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Abstract. The paper discusses a novel method-
ology for robust plan execution involving an intel-
ligent agent called Active Supervisor (ActS). ActS
aims at preventing (at least in some cases) the fail-
ure of durative actions by anticipating anomalous
trends of execution and by properly handling them.
To reach this result, ActS needs that the plan to be
executed carries some important pieces of knowl-
edge: besides preconditions and effects, actions
must also be described by intermediate conditions
(i.e., invariant conditions), which must be satis-
fied during the whole execution of durative actions.
This knowledge is used by ActS to detect anoma-
lous situations that may endanger the safeness of
the plan executor. Whenever an anomaly has been
detected, ActS tries to prevent a failure by changing
the execution modality of the current action while
it is still in progress. Preliminary experimental re-
sults, obtained in a simulated space exploration sce-
nario, are reported.

1 Introduction

Planning the activities of a mobile robot is a complex
task which many planners address by means of abstract
models of the real world. In recent years there has been
a substantial amount of work for reducing the gap be-
tween these abstract models and the real world, and in-
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novative planning techniques have been proposed in lit-
erature. Nevertheless, robust plan execution still remains
an open problem when it comes to deal with real-world
environments that are just partially observable and not
completely known in advance.

Some recent methodologies [2, 3, 7] face the problem
of plan execution by establishing a closed loop of con-
trol including (among others) on-/ine monitoring, which
is responsible for the detection of action failures, and
plan repair, which is typically based on a re-planning
step and it is devoted to restore (if possible) the nom-
inal execution conditions. These methodologies, how-
ever, are unable to intervene during the execution of an
action as the repair is invoked once an action failure ac-
tually occurs, and hence when the plan execution has
been interrupted.

'The space exploration scenario is a good example of
challenging environments where innovative techniques
for assuring robust and safe execution are required. In
space exploration, however, there are many reasons why
it may be difficult to adopt control methodologies just
based on re-planning. First of all, the computational
power onboard a planetary rover is in general insuffi-
cient to solve a complex task such as the synthesis of a
new mission plan. More important, in this scenario a
mission plan is the result of a long process involving a
team of human experts: engineers and scientists have to
cooperate to build a plan which achieves relevant scien-
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tific targets without endangering the rover integrity by
taking into account resource consumption and physical
limits; any change to the mission plan is therefore ne-
gotiated among team members. Since the synthesis of a
mission plan is a complex task, the rover is typically not
allowed to significantly deviate from it; thus, in case of
action failures, the rover can just interrupt the execution
and wait for instructions (i.e., a new mission plan) from
a Ground Control Station (GCS) on Earth.

In this paper we propose to endow the rover with a
controlling agent, called Active Supervisor (ActS), which
aims at avoiding (at least in some cases) the occurrence
of action failures improving the robustness of the plan
execution phase. To reach this goal, ActS is able to adapt
the way in which an action is carried on to the current
contextual conditions; more precisely, each action in the
plan is associated with a set of execution modalities which,
similarly to [4], represent alternative ways to reach the
action’s effects. Intuitively, an execution modality can
be seen as a specific configuration of the rover’s devices.
When an action is submitted for the execution, ActS is
in charge of establishing, according to the current con-
text [4], the initial execution modality of that action.
Such an initial modality, however, can be adjusted on-
line by ActS while the action is still in progress in order
to adjust the rover’s behavior without interrupting the
execution phase. ActS is a complex system involving a
number of modules; in particular, it exploits a tempo-
ral interpretation module for monitoring the execution
of the mission plan and for detecting potential devia-
tions from the nominal expected behavior over a time
window. When potentially hazardous situations are de-
tected, another module, called Active Controller, can
decide to adjust the current execution modality by tak-
ing into account the suitability of alternative modalities
in alleviating the discrepancy between the actual behav-
ior and the nominal one.

'The paper is organized as follows: section 2 describes
a space exploration scenario used to exemplify the pro-
posed approach; section 3 points out how a mission plan
can be enriched to support ActS; section 4 focuses on
ActS and describes both its internal architecture and the
main strategies it follows. Finally, in sections 5 and 6 we
discuss some preliminary experimental results and draw
some conclusions.

2 A Space Exploration Scenario

This section introduces a space exploration scenario
where a planetary rover is in charge of accomplishing
explorative tasks. This scenario presents some interest-
ing and challenging characteristics; the rover, in fact, has
to operate in a hazardous and not fully observable envi-
ronment where a number of unpredictable events may
occur.

In our scenario the rover is provided with a mission
plan covering a number of scientifically interesting sites.
Such a plan requires to navigate from a location to an-
other one, and involves a number of exploratory actions
to be performed once a target has been reached; for in-
stance we consider that the rover can:

- drill the surface of rocks;

- collect soil samples and complete experiments in
search for organic traces;

- take pictures of the sites.

All these actions produce a certain amount of data which
are stored in an on-board memory. Once a communica-
tion window towards Earth becomes available, the ac-
quired data can be uploaded. In this paper, however, we
do not consider the problem of communicating data in
the space scenario, possible solutions tackling it are dis-
cussed in see [8, 10].

Figure 1 sketches an example of daily mission plan
the rover is assigned with [in the map, altitude is rep-
resented in greyscale: white corresponds to the highest
altitude, and black to the lowest]. It is easy to see that
some of the plan actions can be considered as atomic
(e.g., take picture), some others, instead, will take some
time to be completed. For instance, a navigate action
will take several minutes (or hours), and during its exe-
cution the rover moves over a rough terrain with holes,
rocks, slopes. The safeness of the rover could be threat-
ened by too deep holes or too steep slopes as the rover
has some physical limits that cannot be exceeded; when
this happens, the rover is unable to complete the action:
the plan execution phase is stopped and a request for
a recovery plan is sent to Earth. Of course, the rover’s
physical limits are taken into account during the synthe-
sis of the mission plan, and regions presenting potential
threats are excluded a priori.

The safeness of the rover, however, could also be
threatened by terrain characteristics which can hardly be
anticipated. For instance, a terrain full of shallow holes
may cause undesired vibrations that may damage some
rover’s devices when prolonged over time. This kind of
threat is difficult to anticipate from Earth; in fact, satel-
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lite maps cannot capture all terrain details; moreover,
this threat depends on the rover’s contextual conditions
such as its speed.

In the rest of the paper we suggest to endow the rover
with a controlling intelligent agent, called Active Super-
visor (ActS), which has to recognize potential anoma-
lous trends while actions are still under way, and reacts
to them in order to prevent the failure of the actions.
To reach this goal, ActS is able to adjust the current
execution modality of the action in progress so that the
anomalous trend can be compensated and the nomi-
nal behavior is restored. For instance, the navigation
action can be associated with three execution modal-
ities: cruise-speed (the nominal one), high-speed and
reduced-speed. In the following, we will show how the
exploitation of these modalities allows ActS to flexibly
respond to the contextual conditions. On the one hand,
ActS can reduce the rover’s speed in order to mitigate
the harmful effects of a rough terrain; on the other hand,
ActS can restore the cruise-speed (or even set the high-
speed) when the terrain conditions get better.

3 Augmenting the Mission Plan

Before discussing the internal architecture of ActS and
how it intervenes during the plan execution phase, it is
essential to introduce the pieces of knowledge ActS re-
quires to carry on its job. The first issue to face is about
the representation of the mission plan. In this paper we
assume that the plan has been synthesized on Earth with
the help of automatic planners under the supervision
of human experts. Since most of the automatic plan-
ners are based on PDDL (Planning Domain Definition
Language which is de facto a standard for the representa-
tion of planning problems and domains), we also adopt
this language to encode the high-level mission plan; in
particular, we first point out advantages and limitations
of PDDL, and then we present a number of extensions
exploited by the active supervision mechanism we pro-
pose.

Durative actions in PDDL As a first approximation
we can assume that the mission plan P assigned to
a planetary rover is modeled as a sequence of actions
P :{ay,as,...,an}, each of which is an instance of a
PDDL action schema. While some of these actions can
be assumed instantaneous (e.g., taking a picture), some
others are indeed durative actions (e.g., navigating along
a path), supported by PDDL since version 2.1 [6]. Be-
sides preconditions and effects, a durative action is also

modeled in PDDL2.1 by a set of invariant conditions,
which are required to hold over the time interval be-
tween the start and the end of the action. While this
extension is adequate to solve a planning problem when
actions cannot be assumed atomic, it is not sufficient to
support our goal of detecting anomalous trends of exe-
cutions; let us consider the following example.

Figure 2 shows a possible template for the nav-
igate action in our space exploration scenario. In
this case, the condition clause encodes the physical
limits within which the rover’s behavior is considered
safe while a navigate action is in progress. Let us sup-
pose that two parameters are essential for the safeness
of a navigate action: roll and pitch. When either
the absolute, or the derivate value of one of these two
parameters exceeds a predefined threshold, the navigate
action must be considered failed. In that case, ActS
aborts the action in order to prevent further damages.

From the previous example it is apparent that an

invariant condition is a Boolean statement, and repre-
sents a failure situation. When it is violated at some
step of execution, it is too late for intervening: the plan
execution phase must be interrupted and a new plan
must be requested from Earth. On the contrary, we
aim at preventing the occurrence of action failures by
anticipating the violation of invariant conditions during
the action execution. To do so we need some further
pieces of knowledge associated with each action in the
mission plan.
Execution Modalities The first extension we propose
is to associate each action instance a € P with a set of
execution modalities. Intuitively, an execution modality
can be seen as a specific configuration of parameters or
devices that has an impact on the current behavior of
the rover. In other words, given the set of modalities
mods(a) associated with a, each execution modality
m € mods(a) represents a possible way to reach the
action’s nominal effects eff(a).

For instance, the navigate action
associated  with  three  alternative  modalities:
mods(navigate)={cruise-speed, reduced-speed,
high-speed}; cruises-speed is the nominal speed of the
rover, while reduced-speed and high-speed are alternative
modalities obtained by decreasing and increasing,
respectively, the nominal speed.

This means that, during the execution of a navigate
action, ActS can adjust the rovers velocity; this is
important as the derivate values of roll and pitch
will strongly depend on the actual speed of the rover; by
tuning the speed parameter, ActS can therefore prevent

can be
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An istance of daily mission plan:

-navigate (Start,A) ;

-drill (A); navigate (A,B);

- take-picture(B) ;

-navigate (B,C); drill (C);

- take-picture (C);

-navigate (C,D) ;

- communicate (D).

Capital letters A, B, C, D denote the sites the rover has to visit. Each
site is tagged with the actions to be performed when the site has been
reached: DRILL refers to the drill action, TP to take picture, and
COM to data transmission. More actions can be done at the same site,
see for instance target C. The black line connecting two targets is the
route, predicted during a path planning phase, the rover should follow

during a navigate action.

F1GURE 1. An example of daily mission plan.

(:durative-action navigate
parameters : (°r - rover Py - site ?z - site)
duration : (= ?duration navigation-time ?z p)
condition : (and(at start(at ?r ?y)
(over all (and(< (pitch-derivate ?r) 5)

(< (roll-derivate ?r) 5)

(< (pitch ?r) 30)

(< (roll 2r) 30))))
effect :(and(at start(not (at ?r ?y)))

(at end(at °r ?z)))

F1GURE 2. An example of durative action

a failure of a navigate action.

Temporal Patterns of Behavior To prevent the occur-
rence of an action failure, it is essential to recognize
anomalous trends of execution while the action is still in
progress. Each action is therefore associated with a set
of temporal patterns, each of which describes a sequence
of events that should, or should not, occur during the
nominal execution of an action. In this paper we advo-
cate the adoption of the chronicles formalism [5] for en-
coding these temporal patterns. Intuitively, a chronicle
is a set of events linked with each other by temporal con-
straints. Since they allow to model the behavior of dy-
namic systems over time, chronicles have been success-
tully exploited for of real-time monitoring and diagnosis
of Discrete Event Systems (DES), even of large dimen-
sions as telecommunication networks (see e.g., [11]).

In our case, the events that we want to capture within
a chronicle correspond to relevant changes in the status
of the rover which indicate potentially anomalous be-
haviors. These events may depend both on the activities
carried on by the rover itself, and on the contextual con-
ditions of the environment where the rover is operating.
Thus, each durative action a € P is also associated with
a set chrons(a) = {chry,chr,,...,chr.} of chron-
icles, where each chry represents a trend of execution,
either nominal or anomalous, that is relevant for recog-
nizing what is happening during the execution of action
a.

Figures 3 and 4 show two examples of chronicle as-
sociated with a navigate action. The first chronicle in-
dentifies a potentially hazardous terrain. This chronicle
is recognized when at least N severe-hazard events have
been detected within an interval of W time instants. The
basic idea is that the safeness of the rover may be endan-
gered when it moves at a high speed along a too rough
terrain; this kind of threat can be captured by detecting
hazardous variations of the roll and pitch parameters in
a short time window. The second chronicle recognizes
a plain terrain when for a period of at least N time in-
stants the rover status remains nominal.

It is important to note that, to keep the definition of
chronicles a simple task, they mention high-level events
such as medium-hazard and no-hazard, these events re-
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chronicle hazardous-terrain {

event (medium-hazard[pitch, roll], t1 )
event (medium-hazard[pitch, roll], t2 )
event (severe-hazard[pitch, roll]l, t3)
tl<t2<t3 ; t2-tl<W1l ; t3-t2<W1l

when recognized { emit

event (hazardous-terrain([pitch,roll]l,t)} }

F1GURE 3. 4 chronicle recognizing a hazardous terrain.

chronicle plain-terrain {
occurs( (N, +o0o), no-hazard[pitch,
when recognized {

roll],

(£, t+W) )

emit event (plain-terrain[pitch,roll],t);

b

F1GURE 4. A4 chronicle recognizing a plain terrain.

sult from an interpretation process over the rover’s status
variables. In particular, it is easy to see that, since the ex-
ecution of a navigate action is aborted when the rover’s
roll and pitch exceed predefined thresholds, these two
parameters play an important role during the process of
generating the high-level events mentioned within the
chronicles in chrons(navigate). We will describe
the interpretation process in the next section.
Execution Trajectories The last extension we introduce
can be seen as a more fine-grained action model than a
PDDL2.1 action schema. In the PDDL2.1 model, in
fact, one just specifies (propositional) preconditions and
effects, but there may be different ways to achieve the
expected effects from the given preconditions. For in-
stance, the model for action navigate(A, B) just spec-
ifies that: 1) the rover must be initially located in A and
2) the rover, after the completion of the navigate action,
will eventually be located in B; but nothing is specified
about the intermediate rover positions between A and B.
This lack of knowledge may be an issue when we con-
sider the problem of plan execution monitoring. For this
reason, we allow to associate a durative action a with a
parameter trj(a), that specifies a trajectory of nominal
rover states. More formally, trj(a)={so, ..., sn}, where
si (1 : 0.n) are, possibly partial, rover states at differ-
ent steps of execution of a. We just require that both
so - pre(a) and s,, + eff(a) must hold. Therefore,
trj(a) represents how the rover status should evolve
over time while it is performing a.

For instance, the trajectory of a navigate action main-
tains a sequence of waypoints, sketching the route the
rover has to follow, which can be determined after a path
planning process.

An execution trajectory can be very useful to deter-
mine deviations from the nominal execution that can-
not easily detected by means of chronicles. For instance,
it may happen that the rover is diverging from its tar-
get; however, since it is moving on a plain terrain, no
erroneous chronicle is recognized as the rover is not en-
dangered. Having an execution trajectory, in this case,
could help ActS in deciding whether a deviation from
the ideal path is the signal that something wrong has
occurred.

Since it is not always possible to anticipate a possible
trajectory for a given action, we consider an execution
trajectory as an optional extension: if it is not available,
ActS will just rely on chronicles and modalities.

4  Active Supervisor

In this section we present our Active Supervisor (ActS);
in particular, we describe both its internal architecture
and the algorithms which are at the basis of its infer-
ences.

4.1 ActS’s Architecture

Let us start with the ActS’s internal architecture showed
in Figure 5. ActS is a deliberative agent which directly
interacts with the rover’s Functional Layer (FL) (see
e.g., [1, 4]). Since we want to emphasize the role of
ActS in preventing action failures, in this paper we as-
sume that ActS is not endowed with the ability of ( re-
) planning; therefore, the mission plan, augmented with
the three extensions discussed above, must be an input
from Earth.
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Fi1GURE 5. ActS: internal architecture.

'The deliberative capabilities of ActS mainly regard the
actual execution of the mission plan: ActS has to decide
the initial execution modality of each action included
in the plan and, once the action has been submitted to
the FL, it is in charge to correct such a modality when
observations from the environment suggest that some-
thing wrong is occurring.

The internal architecture of ActS involves a number
of modules:

- 'The Status Estimator (SE) gets, at each time t, the
raw data provided by the FL and produces an in-
ternal representation of the current rover’s status.
The result of the SE can be thought of as an array
statusy of status variables representing a rover’s
snapshot at time t. The SE can carry out quali-
tative abstractions of the collected data, therefore
each variable v € status is set to a specific value
which may be either a quantitative or qualitative.
The internal status status; produced by the SE
is made available to the Plan Executor and to the
Status Interpreter - two other modules of ActS.

- 'The Plan Executor (PE) is responsible for the ac-
tual execution of the actions in the given mission
plan. This means that the PE must be able to
determine: firstly, whether the current action to
perform can be submitted for execution to the FL
(i-e., when the action preconditions are satisfied in
statusy), and secondly, when an action has been
carried out successfully. Whenever the PE de-

tects an anomalous condition (e.g., an action takes
longer than expected) it aborts the execution (by
sending an appropriate abort command to the FL)
and asks for a new repair plan.

The Knowledge-Base (KB) maintains the pieces of
knowledge exploited by ActS for detecting anoma-
lous trends and for compensating them by tuning
the execution modality of the current action. In
particular, for each action type type, the KB main-
tains the set of execution modalities mods(type)
and chronicles chrons(type) associated with it.
Moreover, the KB includes a set of interpretative
rules that help the Status Interpreter in its job (see
later).

The Status Interpreter (SI) has to generate the in-
ternal, high-level events that are mentioned within
the chronicles. It exploits a set of interpretative
rules associated with the current action. These
interpretative rules have the form Boolean condition
— internal event. The Boolean condition is built
upon three basic types of atoms: status variables
Xi, status variable derivates d(x;), and abstraction
operators qAbs(xi, [ti,tu]) — qVals which
map the array of values assumed by x; over the
time interval [ty, t,] into a set of qualitative values
qVals = {qvaly,...,qvaly}. For example, the
following interpretative rules:

(8(roll) > limits,ouV

d(pitch) > limitspiten)
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— severe-hazard(roll, pitch)
are used to generate a severe-hazard event
whenever the derivate value of either roll or pitch
exceeds predefined thresholds in the current rover
status.
Another example is the rule:
attitude(roll, [teurrent —

nominal /\
attitude(pitch, [teyrrent —

nominal

— safe(roll, pitch)
where attitude is an operator which abstracts the
last A values of either roll or pitch (the only two
variables for which this operator is defined) over
the set {nominal, border, non-nominal}.

A, tcurrent]) =

A, tcurrent] )=

- The Temporal Reasoner (TR) is essentially a
Chronicle Recognition System (CRS) similar to
the one proposed by Dusson in [5]. It is responsi-
ble for triggering the Active Controller once a new
chronicle has been recognized.

- 'The Active Controller (AC) accomplishes two im-
portant activities. First, it selects an execution
modality to be issued towards the FL. In principle,
such a selection should correct the current robot’s
behavior smoothly; that is, on one side, the AC’s
strategy should not be too reactive in order to avoid
abrupt changes in the robot’s behavior which may
be as dangerous as the threat to face; on the other
side, the AC should be able to restore the nom-
inal execution modalities when it is reasonable to
presume that no menace is expected in the near fu-
ture. Second, the AC updates some parameters of
the current action according the execution modali-
ties it emits. For instance, when a navigation action
is slowed down, it will take more time to be com-
pleted, this extra time must be taken into account

by the PE during its job.

4.2 Algorithms

In the previous subsection we have introduced the main
modules of ActS; in this subsection we discuss how these
modules are actually integrated with one another to pro-
vide the supervision service ActS is responsible for. In
particular, we describe two main phases: one regarding
the high-level control loop (which determines when a
new action can be submitted for the execution or when

an action in progress must be aborted), and one regard-
ing the active monitoring process, which is in charge of
tuning the execution modality of the action currently in
execution.

'The main control strategy is sketched in Figure 6. As
said above, this is the main control loop through which
the execution of the mission plan is supervised. In par-
ticular, such a loop iterates over the time and involves
two steps: 1) the selection of a new action to be sub-
mitted, and 2) the supervision of a (durative) action in
execution.

'The first phase (lines 06 through 11) is activated
whenever the current action a becomes nu//, this means
that the previous action has been successfully carried out
(lines 16 and 17) and a new action has to be executed.
'Thus, the next action in the plan is extracted and its pre-
conditions are assessed against statusy (i.e., the current
status estimated by the SE). If the action preconditions
are not satisfied, the action is not executable; since ActS
is not endowed with replanning capabilities, it responds
to the anomalous situation by stopping the plan execu-
tion phase and by asking Earth for a new mission plan.
On the contrary, if the action is executable in status,
ActS has to decide the initial execution modality of a
according to its action type and to the contextual con-
ditions encoded by status; (this step is similar to the
“context aware” modality selection in [4]). Note that
ActS selects the initial execution modality for durative
as well as atomic actions; of course, while ActS has also
to adjust the modality of durative actions while they are
in progress (second phase, see below), the granularity
of atomic actions does not require further adjustments
once they are sent for execution.

The second control phase (lines 12 through 19) is
activated whenever a durative action is in progress. In
this phase, ActS first looks for deviations between the
nominal evolution of the action and the actual one. To
this end, it checks three conditions: 1) assesses whether
some invariant conditions associated with the action
have been violated in statusy; 2) establishes the cur-
rent duration of the action and compares it with the es-
timated one; 3) estimates the current execution trajec-
tory and evaluates how far it deviates from the nominal
one. If at least one of these three conditions is violated,
ActS sends an abort command to the FL, interrupting
the current action, and asks Earth for a new plan (line
14). On the contrary, no violation has been detected,
and ActS assesses whether the action has reached its ex-
pected effects. 'This is done by comparing the nomi-
nal effects with the status estimation statusy: if they
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ActS::MainStrategy(P)

01t+<0

02 a <—null

03while there are actions in P to be performed

04 rdatay - getRawDataFromFL(t)

05 status; < StatusEstimator(rdatay)

06 if (a is null)

07 a <—getNextAction(P)

08 if checkPreconditions(pre(a), statwusy) = not satisfied

09 ask for replanning and exit

10 currentmod(a) «sellnitMod (status, acttype(a))

11 submit a to FL with modality currentmod(a)

12 else

13 if (checkInvariants(inv(a), statws) = violation) \/
(actualDuration(a) > duration(a))
(trajectoryDeviations(trj(a), statusy)=relevant)

// an action Q has to be selected

14 send abort to FLL

15 ask for replanning and exit

16 if hold(eff(a), statusy) /@ is completed with success
17 a <— null

18 else

19 ActiveMonitoring(a,t,status¢,currentmodg)

20 t<«t+1

FiGURE 6. The Plan Executor’s high-level control strategy.

ActS::ActiveMonitoring(a, t, status¢,currentmod(a))
H <« append(H, statusy)
rules(a) < get-interpretative-rules(KB, acttype(a))
eventsy < StatusInterpreter(H, rules(a))
RC <« 0
chronicles(a) < get-chronicles(KB, acttype(a))
for each event e, € events,
chr(a) < get-relevant-chronicle(e, chronicles(a))
if TemporalReasoner(chr(a), et) emits recognized
RC < RCU{chr(a)}
ifRC #0
mods(a) <get-execution-modalities(KB,acttype(a),RC)
newmod <+ ActiveCntr(RC,mods(a),currentmod(a))
currentmod(a) < newmod
submit currentmod, to FL

FiGURE 7. The strategy for the active monitoring.

match, the action is completed (line 16) and the action
pointer a is set to nu// so that the first phase is activated
again.

When an action is neither aborted nor finished, it is
still in progress; in that case ActS is in charge of tuning
the execution modality of the action according to the
potential anomalous trends that are recognized; this task
is carried out by the ActiveMonitoring pseudo-function
sketched in Figure 7.

'The purpose of ActiveMonitoring is to emit (when
necessary) an execution modality towards the FL so that
the trend of the current action can be corrected. This
result is obtained by the cooperation of three modules
of ActS: Status Interpreter (SI), Temporal Reasoner (TR)
and Active Controller (AC); the pseudo-code in Figure 7
describes how these modules are actually integrated.
Since the TR is based on chronicles, the first step

to accomplish requires the generation of the internal
events that, mentioned within the chronicles, will
be consumed by TR. This task is up to the SI, which
exploits a history of rover’s past states together with a set
of interpretative rules in order to synthesize the internal
events representing relevant changes in the rover status
(see the first three lines): eventsy is the set of internal
events generated by the SI at each time t. Each event
et € events; is subsequently sent to the TR. For
simplicity, in our approach we assume that each event
e can be consumed by exactly one active chronicle chr;
the function ger-relevant-chronicle in Figure 7 selects
such a chronicle from chronicles(a) so that the TR
receives in input just the event e; which influences that
chronicle. By consuming the events it receives from
the SI, the TR will eventually recognize a chronicle
chrq. In general, more chronicles can be recognized
simultaneously, so all the chronicles recognized at
time t are collected into the set RC, which becomes
the input for the AC as well as the current execution
modality. ‘This last module has the responsibility of
updating the current execution modality from the set of
possibilities mods(a); the new modality will then be
emitted towards the FL. In our current and preliminary
solution, the AC receives just one chronicle at a time
and matches that chronicle with a specific execution

modality by exploiting a predefined set of rules.

4.3 Running example

To show the effectiveness of ActS, in this subsection we
compare the execution of the rover’s mission plan (intro-
duced in section 2) focusing on a specific navigate action
-navigate (A, B) - in two different situations: first
when ActS is off, so no execution modality is adjusted
on-line; second when ActS is on and is in charge of ad-
justing the execution modality of durative actions while
they are in progress. Of course, in both situations the
violation of invariant conditions causes the abortion of
the current action. Figure 8 plots the derivate value of
the roll parameter over the time, while the navigate ac-
tion is in progress in the two situations: when ActS if off
(above) and when ActS is on (below). Itis apparent that,
when ActS is off, the execution of the navigate action is
stopped after a number of time instants (in our experi-
ments we sampled the rover’s status every second). This
happens because of the violation of the invariant condi-
tions associated to the navigate, which require that the
derivate value of the roll parameter must be below 5 de-
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grees. On the contrary, when ActS is on, the navigate
action can be carried out successfully; in fact, ActS rec-
ognizes a chronicle hazardous-terrain, and in-
tervenes at time instant 87 by setting the action modal-
ity to reduced speed: such a change has a positive effect
on the roll derivate, which does not exceed the thresh-
old, and therefore the navigate can go on until the final
target (B) is reached. *

o T T T T - T

|
‘||‘ |'| i A r.'||
J |‘||,l|',I ,'

F1GuRre 8. The derivate of the roll parameter during action nav-
igate (A, B):when ActS is off (above) and when ActS is on
(below).

5 Experimental Results

The experimental scenario ActS has undergone to a first
validation by using as test bed the space exploration
scenario previously introduced. The planetary environ-
ment has been represented as a Digital Elevation Model
(DEM); we assumed that an initial DEM Dini (pre-
sumably computed from satellites images), is available,
and is used for implementing and experimenting a set
of rover’s missions. In particular, by taking into ac-
count the terrain’s characteristics, we have subdivided
the rover’s missions into two classes: easy and difficult.
Note that the planning phase verifies the feasibility of
each navigate action by invoking a path planner that,
relying on Djnit, assesses the validity of the invariant
conditions associated with this action type (see Figure 2)

"For the sake of discussion we only consider the roll parameter;
however, the interpretation rules used to generate the internal events
actually take into account a subset of parameters .

and provides also a trajectory in terms of way points.

Since Dinit is just an approximation of the real ter-
rain, the actual execution of a mission plan may be af-
tected by unexpected environmental conditions. For
simulating the discrepancies between Din it and the real
terrain, we have altered the original DEM by adding a
random noise on the altitude of each cell. In our experi-
ments, we have considered 6 noise degrees: from 10 cm
to 15 c¢m, and for each of them we have generated 320
cases: 160 for the easy class and 160 for the difficult one.

Altogether, in our experiments we have considered up
to 1920 navigate actions differing with one another for
their starting and ending points, and their length.

To prove the effectiveness of our control architecture,
we have simulated the execution of both easy and if~
Jficult cases in each noised DEM comparing the rover’s
behavior both when ActS is off and when ActS is on.
A simplified simulator of the FL has been implemented
in order to generate with a frequency of 1Hz the set of
raw data. For measuring the robustness of the plan ex-
ecution and for providing some insights about the abil-
ity of ActS in tolerating variations in the DEM, we are
reporting data about three main parameters concerning
the execution of the navigate actions:
1) the percentage of navigate actions that were com-
pleted successfully.
2) the percentage of path actually covered by the rover
with respect to the estimated trajectory.
3) The percentage of steps the navigation has been per-
formed in the slowdown modality w.r.t. the number of
steps in the estimated trajectory. (This datum is mean-
ingful just when Acts is on.)
Figure 9 summarizes the results of the tests. The graphs
show the average values for the class of difficult cases
(solid line), and for the class of the easy ones (dashed
line). Each bullet corresponds to the average value of
160 navigations; squares denote the responses when
ActS is off, triangles denote the responses when ActS
is on. It is easy to see that ActS-on always provides bet-
ter results than ActS-off'as concerns both the percentage
of success and the progress. As expected, in the difficult
cases, the gains are significant even for small DEM de-
viations, whereas in the easy ones, the gain becomes rel-
evant when map deviations are more significant. The
results also show that the ActS is quite powerful but
cannot avoid failures when the noise degree grows too
much.

A final remark concerns the cost of ActS: while the
computational cost is negligible, there is an impact on
the actual execution that we estimate as the percentage

DOI: 10.2420/AF05.2012.53

61



Acta Futura 5 (2012) / 53-63

R. Micalizio et al.

Average Progress

0.1 0.11 oaz 0a3 014 o1 0.1 011 oaz

Completion with Success

DEM Deviation

(b)

Slowed-Navigation Percenfage

0a3 0.4 0.1 0.1 0,11 01z 013 0,14 015

DEM Deviation

(c)

F1GURE 9. Experimental results.

of steps performed in the reduced-speed modality (see
Figure 9.c): this percentage is proportional to the noise
degree and represents and measure of the difficulty of
completing the navigation.

Implementation. To implement ActS we have used
PLEXIL and its environment (the Universal Executive).
PLEXIL is a light weight [PLEXIL has been designed
for very low performance systems, and it has been suc-
cessfully tested on a VxWorks OS (see [13])] but pow-
erful language developed by the NASA [12] [PLEXIL
is downloadable at http://plexil.wiki.sourceforge.net],
which provides a useful event driven framework sup-
porting concurrent tasks. While PLEXIL has been ex-
ploited for the realization of the control strategies de-
picted in figures 6 and 7 (and hence for the coordination
of the different internal modules of ActS), each internal
module has been developed as a single piece of software
in Java or in C++. The experiments have run on a laptop

Intel Core2 2.16 GHz, 2 GB RAM.

6 Discussion and Conclusions

'The paper has addressed the problem of robust plan
execution when the environment may (slightly) differ
from the one known (or assumed) during the planning
phase and unexpected contingencies may arise. Previous
works in literature have faced this problem by endow-
ing the plan executor (i.e., a planetary rover in our case
study) with some form of autonomous behavior. For
instance, the control architectures discussed in [1, 4, 9]
support the robot’s autonomy by means of three layers
of control: the highest one is devoted to the decisional
aspects and it is typically based on one (or even more)
(re)planning module(s). Recent works on planning un-

der uncertainty have faced the problem of recovering
from an action failure by synthesizing a repairing plan
on the fly (e.g., see [7, 3, 2]). These approaches, how-
ever, have been designed to intervene only after a failure
has occurred, and therefore when the plan execution has
been interrupted.

In this paper we have tackled the robust plan exe-
cution problem from a different perspective. Rather
than activating a re-planning phase after the detection
of an action failure, we have proposed to endow the
rover with an intelligent controller, called Active Super-
visor (ActS), whose aim is to prevent action failures. In
particular, we have discussed both the internal architec-
ture of ActS and its main strategies. Moreover, in or-
der to reach the goal of preventing failures, we have also
discussed and motivated the necessity of augmenting a
mission plan with further pieces of knowledge. Two ex-
tensions play a central role. First, the set of temporal
patterns that are relevant for a given action type. These
patterns describe the rover’s behavior during the execu-
tion of a (durative) action and are used by ActS to iden-
tify anomalous trends. In the paper we have adopted
the formalism of chronicles [5] to encode temporal pat-
terns as it represents a viable and efficient solution to
the problem of interpreting online the raw data coming
from the environment, and hence reasoning about the
environment in more abstract terms.

The second extension is about execution modalities,
which associated with each action type, represent at an
abstract level how ActS can intervene during the execu-
tion of an action. Different execution modalities corre-
spond to different rover’s settings, and hence to different
evolutions of the action in progress. ActS can therefore
decide to change the current execution modality of an
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action in order to compensate an anomalous trend. The
adoption of execution modalities is not completely new,
also in [4] the authors suggest a methodology for ad-
justing the way in which an action is carried on depend-
ing on the rover’s current context. However, their con-
text is just a snapshot of the rover’s status plus the status
of environment surrounding the rover. Conversely, by
means of the chronicle formalism, we are able to deal
with a “temporal” context; which is much more infor-
mative than a single snapshot and allows us to predict
with a higher confidence how the context will evolve in
the immediate future. As a consequence, we can antic-
ipate the change of modality.

As future work we intend to improve the ActS agent
in two ways. First, ActS has to be more flexible in the
selection of new execution modalities. In the current
implementation, the selection of a new modality is up
to the Active Controller, which exploits a set of pre-
defined (and static) rules; to make this selection more
flexible, also the changes made in the recent past should
be considered.

Second, ActS has to change an execution modality
not only on the basis of the safeness of the action cur-
rently in progress, but also on the basis of global con-
straints associated with the plan. For instance, in the
hypothesis that some mission goals have to be reached
within a time deadline, ActS has to estimate whether
the deadline can be met, and in the negative case ActS
can decide to increase the rover’s speed.
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