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Abstract

The e�ciency of distribution-free integrated goodness-of-fit tests was studied by
Henze and Nikitin (2000, 2002) under location alternatives. We calculate local Ba-
hadur e�ciencies of these tests under more realistic generalized skew alternatives.
They turn out to be unexpectedly high.
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1. Introduction

Goodness-of-fit testing is one of the most important problems in Statistics. If the
hypothetical distribution is continuous, one can apply distribution-free tests based
on functionals of the empirical process. Most known tests of such type are the Kol-
mogorov and Cramér-von Mises tests and their variants, see, e.g., [16] and [15].

In search of new distribution-free tests with possibly better e�ciency proper-
ties, Henze and Nikitin [9], [10] proposed new test statistics based on the integrated
empirical process. They found their limiting distributions and calculated local Baha-
dur e�ciencies for location alternatives. These e�ciencies are comparable with the
e�ciencies of usual distribution-free tests, but there exist also some interesting dis-
tinctions in favor of these new tests. Gradually statistical inference using integrated
empirical processes becomes quite popular, see, e.g., [1], [6], [11] and [12].

⇤
Corresponding author

Email address: yanikit47@mail.ru (Ya.Yu.Nikitin)
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However, the location alternative is a simplest alternative which is not very re-
alistic in practice, particularly because it preserves the symmetry of the underlying
distribution. In many situations it is more reasonable to assume asymmetric alter-
native models. The most interesting and simple example of such alternative models
in the case of normal distribution was introduced in [2]. Let � and ' denote the
distribution function and the density of the standard normal law. Azzalini [2] pro-
posed the skew-normal distribution depending on the real parameter ✓ and having
the density

g(x, ✓) = 2'(x)�(✓x) , x 2 R , ✓ � 0.

It is evident that for any ✓ the function g(x, ✓) is a density and that for ✓ = 0
we get the standard normal density. Later the properties of Azzalini’s skew-normal
model and its generalizations were considered in numerous papers. Finally they were
described and collected in [3].

For any symmetric distribution function F with the density f and any symmetric
distribution function G with the density g we can consider the generalized skew
distribution with the density

h(x, ✓) = 2f(x)G(✓x) , x 2 R, ✓ � 0. (1)

Note that this model is more general than that considered in [7] and [8] in view
of the emergence of almost arbitrary distribution function G instead of initial distri-
bution function F . This model is described and advocated in [3].

It is quite interesting to calculate the e�ciencies of integrated distribution-free
tests mentioned above under the generalized skew alternative (1). We select the
Bahadur e�ciency as it is well-adapted for such calculations while other types of
e�ciencies such as Pitman, Cherno↵ or Hodges-Lehmann are not applicable or do not
discriminate between two-sided tests. See [15] for details concerning the calculation
of e�ciencies and their interrelations.

The calculation of local Bahadur e�ciency of common distribution-free tests un-
der skew alternatives was performed in [7] and [8]. In the present paper we calculate
the e�ciencies of the integrated tests under the more general alternative (1).

General expressions for local Bahadur e�ciencies in case of one-parameter families
of alternatives can be found in [15]. However we cannot apply them as the alternative
(1) requires some additional analysis. This analysis was partially done in [7], [8]. We
use corresponding results in sections 2 and 3 when calculating the e�ciencies for five
examples of symmetric distributions with di↵erent tail behaviors. These e�ciencies
are taken together in Table 1 of Section 4. They demonstrate that the e�ciencies of
integrated tests are appreciably higher than of usual tests. Section 5 is devoted to
the analysis of local optimality of tests under consideration.
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2. Tests Based on Integrated Empirical Process.

Let X1, ..., Xn

be a random sample from the density h(x, ✓) given by (1) and
depending on the known symmetric density f and symmetric distribution function
G, and a real parameter ✓ � 0. Let

H(x, ✓) = 2

Z
x

�1
f(u)G(✓u)du , x 2 R, ✓ � 0, (2)

be the distribution function corresponding to this density. We want to test the
goodness-of-fit hypothesis H0 : ✓ = 0 against the alternative H1 : ✓ > 0. Let F

n

be
the empirical distribution function based on the sample X1, ..., Xn

.
Some well-known goodness-of-fit tests are based on the Kolmogorov statistic

D
n

=
p
n sup

t

|F
n

(t)� F (t)|,

on the Chapman – Moses statistic

!1
n

=
p
n

Z

R
(F

n

(t)� F (t))dF (t),

on the Cramér – von Mises statistic

!2
n

= n

Z

R
(F

n

(t)� F (t))2 dF (t),

and on the Watson statistic

U2
n

= n

Z

R

✓
F
n

(t)� F (t)�
Z

R
(F

n

(s)� F (s))dF (s)

◆2

dF (t).

These statistics are distribution–free and can be considered as functionals of the
empirical processes

�
n

(x) =
p
n(F

n

(x)� F (x)) , x 2 R ,

or
↵
n

(u) =
p
n(G

n

(u)� u)) , 0  u  1 ,
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where the empirical distribution functionG
n

is based on the uniform sample F (X
j

), j =
1, ..., n. Clearly �

n

(x) = ↵
n

(F (x)), and we can write

D
n

= sup
x

|�
n

(x)| = sup
u

|↵
n

(u)|, !1
n

=

Z

R
(�

n

(x))dF (x) =

Z 1

0

↵
n

(u)du,

!2
n

=

Z

R
(�

n

(x))2dF (x) =

Z 1

0

↵2
n

(u)du ,

U2
n

=

Z

R

✓
�
n

(x)�
Z

R
�
n

(s)dF (s)

◆2

dF (x) =

Z 1

0

(↵
n

(u)�
Z 1

0

↵
n

(s)ds)2du .

Henze and Nikitin, see [9] and [10], proposed similar but more complicated statis-
tics based on the integrated empirical process and studied their Bahadur local e�-
ciency for the location alternative. Let

F̄
n

(x) =

Z
x

�1
F
n

(t)dF (t), F̄ (x) =

Z
x

�1
F (t)dF (t) =

1

2
F 2(x)

denote the integrated empirical distribution function and the integrated hypothetical
distribution function respectively. Then the integrated empirical process is

B
n

(x) =
p
n[F̄

n

(x)� F̄ (x)] =

Z
x

�1
�
n

(t)dF (t), x 2 R,

while the integrated uniform empirical process becomes

A
n

(u) =

Z
u

0

↵
n

(s)ds , 0  u  1 .

The integrated analogs of the classical statistics D
n

, !1
n

, !2
n

and U2
n

were defined in
[9, 10] as

D̄
n

= sup
x

|B
n

(x)| = sup
u

|A
n

(u)| ,

!̄1
n

=
R
R Bn

(t)dF (t) =
R 1

0 A
n

(u)du, !̄2
n

=
R
R B

2
n

(t)dF (t) =
R 1

0 A2
n

(u)du,

Ū2
n

=
R
R
�
B

n

(t)�
R
R Bn

(s)dF (s)
�2

dF (t) =
R 1

0 (An

(u)�
R 1

0 A
n

(s)ds)2du.

Henze and Nikitin in [9] and [10] derived limiting distributions, large deviation
asymptotics, local Bahadur e�ciencies for location alternatives, and studied the
conditions of local Bahadur optimality for these statistics. In next sections we will
carry through this program under the generalized skew alternative (1).
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3. Bahadur local e�ciency: general expressions

In the rest of the paper, we consider alternative (1) with the symmetric density
f having finite variance. The distribution function G and the density g = G0 are
assumed to be symmetric as well. They all satisfy the following conditions.

Condition 1. We require that the density g with g(0) > 0 is positive and di↵erentiable
within its support. By symmetry we always have g0(0) = 0.
Condition 2. Let f and g be such that uniformly in x 2 R

H(x, ✓)� F (x) ⇠ 2✓g(0)

Z
x

�1
uf(u)du, as ✓ ! 0,

where ⇠ is the usual sign of equivalence.
Condition 3. Suppose that

K(✓) ⇠ 2g2(0)

Z

R
x2f(x)dx ✓2, as ✓ ! 0,

where K(✓) is the well-known Kullback – Leibler information [5]

K(✓) :=

Z

R
ln{h(x, ✓)/h(x, 0)}h(x, ✓)dx = 2

Z

R
ln{2G(✓x)}f(x)G(✓x)dx.

These conditions are very natural and are valid for various densities f and g. Condi-
tion 2 was obtained by using the Taylor expansion of G(✓x) for small ✓ and extracting
the leading term. To get the Condition 3, we use the expansion

y ln y = y � 1� 1

2
(y � 1)2 + o{(y � 1)2}, as y ! 1,

which implies as ✓ ! 0, for any x (since g0(0) = 0)

2G(✓x) ln{2G(✓x)} = 2G(✓x)�1+
1

2
{2G(✓x)�1}2+o(✓2) = 2g(0)✓x+2g2(0)✓2x2+o(✓2).

Substituting this in the definition of K(✓) above and integrating, we get under
weak additional requirements the Condition 3.

It is not di�cult to impose su�cient conditions on f and g ensuring such behavior
but we prefer the formulation of regularity conditions in form of Conditions 1-3.

Now we describe in short the definition and calculation of Bahadur e�ciency.
Details can be found in [4], [5], and [15].
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Suppose that T = {T
n

} is a sequence of statistics, such that as n ! 1

a) T
n

�! b(T, ✓) in probability under H1;

b) n�1 lnP (T
n

� ") �! �r(T, ") under H0,

where the function r(T, ") is continuous in " for su�ciently small " > 0. Condition
a) is a variant of the law of large numbers under H1 while condition b) is always
non-trivial and describes the (logarithmic) large deviation behavior of test statistics
under the null-hypothesis. Then the exact Bahadur slope is defined as

c(T, ✓) = 2r(T, b(T, ✓)) ,

while the local Bahadur e�ciency is defined by

eB(T ) = lim
✓!0+

c(T, ✓)

2K(✓)
.

In all the examples considered in this paper we have

c(T, ✓) ⇠ l(T, f)4g2(0)✓2 , as ✓ ! 0+, (3)

where the functional l(T, f) is called the local index. Then we have

eB(T ) =
l(T, f)

�2(f)
, (4)

where �2(f) is the variance of the density f.
For our test statistics D̄

n

, !̄1
n

, !̄2
n

and Ū2
n

the function b(T, ✓) was found in [9]
and [10] in terms of alternative distribution function H(x, ✓) :

b(D̄, ✓) ⌘ sup
s

|
Z

s

�1
(H(x, ✓)� F (x))dF (x)| ,

b(!̄1, ✓) ⌘
Z

R

Z
s

�1
(H(x, ✓)� F (x))dF (x)

�
dF (s) ,

b(!̄2, ✓) ⌘
Z

R

Z
s

�1
(H(x, ✓)� F (x))dF (x)

�2
dF (s) ,

b(Ū2, ✓) ⌘
Z

R

Z
s

�1
(H(x, ✓)� F (x))dF (x)

�2
dF (s)�
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�
✓Z

R

Z
s

�1
(H(x, ✓)� F (x))dF (x)

�
dF (s)

◆2

.

Using (2), regularity conditions 1 - 3, and setting

v(x) =

Z
x

�1
uf(u)du, q(s) =

Z
s

�1
v(x)f(x)dx, (5)

we easily arrive to the following expressions for the local representations of functions
b as ✓ ! 0+ :

b(D̄, ✓) ⇠ 2✓g(0) sup
s

|q(s)|, b(!̄1, ✓) ⇠ 2✓g(0)
R
R q(s)f(s)ds,

b(!̄2, ✓) ⇠ 4✓2g2(0)
R
R q

2(s)f(s)ds,

b(Ū2, ✓) ⇠ 4✓2g2(0)
hR

R q
2(s)f(s)ds�

�R
R q(s)f(s)ds

�2i
.

Applying the large deviation asymptotics of integrated statistics from [9] and [10],
we find the following local behavior of exact slopes for our test statistics as ✓ ! 0+ :

c(D̄, ✓) ⇠ 12b2(D̄, ✓), c(!̄1, ✓) ⇠ 45b2(!̄1, ✓) ,

c(!̄2, ✓) ⇠ µ0b(!̄2, ✓) withµ0 = 31.2852..., c(Ū2, ✓) ⇠ ⇡4b(Ū2, ✓).

Combining these formulas with the asymptotics of functions b given above, we
easily obtain the expressions for the local exact indices l(T, f), see (3), of our statis-
tics. The factor 4g2(0) disappears when calculating the local e�ciency according to
(4). Hence we may write

eB(T ) =
l(T, f)

�2(f)
. (6)

We get now the following expressions for local indices of our statistics:

l(D̄, f) = 12 sup
s

q2(s) , l(!̄1, f) = 45
�R

R q(s)f(s)ds
�2

, l(!̄2, f) = µ0

R
R q

2(s)f(s)ds,

l(Ū2, f) = ⇡4
⇣R

R q
2(s)f(s)ds�

�R
R q(s)f(s)ds

�2⌘2

.

Note that the e�ciencies not depend on G.

4. Bahadur local e�ciency: examples and discussion

We will calculate local indices for following five standard symmetric densities f :

f1(x) = (2⇡)�1/2 exp(�x2/2), (normal density)
f2(x) = ex/(1 + ex)2, (logistic density)
f3(x) = 1/(⇡(1� x2)1/2)1[�1,1](x) , (arcsine density)
f4(x) =

1
21[�1,1](x), (uniform density)

f5(x) = 8/(3⇡(1 + x2)3), (non-standardized Student-5 density.)
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Using the notation (5) for all f
i

, i = 1, ..., 5, we see that

v1(x) = � 1p
2⇡
e�x

2
/2, x 2 R, v2(x) = � ln(1 + ex) + xe

x

1+e

x

, x 2 R,

v3(x) = � 1
⇡

p
1� x2, �1  x  1, v4(x) = �1

4(1� x2), �1  x  1,

v5(x) = � 2
3⇡(1+x

2)2 , x 2 R.

Next we calculate for our densities the functions q
i

, i = 1, . . . , 5 :

q1(s) = ��(s
p
2)

2
p
⇡

, s 2 R, q2(s) =
1+e

s+se

2s�(e2s�1) ln(1+e

s)
2(1+e

s)2 � 1
2 , s 2 R,

q3(s) = � s+1
⇡

2 , |s|  1, q4(s) =
s

3�3s�2
24 , |s|  1,

q5(s) = � s(279+511s2+385s4+105s6)+105(1+s

2)4 arctan(s)
216⇡2(1+s

2)4 � 35
144⇡ , s 2 R.

Now we proceed to the calculation of local indices for our five densities. Observing
that sup

s

|q
i

(s)| are respectively 1/(3⇡), 1/2, 2/⇡2, 1/6 and 35/(72⇡), we obtain

l(D̄
n

, f1) = 0.95493, l(D̄
n

, f2) = 3, l(D̄
n

, f3) = 48/⇡4,

l(D̄
n

, f4) = 1/3, l(D̄
n

, f5) = 1225/(432⇡2).

Since
R +1
�1 q

i

(s)f
i

(s)ds, for 1  i  5, are respectively 1/(4
p
⇡), �1/4, �1/⇡2,

�1/12 and �35/(144⇡) we obtain

l(!̄1
n

, f1) = 0.8952, l(!̄1
n

, f2) = 45/16, l(!̄1
n

, f3) = 45/⇡4,

l(!̄1
n

, f4) = 5/16, l(!̄1
n

, f5) = 6125/(2304⇡2).

Finally knowing that
R +1
�1 q2

i

(s)f
i

(s)ds are respectively 0.02914, 0.09107, 3/(2⇡4),
13/1260 and 1225/(62208⇡2) + (46189 + 39200⇡2)/(663552⇡4), we obtain

l(!̄2
n

, f1) = 0.91154, l(!̄2
n

, f2) = 2.84924, l(!̄2
n

, f3) = 0.48176,

l(!̄2
n

, f4) = 0.32278, l(!̄2
n

, f5) = 0.27204.

According to (6) we need also the variances �2(f) which are in our cases respec-
tively 1, ⇡2/3, 1/2, 1/3 and 1/3. We summarize our calculations in Table 1 where
for comparison we also report the local e�ciency of classical statistics D

n

, !1
n

, !2
n

and U2
n

given in [8] for skew alternatives corresponding to the same five densities.
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Table 1: Local Bahadur e�ciencies under skew alternatives.

Statistic Distribution

Gauss Logistic Arcsine Uniform Student-5

D
n

0.637 0.584 0.810 0.750 0.540

!1
n

0.955 0.912 0.985 1 0.862

!2
n

0.907 0.855 1 0.987 0.802

U2
n

0.486 0.420 0.662 0.658 0.373

D̄
n

0.955 0.912 0.985 1 0.862

!̄1
n

0.895 0.855 0.924 0.938 0.808

!̄2
n

0.912 0.866 0.963 0.968 0.816

Ū2
n

0.900 0.846 1 0.986 0.792

The inspection of this table and its comparison with Table 3 in [15, p.80] and
corresponding tables in [9] and [10] shows that the ordering of tests is similar to the
location case. This is favorable for practitioners: they seldom know the structure of
the alternative but can use the same test both for the location and skew models.

However the e�ciencies of integrated statistics are in most cases considerably
higher than of classical ones. This justifies the use of integrated statistics for skew
alternatives.

Note that the e�ciencies of the statistics D̄
n

and !1
n

coincide. It is not surprising
as they have the same local indices. It explains the maximal e�ciency 1 attained
by D̄

n

for the uniform distribution, while for !1
n

the same was discovered in [8].
Another curious observation is that for the normal law the e�ciencies under location
and skew alternatives coincide. This is a characteristic property of the normal law,
see [8]. The e�ciency 1 for Ū2

n

for the arcsine density is unexpected and will be
interpreted below.

Note that the so-called Pitman limiting relative e�ciency of the considered statis-
tics is equal to the local Bahadur e�ciency under somewhat stronger regularity con-
ditions. It can be verified in the same way as in [17] and [15].

Lachal in an interesting paper [13] studied p-fold integrated empirical processes
and corresponding statistics. He considered, however, only location alternatives. For
p = 0 his results coincide with the conclusions of [9] and [10]. Moreover, for p > 1
his tests demonstrate the decrease of e�ciency (found numerically) when p grows,
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but the theoretical calculations are hardly possible.

5. Conditions of local optimality.

As is well known [4], [15, Ch.6] the local asymptotic optimality (LAO) of a se-
quence {T

n

} in Bahadur sense means that eB(T ) = 1 or, by (4), one has

l(T, f) =

Z

R
x2f(x)dx. (7)

We are interested in those densities f when (7) is true; such densities under
corresponding regularity conditions form the so-called domain of LAO. The study
of this ”inverse” problem was started by Nikitin (1984). The a priori regularity
conditions are described in [15, Ch.6], we underline the assumption f(x) > 0 for all
x. In the sequel C1, C2, . . . denote some indefinite non-null real constants.

Note first of all that ⇢(s) :=
R
s

�1
R
x

�1 uf(u)duf(x)dx attains its maximum for
s = 1. Indeed, the extremum condition is ⇢0(s) = f(s)

R
s

�1 uf(u)du = 0, and as
f > 0, we see that ⇢0(s) = 0 only for s = 1.

Let apply this argument for the Kolmogorov statistic. Due to symmetry of f , we
get, integrating by parts and applying the Cauchy-Schwarz inequality, that

l(D, f) = 12 sup
s

✓Z
s

�1
v(x)f(x)dx

◆2

= 12 sup
s

✓Z
s

�1

Z
x

�1
uf(u)duf(x)dx

◆2

=

= 12

✓Z

R

Z
x

�1
uf(u)duf(x)dx

◆2

= 12

✓Z

R
u(F (u)� 1

2
)f(u)du

◆2



 12

Z 1

�1
u2f(u)du

Z 1

�1
(F (u)� 1

2
)2dF (u) =

Z

R
x2f(x)dx.

Hence the condition of LAO (7) in virtue of the condition of equality in Cauchy-
Schwarz inequality reduces to the condition

F (x)� 1/2 = C1x (8)

on the support of f . This implies that f is constant on a symmetric interval around
zero. We consider this as a characterization of the symmetric uniform distribution.

We remark that the local optimality of the same statistic D̄
n

under the location
alternative is valid for logistic distribution, see [9], this emphasizes the di↵erence
between these two types of alternatives.
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The arguments for the sequence {!̄1
n

} are similar but the result is di↵erent. We
have, using integration by parts, the symmetry of the density f and the Cauchy-
Schwarz inequality

l(!̄1, f) = 45

✓Z

R
q(s)f(s)ds

◆2

= 45

✓Z

R

Z
s

�1
v(x)f(x)dx f(s)ds

◆2

=

= 45

✓Z

R
v(x)(1� F (x))f(x)dx

◆2

=
45

4

✓Z

R
v(x)d((1� F (x))2

◆2

=

=
45

4

✓Z

R
x

✓
(1� F (x))2 � 1

3

◆
f(x)dx

◆2



 45

4

Z 1

0

(z2 � 1/3)2dz

Z

R
x2f(x)dx = �2(f).

Using the condition of equality in Cauchy-Schwarz inequality, we see that the
condition of LAO is valid i↵

(1� F (x))2 � 1

3
= C2x (9)

on the support of symmetric f. This is impossible, unlike (8), since for symmetric
distribution function F we have F (0) = 1

2 , and this contradicts the equation (9).
For the integrated statistic !̄2

n

such direct arguments are problematic. There-
fore we will apply the general theory developed in [15, Ch.6]. According to it, any
sequence of statistics {T

n

} defines the ”leading function” v
T

(or sometimes a set of
them) which specifies the most e�cient direction in the space of alternatives H(x, ✓).
To describe the domain of LAO we need to solve the equation

H 0
✓

(x, 0) = C3vT (F (x)) with some constant C3.

The set of alternatives H(x, ✓) should satisfy some regularity conditions listed and
discussed in [15, Ch.6]. The skew family (2) under conditions 1-3 satisfies them for
a very broad set of densities f and distribution function’s G. Hence we can apply
this theory subject to knowledge of ”leading functions” which can be at times very
involved. For the integrated statistic !̄2

n

the set of leading functions was found in
[9] by variational methods and consists of eigenfunctions of some boundary-value
problem, namely

 
j

(x) = cos
j

sinh (
j

(1� x)) + cosh(
j

) sin(
j

(1� x)) , j � 1,
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with 
j

being the consecutive positive zeros of the equation tan(x) + tanh(x) = 0.
Consider the first of these functions  1. It does not change its sign on [0, 1]. Hence
the distribution function F of interest for us has to satisfy the di↵erential equation

Z
x

�1
uf(u)du = C4 (cos1 sinh (1(1� F (x)) + cosh1 sin(1(1� F (x))) .

Di↵erentiating this equation, we can obtain on the support of f an implicit equation
for F but we are not able to obtain its explicit solution.

It is curious that the more complicated integrated statistic Ū2
n

has a much simpler
domain of LAO. The leading functions here [10] are sin(⇡jx), j = 1, 2, ... Only the
first function keeps the sign on [0, 1] so that we arrive to the di↵erential equation

Z
x

�1
uf(u)du = C5 sin ⇡F (x), x 2 R.

After di↵erentiation we get the equation

f(x)(x� C6 cos ⇡F (x)) = 0,

which results on the set {x : f(x) 6= 0} in the solution

F (x) = 1� ⇡�1 arccos(x/C7) = ⇡�1 arcsin(x/C6) + 1/2, �C7  x  C7,

corresponding to the symmetric arcsine density

f(x) =

✓
⇡
q
C2

7 � x2

◆�1

1{�C7  x  C7}.

It may be observed that we got a characterization of arcsine density by the property
of LAO for Ū2

n

under the skew alternative. This explains the appearance of 1 in the
last row in Table 1 above.
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