sample by means dbie_L action, it ana-
lyzes the sample and movdsRl VE) to a position suitable for uploadin€QVM)
the collected data. The analysis and the movement couldngiple be carried on
simultaneously. The designer has to decide the mode witchwihie activities in
the plan segment have to be completed. Such a decision hasnmade balancing
the quality and accuracy with which some activities aregrantd, against the time
these activities take to be successfully completed. Figueports, for each action in
the plan, the set of action modes and the associated dunat@waals. Further inputs
for the designer’s decision making process are, howewanadhard constraints and
preferences. The designer has in fact to take into accoanttté actiorCOMM must
be performed within a communication window, which opensr@precise period.
The communication window is a hard constraint since it ddpemm the position
of a satellite functioning as relay, and hence it is outsigedontrol of the mission
designer. Moreover, some activity modes are usually moeéeped than others.
For instance, it is usually preferred, and wiser, to perfararive action in a slow
mode; however, the fast mode can be used, if necessary, ith missing the com-
munication window. In the tables of Figure 2, the modes oheaation, considered
individually, are ordered from the most preferred down ®lgast preferred.

The challenge for the designer who has to select a mode for &amon arises
when we consider actions as being part of a mission. In suase, the preferred
mode for an action might depend on the mode already selecteal revious ac-
tion. For instance, a scientist would prefer to always dvith modality deep be-
cause such a mode usually enables the collection of monestileg samples. On
the other hand, when such samples are collected, it is pigéeto analyze them
with modalitytest-1which is the most accurate one. Both modes, however are very
time consuming, moreover the amount of data produced by sneftest-1mode
is usually huge; this impacts the communication, since &t tase the 2-channel
modech-2would be preferable, even though the general preferenaeusech-1
mode.

The problem above could actually be encoded as a VDTP, butrtlyeprefer-
ences one could only would be those informally expressetidgitder of the action
modes within the tables in Figure 2. Solving such a probléms twould lead to a
solution that does not take into account the choices alrezatje. In the following
section we first introduce the CDI-VDTP formulation, andrtivee show how this
rover example can be modeled as a CDI-VDTP.

4 Generalizing VDTPs to CDI-VDTPs

A CDI-VDTP is an extension to VDTPs in which the evaluatiorusture S and
mappingy are substituted by a Utility Difference Netwogk and a utility function
u overg.
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DRI VE DRI LL
slow|[15, 25] deep [[10, 13]
fast| [8, 13] shallow [5, 7]

COWM ANALYZE

test-1[7, 9]
chn-1[10, 15] test-4[4. 5]
chn-2 [7, 10] test- [3'4]

Fig. 2 Modes with which activities can be completed and their exgrboiterval durations.

More formally, a CDI-VDTP is a tuplé X, C, G, u), whereX andC are as in
a standard VDTP; whereag,= (A, E) is a directed acyclic graph representing a
Utility Difference Network such that:

e A isthe set of network nodes (attributes). For each consifaia C, there is an
attributeA; € A s.t.dom(A;) consists of the sdfc; 1, ..., ¢; », } Of disjuncts in
Ci;

e Eisasetoforiented edgéd, A’) suchthatd, A’ € A. The edges il describe
the dependencies among the attributes over which one regtiée in finding an
assignment that maximizes the utility For instance, the edgel;, 4;), means
that the selection of a value fot; (disjunct for constrain€;) (possibly) affects
the utility of the value selection fad; (i.e., disjunct forC;) for maximizing the
global utility.

Thanks to the properties of UDNSs, the utility functianis compactly represented
as a set of reference utility functions (A|Pa(A)) for eachA € A. In the follow-
ing, we shall need to compute the maximum utility achievalen an instancev
of a subsel C A of variables. In analogy with the Most Probable Explanation
(MPE) for Bayesian Networks, we define the Most Preferred gletion (MPC) of
an instancé as:

MPC'(h) = arg max(u(h, h)).

h

Namely, MPC (h) is the instancé that completed and yields a maximal utility.

Example 1Let us consider again the planetary rover scenario, andseé ban be
encoded in terms of a CDI-VDTP. The set of temporal varialllensists of a pair

of variables for each action in the plan denoting the stadteard time of the action
itself. For instance, given actiddRI LL, two variablesiri, anddri. are included in

X. Also the communication window is encoded by means of twaties,cw, and

cw,. In addition, a variable is used to encode the time point used as a reference.
As for the set” of constraints, we have a soft constraint for each actiohemtan,

for instance th@RI LL action is associated with the following constraint:

Cari = {[10 < drl. — drls < 13|V [6 < drl, — drls < 7]}
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To model the preference value associated with such a cartstiawever, we have
to consider the dependencies of the constraint. In paaticule can assume that
DRI LL does not depend on any previous action, but it does influahi#é YZE,
which in turn influence€0OVM On the other hand)RI VE can be considered as in-
dependent of the other actions. Relying on these obsen&iiio Figure 3 we sketch
the UDN for this problem: Each node corresponds to a comstiaiX (including
the hard constraint on the communication window); edges/dsert nodes denote
preference dependencies; in addition, in analogy to a Bayeetwork, each node
is associated with a CUT that defines the preferences forstreamt given its parent
nodes.

In this particular case, the utility network has three rodiso roots areCy,.,
andC.,,, representing the constraints associated with the dritiereand the com-
munication window, respectively. Being roots, a utilitywais directly assigned to
each of their disjuncts. For instance, the utility tableoagsted withC,,., states that
slowis generally preferred téast In addition, since the constraint about the com-
munication window is hard, it is associated with two “fakedme”, satisfiedand
unsatisfiedthis last mode has utility-co, meaning that any solution that violates
the communication window constraint is not acceptable eNas$o that these two
nodes have no relationships with the other nodes in the mktwbe third root is
Cqr1, Which influences the constraiif,,; associated with the analysis action. In this
case, the utility associated with each disjuncfip; depends on the disjuncts that
have been selected for its parents (ofily; in this example). The results, thus, is
a CUT which looks like a Conditional Probability Table in Bsyan network. The
particular table in the figure is to be interpreted as follpimgependently of how
deep the drill operation is, there is a strong preferencesifopmingtest-1 how-
ever, if thetest-1is not possibletest-2should be preferred when the drill action was
deep whereagest-3should be preferred when the drill wslsallow Similarly, C,n;
affectsC..,, (i.e., the constraint associated with the communicatibioe, in this
case, that when the analysis was carried out with ntestel, the usage of modeh-
1is practically forbidden. On the other hand, the usagehet should be preferred
when the analysis was conducted either vigt-2or test-3mode.

It is worth noting that at this stage of development, we asstimt the utility
values indicated in these tables result from informatiavigted by the problem de-
signer, who takes into account features of the rover thatatrexplicitly addressed
by the temporal problem. For example, the preference ovadsiwe could be moti-
vated by security reasons; whereas the preference of tige v$eh-1to ch-2could
depend on the fact that the second mode is more resourcensimgsu

5 Solving CDI-VDTPs

Search ProcessTo solve a CDI-VDTP problem we adopt a strategy similar to the
one proposed in [9]. The strategy recursively proceeds iepdhdfirst manner, and
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deep |2
shallow1 S|0W‘2
1

cdrl cdrv fast
deep shallow

test-1 2 2

test-4 1 0 satisfied | 1

test-3 0 1 Cant Cew unsatisfiegi—oco

test-1 test-2 test-3

ch-1 -co 1 1
ch-2 1 0 0

CCO"L

Fig. 3 The Utility Difference Network for the rover example.

solve-CDI-VDTP(h, mpc, H, lwb, A)
1. util + u(h, mpc)
. if util < lwb then

return
end if
if H = ( then

if util > lwb then

A«
lwb + util

end if

A+ AU{h}

return
. end if
. A; + select-attribute(H);
CH « H-{V}}
. modes < dom(A4;)
. while modes # () do
m < select-modémodes); modes < modes\{m}
h' « hU{A; < m}
if consistent’h’) then

solve-CDI-VDTP(h', M PC(h'), H , lwb, A)
end if
. end while

© XN Or®D

NNN RPRRERRERE RBRR R
NP O ©©0 N R WNPO

Fig. 4 The solve-CDI-VDTP algorithm.

branches are pruned whenever their utility is guaranteéltoelow the cost of the
best (i.e., maximal) solution found so far.

Our search strategy is outlined in the algorithm in Figur&le algorithm takes
as inputs:

e h: a (partial) assignment of modes to a subset of attribkfese., a (partial)
hypothesis;
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mpc: the Most Preferred Completion &f

H = A\H is the set of attributes whose mode has not been assigned yet;
lwb: the utility of the best solution found so far;

A: the set of all the best solutions found so far.

It is worth noticing that, while the first three arguments pessed by value,
the last two arguments are passed by reference. Therebghamge made during
an invocation ofsolve-CDI-VDTP impacts all instances of the algorithm possibly
active on the stack. In particular, when the search terregatcontains the set of
best solutions antuvb their utility.

At each invocation, the algorithm determines the upper Hoohthe utility
achievable by completing the current (partial) solutian(line 1), and checks
whether it is lower than the best one so far (line 2); if yeghsa branch is not
useful so it is pruned with the return statement. Otherwtise,algorithm checks
whether there are still variables to be assigned (line 3 i empty, then all at-
tributes have been assigned dni$ a complete solution. At this stage, the algorithm
checks whether the new complete solution is better than gy solution found so
far (lines 6-9); in the positive caséyb is updated to be the utility di, and A is
emptied as all the solutions found so far were not optimaariy caseh is added
to A (line 10).

In caseh is still a partial solution, the algorithm tries to get closea solution by
selecting an attributd; from H (line 14). Then the algorithm considers each mode
m in dom(4;) (lines 16-22), in the order determined by funct&elect-modgline
17), and generates new hypotheses from them. In partiéotaachm € dom(A;),

a new hypothesid)’ is obtained by adding the assignmefif < m to h. The
temporal consistency of the new hypothdsiss then verified by means of function
consistenfline 19), that performs an STP consistency check. Finfalhgtionsolve-
CDI-VSDPis recursively invoked over the new hypothehisand the new set of
unassigned variabld (line 20).

The choice of the next attribute/mode to assign (callsetect-attributeand
select-modecan benefit from the heuristics established for DTP soly2i®j, such
as conflict-directed backjumping, removal of subsumedatdess, semantic branch-
ing, and no-good recording. However, in addition to suchddad techniques, the
choice of the next mode to try for an attributed,; can be determined by exploiting
mpc. In particular, ifmpc = M PC(h) assigns moder,,,,,. to attributeA; which
is chosen next, that should be the first mode to tryAgr since it maximizes the
utility according to the UDN. Note that, in general, givenygpbthesish there may
be several completions that maximize the utility, that mssign different modes to
A;. If the MPC computation is able to return all of them, the c&tl select-mode
should return them before the other modesiof

MPC Computation. As pointed out in [2], one of the most desirable character-
istics of UDNs is that most inference algorithms developgdBiNs can be adapted
with small changes to perform useful inferences on UDNSs.

In particular, the computation of the MPC of a hypothdsisan be performed
by adapting algorithms for computing the MPE of some evigddn@ BN. We have



Roberto Micalizio and Gianluca Torta

chosen to use the jointree algorithm (see, e.qg., [16]), Wwiscparticularly well-
suited to the reuse of partial results for the incrementaimatation of the MPC of
a new hypothesig’.

A jointree T derived from a UDNG = (A, E) is an undirected tree whose
nodes (clusters) are subsétg C A s.t. each familyFam(A;) = {A4,} U Pa(A4;)
(A; € A)is associated with a clustéll; that containg"am(A;). The computation
of MPC follows the same steps of the classic jointree alporifor BNs, except that
the products of probabilities are replaced by sums of refaraitilities, and sums of
probabilities are replaced by the computation of the mayetdrence utilities. For
example, theotentialof a clusterCl; is:

¢i= Y u(A]Pa(4)))

instead of being the product of the CPTs contained'in

After arbitrarily choosing a root, the jointree algorithronsists of an inward
and an outward message passing phase, where messages filectivety from the
leaves to the root and vice-versa. In particular, duringitinard phase, nod€'l;
sends to its parent nodel; a messagé1; ;:

Mij= max |¢i+> My, 1)
Cl,;\Sf,,j Py

whereS; ; = Cl; N Cl;. Assume that message(; ; has been cached during the
computation of\/ PC'(h), and it turns out that it does not change during the compu-
tation of M PC'(h'), whereh’ is derived fromh by adding an attribute assignment.
Then, node”; can avoid sending a message to nade. In turn, if nodeC1; does

not receive messages from its children and has an unchaogeatial, it can avoid
the computation of the message for its parent.

It is easy to see that the replacemendofwith max in the UDN computations
greatly increases the chance that messages can be reussst Ithenax operator
can “absorb” changes in one or more items leavirig ; unchanged.

Computational Complexity. Due to space reasons, we just give some insights
about the complexity of the proposedlve-CDI-VDTP algorithm; a more detailed
analysis of a similar algorithmic approach applied to magient diagnosis can be
found in [8]. First of all, we note that the algorithm adopteeaursive strategy for
exploring the search space, whose size is bounded by thefdlze largest attribute
domain, let sayD,,,.., and by the number of attributed|, namely by the upper
boundDm,mV‘| (note, however, that the exploration of the whole searcltesjsm
very unlikely to occur, since this would require that fuonctconsistentnever prunes
the domains of the attributes). The two main sub-functiohsabve-CDI-VDTP,
namelyconsistentandMPC, can in principle hide further significant computational
cost. It is possible to show that the former is polynomial 4 as the consistency
check can be reduced to a number of invocations of checksadSenple Temporal
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TS1| TS2 | TS3
#vars 84 164 244
#constrs [142+7282+14422+21
UDN #edges 29 59 89

Table 1 Number of constraints, and size of UDNs.

TS1 | TS2 TS3
cache [yed nolyeq no | yes| no
time/sol[2.6/6.1/8.8|23.315.4{40.9
#sols 3 3.8 3.7

Table 2 Avg time per sol (sec), and number of sols.

Network (STN) proportional tdA| (see [8]). On the other hanWPCis more com-
plex, as we have seen, since its computation mirrors the atatipn of the MPE
in Bayesian networks, which, as pointed out by Park and Ddmevi13], can be
computed in space and time complexity exponential in thetwafla given order of
the BN nodes, and such a width is itsélf| A|). In our implementation, we used a
jointree algorithm, which in the worst case has compleo’g}()Dmax‘A‘). The com-
putational complexity of theolve-CDI-VDTP algorithm is given by multiplying
the size of the search space by the complexitMBIC, and is therefore exponential
in the number of attributelst|: O(Dinaz '+ Dinaz! ) = O(Dpnan 2 41).

6 Experimental Results

We have implemented the approach described in this papePed &.16 program,
exploiting the Boost::Graph module for representing ST ehecking their con-
sistency with the Johnson algorithm, and the Graph moduledresenting the
UDNSs. Since the paper presents a new problem (namely, thev@DP), it is not
possible to compare our prototype implementation with joevapproaches. There-
fore we shall focus on the feasibility of the approach andheneffectiveness of the
caching technique discussed above.

The tests have been run on a virtual machine running Linuxntibd?2.04,
equipped with an i7 M640 CPU at 2.80 GHz, and 4 GB RAM. We havesith
ered three test sefsS1 TS2andTS3of increasing scale, each containing 25 cases.
Table 1 reports the following characteristics:

e numbertvarsof variables and numbéiconstrsof temporal constraintgconstrs
is given as the sum of the numberddmainconstraints, shared by all test cases,
and the number of constraints that change for each case;

e #edgeof the UDN describing the dependencies among constraints.

Note that, for both test sets, the UDN networks are nonatigince they contain
several dependencies among constraint preferencesqespee by edges).
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In order to appreciate the effectiveness of caching in thrge algorithm (sec-
tion 5), we have run the test cases both with and without cacfiable 2 shows the
average of the following statistics for the three test sets:

e time/sol time to compute a solution;
e #sols number of preferred solutions found.

Note that caching reduces the time needed for finding a solliy about6% for
TS1 and abou62% for TS2andTS3

7 Related Work

Since the first formulation of the DTP with preferences (D$Presented in [17],
many alternative algorithms and techniques have been stisduin order to effi-
ciently solve the problem. A first class of solutions are dase a semi-ring struc-
ture [5], which is used for combining local preference valito a global pref-
erence, and for ordering such global preferences so as tparenalternative so-
lutions. Other approaches, such as MAXILITIS [11] are base®AT algorithms,
and ARIO [15] in particular is based on SAT algorithms desigjfor solving a given
DTPP encoded as a Mixed Logical Linear Program (MLLP).

A different formulation of the disjunctive temporal probiewith preferences is
proposed in [9]. The novel formulation, dubbed Valued Disjive Temporal Prob-
lems (VDTPs), differs from DTTPs as it associates a singlighteo each constraint
as awhole, rather than a preference function at the obgeletiel as in a DTPP. Such
a weight has to be interpreted as a cost a solution gathens thiaé specific con-
straint is violated; namely, when the solution does notsfaany of the disjuncts
mentioned in the constraint. In [9], VDTPs are solved by nseafna branch-and-
bound algorithm exploiting a meta-CSP representation@teéimporal problem. In
particular, each disjunctive constraint of the temporabem is associated with a
variable of the meta-CSP whose domain corresponds to thef siétjuncts in the
constraint itself. The formulation of the CDI-VDTP preseahin this paper takes a
similar approach in formulating a meta-CSP. Also in CDI-®)Tn fact, each con-
straint in the original temporal problem is mapped into aegponding variable in
the meta-CSP; the domain of such a meta-variable coincidbshve set of disjuncts
mentioned by the constraint itself. A significant differenbowever, is that we do
not associate a cost to the violation of a constraint as whather we associate a
preference value to each of the disjunct of the constraiat, o each value in the
domains of meta-variables). At first sight, this is what d@ne in DTPPs, butin our
CDI-VDTP the preference values are not necessarily inddg@rof one another.

The approaches and formulations mentioned so far, howal@ssume that the
preference evaluation of a constraint is independent ofsggnments made for
the satisfaction of the other constraints. To the best ofkmawledge, only the
Multi-Criteria approach to DTPPs (MC-DTPPs) [10] takes lip thallenge of find-
ing optimal solutions in which the preference value of a t@ist does depend on
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how other constraints are actually satisfied by a given mwluMore precisely, in
a MC-DTPPs, one can define a criterion as a set of constréngsationale is that
all the constraints related to some particular feature efpitoblem at hand should
be collected within a single criterion. Each criterion isréfore associated with a
weight, denoting the importance that criterion has for theruln addition, a trian-
gular matrix of coefficients is used to represent the magaitof correlations be-
tween any two criteria. The preference value of a solutidghesefore computed as
a weighted summation of the utilities associated with eaitarion. The main dif-
ference between MC-DTPP and our CDI-VDTP formulation it tha CDI-VDTP
the dependencies among the constraint are not undirected a$1C-DTPP. In
fact, MC-DTPP criteria define subsets of constraints thesamehow related each
other, but there is no way to express a causal directionaflisyich relationships. In
many practical cases, however, such a directionality £x{§&tonsider for example
business process workflows [6], supply chains and produstystems [18], and so
on.) The CDI-VDTP formulation takes advantage of the cadgaictionality, and
enables the user to express conditional independencesyarnostraints by relying
on the graph-based representation of the UDNs.

8 Conclusions

In this paper we raised the issue of how dealing with prefezsnhat are not com-
pletely independent of one another in a disjunctive temgmablem. As far as we
know, such a problem has received little attention, and om[§0] a Multi-Criteria
DTPP has been proposed.

In this paper we extended the VDTP formulation [9] of tempgreoblems
with the notion of Conditional Difference Independencee Tasulting framework,
named CDI-VDTP, enables a user to take advantage of thelar@endencies be-
tween the preferences associated with the constraintstcaddfine an objective
function shaped over a Utility Difference Network (UDN),which each node cor-
responds to a constraint and (oriented) edges between reqgtesent causal depen-
dencies. Solving a CDI-VDTP, thus, consists in computingtsans whose utility
is optimal; this can be achieved by exploiting algorithmsalikare similar to those
used for computing probabilities in a Bayesian network,dpglied to the UDN. In
the paper we also presented a branch-and-bound algoritheonlfong CDI-VDTPs
by exploring the space of possible solutions. Results ctateby a preliminary im-
plementation have been discussed, and show that the pabpokeion is actually
feasible.

As a future work, we intend to further extend the CDI-VDTPniadation with
the addition of a set of variables that, although includethiwithe UDN, are not
associated with temporal constraints. The rationale wheldo explicitly model
via these variables aspects of the domain under considerdiat might affect the
preference values of a subset of constraints. For instandbge planetary rover
scenario, the level of battery power could be representplicély within the UDN
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by means of a specific variable; such a variable could thestiathe duration of
actions such as drive or communicate depending on the assiaved of power.
Problems like planning and diagnosis could therefore éxplach a richer CDI-
VDTP to create expectations or verify hypotheses.
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