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Spaces of generalized splines over T-meshes

Cesare Braccoa,∗, Fabio Romana

aDepartment of Mathematics “G. Peano”- University of Turin
V. Carlo Alberto 10, Turin 10123, Italy

Tel.: +39-011-6702827
Fax: +39-011-6702878

Abstract

We consider a class of non-polynomial spaces, namely a noteworthy case of Extended Chebyshev spaces, and we
generalize the concept of polynomial spline space over T-mesh to this non-polynomial setting: in other words, we
focus on a class of spaces spanned, in each cell of the T-mesh,both by polynomial and by suitably-chosen non-
polynomial functions, which we will refer to as generalizedsplines over T-meshes. For such spaces, we provide,
under certain conditions on the regularity of the space, a study of the dimension and of the basis, based on the
notion of minimal determining set, as well as some results about the dimension of refined and merged T-meshes.
Finally, we study the approximation power of the just constructed spline spaces.

Keywords: T-mesh, Generalized splines, Dimension formula, Basis functions, Approximation power
2010 MSC:41A15 (Spline approximation), 65D07 (Splines)

1. Introduction

The theory of Chebyshevian and Quasi-Chebyshevian spline spaces is a well-known tool which allows to
generalize the classical concept of univariate polynomialspline spaces to a non-polynomial setting (see, e.g., [1]
and [2]). Essentially, the elements of such spaces locally belong to Extended Chebyshev and Quasi-Extended
Chebyshev spaces (see, e.g., [2]), respectively. Many papers considered particular cases of Chebyshevian and
Quasi-Chebyshevian splines (see, e.g., [3], [4] and [5]).

This paper deals with the application of the concept of spline space over T-meshes to the noteworthy case of the
Extended Chebyshev spaces considered in [6], in order to geta generalization of the polynomial spline spaces
over T-meshes. The idea of spline spaces over T-meshes was first introduced for polynomial splines by Deng et
al. in [7] and further studied by the same authors and severalothers (see, e.g., [8], [9], [10] and [1]). The basic
idea consists of considering spline functions which are polynomials of a certain degree in each of the cells of the
T-mesh, which, unlike the classical tensor-product meshes, allows T-junctions, that is, vertices where only three
edges meet. This structure, unlike the one of tensor-product meshes, allows the use of local refinement techniques,
and for this reason has gathered a lot of attention in the scientific community, which brought to the study not
only of spline spaces over T-meshes, but also of the closely-related T-splines (see, e.g., [11], [12], [13] and [14]),
the hierarchical splines (see, e.g., [15] and [16]), and theLR-splines (see, e.g., [17]). Our goal is then using the
generalized splines of type [6] to define a class of spaces of non-polynomial splines over T-meshes. The relevance
of this class of spline spaces and some of the basic concepts related to it have been recently discussed in some
international conferences. The study of these non-polynomial spaces is justified by at least two reasons. First
of all, the presence of non-polynomial functions allows to exactly reproduce certain shapes which can only be
approximated by polynomial splines or NURBS (for example relevant curves like helices, cycloids, catenaries, or
other transcendental curves). Moreover, as we will also point out in Section 4, choosing suitable non-polynomial
functions also allows an easier computation of derivativesand integrals of certain surfaces with respect to using
NURBS (see also [18], [4]). For these reasons, the same kind of non-polynomial functions have been recently
used also to construct non-polynomial T-splines (see, e.g., [19]), and non-polynomial hierarchical splines spaces
(see [20]). The goal of this work is to carry out a rigorous anddeep study of this class of splines, which we will
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call Generalized splines over T-meshes, including resultsabout the space dimension and the approximation power,
which, as far as we know, are still missing in the literature.

Starting from some of the results obtained in [6] about a noteworthy class of univariate non-polynomial spaces, we
define generalized spline spaces over T-meshes and construct a local representation in the Bernstein-Bézier fashion
for their elements. For the above spaces we first provide the construction of a basis and a dimension formula by
using the properties of the local Bernstein-Bézier representation and by generalizing to the non-polynomial case
some of the techniques proposed for the polynomial one in [1]. We also analyze how the dimension of such spaces
changes when we refine the T-mesh and when we merge two T-meshes.
Moreover, we also study the approximation power of the just constructed spline spaces. In particular, we do it
by constructing a quasi-interpolant based on some new localapproximants, whose construction is not trivial. In
fact, the results about the univariate non-polynomial Hermite interpolants given in [6] cannot be directly extended
to the bivariate case. On the other hand, also the bivariate averaged Taylor expansions used in [1] cannot be
simply adapted to the non-polynomial case we consider here.Therefore, we instead defined a new local Hermite
interpolant belonging to the non-polynomial spline space,whose existence is proved by using certain assumptions
made about the non-polynomial functions spanning the space, as carefully explained in Section 4. This approach
allows us to get, at least in certain cases, the same approximation order as in the polynomial case.

The paper is organized as follows. Section 2 includes several preliminary arguments about the non-polynomial
spaces we will use to define the new spline spaces, including some important properties about the derivatives of the
basis functions and the basic concepts about T-meshes. Section 3 presents the new generalized spline spaces over
T-meshes, and includes a detailed proof of the dimension formula and of the construction of the basis; moreover, we
also provide a study of how the spline space dimension changes when the T-mesh is refined, and of the dimension
of a generalized spline space over two merged T-meshes. Section 3 also includes some examples of basis functions,
with some remarks about their features. Finally, Section 4 is devoted to the study of the approximation power of
the constructed generalized spline space.

2. Preliminaries

The spaces we will consider are of the type

P
n
u,v([a,b]) := 〈1,s, ...,sn−2,u(s),v(s)〉, s∈ [a,b], 2≤ n∈ IN, (1)

whereu,v∈Cn+1([a,b]); for n= 1 we set

P
1
u,v([a,b]) := 〈u(s),v(s)〉, s∈ [a,b].

We assume that dim
(

Pn
u,v([a,b])

)

= n+ 1; moreover, in order to prove some of the properties we are about to
present, we will sometimes require the following additional conditions onPn

u,v([a,b])

∀ψ ∈ P
n
u,v([a,b]), if ψ(n−1)(s1) = ψ(n−1)(s2) = 0, s1,s2 ∈ [a,b], s1 6= s2

thenψ(n−1)(s) = 0, s∈ [a,b]; (2)

∀ψ ∈ P
n
u,v([a,b]), if ψ(n−1)(s1) = ψ(n)(s1) = 0, s1 ∈ (a,b),

thenψ(n−1)(s) = 0, s∈ [a,b]. (3)

In the following, we will explicitly mention when such conditions are needed.

2.1. Normalized positive basis and its properties

In this subsection we consider a normalized positive basis for the spacePn
u,v([a,b]). The procedure to obtain

it and its fundamental properties are known and can be found in [6]. Therefore here we will just recall the main
results obtained in [6], omitting the proofs. We will instead prove Property 2, which will be crucial in order to
obtain some results later in the paper.
We will assume that the condition (2) holds.
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The normalized positive basis can be constructed by using the following integral recurrence relation. By (2),
there exist unique elementsU0,1,n andU1,1,n belonging to〈u(n−1),v(n−1)〉 satisfying

U0,1,n(a) = 1, U0,1,n(b) = 0,

U1,1,n(a) = 0, U1,1,n(b) = 1, (4)

and
U0,1,n(s),U1,1,n(s)> 0, s∈ (a,b). (5)

Moreover, we define, fork= 2, ...,n andn≥ 2

U0,k,n(s) := 1−V0,k−1,n(s)

Ui,k,n(s) :=Vi−1,k−1,n(s)−Vi,k−1,n(s), 1≤ i ≤ k−1

Uk,k,n(s) :=Vk−1,k−1,n(s), (6)

where

Vi,k,n(s) :=
∫ s

a
Ui,k,n/di,k,ndt, (7)

and

di,k,n(s) :=
∫ b

a
Ui,k,ndt,

for i = 0, ...,k, k= 1, ...,n−1. Note that (4) and (5) hold also in the particular casen= 1, and thenU0,1,1 andU1,1,1

are a positive basis forP1
u,v([a,b]). The following results can be proved about the just defined functions.

Theorem 1. For k= 2, ...,n and n≥ 2, the set of functions{U0,k,n, ...,Uk,k,n} is a basis for the space

〈1,s, ...,sk−2,u(n−k)(s),v(n−k)(s)〉.

Moreover, it is a normalized positive basis, that is, satisfies the conditions∑k
i=0Ui,k,n(s) = 1 and Ui,k,n(s) > 0 for

s∈ (a,b), i = 0, ...,k.

Corollary 1. The set of functions{U0,n,n, ...,Un,n,n} is a normalized positive basis for the spacePn
u,v([a,b]), n≥ 2,

Ui,n,n = Bi,n, where{Bi,n}
n
i=0 satisfy∑n

i=0Bi,n(s) = 1 and Bi,n(s) > 0 for s∈ (a,b), i = 0, ...,n. For n= 1, the set
{U0,1,1,U1,1,1} is a positive basis ofP1

u,v([a,b]).

Since in the casen = 1 we cannot, in general, guarantee the construction of a normalized positive basis, in the
following we will assumen ≥ 2. As a consequence of the results given in Sections 4 and 6 of [6], we get the
following property.

Property 1. For i = 0, ...,k, k= 2, ...,n and n≥ 2, we have

U ( j)
i,k,n(a) = 0, j = 0, ..., i −1,

U ( j)
i,k,n(b) = 0, j = 0, ...,k− i −1.

In particular, if we consider k= n, we have

B( j)
i,n (a) = 0, j = 0, ..., i −1,

B( j)
i,n (b) = 0, j = 0, ...,n− i −1.

Property 2. For k= 2, ...,n and n≥ 2, we have

U (i)
i,k,n(a) 6= 0, i = 0, ...,k−1, (8)

U (k−i)
i,k,n (b) 6= 0, i = 1, ...,k. (9)

In particular, if we consider k= n, we have

B(i)
i,n(a) 6= 0, i = 0, ...,n−1,

B(n−i)
i,n (b) 6= 0, i = 1, ...,n.
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Proof. First, let us prove (8) by induction. Fork= 2, (8) holds, since from (4), (6) and (7) we get

U0,2,n(a) = 1−V0,1,n(a) = 1−
∫ a

a
U0,1,n(t)/d0,1,ndt = 1−0= 1,

U (1)
1,2,n(a) = D[V0,1,n(s)−V1,1,n(s)]s=a =

U0,1,n(a)
d0,1,n

−
U1,1,n(a)

d1,1,n
=

1
d0,1,n

−0 6= 0.

Now, if (8) holds fork, it must be true fork+1 as well, since we have

U0,k+1,n(a) = 1−V0,k,n(a) = 1−
∫ a

a
U0,k,n(t)/d0,k,ndt = 1−0= 1,

U (i)
i,k+1,n(a) =

U (i−1)
i−1,k,n(a)

di−1,k,n
−

U (i−1)
i,k,n (a)

di,k,n
=

U (i−1)
i−1,k,n(a)

di−1,k,n
6= 0,

where we used (6), (7), Property 1 and the induction hypothesis. Analogously we can prove (9). �

Note that the above constructed basis is not only normalizedpositive, but it is also a Bernstein basis.

2.2. Some definitions on T-meshes

We will now recall the definition of T-mesh and of some relatedobjects, using the notations of [1]. Note that
the concept of T-mesh we will consider here may slightly differ from other ones in the literature, such as the more
general used in [21], which allows the presence not only ofT-junctions, but ofL-junctionsandI-junctionsas well.

Definition 1. A T-mesh is a collection of axis-aligned rectangles∆ = {Ri}
N
i=1 such that the domainΩ ≡ ∪iRi is

connected and any pair of rectangles (which we will callcells) Ri ,Rj ∈ ∆ intersect each other only at points on
their edges.

Note that this definition does not imply that the domainΩ is rectangular and allows the presence of holes in it.
Tensor-product meshes are a particular case of T-meshes. Ifa vertexv of a cell belonging to∆ lies in the interior
of an edge of another cell, then we call it aT-junction.

Definition 2. Given a T-mesh∆, a line segment e connecting the vertices w1 and w2 is callededge segmentif there
are no vertices lying in its interior. Instead, if all the vertices lying in its interior are T-junctions and if it cannot
be extended to a longer segment with the same property, then we call it acomposite edge.

In the following, we will consider T-meshes which areregularand have nocycles, in the sense of the following
definitions (see [1] for more details).

Figure 1:An example of regular T-mesh. Figure 2:An example of non-regular T-mesh.

Definition 3. A T-mesh∆ is regular if for each of its vertices w the set of all rectangles containing w has a
connected interior.
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See Figures 1-2 for examples of regular and not regular T-meshes.

Definition 4. Let w1, ...,wn be a collection of T-junctions in a T-mesh∆ such that wi lies in the interior of a
composite edge having one of its endpoints at wi+1 (we assume wn+1 = w1). Then w1, ...,wn are said to form a
cycle.

See Figure 3 for an example of cycle in a T-mesh.

Figure 3:The sequencew1,w2,w3,w4 is a cycle.

3. Spaces of generalized splines on T-meshes

In this Section, we define the spaces of generalized splines over T-meshes, and we study their dimension by
constructing a basis. The results obtained can be considered a generalization to non-polynomial splines spaces
over T-meshes of the ones proved in [1] for the basic polynomial case.

3.1. Basics

Let ∆ be a regular T-mesh without cycles, and let 0≤ r1 < n1, 0≤ r2 < n2, wherer1, r2,n1,n2 are integers and
n1,n2 ≥ 1. We will use the notationr = (r1, r2) andn = (n1,n2).
We define the space of generalized splines over the T-mesh∆ of bi-degreen and smoothnessr , GSn,r

u,v(∆), as

GSn,r
u,v(∆) := {p(s, t) ∈Cr (Ω) : p|R ∈ P

n
uR,vR(R) ∀R∈ ∆}, (10)

whereΩ = ∪R∈∆R, Cr (Ω) denotes the space of functionsp such that their derivativesDi
sD

j
t p are continuous for all

0≤ i ≤ r1 and 0≤ j ≤ r2, and the spacePn
uR,vR(R) is defined as

P
n
uR,vR(R) := P

n1
uR

1 ,v
R
1
([aR,bR])⊗P

n2
uR

2 ,v
R
2
([cR,dR]), (11)

with R := [aR,bR]× [cR,dR], and uR = (uR
1 ,u

R
2) and vR = (vR

1 ,v
R
2) such thatuR

1 ,v
R
1 ∈ Cn1+1([aR,bR]), u2,v2 ∈

Cn2+1([cR,dR]), dim
(

P
n1
uR

1 ,v
R
1
([aR,bR])

)

= n1+1, dim
(

P
n2
uR

2 ,v
R
2
([cR,dR])

)

= n2+1, and satisfying both (2) and (3).

In other words,GSn,r
u,v(∆) is a space of spline functions which, restricted to each cellR, are products of functions

belonging to spaces of type (1).

We introduce now on each cellR a Bernstein-B́ezier representation for the elements ofGSn,r
u,v(∆) based on the

Bernstein basis ofPn1
uR

1 ,v
R
1
([aR,bR]) andP

n2
uR

2 ,v
R
2
([cR,dR]) constructed in Theorem 1; therefore, we need to assume

that (2) is satisfied both byPn1
uR

1 ,v
R
1
([aR,bR]) andP

n2
uR

2 ,v
R
2
([cR,dR]). Let us denote by{BR

i,n1
}n1

i=0 and{BR
j,n2

}n2
j=0 the

Bernstein basis of, respectively,P
n1
uR

1 ,v
R
1
([aR,bR]) andP

n2
uR

2 ,v
R
2
([cR,dR]), to stress the dependence of the basis on the
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coordinatesaR,bR,cR,dR of the vertices of the cellR. For anyp ∈ GSn,r
u,v(∆), we can then give on the cellR the

following representation:

p|R(s, t) =
n1

∑
i=0

n2

∑
j=0

cR
i j B

R
i,n1

(s)BR
j,n2

(t), (12)

wherecR
i j ∈ IR are suitable coefficients. Let us define the set ofdomain points associated to R:

Dn,R := {ξ R
i j }

n1,n2
i=0, j=0,

with

ξ R
i j :=

( (n1− i)aR+ ibR

n1
,
(n2− j)cR+ jdR

n2

)

, i = 0, ...,n1, j = 0, ...,n2.

We can then define theset of domain pointsfor a given T-mesh∆ as

Dn,∆ :=
⋃

R∈∆
Dn,R,

where we assume that multiple appearances of the same point are allowed. If we set

BR
ξ (s, t) := BR

i,n1
(s)BR

j,n2
(t), whereξ R

i j := ξ ,

then, for eachR∈ ∆, we can re-write (12) in the more compact form

p|R(s, t) = ∑
ξ∈Dn,R

cξ BR
ξ (s, t),

which we callBernstein-B́ezier form; we refer to thecR
ξ as theB-coefficients. It is then clear that any element of

the spaceGSn,r
u,v(∆) is completely determined by a set of B-coefficients{cξ}ξ∈Dn,∆ . Of course, not every choice of

the B-coefficients corresponds to an element in the spline space, since smoothness conditions must be satisfied.

3.2. Smoothness conditions

In order to study the consequences of the smoothness conditions required forGSn,r
u,v(∆) on the determination of

the B-coefficients of an element of the space, first we need to recall some more concepts about domain points.

Let w be the bottom-left vertex of a cellR, andµ := (µ1,µ2) with µ1 ≤ n1 andµ2 ≤ n2. We call the setDR
µ (w) :=

{ξi j }
µ1,µ2
i=0, j=0 the disk of sizeµ aroundw. The disks around the other vertices ofR can be defined analogously.

Moreover, we say that the pointsξ R
i j with 0≤ i ≤ ν lie within a distanceν from the edgee= {aR}× [cR,dR] and

we use the notationd(ξ R
i j ,e)≤ ν . Analogous notations hold for the other edges ofR.

Moreover, we can define the set of domain points

Dµ(w) :=
⋃

R∈∆w

D
R
µ (w),

where∆w ⊂ ∆ contains only the cells havingw as one of their vertices and multiple appearances of a point are
allowed in the union. Given a composite edgee, an edge ˜e lying oneand a domain pointξ of a cell which has ˜eas
one of its edges, ifd(ξ , ẽ)≤ ν , then we write thatd(ξ ,e)≤ ν as well.

The following lemma is a key step to be able to understand the influence of the smoothness conditions around a
vertex, and it is analogous to Lemma 3.3 in [1].

Lemma 1. Let p∈GSn,r
u,v(∆) and let w be a vertex of∆. Let us consider two cells R and̃R with vertices (in counter-

clockwise order) w,w2,w3,w4 and w,w5,w6,w7, respectively. If the coefficients cξ , ξ ∈ DR
r (w) are given, then the

coefficients cη , η ∈ D R̃
r (w) are uniquely determined by the smoothness conditions at w.

Proof. Let us assume thatR andR̃ are like in Figure 4 (the proof for other configurations is analogous). Then,
since we have regularityr = (r1, r2) atw, by using Property 1 we get

h

∑
i=0

k

∑
j=0

cR̃
i j D

h
sBR̃

i,n1
(aR̃)D

k
t BR̃

j,n2
(cR̃) =

n1

∑
i=n1−h

n2

∑
j=n2−k

cR
i j D

h
sBR

i,n1
(bR)D

k
t BR

j,n2
(dR), (13)

6



R

R̃

w

w2

w3 w4

w5

w6w7

Figure 4:The common vertexw shared byRandR̃, with the notation of Lemma 1.

for h = 0, ..., r1, k = 0, ..., r2. By using Property 2 it can be shown that the system composed of equations (13),
with a suitable re-ordering of the equations, is lower triangular, which proves the lemma. �

After having studied the influence of smoothness around a vertex, we now study the situation around edges. The
two following lemmas can be considered generalizations of Lemma 3.5 and Lemma 3.6 in [1]. However, note that
in our nonpolynomial setting Lemma 3.6 cannot be directly generalized, since having different(uR

1 ,u
R
2), (v

R
1 ,v

R
2)

in neighbouring cells leads to configurations which are significantly different from the polynomial case, as we will
explain in the proof of Lemma 3. Given an edgee, we will use the following notation:

re :=

{

r1, if e is vertical,

r2, if e is horizontal,

De :=

{

Ds, if e is vertical,

Dt , if e is horizontal,

ne :=

{

n2, if e is vertical,

n1, if e is horizontal,

{(ae,ce),(be,ce)} := coordinates of the endpoints ofe,

∆e = {R∈ ∆ : R∩ int(e) 6= /0}

uR
e :=

{

uR
2 , if e is vertical,

uR
1 , if e is horizontal,

vR
e :=

{

vR
2 , if e is vertical,

vR
1 , if e is horizontal.

Moreover, we will assume that for anyR∈ ∆ and any edgeesuch thatR∈ ∆e, uR
e ,v

R
e are such that

dimP
ne
uR

e ,vR
e
([ae,be]) = ne+1. (14)

Lemma 2. Let e be a composite edge of∆. Given p∈ GSn,r
u,v(∆), for any0≤ j ≤ re, D j

ep|e is a univariate function
belonging to

⋂

R∈∆e

P
ne
uR

e ,vR
e
([ae,be]).

Proof. Let us consider a horizontal composite edgee with endpointsw1 = (ae,ce) andw5 = (be,ce) like the one
showed in Figure 5, composed of the edgese1,e2,e3. First, p|R1(s,dR1) gives the values ofp both one1 ande2,
because both the edges belong to the same cellR1; similarly, p|R2(s,cR2) gives the values ofp both one2 ande3,
since they belong toR2.
Sincep|e2 belongs toPn1

u
R1
1 ,v

R1
1

([aR1,bR1])∩P
n1

u
R2
1 ,v

R2
1

([aR2,bR2]), and by using assumption (14), we get thatp|e1,

7



R1

R2

e1 e2 e3

◦ ◦w1 w5

Figure 5: The cells considered in the proof of Lemma 2.

p|e2 andp|e3 coincide. These arguments can be extended to an arbitrary number of segments in a composite edge,
to the case of vertical composite edges, and to derivatives of any order up tore. �

Let us now consider a composite edge with endpointsw1 andw5, a cellRe with verticesw1,w2,w3,w4, and another
cell R̃e with verticesw5,w6,w7,w8. Moreover we assume thatw4 andw6 lie on e as well (the other cases are
analogous). Let us define

M
k
e :=











{

ξ Re
i j

}n1,n2−r2−k

i=n1−r1, j=r2+1
, if e is vertical,

{

ξ Re
i j

}n1−r1−k,n2

i=r1+1, j=n2−r2
, if e is horizontal.

, k= 1,2,3. (15)

Moreover, we will usẽre to denoter − (1,0) if e is horizontal,r − (0,1) if e is vertical, and̂re to denoter − (2,0)
if e is horizontal,r − (0,2) if e is vertical. We also define, for everye:

de := dim
⋂

R∈∆e

〈uR
e ,v

R
e〉.

Lemma 3. Let e be a composite edge of the T-mesh∆ with endpoints we,a and we,b. Let us assume that there

exists a basis satisfying Properties 1 and 2 for the space
⋂

R∈∆e

P
ne
uR

e ,vR
e
([ae,be]). Then, the B-coefficients of a spline

p∈ GSn,r
u,v(∆) associated to domain pointsξ such that d(ξ ,e)≤ re are uniquely determined by the coefficients of p

corresponding to the domain points belonging to one the following sets:

• if de = 2, M̃
1,0
e ;

• if de = 1, M̃
1,1
e or M̃

2,0
e ;

• if de = 0, M̃
1,2
e , or M̃

2,1
e , or M̃

3,0
e ;

where

M̃
1,0
e := D

Re
r (we,a)∪D

R̃e
r (we,b)∪M

1
e ,

M̃
1,1
e := D

Re
r (we,a)∪D

R̃e
r̃e
(we,b)∪M

1
e ,

M̃
2,0
e := D

Re
r (we,a)∪D

R̃e
r (we,b)∪M

2
e ,

M̃
1,2
e := D

Re
r (we,a)∪D

R̃e
r̂e
(we,b)∪M

1
e ,

M̃
2,1
e := D

Re
r (we,a)∪D

R̃e
r̃e
(we,b)∪M

2
e ,

M̃
3,0
e := D

Re
r (we,a)∪D

R̃e
r (we,b)∪M

3
e .
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R

Re

R̃e

w1 w4

w3w2

w5

w8w7

w6

ŵ1 ŵ5z1 z4

z3z2

Figure 6: The cells considered in the proof of Lemma 3.

Proof. Let us consider a horizontal composite edgee as in Figure 6, with endpointswe,a = w1 andwe,b = w5 (the
proof is analogous for the vertical case). LetR∈ ∆e, and let us denote its vertices of byz1,z2,z3,z4, with z2 andz3

lying one. We will show that the B-coefficients corresponding to the domain pointsξ belonging toDn,R and such
thatd(ξ ,e)≤ r2 are uniquely determined.
Let p∈GSn,r

u,v(∆), and let us consider integersk andℓ such that 1≤ k≤ 3, 0≤ ℓ≤ 2,k+ℓ≤ 3. First of all, assuming

that the B-coefficients corresponding to the domain points in M̃
k,ℓ
e are given, we can compute the derivatives

{

Di
sD

j
t p(w1)

}n1−r1−k,r2

i=0, j=0
,

{

Di
sD

j
t p(w5)

}r1−ℓ,r2

i=0, j=0
. (16)

In fact, by Property 1, the computation of these derivativesinvolves just the B-coefficients contained iñM
k,ℓ
e .

Note that, by Lemma 2, we know thatD j
t p|e, j = 0, ..., r2, belongs to the univariate space

⋂

R∈∆e

P
n1
uR

1 ,v
R
1
([w1,w5]).

If de = 2, then we set(k, ℓ) = (1,0), and the proof is analogous to the polynomial case.
If de = 1, by differentiatingi times with respect tos, and by considering the basis of

⋂

R∈∆e

P
n1
uR

1 ,v
R
1
([w1,w5]) on e

satisfying Properties 1 and 2, denoted by{Bk}
n1−1
k=0 , we can write

Di
s

n1−1

∑
k=0

ak, jBk(s) = Di
sD

j
t p(s, t)|e, j = 0, ..., r2, (17)

If we assume to have the coefficients associated with the elements ofM̃ 1,0
e , we can use the values (16) of derivatives

in w1 andw5 to determineak, j ’s from the(n1+1)(r2+1) conditions























Di
s

n1−1

∑
k=0

ak, jBk(w1) = Di
sD

j
t p(w1)|e i = 0, . . . ,n1− r1−1,

Di
s

n1−1

∑
k=0

ak, jBk(w5) = Di
sD

j
t p(w5)|e i = 0, . . . , r1,

, j = 0, . . . , r2.

For example, by consideringj = 0, we obtain a linear system whose matrix is of the form

A=





























D0
sB0(w1) D0

sB1(w1) . . . D0
sBn1−r1−1(w1) D0

sBn1−r1(w1) . . . D0
sBn1−1(w1)

D1
sB0(w1) D1

sB1(w1) . . . D1
sBn1−r1−1(w1) D1

sBn1−r1(w1) . . . D1
sBn1−1(w1)

. . . . . . . . . . . . . . . . . . . . .

Dk1
s B0(w1) Dk1

s B1(w1) . . . Dk1
s Bn1−r1−1(w1) Dk1

s Bn1−r1(w1) . . . Dk1
s Bn1−1(w1)

Dr1
s B0(w5) Dr1

s B1(w5) . . . Dr1
s Bn1−r1−1(w5) Dr1

s Bn1−r1(w5) . . . Dr1
s Bn1−1(w5)

Dk2
s B0(w5) Dk2

s B1(w5) . . . Dk2
s Bn1−r1−1(w5) Dk2

s Bn1−r1(w5) . . . Dk2
s Bn1−1(w5)

. . . . . . . . . . . . . . . . . . . . .
D0

sB0(w5) D0
sB1(w5) . . . D0

sBn1−r1−1(w5) D0
sBn1−r1(w5) . . . D0

sBn1−1(w5)
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wherek1 = n1− r1−1 andk2 = r1−1. By Properties 1 and 2, we know that the matrixA has the following sparsity
structure (we mark with• non-zero entries, and with◦ entries which could be either zero or nonzero).





























• 0 . . . 0 0 0 . . . 0
◦ • . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
◦ ◦ . . . • 0 0 . . . 0
0 0 . . . • ◦ ◦ . . . ◦
0 0 . . . 0 • ◦ . . . ◦
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 • ◦
0 0 . . . 0 0 0 0 •





























Note that there is a linear dependence, necessarily in the rows with the• in the same column, corresponding to
derivative of ordern1− r1−1 w.r.t. w1 and derivative of orderr1 w.r.t. w5. So exactly one of them can be removed
in order to obtain a square matrix, which is nonsingular because it is composed of a lower triangular upper part,
and of an upper triangular lower part, with nonzero elementson the diagonal.
The same arguments hold for higher values ofj, and so we do not need all the coefficients associated with the
elements ofM̃ 1,0

e : it is sufficient to know the coefficients of the elements of eitherM̃ 2,0
e or M̃

1,1
e .

If de = 0, thenD j
t p|e, j = 0, ..., r2, belongs to the univariate space

⋂

R∈∆e

P
n1
uR

1 ,v
R
1
([w1,w5]) whose basis we denote by

{Bk}
n1−2
k=0 . In this case, assuming again to have all data aboutM̃

1,0
e , the matrices of the systems determining the

coefficientsa j,k’s have the following sparsity structure:

































• 0 . . . 0 0 0 . . . 0
◦ • . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
◦ ◦ . . . • 0 0 . . . 0
◦ ◦ . . . ◦ • 0 . . . 0
0 0 . . . • ◦ ◦ . . . ◦
0 0 . . . 0 • ◦ . . . ◦
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 • ◦
0 0 . . . 0 0 0 0 •

































The linear dependence is between the rows in which are considered derivatives of ordern1− r1−2 andn1− r1−1
atw1, and derivatives of orderr1−1 andr1 atw5. For everyj, in order to get a square nonsingular matrix, we can
delete the first two, or the last two, or the two central of these rows. These deletions corresponds respectively to
considering only the setsM̃ 3,0

e , or M̃
1,2
e , or M̃

2,1
e .

By writing p|R in its Bernstein-B́ezier form, we get the linear system:

n1

∑
i=0

r2

∑
j=0

cR
i j D

h
sBR

i,n1
(aR)D

k
t BR

j,n2
(cR) = Dh

sDk
t p|R(aR,cR)

where 0≤ h ≤ n1,0 ≤ k ≤ r2, the unknowns are thecR
i j , and the derivativesDh

sDk
t p|R(aR,cR) are known, since

we have just determinedp|e and its derivatives. By suitably re-ordering the indices(i, j) and (h,k) we obtain,
by Property 1, a lower triangular system where the elements on the diagonal are nonzero due to Property 2. The
Lemma is then proved. �

Remark 1. Note that, in order to prove Lemma 2, we do not require that
⋂

R∈∆e

P
n1
uR

1 ,v
R
1
([w1,e,w5,e]) has a Bernstein-

like basis (and then we do not require the conditions (2) and (3) for this space): we just need that the basisesatisfies
Properties 1 and 2, which is sufficient to guarantee that the derivativesDi

sD
j
t p|e, for i = 0, ...,n1 and j = 0, ..., r2,

are uniquely determined by the given data.
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3.3. Basis and dimension formula

We will prove the construction of the basis, and a dimension formula forGSn,r
u,v(∆), provided thatn1 ≥ 2r1+3

andn2 ≥ 2r2+3. We recall the meaning ofdetermining setandminimal determining set.

Definition 5. Let M ⊂ Dn,∆. M is a determining setfor GSn,r
u,v(∆) if for any spline function p belonging to

GSn,r
u,v(∆) such that cξ = 0,∀ξ ∈ M =⇒ p≡ 0, where for anyξ ∈ M , cξ is the corresponding B-coefficient of p.

Furthermore,M is minimal if no (strict) subset of it satisfy this property.

Let us denote byJNT the set of vertices which are not T-junctions, and byC the set of composite edges of∆.
Moreover, letCk be the subset of the composite edgese∈C such thatde = k, k= 0,1,2.
For anyw in JNT, let Rw be a cell with an edgeew having an endpoint atw and such that it has maximum length
among the edges with an endpoint atew. Moreover, let

Mw := D
Rw
r (w), for anyw∈ JNT

MR :=
{

ξ R
i j

}n1−r1−1,n2−r2−1

i=r1+1,r2+1
, for anyR∈ ∆

M :=
⋃

w∈JNT

Mw∪
⋃

e∈C2

M
1
e ∪

⋃

e∈C1

M
2
e ∪

⋃

e∈C0

M
3
e ∪

⋃

R∈∆
MR (18)

whereM 1
e ,M

2
e ,M

3
e , are defined by (15).

The three following results of this subsection are essentially obtained by using arguments analogous to those used
in [1] (they can be considered the generalization of Lemma 4.1, Lemma 4.2 and Theorem 4.3 in [1], respectively).
However, we will briefly summarize their respective proofs in order to highlight the role played by some crucial
assumptions about the absence of cycles in the T-mesh and about the regularity of the spline space.

Theorem 2. The subset of domain pointsM ⊂ Dn,∆ is a determining set for GSn,ru,v(∆).

Proof. In order to prove the lemma we need to show that ifp ∈ GSn,r
u,v(∆), p|R = ∑ξ∈Dn,R

cξ BR
ξ for any R∈ ∆

with cξ = 0 ∀ξ ∈ M , then p ≡ 0. By hypothesis, for anyw ∈ JNT cξ = 0 for all ξ ∈ Mw = DRw
r (w), which

implies, by Lemma 1, thatcξ = 0 for all ξ ∈ Dr (w). Therefore, for any composite edgee with the endpoints in
JNT, by Lemma 3 we havecξ = 0 for all ξ such thatd(ξ ,e) ≤ re, since by hypothesiscξ = 0 ∀ξ ∈

⋃

e∈C2
M 1

e ∪
⋃

e∈C1
M 2

e ∪
⋃

e∈C0
M 3

e . We determine the B-coefficients associated with the not yetconsidered domain points by
using an iterative procedure consisting of two steps:

1. for each T-junctionw on an already considered composite edge, Lemma 1 implies that cξ = 0 ∀ξ ∈ Dr (w);
2. for each composite edgee whose endpoints have been already considered, Lemma 3 implies thatcξ = 0 for

all ξ such thatd(ξ ,e)≤ re.

Since the T-meshes has no cycles, this procedure stops afterhaving considered all the vertices and edges. Then,
all the B-coefficients corresponding to domain points within a distancere from any edgee are determined and are
zero. The remaining coefficients are zeros as well, since they correspond to domain pointsξ whose distance from
any edgee is greater thanre, that is,ξ ∈ ∪R∈∆MR. �

Lemma 4. For everyξ ∈ M , there is one and only oneψξ ∈ GSn,r
u,v(∆)

γη ψξ = δξ ,η , η ∈ M , (19)

whereδξ ,η is the Kronecker delta and, for anyη ∈ Dn,∆, γη : GSn,r
u,v(∆)→ IR is the functional defined by

γη p= cη , with cη B-coefficient of p associated toη , p∈ GSn,r
u,v(∆). (20)

Proof. For anyξ ∈ M , ψξ can be constructed as follows: we setcη = δξ ,η , and then we determine the remaining
coefficients by using the same procedure as in the proof of Theorem 2. Note that this way to determine coefficients
does not lead to inconsistencies, since we assumedn1 ≥ 2r1+3 andn2 ≥ 2r2+3, which implies that the disks of
sizer = (r1, r2) centered at the vertices do not intersect. �
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Theorem 3. The subset of domain pointsM ⊂ Dn,∆ is a minimal determining set for GSn,r
u,v(∆), the set{ψξ}ξ∈M

is a basis for GSn,ru,v(∆), and

dim(GSn,r
u,v(∆)) = (r1+1)(r2+1)JNT(∆)+(r2+1)(n1−2r1−1)E2

hor(∆)

+(r2+1)(n1−2r1−2)E1
hor(∆)+(r2+1)(n1−2r1−3)E0

hor(∆)
+(r1+1)(n2−2r2−1)E2

ver(∆)+(r1+1)(n2−2r2−2)E1
ver(∆)

+(r1+1)(n2−2r2−3)E0
ver(∆)+(n1−2r1−1)(n2−2r2−1)N(∆) (21)

where

JNT(∆) := number of vertices of∆ which are not T-junctions,
Ei

hor(∆) := number of horizontal composite edges of∆ with de = i,
Ei

ver(∆) := number of vertical composite edges of∆ with de = i,
N(∆) := number of cells.

Proof. The set of functions{ψξ}ξ∈M is a basis forGSn,r
u,v(∆). In fact, (19) implies that they are linearly independent

and therefore dim(GSn,r
u,v(∆)) ≥ |M |. On the other hand, sinceM is a determining set we have dim(GSn,r

u,v(∆)) ≤
|M |, and therefore we must conclude that dim(GSn,r

u,v(∆)) = |M | and that{ψξ}ξ∈M is a basis. Then,M is a
minimal determining set and the formula for dim(GSn,r

u,v(∆)) is obtained from (18). �

Remark 2. From the dimension formula of Theorem 3, it is clear that the dimension of the spline space depends
on the dimensionsde of the spaces∩R∈∆e〈u

R
e ,v

R
e〉, e∈C. In particular, if for any composite edgee, de≥ 1, then we

can relax the conditions on regularity and order, that is, itis sufficient to assume thatn1 ≥ 2r1+2, n2 ≥ 2r2+2,
instead ofn1 ≥ 2r1+3, n2 ≥ 2r2+3. Similarly, if for any composite edgede = 2 holds, we can further relax the
above conditions and replace them withn1 ≥ 2r1+1, n2 ≥ 2r2+1, which are exactly the same conditions required
in the polynomial case.

Lemma 5. The elements of the basisψξ , ξ ∈ M , form a partition of the unity.

Proof. For the splinep = ∑ξ∈M ψξ we haveγη p = 1 for anyη ∈ M . Note that, since the local Bernstein-like
basis{BR

i,n1
(s)BR

j,n2
(t)}i=0,...,n1, j=0,...,n2 satisfy the partition of unity, setting all the B-coefficientscR

ξ to 1,ξ ∈Dn,R,

R∈ ∆, gives the constant function 1, which belongs toGSn,r
u,v(∆). In other words,γη1= 1 for anyη ∈ Dn,∆. On

the other hand, we know that the B-coefficient associated to the points of the minimal determining set uniquely
determine an element ofGSn,r

u,v(∆). Then, we must havep= ∑ξ∈M ψξ = 1. �

3.4. Examples

Let n = (5,5), r = (1,1), an let us consider the T-mesh∆ in Figure 7 and the spline spaces over it

S1 := GSn,r
u,v(∆) = {p(s, t) ∈Cr (Ω) : p|R ∈ P

n
uR,vR(R) ∀R∈ ∆}, (22)

uRi = (cosh(3s),cosh(3t)), vRi = (sinh(3s),sinh(3t)), i = 1,2, ...,7,

S2 := GSn,r
u,v(∆) = {p(s, t) ∈Cr (Ω) : p|R ∈ P

n
uR,vR(R) ∀R∈ ∆}, (23)

uR1 = (cos(1.9s),cos(1.9t)), vR1 = (sin(1.9s),sin(1.9t)),

uR4 = (cosh(3s),cosh(3t)), vR4 = (sinh(3s),sinh(3t)),

uRi = (s4, t4), vRi = (s5, t5), i = 2,3,5,6,7,

S3 := GSn,r
u,v(∆) = {p(s, t) ∈Cr (Ω) : p|R ∈ P

n
uR,vR(R) ∀R∈ ∆}, (24)

uRi = (s4, t4), vRi = (s5, t5), i = 1,2, ...,7.
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R1 R2

R3

R4 R5

R6 R7
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• • ◦

• ◦ • •

• • •

0
π

2

3π

4
π

π

2

3π

4

π

Figure 7:T-mesh, where black circles represent vertices belonging to JNT and empty circles are T-junctions.

In other words,S1 is a generalized spline space locally spanned by hyperbolicand polynomial functions,S2 is
locally spanned by trigonometric and polynomial, hyperbolic and polynomial or only polynomial functions, while
S3 is a polynomial spline space over the T-mesh∆.

Note that in the three casesE1
hor(∆) = E1

ver(∆) = 0, but forS1 andS3 we haveE2
hor(∆)+E2

ver(∆) = 18, E0
hor(∆)+

E0
ver(∆) = 0, while for S2 we haveE2

hor(∆) +E2
ver(∆) = 14, E0

hor(∆) +E0
ver(∆) = 4. In fact, for S3 there are 4

composite edges withde = 0, that is

segment with endpoints(0,3/4π) end(3/4π,3/4π),
segment with endpoints(0,π/2) end(π/2,π/2),

segment with endpoints(π/2,π/2) end(π/2,3/4π),
segment with endpoints(π/2,0) end(π/2,π/2).

Then, by Theorem 3 we get dim(S1) = dim(S3) = 148 and dim(S2) = 132. In all the cases (included the polyono-
mial one, see [1]), the basis functionsψξ , ξ ∈M , can be determined by setting to 1 the B-coefficient corresponding
to one point of the respective minimal determining setM , to 0 the B-coefficients of the other points ofM , and
then computing the remaining coefficients by using the scheme described in the proof of Theorem 2.

It is worth stressing that, in spite of the different dimension, by (15) and (18) the minimal determining set for
S2 is a subset of the ones forS1 andS3 (which coincide). Therefore, for the three cases there are several basis
functions which are associated to the same domain points andcan be compared (see Figures 9 and 8). From the
actual computation of their values, it is evident that the elements of the basis are not necessarily non-negative (see,
for example, the basis functionψ

ξ R1
14

shown in Figure 8). Moreover, we observe that some elements of the global

basis coincide with elements of a local basis. For example, in Figure 9ψ
ξ R4

22
is both an element of the local basis

in the cellR4 and an element of the global basis.

Finally, let us show another example: we consider the T-mesh∆ in Figure 10 and the corresponding spline
spaceGSn,r

u,v(∆), with n = (3,3), r = (1,1),uR= (cos(s),cos(t)), vR= (sin(s),sin(t)), for anyR∈ ∆. This example
allows us to show that the basis is not guaranteed to have a local support. In fact, we can observe that, for example,
the basis functionψ

ξ R2
00

takes non-zero values in all the cells of the T-mesh (see Figure 10).

3.5. T-mesh refinement and merging

Two key features of T-meshes are the possibility of local refinement and the ability to easily merge two T-
meshes (and the corresponding surfaces). We will then discuss how the space dimension changes when we refine
a T-mesh and when we merge two T-meshes, using an approach analogous to [7], where such computations were
done for the corresponding polynomial spaces.

3.5.1. Edge insertion
While for a tensor-product mesh inserting a new knot (in either direction) means inserting an entire row or

columns of knots in the mesh, in T-meshes we can insert a single edge subdividing only one cell into two smaller
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(a) (b)

(c)

Figure 8: The global basis element associated to the domain pointξ R1
14 for (a) the space(22), (b) the space(23)

and (c) the polynomial space(24). Note that for all the considered cases it is not a positive function.

cells.
In the following, we assume that (1) and (2) always hold, bothbefore and after a knot insertion. Moreover, at
each refinement we will add a new edge splitting an existing cell into two parts, but we will not introduce any new
non-polynomial functions: in the two new cells the considered non-polynomial functions are the same as in the
original cell, so that, globally, the new spline space contains the previous one (the spaces are nested).

We consider three possible cases of edge insertion.

• Case (a) (see Figure 11(a)). The edge insertion adds two new T-junctions and one new composite edge
(the inserted edge itself). Since in the dimension formula (21) only the number of vertices which are not
T-junctions is used (JNT(∆)), the new vertices do not produce any change in the dimension, while the new
composite edge does. Note that for such composite edgede = 2, since we assumed that the refinement
generates nested spaces. Then, if we denote by∆̃ the T-mesh obtained by inserting the edge in∆, we have
that, if the inserted edge is horizontal,

dim(GSn,r
u,v(∆̃)) = dim(GSn,r

u,v(∆))
+(n2−2r2−1)(n1−2r1−1)+(r2+1)(n1−2r1−1),

while, if the edge inserted is vertical,

dim(GSn,r
u,v(∆̃)) = dim(GSn,r

u,v(∆))
+(n1−2r1−1)(n2−2r2−1)+(r1+1)(n2−2r2−1).
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(a) (b)

(c)

Figure 9: In (a) the elementψ
ξ R4

22
of the basis of the space(22) coincides with an element of the local Bernstein-

Bézier basis. The same behaviour holds for the correspondingelement of the basis of (b) the space(23) (and
therefore the basis function is exactly the same, since the two spaces inR4 are spanned by the same functions) and
of (c) the polynomial spline space(24).

• Case (b) (see Figure 11(b)). The edge insertion adds one new T-junction, one new vertex which is not a T-
junction and one new composite edge (the inserted edge itself). Moreover, note that the inserted edge splits
into two new edges an edge in the opposite direction: the values ofde for these two parts after splitting could
be different from the value ofde for the original edge (they could not be lower, but they couldbe higher;
see the example of Figure 12(a)). Let∆(Σd) denote the difference between the sum of the values ofde after
splitting, and the value ofde before. Then, if the inserted edge is horizontal, we have

dim(GSn,r
u,v(∆̃)) = dim(GSn,r

u,v(∆))
+(n2−2r2−1)(n1−2r1−1)+(r2+1)(n1−2r1−1)

+(r1+1)(n2−2r2−3+∆(Σd))+(r1+1)(r2+1)

while, if the edge inserted is vertical,

dim(GSn,r
u,v(∆̃)) = dim(GSn,r

u,v(∆))
+(n1−2r1−1)(n2−2r2−1)+(r1+1)(n2−2r2−1)

+(r2+1)(n1−2r1−3+∆(Σd))+(r1+1)(r2+1)

• Case (c) (see Figure 11(c)). The edge insertion adds two new vertices which are not T-junctions. Moreover,
in this case two edges in the opposite direction are split into two edges, each of them possibly with a different
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Figure 10:Sign ofψ
ξ R2

00
: at evaluation points marked with a squareψ

ξ R2
00

takes positive values, at evaluation points

marked with a circle it takes negative values, and at evaluation points marked with a triangle it is zero.

value ofde (see Figure 12(b)). If the inserted edge is horizontal we have

dim(GSn,r
u,v(∆̃)) = dim(GSn,r

u,v(∆))
+(n2−2r2−1)(n1−2r1−1)+(r2+1)(n1−2r1−1)

+(r1+1)(2n2−4r2−6+∆(Σd))+2(r1+1)(r2+1)

while, if the edge inserted is vertical

dim(GSn,r
u,v(∆̃)) = dim(GSn,r

u,v(∆))
+(n1−2r1−1)(n2−2r2−1)+(r1+1)(n2−2r2−1)

+(r2+1)(2n1−4r1−6+∆(Σd))+2(r1+1)(r2+1)

where, in this case,∆(Σd) denotes the sum of the differences between the values ofde for the two split edges
and the values ofde of the new edges after the split.

• •

(a)

• •

(b)

• •

(c)

Figure 11:Edge insertion where (a)JNT remains the same, (b)JNT increases by 1, (c)JNT increases by 2.

3.5.2. Merging two T-meshes
We consider two T-meshes∆1 and∆2 having a common boundary segment. The new T-mesh∆1∪∆2 is ob-

tained by the union of the sets of cells of∆1 and∆2. In the following, we assume that (1) and (2) always hold, both
before and after merging.
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P
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P
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(b)

Figure 12: Examples where a composite edge for whichde = 0 is split, by the edge insertion (represented by
the thick black segment), into two composite edges for whichde = 1 (in (a) JNT increases by 2, while in (b)JNT

increases by 1).

First, we observe that
N(∆1∪∆2) = N(∆1)+N(∆2).

Let us denote byWb
1 the number of vertices of∆1 along the common boundary which are not corner vertices, and

by Wb
2 the same quantity for∆2 (such vertices are not T-junctions, respectively in∆1 and∆2, since they are on the

boundary). We denote instead byWI the number of the common boundary vertices which are not corner vertices.
So there areWb

1 +Wb
2 +2−WI vertices which, after the merging, become T-junctions and then

JNT(∆1∪∆2) = JNT(∆1)+JNT(∆2)− (Wb
1 +Wb

2 +2−WI ).

There areWb
1 + 1 edges of∆1 on the boundary segment in common with∆2, andWb

2 + 1 edges of∆2 on the
boundary segment in common with∆1. These edges are composite edges for whichde = 2, since the vertices on
the boundary of a T-mesh are not considered T-junctions. After having merged the two T-meshes, on the common
boundary there areWI vertices which are not T-junctions, which means that there are WI + 1 composite edges,
which can have different values ofde: let us say thatEi

I of them are composite edges withde = i, for i = 0,1,2,
and soE0

I +E1
I +E2

I =WI +1. If the common boundary segment is horizontal, then we have

E2
hor(∆1∪∆2) = E2

hor(∆1)+E2
hor(∆2)− (Wb

1 +Wb
2 +2−E2

I ),

Ei
hor(∆1∪∆2) = Ei

hor(∆1)+Ei
hor(∆2)+Ei

I , i = 0,1,

and, as a consequence, the new dimension of is :

dim(GSn,r
u,v(∆1∪∆2)) = dim(GSn,r

u,v(∆1))+dim(GSn,r
u,v(∆2))

− (r1+1)(r2+1)(Wb
1 +Wb

2 +2−WI )

− (r2+1)(n1−2r1−1)(Wb
1 +Wb

2 +2−E2
I )

+ (r2+1)(n1−2r1−2)E1
I +(r2+1)(n1−2r1−3)E0

I .

If the common boundary segment is vertical, we have

E2
ver(∆1∪∆2) = E2

ver(∆1)+E2
ver(∆2)− (Wb

1 +Wb
2 +2−E2

I ),

Ei
ver(∆1∪∆2) = Ei

ver(∆1)+Ei
ver(∆2)+Ei

I , i = 0,1,
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and then

dim(GSn,r
u,v(∆1∪∆2)) = dim(GSn,r

u,v(∆1))+dim(GSn,r
u,v(∆2))

− (r1+1)(r2+1)(Wb
1 +Wb

2 +2−WI )

− (r1+1)(n2−2r2−1)(Wb
1 +Wb

2 +2−E2
I )

+ (r1+1)(n2−2r2−2)E1
I +(r1+1)(n2−2r2−3)E0

I

• • • •

• • ◦

• ◦ • ◦

• • •

• •

◦ •

•

• • • •

◦

◦ ◦

Figure 13: Example of two merged T-meshes (common boundary represented by the thick black segment)

4. Approximation power

This section is devoted to the study of the approximation properties of the generalized spline spaces over T-
meshes. We will prove these properties for the case where thecouples of nonpolynomial functionsuR andvR are
the same in each cellR, that is,uR = (uR

1 ,u
R
2) = (u1,u2) = u andvR = (vR

1 ,v
R
2) = (v1,v2) = v for anyR∈ ∆. More-

over, we will assume that(u1,u2) and(v1,v2) give a spacePn
u,v([minR∈∆ aR,maxR∈∆ bR]× [minR∈∆ cR,maxR∈∆ dR])

invariant under translations. More precisely, we assume that, for any(s0, t0) ∈ IR2,

ψ(s, t) ∈ P
n
u,v([min

R∈∆
aR,max

R∈∆
bR]× [min

R∈∆
cR,max

R∈∆
dR])

=⇒ ψ(s−s0, t − t0) ∈ P
n
u,v([min

R∈∆
aR,max

R∈∆
bR]× [min

R∈∆
cR,max

R∈∆
dR]), (25)

or, equivalently,

ψ(s) ∈ P
n1
u1,v1

([min
R∈∆

aR,max
R∈∆

bR]) =⇒ ψ(s−s0) ∈ P
n1
u1,v1

([min
R∈∆

aR,max
R∈∆

bR]),

ψ(t) ∈ P
n2
u2,v2

([min
R∈∆

cR,max
R∈∆

dR]) =⇒ ψ(t − t0) ∈ P
n2
u2,v2

([min
R∈∆

cR,max
R∈∆

dR]).

In order to better understand what this assumption actuallymeans, we observe that the results in [22] (see Section
3) imply that a space of typePn

u,v([a,b]), n≥ 2, invariant under translations must satisfy

ψ(s) ∈ P
n
u,v([a,b]) =⇒ ψ ′(s) ∈ P

n−1
u,v ([a,b]). (26)

By using elementary arguments of the theory of ordinary differential equations, we obtain that, in order to satisfy
(26) (and (2)-(3) as well), bothu1,v1 andu2,v2 must be chosen in one of the following ways:

• u(s) = eλs, v(s) = eµs, with λ ,µ ∈ IR, λ 6= µ ;

• u(s) = eλs, v(s) = seλs;

• u(s) = eαscos(βs), v(s) = eαssin(βs), with α,β ∈ IR andβ (b−a)< π.

It can be easily verified that with any of the above choices thecorresponding space is invariant under transla-
tions. As a consequence, the assumption (25) is equivalent to choosing(u1,u2) and(v1,v2) as mentioned above.
Moreover, note that in this case the condition (14) is satisfied for any T-mesh.

18



Remark 3. It is easy to verify that all the possible choices ofu andv reported above satisfy not only (26) but also

ψ(s) ∈ P
n
u,v([a,b]) =⇒

∫

ψ(s)ds∈ P
n+1
u,v ([a,b]). (27)

This leads to generalized spline spacesGSn,r
u,v(∆) satisfying

ψ(s, t) ∈ GSn,r
u,v(∆) =⇒ Dsψ(s, t) ∈ GS̃ns,r̃s

u,v (∆)

ψ(s, t) ∈ GSn,r
u,v(∆) =⇒

∫

ψ(s, t)ds∈ GŜns,r̂s
u,v (∆)

ψ(s, t) ∈ GSn,r
u,v(∆) =⇒ Dtψ(s, t) ∈ GS̃nt ,r̃ t

u,v (∆)

ψ(s, t) ∈ GSn,r
u,v(∆) =⇒

∫

ψ(s, t)dt ∈ GŜnt ,r̂ t
u,v (∆),

whereñs = (n1 − 1,n2), n̂s = (n1 + 1,n2), ñt = (n1,n2 − 1), n̂t = (n1,n2 + 1), and r̃s = (r1 − 1, r2), r̂s = (r1 +
1, r2), r̃ t = (r1, r2 − 1), r̂ t = (r1, r2 + 1). In other words, we get spaces whose elements have derivatives and
integrals belonging to spaces of the same type. Such nice behaviour with respect to the fundamental derivation
and integration operators is of a certain interest in some applications, in particular in isogeometric analysis (see,
e.g., [13], [14], [18]). Moreover, we observe that noteworthy cases of generalized spline spaces allowing to exactly
reproduce certain shapes (conic sections, helices, cycloids, catenaries; see also [18]), such asu(s) = cos(βs),
v(s) = sin(βs) andu(s) = cosh(λs), v(s) = sinh(λs), satisfy the invariance under translations.

We will obtain the approximation order by using similar arguments to the ones used in [1], and introducing
a new suitable quasi-interpolant operator. In fact, the local approximants used in [1], that is, the averaged Taylor
expansions, cannot be simply generalized to our non-polynomial case. Moreover, also the results on the approxi-
mation power obtained in [6] for the univariate case, by using Hermite interpolation in spaces of typePn

u,v([a,b]),
cannot be directly extended to the bivariate case, due to thedifficulty to find a suitable differential operator and
the corresponding Green’s function needed to construct a non-polynomial Taylor expansion. For these reasons, we
adopt an alternative approach: we construct a bivariate Hermite interpolant belonging to the spline space, whose
existence is rigorously proved by using the assumption (2) and (3). This also allows us to obtain an approximation
order, which is essentially the same as in polynomial case.

Given a functionf ∈Cn+1(Ω) and(s0, t0) ∈ (a,b)× (c,d), we define the interpolantQL( f ;s0, t0)(s, t) as the func-
tion satisfying the two following conditions

1. it belongs toPn
u,v([a,b]× [c,d]),

2. its polynomial expansion of coordinate bi-degree(n1,n2) coincides with the polynomial expansion off of
the same bi-degree, that is,QL( f ;s0, t0)(s, t) is a Hermite interpolant of coordinate bi-degree(n1,n2).

SinceQL( f ;s0, t0) is a Hermite interpolant, the Taylor expansion of the differencef −QL( f ;s0, t0) does not contain
any term of degree smaller than or equal tok, wherek := min{n1,n2}, and then‖ f −QL( f ;s0, t0)‖ = O(hk+1),
whereh := diam([a,b]× [c,d]).

In order to show thatQL( f ;s0, t0)(s, t) exists and is unique for anyf ∈ Cn+1(Ω) and (s0, t0) ∈ (a,b)× (c,d),
let us write the explicit expressions of a generic element belonging toPn

u,v([a,b]× [c,d])

n1−2

∑
i=0

n2−2

∑
j=0

ai j
(s−s0)

i

i!
(t − t0) j

j!
+

n1−2

∑
i=0

bi
(s−s0)

i

i!
u2(t)+

n1−2

∑
i=0

ci
(s−s0)

i

i!
v2(t)

+
n2−2

∑
j=0

d ju1(s)
(t − t0) j

j!
+

n2−2

∑
j=0

ejv1(s)
(t − t0) j

j!

+ν1u1(s)u2(t)+ν2u1(s)v2(t)+ν3v1(s)u2(t)+ν4v1(s)v2(t)
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and of its Taylor expansion of coordinate bi-degree(n1,n2)

∑n1−2
i=0 ∑n2−2

j=0 ai j
(s−s0)

i(t−t0)
j

i! j! +∑n1−2
i=0 ∑n2

j=0
biD

j
t u2(t0)
i! j! (s−s0)

i(t − t0) j

+∑n1−2
i=0 ∑n2

j=0
ciD

j
t v2(t0)
i! j! (s−s0)

i(t − t0) j +∑n1
i=0 ∑n2−2

j=0
d j Di

su1(s0)
i! j! (s−s0)

i(t − t0) j

+∑n1
i=0 ∑n2−2

j=0
ej Di

sv1(s0)
i! j! (s−s0)

i(t − t0) j

+ν1 ∑n1
i=0 ∑n2

j=0
Di

su1(s0)D
j
t u2(t0)

i! j! (s−s0)
i(t − t0) j

+ν2 ∑n1
i=0 ∑n2

j=0
Di

su1(s0)D
j
t v2(t0)

i! j! (s−s0)
i(t − t0) j

+ν3 ∑n1
i=0 ∑n2

j=0
Di

sv1(s0)D
j
t u2(t0)

i! j! (s−s0)
i(t − t0) j

+ν4 ∑n1
i=0 ∑n2

j=0
Di

sv1(s0)D
j
t v2(t0)

i! j! (s−s0)
i(t − t0) j .

Then, the condition requiring thatQL( f ;s0, t0) is a Hermite interpolant of coordinate bi-degree(n1,n2) corresponds
to the following equations:

ai j +biD
j
t u2(t0)+ciD

j
t v2(t0)+d jD

i
su1(s0)+ejD

i
sv1(s0)+ν1Di

su1(s0)D
j
t u2(t0)

+ν2Di
su1(s0)D

j
t v2(t0)+ν3Di

sv1(s0)D
j
t u2(t0)+ν4Di

sv1(s0)D
j
t v2(t0) = Di

sD
j
t f (s0, t0),

for 0≤ i ≤ n1−2, 0≤ j ≤ n2−2,

biD
j
t u2(t0)+ciD

j
t v2(t0)+ν1Di

su1(s0)D
j
t u2(t0)

+ν2Di
su1(s0)D

j
t v2(t0)+ν3Di

sv1(s0)D
j
t u2(t0)+ν4Di

sv1(s0)D
j
t v2(t0) = Di

sD
j
t f (s0, t0),

for 0≤ i ≤ n1−2, and j = n2−1,n2,

d jD
i
su1(s0)+ejD

i
sv1(s0)+ν1Di

su1(s0)D
j
t u2(t0)

+ν2Di
su1(s0)D

j
t v2(t0)+ν3Di

sv1(s0)D
j
t u2(t0)+ν4Di

sv1(s0)D
j
t v2(t0) = Di

sD
j
t f (s0, t0),

for i = n1−1,n1, 0≤ j ≤ n2−2, and

ν1Di
su1(s0)D

j
t u2(t0)+ν2Di

su1(s0)D
j
t v2(t0)

+ν3Di
sv1(s0)D

j
t u2(t0)+ν4Di

sv1(s0)D
j
t v2(t0) = Di

sD
j
t f (s0, t0),

for i = n1−1,n1, j = n2−1,n2. By using a suitable reordering of the unknownsai j ,bi ,ci ,d j ,ej ,νk, we obtain a
linear system whose matrix is

A=









I ⋆ ⋆ ⋆
0 A1 0 ⋆
0 0 A2 ⋆
0 0 0 A3









whereI is the identity matrix of size(n1−1)(n2−1)× (n1−1)(n2−1), ⋆ stands for blocks of suitable size, 0
stand for null matrices of suitable size, and

A1 =

























Dn2−1
t u2(t0) 0 . . . 0 Dn2−1

t v2(t0) 0 . . . 0
Dn2

t u2(t0) 0 . . . 0 Dn2
t v2(t0) 0 . . . 0

0 Dn2−1
t u2(t0) . . . 0 0 Dn2−1

t v2(t0) . . . 0
0 Dn2

t u2(t0) . . . 0 0 Dn2
t v2(t0) . . . 0

0 0
... 0 0 0

... 0
0 0 . . . Dn2−1

t u2(t0) 0 0 . . . Dn2−1
t v2(t0)

0 0 . . . Dn2
t u2(t0) 0 0 . . . Dn2

t v2(t0)

























20



A2 =

























Dn1−1
s u1(s0) 0 . . . 0 Dn1−1

s v1(s0) 0 . . . 0
Dn1

s u1(s0) 0 . . . 0 Dn1
s v1(s0) 0 . . . 0

0 Dn1−1
s u1(s0) . . . 0 0 Dn1−1

s v1(s0) . . . 0
0 Dn1

s u1(s0) . . . 0 0 Dn1
s v1(s0) . . . 0

0 0
... 0 0 0

... 0
0 0 . . . Dn1−1

s u1(s0) 0 0 . . . Dn1−1
s v1(s0)

0 0 . . . Dn1
s u1(s0) 0 0 . . . Dn1

s v1(s0)

























A3 =









Dn1−1
s u1(s0)D

n2−1
t u2(t0) Dn1−1

s u1(s0)D
n2−1
t v2(t0) Dn1−1

s v1(s0)D
n2−1
t u2(t0) Dn1−1

s v1(s0)D
n2−1
t v2(t0)

Dn1
s u1(s0)D

n2−1
t u2(t0) Dn1

s u1(s0)D
n2−1
t v2(t0) Dn1

s v1(s0)D
n2−1
t u2(t0) Dn1

s v1(s0)D
n2−1
t v2(t0)

Dn1−1
s u1(s0)D

n2
t u2(t0) Dn1−1

s u1(s0)D
n2
t v2(t0) Dn1−1

s v1(s0)D
n2
t u2(t0) Dn1−1

s v1(s0)D
n2
t v2(t0)

Dn1
s u1(s0)D

n2
t u2(t0) Dn1

s u1(s0)D
n2
t v2(t0) Dn1

s v1(s0)D
n2
t u2(t0) Dn1

s v1(s0)D
n2
t v2(t0)









The matrixA1 has size 2(n1−1)×2(n1−1), A2 has size 2(n2−1)×2(n2−1), A3 has size 4×4. The existence
and uniqueness of the interpolation operatorQL is then equivalent to the non-singularity of this matrix. SinceA
is an upper triangular block matrix, its non-singularity can be proved by studyingA1, A2, A3 (I is obviously non-
singular). The matricesA1 andA2 are not singular, due to their structure and to the fact that (2) and (3) hold. In

fact, we have

|det(A1)| = |Dn2−1
t u2(t0)D

n2
t v2(t0)−Dn2

t u2(t0)D
n2−1
t v2(t0)|

n1−1

|det(A2)| = |Dn1−1
s u1(s0)D

n1
s v1(s0)−Dn1

s u1(s0)D
n1−1
s v1(s0)|

n2−1.

Moreover, it can be easily verified that determinant ofA3 is −[det(D1)]
2[det(D2)]

2, where

D1 :=

[

Dn1−1
s u1(s0) Dn1−1

s v1(s0)
Dn1

s u1(s0) Dn1
s v1(s0)

]

and

D2 :=

[

Dn2−1
t u2(t0) Dn2−1

t v2(t0)
Dn2

t u2(t0) Dn2
t v2(t0)

]

.

If we assume that (3) holds, it can be shown (see [6]) that det(D1) 6= 0 and det(D2) 6= 0, and so det(A3) 6= 0.
In general,|det(A)| depends on(s0, t0), which in the following will be chosen as a point in the interior of the cells
of the T-mesh, and then partly depending on the T-mesh itself. In order to prove the approximation properties, we
will assume that there is a lower bound for|det(A)| which does not depend on the refinement of the T-mesh. Note
that this true in the cases where the nonpolynomial functions areeλs andeµs, eλs andseλs, andeαscos(βs) and
eαssin(βs).

Given a functionf ∈ Cn+1(Ω), we now define the following quasi-interpolant belonging tothe generalized
spline spaceGSn,r

u,v(∆)
Q f := ∑

ξ∈M

γξ (QL( f ;sξ , tξ ))ψξ (28)

where

• M is the minimal determining set constructed in Section 3.3;

• ψξ are the elements of the basis of the spline space on the T-mesh∆ associated toM ;

• γξ are the linear functionals defined in (20) that associate to aspline p ∈ GSn,r
u,v(∆) the correspondent B-

coefficients, needed to expressp as a linear combination of the basisψξ :

p= ∑
ζ∈M

γζ pψζ , ∀p∈ GSn,r
u,v(∆)
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• (sξ , tξ ) is the center of the biggest circle included in the rectangleRξ , which is a cell containingξ . Note that
such a point lies in the interior ofRξ , allowing the construction ofQL( f ;sξ , tξ ).

Note thatQ is a linear operator, being the functionalsγξ linear, and it is a projection ontoGSn,r
u,v(∆), that is,Qp= p

for everyp∈ GSn,r
u,v(∆). In order to study the approximation properties ofQ, we need to prove the generalization

to our non-polynomial setting of Lemmas 3.1, Lemma 3.2 and Theorem 6.1 in [1].

Lemma 6. Let p∈ GSn,r
u,v(∆). Let R∈ ∆, and let p|R = ∑η∈Dn,R

cR
ηBR

η(s, t). We denote by c the vector containing

all the coefficients cRη , η ∈ Dn,R. Then, there exists a constant K1, depending only on n1 and n2, such that

||c||∞
K1

≤ ||p||R ≤ ||c||∞,

where||c||∞ stands for themax-norm of c and|| · ||R for thesup-norm of a function restricted to R.

Proof. This is a straightforward generalization of the polynomialcase: the upper bound follows from the fact
that the basis functions are nonnegative and sum to one, while the lower bound can be proved with the following
argument: the matrixM := [BR

η(ζ )]ζ ,η∈Dn,R
is non-singular by well-known results on tensor-product interpolation.

ThenMc= r, wherer is the vector{p(ζ )}ζ∈Dn,R
. As a consequence, we have

||c||∞ ≤ ||M−1r||∞ ≤ ||M−1||∞||r||∞ ≤ ||M−1||∞||p||R = K1||p||R.

The result is then achieved by settingK1 = ||M−1||∞. �

Lemma 7. Given a rectangle R, let AR be its area. Then there exists a constant K2, depending only on n1 and n2,
such that

A1/q
R

K2
||c||q ≤ ||p||q,R ≤ A1/q

R ||c||q,

where||c||q stands for the q-norm of the vector c and|| · ||q,R for the q-norm of a function restricted to R.

Proof. It is sufficient to use equivalence of norms on finite dimensional spaces, considering that both a classical
polynomial space and the more general space in which we work have finite dimension. Then, the result is obtained,
for any 1≤ q< ∞, by generalizing Theorem 2.7 in [23]. �

To prove the approximation property of the quasi-interpolant, we will need the following result about the
minimal determining set and the B-coefficients.

Definition 6. Let e be a composite edge of∆, and let e1, ...,em be a maximal sequence of composite edges such
that for each i= 1, ...,m, one endpoint of ei lies in the interior of ei+1, where we assume em+1 = e. We call e1, ...,em

a chain ending at e. We call m the length of the chain.

Theorem 4. Let (u1,u2) and (v1,v2) be such thatPn
u,v([minR∈∆ aR,maxR∈∆ bR]× [minR∈∆ cR,maxR∈∆ dR]) is in-

variant under translations in the sense of(25). For every composite edge e consisting of m edge segments e1, . . . ,em

with m≥ 1, let αe := max{|e|/|e1|, |e|/|em|}, and letβe be the length of the longest chain ending at e. For each
rectangle R in∆, let κR be the ratio of the lengths of its longest and of its shortest edges. Recalling that C is
the set of all composite edges of∆, we setα∆ := maxe∈C αe,β∆ := maxe∈C βe,κ∆ := maxR∈∆ κR. Moreover, let
L := max{b∆ −a∆,d∆ −c∆}, where a∆ := minR∈∆ aR, b∆ := maxR∈∆ bR, c∆ := minR∈∆ cR, d∆ := maxR∈∆ dR. Then,
for any p∈ GSn,r

u,v(∆), its associated B-coefficients satisfy

|cη | ≤ K3 max
ξ∈M

|cξ |, η ∈ Dn,∆

where K3 is a constant depending only onn,α∆,β∆,κ∆,L.

Proof. In order to prove the bound, it is enough to show that it holds for anyη ∈ D R̃
r (w), with w∈ JNT andR̃∈ ∆

havingw as one of its vertices, and for anyη such thatd(η ,e) ≤ re , with e∈C, since the remaining part of the
proof coincides with the one of Theorem 6.1 in [1].
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For anyR̃ having w ∈ JNT as one of its vertices there existsR sharingw as one of its vertices and such that
DR

r (w)⊂ M (see Figure 4). Since the regularity isr = (r1, r2), we have

h

∑
i=0

k

∑
j=0

cR̃
i j D

h
sBR̃

i,n1
(aR̃)D

k
t BR̃

j,n2
(cR̃) =

n1

∑
i=n1−h

n2

∑
j=n2−k

cR
i j D

h
sBR

i,n1
(bR)D

k
t BR

j,n2
(dR), (29)

for h = 0, ..., r1, k = 0, ..., r2. Starting from (29), we can obtain a similar linear system byreplacing the partial
derivatives with the directional derivatives multiplied for suitable powers of edges’ lengths. In other words, we
obtain a system of the formcR̃

r = (MR̃)−1ΛMRcR
r , wherecR

r andcR̃
r are the vectors of B-coefficients associated,

respectively, with the setsDR
r (w) andD R̃

r (w), MR andMR̃ are matrices of directional derivatives of Bernstein basis
functions, andΛ is a matrix dependent only on topological quantities of the elements of the mesh aroundw, whose
entries, in turn, can be bounded by a constant dependent onlyon κ∆ andn.
Note that the norms ofMR and(MR̃)−1 are bounded by constants depending only onL. In fact, letLh,R := bR−aR

andLv,R := dR−cR for any cellR∈ ∆, and let alsol∆ :=minR∈∆ min{Lh,R,Lv,R} andL∆ :=maxR∈∆ max{Lh,R,Lv,R}.
Note that if we consider another cell with the same sizesLh,R andLv,R, but with the bottom-left corner at(0,0),
the assumption of invariance under translations (25) implies that the local Bernstein-Bézier basis on such a cell is
obtained by translation from the one onR. Then, since[l∆,L∆] ⊂ (0,L], we have‖MR‖ ≤ sup

l∆≤Lh,R̄,Lv,R̄≤L∆

‖MR̄‖ ≤

sup
0<Lh,R̄,Lv,R̄≤L

‖MR̄‖, whereR̄ is a rectangle whose bottom-left corner is(0,0), and with widthLh,R̄ and heightLv,R̄.

Note that sup0<Lh,R̄,Lv,R̄≤L ‖MR̄‖ is bounded, since‖MR̄‖ is a continuous function of the variablesLh,R̄,Lv,R̄, and

the limits of ‖MR̄‖ for (Lh,R̄,Lv,R̄) → (0,0), for Lh,R̄ → 0 and forLv,R̄ → 0 are bounded (such cases correspond
to replacing in (13) suitable elements of the Bernstein-like basis with the corresponding ones of the polynomial
Bernstein basis, which leads to bounded norms, thanks to theinvariance for affine transformations of the polyno-
mial case). As a consequence, sup

0<Lh,R̄,Lv,R̄≤L
‖MR̄‖ is finite and dependent only onL. Similar remarks apply for the

matrix (MR̃)−1.
Analogous observations about the linear systems describing the smoothness conditions on the composite edges
(see Lemma 3) give similar inequalities where the norms can be bounded by constants depending only on the
global extrema of the mesh and by constants depending only onα∆,κ∆ andn. �

Remark 4. Let us define, for any cellR in ∆:

ΓR := {ξ ∈ M : supp(ψξ )∩R 6= /0},

ΩR := ∪ξ∈ΓR
supp(ψξ ),

Note that, ifη ∈ Dn,R, then
|cη | ≤ K3 max

ξ∈ΓR

|cξ | (30)

since it can be shown that the coefficients corresponding to the domain pointsξ ∈M \ΓR do not have influence on
the coefficients ofDn,R.

Let ξ ∈ M andF ∈Cn(Ω). By applying Lemma 7 withp= QL(F ;sξ , tξ ), we obtain thatcξ = γξ (QL(F;sξ , tξ ))
and

|γξ (QL(F ;sξ , tξ ))| ≤
K2

A1/q
Rξ

||QL(F;sξ , tξ )||q,Rξ .

If we denote byT(n1,n2)QL(F ;sξ , tξ ) the Taylor expansion ofQL(F ;sξ , tξ ) at (sξ , tξ ) of bi-degree(n1,n2), for
1≤ q< ∞, we get

|γξ (QL(F ;sξ , tξ ))| ≤
K2

A1/q
Rξ

||QL(F ;sξ , tξ )||q,Rξ ≤
K2

A1/q
Rξ

A1/q
Rξ

||QL(F ;sξ , tξ )||∞,Rξ

≤ K2 max
(s,t)∈Rξ

|T(n1,n2)QL(F,sξ , tξ )(s, t)|+O((diam(Rξ ))
k+1),
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wherek := min{n1,n2}. An analogous bound can be obtained forq= ∞ by using Lemma 6.
For η ∈ Dn,R, by using Theorem 4 and (30), we have

|cη | ≤ K3 max
ξ∈ΓR

|cξ | ≤ K2K3 max
ξ∈ΓR

max
(s,t)∈Rξ

|T(n1,n2)QL(F ;sξ , tξ )(s, t)|+O((max
ξ∈ΓR

diam(Rξ ))
k+1)

That allows us to obtain a bound for‖QF‖

||QF||q,R ≤ A1/q
R ||QF||∞,R = A1/q

R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑
η∈Dn,R

γηBR
η

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

≤ A1/q
R K2K3 max

ξ∈ΓR

max
(s,t)∈Rξ

|T(n1,n2)QL(F ;sξ , tξ )(s, t)|+O((max
ξ∈ΓR

diam(Rξ ))
k+1). (31)

Now, we can finally get an approximation result for the quasi-interpolantQ. Given a cellRζ ∈ ∆, we have

|| f −Q f ||q,Rζ ≤ || f −QL( f ;sζ , tζ )||q,Rζ + ||QL( f ;sζ , tζ )−Q f ||q,Rζ

= || f −QL( f ;sζ , tζ )||q,Rζ + ||Q( f −QL( f ;sζ , tζ ))||q,Rζ

≤ O((diam(Rζ ))
k+1)+A1/q

Rζ
K2K3 max

ξ∈ΓRζ

max
(s,t)∈Rξ

|T(n1,n2)QL( f −QL( f ;sζ , tζ );sξ , tξ )(s, t)|

+ O(( max
ξ∈ΓRζ

diam(Rξ ))
k+1)

where we used the fact thatQ is linear and it is a projection onGSn,r
u,v(∆), and we applied inequality (31) to

F = f −QL( f ;sζ , tζ ). Since|Di
sD

j
t

(

f −QL( f ;sζ , tζ )
)

| = O
(

‖(s, t)− (sζ , tζ )‖
max{0,k+1−i− j}

)

(for 0≤ i ≤ n1 and
0≤ j ≤ n2), and‖(sξ , tξ )− (sζ , tζ )‖ ≤ diam(ΩRζ ), we have

|T(n1,n2)QL( f −QL( f ;sζ , tζ );sξ , tξ )|

≤
n1

∑
i=0

n2

∑
j=0

|Di
sD

j
t

(

f −QL( f ;sζ , tζ )
)

|(sξ ,tξ )
(s−sξ )

i(t − tξ )
j = O((diam(ΩRζ ))

k+1).

Moreover, it can be proved that there exists a constantK4, depending only onα∆,β∆,κ∆, such that diam(ΩR) ≤
K4 diam(R) for anyR∈ ∆. Then, we get

|| f −Q f ||q,Rζ ≤ O((diam(Rζ ))
k+1)+O((diam(ΩRζ ))

k+1) = O((diam(Rζ ))
k+1)

Then, we can state the following result.

Theorem 5. Let themesh sizeof ∆ be H= max
R∈∆

diam(R). Then, for any f∈Cn+1(Ω) and for any cell Rζ ∈ ∆ the

quasi-interpolation operator Q defined in(28)satisfies

‖ f −Q f‖q,Rζ = O(Hk+1)

5. Conclusions

In this paper we provided a deep study of the generalized spline spaces over T-meshes, which extend the
concept of spline spaces over T-mesh to a noteworthy case of Chebyshevian spline spaces. We showed that, in
spite of the different functions locally considered, the overall behaviour of the new spline spaces is analogous to
the classical polynomial case. In fact, thanks to the properties of the chosen non-polynomial functions we can use
a local Bernstein-B́ezier representation and generalize the arguments used in [1] to the considered non-polynomial
case, to get a basis (associated to a minimal determining set) and a dimension formula. Moreover, we also studied
the change of the spline space dimension when the T-mesh is refined, as well as the dimension of a generalized
spline space over two merged T-meshes. We showed that the analogy with the polynomial case extends to the
approximation order, which we obtained by considering a quasi-interpolant based on newly defined local Hermite
interpolants.
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