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6 The Nori-Hilbert scheme is not smooth for

2−Calabi-Yau algebras

Raf Bocklandt, Federica Galluzzi∗, Francesco Vaccarino†

Abstract

Let k be an algebraically closed field of characteristic zero and let A
be a finitely generated k-algebra. The Nori-Hilbert scheme of A, Hilbn

A,
parameterizes left ideals of codimension n in A. It is well known that
HilbnA is smooth when A is formally smooth.
In this paper we will study Hilbn

A for 2-Calabi-Yau algebras. Impor-
tant examples include the group algebra of the fundamental group of a
compact orientable surface of genus g, and preprojective algebras. For
the former, we show that the Nori-Hilbert scheme is smooth only for
n = 1, while for the latter we show that a component of HilbnA con-
taining a simple representation is smooth if and only if it only contains
simple representations. Under certain conditions, we generalize this
last statement to arbitrary 2-Calabi-Yau algebras.

Mathematics Subject Classification (2010): 14C05, 14A22, 16G20, 16E40.
Keywords: Representation Theory, Calabi-Yau Algebras, Nori-Hilbert

Scheme.

1 Introduction

Let A be a finitely generated associative k-algebra with k an algebraically
closed field of characteristic zero. In this paper we study the Nori-Hilbert
scheme HilbnA whose k-points parameterize left ideals of A with codimension
n.

When A is commutative, this is nothing but the classical Hilbert scheme
HilbnX of n points on X = SpecA. It is well-known that HilbnX is smooth

∗Supported by the framework PRIN 2010/11 “Geometria delle Varietà Algebriche”,
cofinanced by MIUR. Member of GNSAGA.

†Partially supported by the TOPDRIM project funded by the Future and Emerging
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when X is a quasi-projective irreducible and smooth curve or surface. The
scheme HilbnA is smooth when A is formally smooth, hence of global dimen-
sion one, proved by L.Le Bruyn (see [30, Prop.6.3.]). The same holds when
A is finitely unobstructed [3].

The main result of this paper is to show that the above results do not
extend to dimension two in the non-commutative case.

The smoothness results on HilbnX are heavily based on the use of Serre
Duality, so it seems natural to investigate the geometry of HilbnA when A is
a Calabi-Yau algebra of global dimension two. These are algebras for which
Ext•Ae(A,A) ∼= A[2], which implies that the double shift is a Serre functor
for their derived category.

Important examples of 2-dimensional Calabi-Yau algebras are tame and
wild preprojective algebras (see Bocklandt [6]) and group algebras of funda-
mental groups of compact orientable surfaces with nonzero genus (a result
of Kontsevich [20, Corollary 6.1.4.]).

In this paper we will investigate the smoothness of the Nori-Hilbert
scheme for these two types of algebras. The main results are the follow-
ing:

Theorem 1.1. Let Ag = k[π1(S)] be the group algebra of the fundamental
group of a compact orientable surface S of genus g > 1. The scheme HilbnAg

is irreducible of dimension (2g − 2)n2 + n + 1 and it is smooth if and only
if n = 1.

Theorem 1.2. Let Π(Q) be the preprojective algebra attached to a non-
Dynkin quiver Q and let α be a dimension vector for which there exist simple
representations. The component of HilbnΠ(Q) containing the α-dimensional

representations is irreducible of dimension 1+2
∑

a∈Q1
αh(a)αt(a)+

∑
v∈Q0

(αv−

2α2
v) and it is smooth if and only if Q has one vertex and α = (1) (or equiv-

alently all α-dimensional representations are simple).

After these two results we look into the case of more general 2-CY al-
gebras. Using results by Van den Bergh [42], we show that locally the
representation space of any finitely generated 2-CY algebra can be seen as
the representation space of a preprojective algebra. This fact will allow us
to generalize the main result to all finitely generated 2-CY algebras.

Theorem 1.3. Let A be a finitely generated 2-CY algebra and let ρ be a sim-
ple representation such that the dimension of its component in RepnA//GLn

is bigger than 2. The component of HilbnA containing ρ is smooth if and only
if all representations in this component are simple.
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The paper goes as follows. In section 3 we recall the definition and
the principal known results on the smoothness of HilbnA. We also introduce
quivers and generalize the definition to HilbαA for arbitrary dimension vectors
α. We consider the representation scheme RepαA of an associative algebra
A and the open subscheme Uα

A whose points correspond to α-dimensional
cyclic A-modules. The general linear group GLα acts naturally on Uα

A. We
show that Uα

A/GLα represents HilbαA and that Uα
A → HilbαA is a universal

categorical quotient and a GLα-principal bundle.
After introducing Calabi-Yau algebras in section 4, we carefully analyze

the tangent space of RepαA and of RepnA, the representation scheme of the
n-dimensional representations of A, in section 5. If A is a 2-CY algebra
having a suitable resolution, we find a sharp upper bound for the dimension
of the tangent space of a point in Uα

A corresponding to an A-module M.
In Theorem 5.2 we prove that this dimension is completely controlled by
dimk(EndA(M)). This is achieved by using Hochschild cohomology and the
equality dimk(EndA(M)) = dimk(Ext

2
A(M,M)) given by the Calabi-Yau

condition. This method was inspired by a similar one used by Geiss and de
la Peña (see [18]), which works for finite-dimensional k-algebras only.

We then prove the first two main theorems 1.1 and 1.2 by combining
our results on the tangent spaces of RepnAg

and Un
Ag

with the description of

RepnAg
and RepαΠ(Q) given in [6, 7, 14, 36] and in [12].

In section 6, we show that locally the representation space of a 2-CY
algebra is the representation space of a preprojective algebra and we deduce
from this that, for simple dimension vectors, the smooth semisimple locus
equals the simple locus. Finally, we combine the results from sections 6 and
5.2 to prove Theorem 1.3 and we give a couple of examples that illustrate
it.

2 Notations

Unless otherwise stated, we adopt the following notations:

• k is an algebraically closed field of characteristic zero.

• F = k{x1, . . . , xm} denotes the associative free k-algebra on m letters.

• A ∼= F/J is a finitely generated associative k-algebra.

• NR, CR and Set denote the categories of R-algebras, R-commutative
algebras and sets, respectively, where R is a given commutative ring.
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• The term ”A-module” indicates a left A-module.

• A-mod denotes the category of left A-modules.

• We write HomA(B,C) in a category A with B,C objects in A. If
A = A-mod, then we will write EndA(B), for B ∈ A-mod.

• Aop denotes the opposite algebra of A and Ae := A ⊗ Aop denotes
the envelope of A. It is an A-bimodule and a k-algebra. One can
identify the category of the A-bimodules with Ae-mod and we will do
this thoroughly this paper.

• Ag = k[π1(S)] is the group algebra of the fundamental group of a
compact orientable surface S of genus g > 1.

• ExtiA denotes the Ext groups on the category A-mod.

• Q will denote a quiver, Q0 its vertices and Q1 its arrows. The maps
h, t : Q0 → Q1 assign to each arrow its head and tail.

• kQ will be the path algebra of Q.

• α : Q0 → N will denote a dimension vector and its size is n = |α| =∑
v∈Q0

αv.

• If R is a ring, Matn(R) denotes the ring of n×nmatrices with elements
in R.

• Matα(R) :=
∏

v∈Q0
Matαv (R) and its group of invertible elements is

GLα.

• The standard module over Matα(R) will be denoted byRα = ⊕v∈Q0R
αv

and Matα(R) sits inside Matn(R) = EndR(R
α) with n = |α|.

3 Nori-Hilbert schemes

3.1 Definitions

Let A ∈ Nk be fixed. Consider the functor of points HilbnA : Ck → Set, given
by

HilbnA(B) := {left ideals I ⊂ A⊗k B such that M = (A⊗k B)/I
is a projectiveB-module of rank n}

(3.1)

for all B ∈ Ck.

4



It is a closed subfunctor of the Grassmannian functor, so it is representable
by a scheme HilbnA (see [41, Proposition 2]) and we call it the Nori-Hilbert
scheme. Its k-points are the left ideals of A of codimension n.

Nori introduced it for A = Z{x1, . . . , xm} in [34]. It was then defined in
a more general setting in [41] and in [37]. Van den Bergh showed that for
A = F the scheme HilbnF is smooth of dimension n2(m− 1) + n, (see [41]).
It is also called the non-commutative Hilbert scheme (see [17, 37]) or the
Brauer-Severi scheme of A (see [30, 29, 41]), in analogy with the classical
Brauer-Severi varieties parameterizing left ideals of codimension n of central
simple algebras (see [4]).

Let now A be commutative and X = SpecA. The k-points of HilbnA
parameterize zero-dimensional subschemes Y ⊂ X of length n. It is the
simplest case of Hilbert scheme parameterizing closed subschemes of X with
fixed Hilbert polynomial P. In this case P is the constant polynomial n. The
scheme HilbnA is usually called the Hilbert scheme of n points on X (see for
example Chapter 7 in [10, 21] and Chapter 1 in [33]).

There is the following fundamental result.

Theorem 3.1. (see [15, 22, 16]) If X is an irreducible smooth quasi pro-
jective variety of dimension d (with d = 1, 2), then the Hilbert scheme of n
points over X is a smooth irreducible scheme of dimension dn.

This theorem can be partially extended to the Nori-Hilbert scheme. The
scheme HilbnA is smooth if A is finitely unobstructed i.e. if Ext2A(M,M) ∼= 0
for all finite dimensional A-modules M. This follows by [3, Corollary 4.2.]
and Theorem 3.13.

Remark 3.2. If A is hereditary then it is finitely unobstructed and it was
well known that HilbnA is smooth for hereditary algebras which are finite
dimensional (see [9, Proposition 1]).

If A = kQ/J is the path algebra of a quiver with relations, then to every
left ideal I ∈ HilbnA(B) we can assign a dimension vector

α : v 7→ rank(vA⊗k B)/I.

So we can define the subset HilbαA(B) ⊂ HilbnA(B) containing all ideals with
dimension vector α. We denote its representing scheme by HilbαA. HilbnA
decomposes as a disjoint union of all HilbαA with |α| = n.

3.2 Representation schemes

Let A ∈ Nk be fixed. The covariant functor RepnA : Ck −→ Set given by

RepnA(B) := HomNk
(A,Matn(B)) (3.2)
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for all B ∈ Ck, is represented by a commutative algebra Vn(A) (see [35,
Ch.4, §1]). We write RepnA to denote SpecVn(A). It is called the scheme of
the n-dimensional representations of A. It is considered as a k-scheme.

Let now A = kQ/J be a path algebra of a quiver with relations. The vertices
in Q will correspond to orthogonal idempotents in kQ, which will generate
a subalgebra ℓ = ⊕v∈Q0kv

∼= kQ0 and both A and kQ can be seen as ℓ-
algebras. We can choose a generating set of relations {ri|i ∈ J} such that
each ri sits in vkQw for some idempotents v,w ∈ Q0. We will denote these
idempotents by h(ri), t(ri).

Fix a dimension vector α : Q0 → N with |α| = n. Let kα be the ℓ-module
consisting of the direct sum of αv copies of the simple module corresponding
to each vertex v. The space Matn(k) can be given the structure of a ℓ-
bimodule/ℓ-algebra by identifying it with Homk(k

α, kα). An α-dimensional
representation ρ is a ℓ-algebra homomorphism from A to Matn(k), this ho-
momorphism extends the ℓ-module structure on kα to an A-module struc-
ture.

For any commutative k-algebra B we set Bα = kα ⊗B and Matn(B) =
Matn(k) ⊗B.

Definition 3.3. Let A = kQ/J and B ∈ Ck. By an α-dimensional repre-
sentation of A over B we mean a homomorphism of ℓ-algebras ρ : A →
Matn(B).

It is clear that this is equivalent to give an A-module structure on Bα.
The assignment B → HomNℓ

(A,Matn(B)) defines a covariant functor

Ck −→ Set.

This functor is represented by a commutative k-algebra. More precisely,
there is the following

Lemma 3.4. [35, Ch.4, §1 extended to quivers] For all A ∈ Nℓ and each
dimension vector α, there exist a commutative k-algebra Vα(A) and a rep-
resentation πA : A → Matn(Vα(A)) such that ρ 7→ Matn(ρ) · πA gives an
isomorphism

HomCk(Vn(A), B)
∼=
−→ HomNℓ

(A,Matn(B)) (3.3)

for all B ∈ Ck.

Definition 3.5. We denote RepαA := SpecVα(A). It is considered as a k-
scheme.
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The scheme RepαA is also known as the scheme of α-dimensional A-
modules.

Remark 3.6. Any path algebra with relations A = kQ/I can also be seen as
the quotient of a free algebra: A ∼= F/J , so it makes sense to define both
RepnA and RepαA. It is known that there is the following relation between
the two

RepnA =
∐

|α|=n

RepαA ×GLα GLn

where the action of GLα on GLn is by multiplication.

Examples 3.7.

1. If A = F, then RepnF (k)
∼= Matn(k)

m (because a free algebra is the path
algebra of a quiver with one vertex, a dimension vector in this case is just a
number n).

2. If A = F/J, the B-points of RepnA can be described in the following way:

RepnA(B) = {(X1, . . . ,Xm) ∈ Matn(B)m : f(X1, . . . ,Xm) = 0 for all f ∈ J}.

The scheme RepnA is a closed subscheme of RepnF .

3. If A = C[x, y], then

RepnA(C) = {(M1, M2) : M1, M2 ∈ Matn(C) and M1M2 = M2M1}

is the commuting scheme, see [39].

4. If A = kQ, then RepαA(k)
∼=

⊕
a∈Q0

Matαh(a)×αt(a)
(k). For each arrow a,

ρ(a) is an n × n matrix with zeros everywhere except on a block of size
αh(a) × αt(a).

Because A is finitely generated, RepnA is of finite type. Note that RepnA
may be quite complicated. It is not reduced in general and it seems to be
hopeless to describe the coordinate ring of its reduced structure.

3.3 Principal bundles over Nori-Hilbert schemes

Fix A ∈ Nk.

Definition 3.8. For each B ∈ Ck, consider the set

Un
A(B) = {(ρ, v) ∈ RepnA(B)× An

k(B) : ρ(A)(Bv) = Bn}.

The assignment B 7→ Un
A(B) is functorial in B and the corresponding functor

is representable by a scheme Un
A which is an open subscheme in RepnA×An

k .
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Remark 3.9. Note that points ρ ∈ RepnA such that there is a v ∈ An
k with

(ρ, v) ∈ Un
A correspond to n-dimensional cyclic A-modules.

Let GLn be the general linear group scheme over k whose B-points form
the group GLn(B) of invertible matrices in Matn(B).

Definition 3.10. Given B ∈ Ck, GLn(B) acts on RepnA(B):

GLn(B)× RepnA(B) −→ RepnA(B)
(g, ρ) −→ ρg : ρg(a) = gρ(a)g−1,

and on RepnA(B)× An
k(B):

GLα(B)× RepnA(B)× An
k(B) −→ RepnA(B)×k A

n
k(B)

(g, ρ, v) −→ (ρg, gv).

The open subscheme Un
A is clearly closed under the action above.

Remark 3.11. The A-module structures induced on Bn by two representa-
tions ρ and ρ′ are isomorphic if and only if there exists g ∈ GLn(B) such
that ρ′ = ρg.

Definition 3.12. We denote by RepnA//GLn = SpecVn(A)
GLn(k) the cat-

egorical quotient (in the category of k-schemes) of RepnA by GLn. It is the
(coarse) moduli space of n-dimensional representations of A.

There is the following

Theorem 3.13. ([40, Theorem 5.5.]) The scheme Un
A/GLn represents

HilbnA and Un
A → HilbnA is an universal categorical quotient and a GLn-

principal bundle. Therefore the scheme HilbnA is smooth iff Un
A is smooth.

Let now A = kQ/J and α any dimension vector with |α| = n. Identify the
B-points of the n-dimensional affine scheme An

k with the elements of the
module Bα. Denote GLα the group scheme over k whose B-points form the
group GLα(B) of invertible matrices in Matα(B) = Endℓ(B

α).
We can define in the same way as before an open subscheme Uα

A in
RepαA × Aα

k and actions of GLα on RepαA and on RepαA × Aα
k .

Theorem 3.13 can be easily generalized as follows

Corollary 3.14. The scheme Uα
A/GLα represents HilbαA and Uα

A → HilbαA
is an universal categorical quotient and a GLα-principal bundle. Therefore
the scheme HilbαA is smooth iff Uα

A is smooth.
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Proof. By Remark 3.6 it follows

Un
A =

∐

|α|=n

Uα
A ×GLα GLn

and hence
HilbnA

∼= Un
A/GLn =

∐

|α|=n

Uα
A/GLα.

Remark 3.15. Consider the forgetful map RepnA×A
n
k −→ RepnA, which sends

(ρ, v) to ρ. The existence of a cyclic vector is an open condition, so the image
of Un

A is an open subset of RepnA and the preimage of ρ ∈ RepnA is an open
subset of {ρ} × An

k . This implies that

dimT(ρ,v)U
n
A = dimTρRep

n
A + dimAn

k (3.4)

and Un
A is smooth if and only if its image in RepnA is smooth. Analogously,

Uα
A is smooth if and only if so is its image through the forgetful map RepαA×

Aα
k −→ RepαA.

These results lead us to study the local geometry of RepnA and RepαA. For
general algebras this study is quite hard, but we are interested in a special
class of algebras: 2-Calabi-Yau algebras.

4 Calabi-Yau algebras

Calabi-Yau algebras have been defined by V. Ginzburg in [20] and R. Bock-
landt in [6] following the notion of Calabi-Yau triangulated category intro-
duced by Kontsevich. For alternative approaches and further reading see
[1], [23], [24] and [26]. We first recall the following

Definition 4.1. ([19, Definition 20.6.1]) An algebra A is called homologi-
cally smooth if A has a finite resolution by finitely-generated projective (left)
Ae-modules.

Definition 4.2. ([20, Definition 3.2.3]) A homologically smooth algebra A
is d−Calabi-Yau (d−CY for short) if there are Ae-module isomorphisms

ExtiAe(A,Ae) ∼=

{
A if i = d

0 if i 6= d.
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We note some properties of Calabi-Yau algebras.

Proposition 4.3. If A is d−CY, then

1. The global dimension of A is ≤ d.

2. If there exists a nonzero finite-dimensional A-module M, then the
global dimension of A is exactly d.

3. If M,N ∈ A-mod are finite-dimensional, then

ExtiA(M,N) ∼= Extd−i
A (N,M)∗.

4. For every finite dimensional A-module M there is a trace map TrM :
Extd(M,M) → k, compatible with the product of Ext’s: TrN (fg) =
(−1)i(d−i)TrM (gf) for f ∈ Exti(M,N) and g ∈ Extd−i(N,M).

Proof. These are standard results, see for example [2, Proposition 2.4.], [5,
Section 2] or [6, Prop.2.2] for proofs.

Examples 4.4.

1. The polynomial algebra k[x1, ..., xn] is n−CY.

2. Let X be an affine smooth Calabi-Yau variety (i.e. the canonical sheaf
is trivial) of dimension n. Then C[X] is n−CY.

3. If Q is a quiver, denote by Q the double quiver of Q obtained by
adjoining an arrow a∗ : j → i for each arrow a : i → j in Q. The
preprojective algebra is the associative algebra

Π(Q) := k(Q)/ <
∑

a∈Q1

[a, a∗] >

where [x, y] = xy − yx denotes the commutator. If A is any path
algebra with homogeneous relations for the path length grading, then
A is 2-CY if and only if A is the preprojective algebra of a non-Dynkin
quiver (see [6, Theorem 3.2.]).

4. Let k[π1(M)] be the group algebra of the fundamental group of a
compact aspherical orientable manifold M of dimension n. Kontsevich
proves that k[π1(M)] is n−CY (see [20, Corollary 6.1.4.]). This algebra
is not positively graded. Thus, if S is a surface of genus g ≥ 1, the
algebra Ag := k[π1(S)] is 2-Calabi-Yau. The fundamental group π1(S)
has presentation

< X1, Y1, . . . ,Xg, Yg|X1Y1X
−1
1 Y −1

1 . . . XgYgX
−1
g Y −1

g = 1 > . (4.1)

10



5 Local geometry

Let A = kQ/J be the path algebra of a quiver with relations and α a fixed
dimension vector with |α| = n. A point x ∈ RepαA(k) corresponds to a pair
(M,µ) where M ∼= kα has an A-module structure given by the ℓ-algebra
homomorphism µ : A→ Matn(k) ∼= Endk(M). The linear representation µ
makes Endk(M) an Ae-module.

We write M for a point x in RepαA(k) and TMRepαA to denote the tangent
space to RepαA at x and to stress the dependence on M.

Proposition 5.1. [19, 12.4.] For M ∈ RepαA(k)

TMRepαA
∼= Derℓ(A,Endk(M)).

Proof. An element p ∈ TMRepαA corresponds to a morphism of ℓ-algebras
q : A → Matn(k[ǫ]) such that q(a) = θ(a)ǫ + µ(a) for all a ∈ A, where
µ : A → Endk(M) is the ℓ-algebra morphism associated to M. By using
q(ab) = q(a)q(b) one can easily see that θ ∈ Derℓ(A,Endk(M)) and θ(ℓ) = 0.
On the other hand, for all θ ∈ Derℓ(A,Endk(M)), the pair (θ, µ) gives a point
of TMRepαA in the obvious way.

Let now M ∈ RepαA(k). It is easy to check (see [19, 5.4.]) that we have the
following exact sequence

0→ Ext0A(M,M)→ Endℓ(M)→ Derℓ(A,Endk(M))→ Ext1A(M,M)→ 0

and therefore

dimk TMRepαA = dimk Derℓ(A,Endk(M))

= α2 + dimk(Ext
1
A(M,M))− dimk(Ext

0
A(M,M))

where α2 stands for the inner product of α with itself:

α2 =
∑

v∈Q0

α2
v = dimk Endℓ(M) = dimk(Matα(k)).

The above computation specializes to

dimk TMRepnA = n2 + dimk(Ext
1
A(M,M)) − dimk(Ext

0
A(M,M)) (5.1)

and, therefore, the local dimension of the representation spaces RepαA and
RepnA is controlled by the dimensions of Ext0A and Ext1A.

If A is 2-CY admitting a suitable resolution, one can actually say more.
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Theorem 5.2. Let A be a 2-CY and F• be a resolution by finitely-generated
projective (left) Ae-modules. Suppose that the functions

ci : RepnA(k) −→ N, M 7−→ ciM := dimk(HomAe(Fi,Endk(M))

are locally constant for i = 0, 1, 2. Then the dimension of the tangent space
TMRepnA is an increasing function of dimk(EndA(M)) on the irreducible
components of RepnA(k).

Proof. To compute the dimension of the tangent space TMRepnA at M ∈
RepnA(k) we need to compute the groups ExtiA(M,M), i = 0, 1. We use the
isomorphisms

ExtiA(M,M) ∼= Hi(A,Endk(M)) (5.2)

(see [11, Corollary 4.4.]) where Hi(A,Endk(M)) denotes the Hochschild
cohomology with coefficients in Endk(M). Note also that

EndA(M) ∼= Ext0A(M,M) ∼= HomAe(A,Endk(M)).

Take the resolution F• of A and consider the associate complex

0 −→ HomAe(A,Endk(M)) −→ HomAe(F0,Endk(M))
d0M−→

−→ HomAe(F1,Endk(M))
d1
M−→ HomAe(F2,Endk(M))

d2
M−→ ...

Set

ki : RepnA(k) −→ N, M 7−→ kiM := dimk ker d
i
M

hi : RepnA(k) −→ N, M 7−→ hiM := dimk Ext
i
A(M,M).

(5.3)

The following relations hold by the rank-nullity theorem
{
hiM = kiM + ki−1

M − ci−1
M

h0M = k0M
(5.4)

Recall that dimTMRepnA = n2 + h1M − h0M (see 5.1), but, since A is 2-CY,
we have h0M = h2M , so that

dimTMRepnA = n2 + h1M − h2M
= n2 + (k1M + k0M − c0M )− (k2M + k1M − c1M )
= n2 − c0M + c1M − k2M + h0M .

(5.5)

The algebra A has global dimension 2, therefore h3 ≡ 0 on RepnA(k). From
(5.4) it follows then that k3M +k2M = c2M . The function c2 is locally constant,
so by observing that the functions ki are (locally) upper semicontinuous, it
follows that the functions k3 and k2 are locally constant as well. Therefore by
(5.5) one has that dimTMRepnA = N + h0M where N is locally constant.
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The two main examples of Calabi-Yau algebras under consideration fit
into this picture.

Proposition 5.3. Let S be a compact orientable surface S of genus g. The
algebra Ag = k[π1(S)] admits a finite free resolution.

Proof. A resolution F• is provided by Davison in the proof of [14, Theorem
5.2.2.]:

0 −→ F2 −→ F1 −→ F0 −→ Ag −→ 0

where Fi = Ag ⊗ kdi ⊗ Ag and di is the number of non-degenerated i-th
dimensional simplices in a simplicial complex ∆ homeomorphic to S.

Since the Fi’s are finitely generated and free, the functions ci = n2 dimk Fi

are constant.

Proposition 5.4. The preprojective algebra of a non-Dynkin quiver A =
Π(Q) admits a resolution by finitely-generated projective Ae-modules F• such
that the functions ci are constant.

Proof. Here we follow [6]. Consider the standard projective resolution given
in [6, Remark 4.5.]

⊕

i∈Q0

Fii −→
⊕

(a,a∗)

Ft(a)h(a) ⊕ Ft(a∗)h(a∗) −→
⊕

i∈Q0

Fii
m
−→ A

where Fij := Ai⊗ jA and i, j ∈ Q0. The crucial observation now is that, if
M ∈ RepnA(k), then

dimk(HomAe(Fij ,Endk(M))) = dimk(iEndk(M)j) = αiαj .

This means that the dimensions dimk(HomAe(Fij ,Endk(M)) are constant.

5.1 Proof of Theorem 1.1

We start with two preliminary lemmas.
Let A ∈ Nk. We say that a (left) ideal I of A is of codimension n if

dimk(A/I) = n.
Recall (see (5.3)) that hiM = dimk Ext

i
A(M,M) for M ∈ RepnA(k).

Lemma 5.5. Let A be an associative k-algebra. A codimension n ideal
I ⊂ A is two-sided if and only if h0A/I = n.

13



Proof. If I is two-sided, then h0A/I = n. Let now I be such that h0A/I = n. We

have EndA(A/I) = I/I where I is the idealizer of I, that is the subalgebra
of A which is maximal among those algebras where I is two-sided. Therefore,
I ⊂ I ⊂ A and I/I ∼= A/I. This implies I = A and I two-sided.

Lemma 5.6. If A = Ag and g > 1, for all n ≥ 1 there is I ∈ HilbnAg
(C)

which is a two-sided ideal.

Proof. Recall that (see 4.1)

Ag = C[< X1, Y1, . . . ,Xg, Yg|X1Y1X
−1
1 Y −1

1 . . . XgYgX
−1
g Y −1

g = 1 >]

so that A1
∼= C[x, y]. Let J be a C-point in HilbnA1

. Consider the following
composition

Ag
α
−→ A1

π
−→ A1/J

where α maps X1 to x, Y1 to y and all the others Xi and Yi to 1. The map
π is the quotient map. Let I be the kernel of the composition πα, which
is onto, then Ag/I ∼= A1/J ∼= Cn, since J ∈ HilbnA1

(C). Therefore I is a
two-sided ideal in HilbnAg

(C).

Proof of Theorem 1.1 In [36] it is shown that RepnAg
is irreducible for every

n of dimension

dimRepnAg
=

{
(2g − 1)n2 + 1 if g > 1

n2 + n if g = 1

We know that Un
Ag

is open in RepnAg
×An

k and hence also irreducible with di-

mension (2g−1)n2+1+n. By Theorem 3.13, HilbnAg
must also be irreducible

with dimension (2g − 1)n2 + 1+ n− n2 = (2g − 2)n2 + n+ 1, if g > 1. The
argument in [36, p.25] shows that there exist simple representations of Ag

for any dimension when g > 1. Since simple modules are cyclic, to a simple
n-dimensional representation of Ag corresponds a point in the image of Un

Ag

by the forgetful map RepAg
×An

k −→ RepAg
. The module M corresponding

to such a point has dimk(EndAg (M)) minimal. We also know by Lemma
5.5 that HilbnAg

contains k-points corresponding to two-sided ideals, so these
points correspond to modules with dimk(EndAg(M)) = n. Thus, we can say
that the image of Un

Ag
by the forgetful map contains k-points where the

dimension of the tangent space is different, since Ag verifies hypotheses of
Theorem 5.2. We conclude that Un

Ag
is not smooth, or equivalently, HilbnAg

is not smooth.
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5.2 Proof of Theorem 1.2

Through this section A = Π(Q), the preprojective algebra of a connected
quiver Q, see Ex.4.4.3.

The situation for HilbαΠ(Q) is a bit more complicated.
First of all HilbαΠ(Q) might not be irreducible. Take for instance Q =

◦ → ◦ with dimension vector (1, 1). In this case RepαΠ(Q) is the union of
2 intersecting lines and all representations are cyclic, so HilbαΠ(Q) is not
smooth. If we take the dimension vector (1, 2) then RepαΠ(Q) is the union of
two planes intersecting in the zero representation, so it is still not irreducible.
The zero representation is not cyclic so Uα

Π(Q) is smooth and hence so is

HilbαΠ(Q). If we take the dimension vector (1, 3), then RepαΠ(Q) is the union
of two 3-dimensional spaces intersecting in the zero representation, but now
no representation is cyclic so HilbαΠ(Q) is empty.

To avoid these pathologies, we will restrict to the case where RepαΠ(Q)

contains simple representations. The quivers and dimension vectors for
which there exist simple representations have been characterized by Crawley-
Boevey in [12]. The main ingredient to state the results is a quadratic form
on the space of dimension vectors:

p(α) = 1− α · α+
∑

a∈Q1

αh(a)αt(a).

We also need the notion of a positive root. This is a dimension vector α
for which RepαQ has indecomponible representations (we use the shorthand
RepαQ for RepαkQ). If α is a positive root then p(α) equals the dimension
of RepαQ//GLα. We call a positive root real if p(α) = 0 and imaginary if
p(α) > 0. In particular the elementary dimension vector ǫv, which is one
in vertex v and zero in the other vertices, is a real positive root if v has no
loops and an imaginary positive root if it has loops. Dynkin quivers have
no imaginary roots, extended Dynkin quivers have precisely one imaginary
root δ, with p(δ) = 1. If Q is not Dynkin or extended Dynkin we will call it
wild.

Theorem 5.7 (Crawley-Boevey). [12, Theorem 1.2]

• RepαΠ(Q) contains simple representations if and only if α is a positive

root and p(α) >
∑r

1 p(β
i) for each decomposition of α = β1 + · · ·+ βr

into r ≥ 2 positive roots.

• If RepαΠ(Q) contains simple representations, then RepαΠ(Q) is an irre-

ducible variety of dimension 2p(α) +α ·α− 1 and the quotient variety
RepαΠ(Q)//GLα has dimension 2p(α).
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We say that α ≥ β, if αv ≥ βv ∀v ∈ Q0. In [31] Le Bruyn observes the
following interesting property of dimension vectors of simples.

Lemma 5.8. If α is the dimension vector of a simple representation of
Π(Q) then there is an extended Dynkin subquiver of Q with imaginary root
δ such that α ≥ δ.

Remark 5.9. Note that combined with Crawley-Boevey’s result, this implies
that the quotient variety has dimension at least 4 unless Q is extended
Dynkin. Indeed if α 6= δ, we can use the elementary dimension vectors ǫv to
make a decomposition in positive roots α = δ +

∑
nvǫv with nv = αv − δv

and we get

p(α) > p(δ) +
∑

nvp(ǫv) ≥ 1.

We will also need a local description of the quotient space of represen-
tations.

Theorem 5.10 (Crawley-Boevey). [13] If ξ is a point in RepαΠ(Q) corre-

sponding to a semisimple representation with decomposition Se1
1 ⊕· · ·⊕Sek

k ,
then there is a quiver QL and a Stabξ = GLβ-equivariant morphism κ :

RepβΠ(QL)
→ RepαΠ(Q) which maps 0 to ξ. The corresponding quotient map

RepβΠ(QL)
//GLβ → RepαΠ(Q)//GLα

is étale at 0. The vertices of QL correspond to the simple factors in ξ
and the dimension vector β assigns to each vertex the multiplicity of the
corresponding simple.

Remark 5.11. Theorem 5.10 means that if ζ ′ is a β-dimensional semisimple
representation of Π(Q′) that is ’close enough’ to the 0, the corresponding
representation ζ ′ = κ(ζ) ∈ RepαΠ(Q) is semisimple. The stabilizers of these
two points are the same so the decomposition in simples has the same struc-
ture. To determine the dimensions of the simples of ζ one can look at the
centralizer of Stabζ in GLα:

CGLαStabζ =
∏

i

GLdimSi
.

The dimension of each simple in ζ must be at least the dimension of the
corresponding simple in ζ ′, because Stabζ′ = Stabζ and GLβ ⊂ GLα so
CGLβ

Stabζ′ ⊂ CGLαStabζ .
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Lemma 5.12. If M is a semisimple representation of Π(Q) with decompo-
sition Se1

1 ⊕ · · · ⊕ Sek
k then M is cyclic if and only if ei ≤ dimSi, ∀i.

Proof. Because M is semisimple, the map ρM : A → Endk(M) factorizes
through the surjective map A→ ⊕iMatdimSi

(k). Using the idempotents 11ei
we can split up every cyclic vector v into cyclic vectors 11eiv for 11eiM and
vice versa. Looking at the summands separately, this reduces the problem to
showing that the Matd(k)-representation (kd)⊕e is cyclic if and only if e ≤ d.
This condition is clearly necessary as otherwise dimk Matd(k) < dimk(k

d)⊕e.
It is also sufficient because we can take b1 ⊕ · · · ⊕ be where (bi)1≤i≤d is the
standard basis of kd.

Lemma 5.13. If RepαΠ(Q) contains simple representations and α 6= (1), then

there exists a cyclic α-dimensional representation M with EndA(M) 6= k.
If, after deleting the zero vertices, Q is not extended Dynkin of type Dn

or En then one can choose this representation to be semisimple.

Proof. We assume that α is sincere in the sense that for all v ∈ Q0 : αv 6= 0,
otherwise we can delete the vertices with αv = 0.

We first do the one vertex case. If Q has 0 or 1 loop then the only
dimension vector with simples is (1). If Q has more than 1 loop, then
Crawley-Boevey’s criterion implies that there are simple representations in
every dimension vector. For α = (n) we can take the direct sum of n different
1-dimensional simple representations, which is cyclic by Lemma 5.12.

If Q has more than one vertex we have to distinguish between three
cases.

1. Q is Dynkin. In this case there are no dimension vectors with simple
representations except the elementary ones.

2. Q is extended Dynkin. In this case the only sincere dimension vector
which has simple representations is the imaginary root. In each case
we can find a cyclic representation which is not indecomposable. If
Q = Ãn then the zero representation is cyclic because the dimension
vector only contains ones. In the other cases assume that Q is oriented
with arrows that move away from a chosen vertex with dimension 1 as
illustrated below in the case of Ẽ8:

��������2 ��������4 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1

��������3

oo oo oo oo oo oo

OO

oo .

We pick a representation which assigns to each arrow in Q a map of
maximal rank except for terminal arrows, for which we take a matrix
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with rank equal to the terminal dimension −1. To the starred arrows
we assign zero maps. This is a cyclic representation of Π(Q): If we
look at the dimension of the tail of the incoming nonstarred arrow in
any given vertex, we see that it is at least one less than the dimension
of this vertex. Therefore we can find vectors ~wv ∈ vkα such that
in each vertex v, the vectors ~wv and vΠ(Q)≥1v

′ ~wv′ , v
′ ∈ Q0 generate

vkα. The sum
∑

v∈Q0
wv is a cyclic vector for this representation, but

endomorphism ring of this representation contains k⊕k because there
is a direct summand in the terminal vertex.

3. Q is wild, so by Remark 5.9 dimRepαΠ(Q)//GLα ≥ 4. We work by

induction on |α| =
∑

v αv. If α only consists of ones then by Lemma
5.12 the zero representation is semisimple and cyclic so we are done.

If αv > 1 for some v, Lemma 5.8 shows that we can always find
a subquiver of extended Dynkin type (or a 1 vertex 1 loop quiver,
which is essentially Ã0) such that α is bigger than the imaginary root
δ. We can find a semisimple representation in ρ ∈ RepαQ which is
the direct sum of a simple nonzero representation of the extended
Dynkin subquiver, together with elementary simples with multiplicity
αv− δv for each vertex v. By Theorem 5.10 there is a GLβ-equivariant

morphism RepβΠ(QL)
→ RepαΠ(Q) that maps 0 to ρ, which induces a

morphism RepβΠ(QL)
//GLβ → RepαΠ(Q)//GLα that is étale at zero.

This implies that the dimension of RepβΠ(QL)
//GLβ is the same as the

dimension of dimRepαΠ(Q)//GLα and also that Repβ
Π(QL)

contains sim-

ples: just lift a simple ’close enough’ to ρ. So (QL, β) is again wild
and |β| < |α|.

By induction there is a semisimple cyclic representation ξ ∈ RepβΠ(QL),
which we can choose in the appropriate neighborhood of the zero repre-
sentation because Π(QL) is graded and hence RepβΠ(QL)

has a k∗-action
by scaling. Under the étale morphism, ξ corresponds to a semisimple
point ρ′ ∈ RepαΠ(Q) which has the same stabilizer.

By Remark 5.11, the dimensions of the simples in the decomposition
of ρ′ are not smaller than those in the decomposition of ξ. Lemma
5.12 now implies that the representation ρ is also cyclic.

Theorem 5.14. Let Π(Q) be the preprojective algebra of a quiver Q and let
α be a dimension vector for which there exist simple representations. Then
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HilbαΠ(Q) is irreducible of dimension 1+2
∑

a∈Q1
αh(a)αt(a)+

∑
v∈Q0

(αv−2α
2
v)

and it is smooth if and only if Q has one vertex and α = (1) (or equivalently
all α-dimensional representations are simple).

Proof. From Theorem 5.7 we know that in this case RepαΠ(Q) is an irreducible

variety with dimension 2p(α)+α ·α−1, where p(α) is the quadratic form we
defined before. Using the fact that HilbαΠ(Q) is a quotient of an open subset of
RepαΠ(Q)×kα with fibers of dimension α ·α, we arrive at the desired formula

for the dimension. Unless α = (1) the previous lemma shows that we can
always find a cyclic representation ρ with End(ρ) 6= k. By Theorem 5.2 this
representation will correspond to a singularity in the Hilbert scheme.

The crucial element in the proof for preprojective algebras rests on the
fact that one can describe the representation space around any semisimple
point again as the representation space of a preprojective algebra. If we
want to generalize our result to other Calabi-Yau algebras, we need to find
a similar description. This will be done in the final part of the paper.

6 The local structure of representations spaces of

2-Calabi-Yau algebras

In this section we explain how the local structure of the representation space
of a 2-Calabi-Yau algebra can be seen as the representation space of a pre-
projective algebra. This result enables us to show that the semisimple rep-
resentations that correspond to smooth points in the representation space
are precisely the simple points. Moreover we show that if a neighborhood
of a semisimple contains simples and the dimension of the quotient space
is bigger than 2, then we can also find non-simple semisimple cyclic rep-
resentations. This implies that there is a singularity in the corresponding
component of the Hilbert scheme.

The results described here follow from a combination of results by many
authors. First we will explain the A∞-perspective on deformation theory as
developed by Kontsevich and Soibelman [27, 28] and apply it to representa-
tion theory. This point of view is also studied by Segal [38]. Then we will use
results by Van den Bergh on complete Calabi-Yau algebras in [42] to show
that locally 2-CY algebras can be seen as completed preprojective algebras.
This observation is a generalization of a result by Crawley-Boevey in [13].
It also allows us to classify the semisimple representations that correspond
to smooth points in the representation space of a Calabi -Yau algebra.
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6.1 Deformation theory

We are going to reformulate some concepts in geometric representation the-
ory to the setting of deformation theory. To do this we need to recall some
basics about A∞-algebras from [25] and [27].

Let ℓ be a finite dimensional semisimple algebra over k. An A∞-algebra
is a graded ℓ-bimodule B equipped with a collection of products (µi)i≥1,
which are ℓ-bimodule morphisms of degree 2− i

µi : B ⊗ℓ · · · ⊗ℓ B︸ ︷︷ ︸
i factors

→ B

subject to the relations1

[Mn]
∑

u+v+j=n

±µu+v+1(1
⊗u ⊗ µj ⊗ 1⊗v) = 0.

Note that µ1 has degree 1 and [M1] implies µ2
1 = 0, so B has the structure of

a complex. Moreover if µi = 0 for i > 2 we get a dg-algebra, so A∞-algebras
can be seen as generalizations of dg-algebras. If it is clear which product we
are talking about we drop the index i.

Morphisms between two A∞-algebras B and C are defined as collections
of ℓ-bimodule morphisms (Fi)i≥1 of degree 1− i

Fi : B ⊗ℓ · · · ⊗ℓ B → C

subject to the relations
∑

u+v+j=n

±Fu+v+1(1
⊗u ⊗ µj ⊗ 1⊗v) +

∑

i1+···+il=n

±µl(Fi1 ⊗ · · · ⊗ Fil) = 0.

The power of A∞-structures lies in the fact that they can be transported
over quasi-isomorphisms between two complexes. If B is an A∞-algebra, C
a complex of ℓ-bimodules and φ : B → C a quasi-isomophism then we can
find an A∞-structure on C and a quasi-A∞-isomorphism F• : B → C with
F1 = φ.

An important result in the theory of A∞-algebras is the minimal model
theorem [27, 28, 25]:

Theorem 6.1. Every A∞-algebra is A∞-isomorphic to the product of a
minimal one (i.e. µ1 = 0) and a contractible one (i.e. µ>1 = 0 and zero
homology). Two A∞-algebras are quasi-isomorphic if they have isomorphic
minimal factors.

1for the specific sign convention we refer to [25]
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Given an A∞-algebra B we can define the Maurer-Cartan equation

µ(x) + µ(x, x) + µ(x, x, x) + · · · = 0

The standard way to make sense of this equation is to demand that x ∈
B1 ⊗m, where m is the maximal ideal in R = k[t]/(tn) (or some other local
artinian commutative ring R = k ⊕ m) and to let R commute with the µi.
The set of solutions will be denoted by MC(B)m and as such MC(B) can be
considered as a functor from local artinian rings to sets. 2

If B0 and B1 are finite dimensional we can also make sense of this by
looking at the local ring

M̂C(B) := k[[B∗
1 ]]/〈ξµ

1 + ξµ2 + ξµ3 + . . . |ξ ∈ B∗
1〉

where ξµk is interpreted as the homogeneous polynomial function that maps
x ∈ B1 to ξ(µk(x, . . . , x)). This ring can be seen as the complete local ring
corresponding to the zero solution in the formal scheme of solutions to the
Maurer-Cartan equation.

B0 has an infinitesimal action on M̂C

b · ξ :=

∞∑

i=0

±ξµi
b

where ξµk
b is interpreted as the element in (B∗

1)
⊗k−1 that maps x to

ξ(µk(b, . . . , x)± · · · ± µk(x, . . . , b)).

We denote the ring of invariants of this action by

M̂C
inv

(B) := {f ∈ M̂C(B)|∀b ∈ B0 : b · f = 0}

If F• : B → C is an A∞-isomorphism then the map

φF : M̂C(C)→ M̂C(B) : ξ 7→
∞∑

i=0

ξF i

is an isomophism which maps M̂C
inv

(C) to M̂C
inv

(B).
If an A∞-algebra is a product of two subalgebras, the set of solutions to

the Maurer-Cartan equations for an A∞-algebra is the product of the set of

2In fact it is a functor to groupoids, because one can integrate the B0 ⊗ m-action on
MC(B)m.
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solutions to the Maurer-Cartan equations of its two factors. Likewise, the
corresponding local ring is the completed tensor product of the local rings
of the two factors and the invariant ring is the completed tensor product of
the two invariant rings.

If B is contractible then as vector spaces B0
∼= ker µ1|B1 . As the higher

products vanish M̂C(B) ∼= k[[B∗
0 ]] and the invariant ring is M̂C

inv
(B) =

k. Combined with the minimal model theorem this implies that quasi-
isomorphic A∞-algebras have isomorphic invariant rings.

6.2 Representation spaces

For A = kQ/J a path algebra of a quiver with relations, we can describe the
space RepαA as a deformation problem. Fix an α-dimensional representation
ρ and construct the following complex R•:

Ri = Homℓe(A⊗ℓ · · · ⊗ℓ A,Matn(k))

with the following products

µ1f(a1, . . . , ai+1) = ρ(a1)f(a2, . . . , ai+1)− f(a1a2, . . . , ai+1) + . . .

± f(a1, . . . , aiai+1)∓ f(a1, . . . , ai)ρ(ai+1)

µ2(f, g)(a1, . . . , ai+j) = f(a1, . . . , ai)g(ai+1, . . . , ai+j)

The Maurer-Cartan equation for this algebra reduces to finding ℓ-linear
maps f : A→ Matn(k)⊗m for which

ρ(a)f(b)− f(ab) + f(a)ρ(b) + f(a)f(b) = 0,

which is precisely the condition that ρ+f is a α-dimensional representation.
So the map f 7→ (ρ(a) + f(a))a∈Q1 maps MC(R)m bijectively to the k⊕m-
points that lie over the point ρ ∈ RepαA. In this way R• captures the local
information of the representation scheme RepαA around ρ.

In fact, we can interpret the complex R• as

HomAe(A•,M ⊗M∨)

where A• is the bar resolution of A and M is the A-module corresponding
to the representation ρ. Therefore R• is quasi-isomorphic to the complex
Ext•A(ρ, ρ) with a corresponding A∞-structure. For more information on
this we refer to [32].
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6.3 Koszul Duality

In general if A = kQ/J and none of the relations ri contains paths of length
≤ 1, we can consider the zero representation corresponding to the module
ℓ := A/Q1A.

Definition 6.2. The Koszul dual of A is

A! := Ext•A(ℓ, ℓ).

As explained in the previous section this space has the structure of an A∞-
algebra over ℓ coming from the isomorphism

Ext•A(ℓ, ℓ)
∼= H(HomAe(A•, ℓ⊗ ℓ∨).

The ordinary product in this A∞-structure is equal to the standard Yoneda
product [32].

Note that Ext0A(ℓ, ℓ) = ℓ and as a ℓ-bimodule Ext1A(ℓ, ℓ) is spanned by ele-
ments [a] corresponding to the arrows while Ext2(ℓ, ℓ) is spanned by elements
[ri] corresponding to a minimal set of relations. The complete structure of
the A∞-products can become very complicated but one has the following
identity [38]

µ([a1], . . . , [as]) =
∑

i

ci[ri] (6.1)

where ci is the coefficient of the path a1 . . . ak in ri. For every dimension
vector α we also have a zero representation ρ0 = ℓ⊗ℓ k

α and in that case

Ext•A(ρ0, ρ0) = Ext•A(ℓ⊗ℓ k
α, ℓ⊗ℓ k

α) = kα ⊗ℓ Ext
•
A(ℓ, ℓ)⊗ℓ k

α.

If {bi|i ∈ I} is a graded ℓ-basis for A!, then elements in Ext•A(ρ0, ρ0) can
be seen as linear combinations

∑
Bibi where Bi is an αh(bi) × αt(bi)-matrix.

The higher multiplications are matrix-versions of the original ones:

µ(B1b1, . . . , Bibi) = B1 . . . Biµ(b1, . . . , bi).

In combination with (6.1) it is easy to see that, just as expected,
∑

Ai[ai] ∈
Ext1A(ρ0, ρ0)⊗m is a solution to the Maurer-Cartan equation if and only if
the matrices Ai satisfy the relations. From the point of view of local rings
we see that

M̂C(Ext•A(ρ0, ρ0))
∼= ̂k[RepαA]ρ0 .

It can also easily be checked that

M̂C
inv

(Ext•A(ρ0, ρ0))
∼= ̂k[RepαA]

GLα

ρ0
.
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Now we return to the general situation and look at a semisimple α-
dimensional representation ρ with decomposition into simple representations
ρ = σ⊕e1

1 ⊕ · · · ⊕ σ⊕em
m . We can rewrite

ExtA(ρ, ρ) =
m⊕

i,j=1

ei⊕

r=1

ej⊕

s=1

Ext(σi, σj) = kǫ ⊗l Ext(ρ, ρ)⊗l k
ǫ.

In this notation ρ is the representation that contains one copy of each simple

σi, l = km is the semisimple algebra Ext0A(ρ, ρ) and kǫ is the module over
this algebra with dimension vector ǫ = (e1, . . . , em). If we can find an l-
algebra B such that B! = Ext•A(ρ, ρ), then we can say that locally (up to a
product with an affine space) the space of α-dimensional representations of
A around ρ looks like the space of ǫ-dimensional representations of B around
the zero representation.

How do we find B? Because B! = Ext•A(ρ, ρ), the algebra B should
be the Koszul dual of E := Ext•A(ρ, ρ), so we need to take a look at the
construction of the Koszul dual of an A∞-algebra. We restrict to the relevant
case where E = l ⊕ V is a finite dimensional augmented l-algebra with an
A∞-structure on E such that µ1(l) = 0, µ2 is the ordinary multiplication and
µn(. . . , l, . . . ) = 0 for all n > 2. For this cases we will follow the construction
in [42, Appendix A].

As is explained in [42] the Koszul dual of a finite dimensional algebra
should be a complete algebra. First we construct the completed tensor-
algebra T̂lV ∗ with V ∗ := Hom(V, k). Using a graded l-basis B for V , this
algebra consist of all formal sums of words b∗1 ⊗ · · · ⊗ b∗s with b1, . . . , bs ∈ B.
We give this algebra a grading by setting deg b∗ = 1− deg b for all b ∈ B.

We turn this completed tensor-algebra into a dg-algebra by adding a
differential. Using the Leibniz rule, linearity and completion, the differential
is completely defined if we give expressions for db∗ with b ∈ B. We set

db∗ =

∞∑

s=1

∑

b1,...,bs∈B

cb1,...,bsb
∗
1 ⊗ · · · ⊗ b∗s,

where cb1,...,bs is the coefficient of b in µ(b1, . . . , bs). We will call the dg-

algebra (T̂lV ∗, d) the Koszul dual of (E,µ) and denote it by E!. Note that

if (E,µ) is an ordinary algebra, (T̂lV ∗, d) can be seen as the Koszul complex
used to calculate ExtE(l, l), so E! is quasi-isomorphic to the classical Koszul
dual of E. If E = Ext•A(ℓ, ℓ) = A! then E! is formal and its homology is the
completion of A by path-length concentrated in degree 0. In other words Â
is the minimal model of E! (see [42, Proposition A.5.4]).
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In general E! is not formal, but the degree zero part of its homology,
H0(E

!), is enough to construct the Maurer-Cartan equation for E. Indeed,
the Maurer-Cartan equation for E only depends on µi|E⊗i

1
. In E! these are

encoded in the map d : E!
−1 → E!

0.
Note that because all degrees in E = Ext•A(ρ, ρ) are nonnegative, the

degrees in E! are nonpositive. The degree zero part of E! is the completed
tensor algebra T̂lE

∗
1 , which can be seen as a completed path algebra of a

quiver Qloc with m vertices and dim iE∗
1j = dimExt1A(σi, σj) arrows from i

to j. This quiver is called the local quiver of ρ. E!
−1 = k̂Qloc ⊗l E

∗
2 ⊗l k̂Qloc

and the image of d|E!
−1

is the k̂Qloc-ideal generated by the dsi where the si

form an l-basis for E∗
2 . Hence, H0(E

!) is the completed path algebra of the
quiver Qloc with relations dsi and

ExtiH0(E!)(l, l) = Ei for i ≤ 2 and µn

∣∣
(

Ext1
H0(E

!)
(l,l)

)⊗n = µn|E⊗n
1

.

This allows us to conclude

Theorem 6.3. Let A be a finitely presented algebra. If ρ is an α-dimensional
semisimple representation of A with decomposition ρ = σ⊕e1

1 ⊕ · · · ⊕ σ⊕em
m

then the local structure of the representation space around ρ is the same
(up to a product with an affine space) as the local structure of the represen-
tation space around the ǫ-dimensional zero representation of H0(E

!) with
E = Ext•A(ρ, ρ) and ǫ = (e1, . . . , en).

If H0(E
!) is the completion of a path algebra with relations L we can

write

̂k[RepαA]ρ
∼= ̂k[RepǫL]ρ0⊗k[[X1, . . . ,Xs]] and ( ̂k[RepαA]

GLα)ρ ∼= ( ̂k[RepǫL]
GLǫ)ρ0 .

Remark 6.4. The number s equals the difference dimGLα − dimGLǫ =

α · α− ǫ · ǫ and we can also identify ̂k[RepǫL]ρ0 ⊗ k[[X1, . . . ,Xs]] with

̂k[RepǫL ×GLǫ GLα](ρ0,1)

Remark 6.5. If A is hereditary then Ext≥2
A (ρ, ρ) = 0 and the Maurer-Cartan

equation becomes trivial. The algebra H0(E
!) is equal to E! and is just the

completed path algebra of the local quiver without any relations. Hence,
locally the representation space of an hereditary algebra looks like the rep-
resentation space of a quiver without relations. This result is an analogue
of the local quiver theorem by Le Bruyn in [30]. We will now have a look at
generalizations of this result to the 2-CY case.
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6.4 Generalizations to 2-Calabi-Yau algebras

Suppose for now that A is 2-CY and M is a semisimple A-module with
EndA(M) = l = km. In this case Ext1A(M,M) has a nondegenerate antisym-
metric l-bilinear form 〈f, g〉 := TrM (fg) and hence we can find a symplectic
l-basis of the form {[ai], [ai]

∗|i ∈ I} such that 〈[ai], [aj ]〉 = 0, 〈[ai]
∗, [aj ]

∗〉 = 0
and 〈[ai], [aj ]

∗〉 = δij . Similarly Ext0(M,M) is dual to Ext2(M,M) so each
’vertex’ [v] ∈ l has a dual element [v∗] and we have [ai][a

∗
i ] = [v∗] and

[a∗i ][ai] = −[w
∗] for some v and w which we can consider as the head and

tail of ai in the local quiver.
If we take the Koszul dual of Ext•A(M,M), it is the completed path

algebra of the local quiver Qloc with an extra loop v∗ in every vertex v. If
we put z =

∑
v∈Q0

v∗ then we get

dz =
∑

a∈Q1

aa∗ − a∗a+ h.o.t.

Following the same reasoning as in the proof of Theorem 11.2.1 in [42] one
can show that, up to a change of variables, these higher order terms vanish.
This implies that

H0(Ext
•
A(M,M)!) ∼= k̂Qloc/〈dz〉 ∼= k̂Qloc/〈

∑

a∈Q1

aa∗ − a∗a〉.

This last algebra is the completed preprojective algebra, so in this case
L = Π(QL) for some quiver QL, for which Qloc is the double.

To summarize

Theorem 6.6. If A is a 2-CY and M is a semisimple A-module, then the
algebra H0(Ext

•
A(M,M)!) is isomorphic to a preprojective algebra.

This means that locally representation spaces of 2-CY algebras look like
preprojective algebras around the zero representation. This result can be
seen as a generalization of Theorem 5.10.

To solve the question which semisimple representations are smooth, we
need to classify the local quivers and dimension vectors for which the zero
representation of the preprojective algebra is smooth. Note that by con-
struction such a dimension vector is sincere, i.e. ∀v ∈ Q0 : αv 6= 0.

Theorem 6.7. The only quivers and sincere dimension vectors for which
RepαΠ is smooth at the zero representation are disjoint unions of quivers
with one vertex and an arbitrary number of loops and dimension vector 1,
or quivers with one vertex and no loops and arbitrary dimension vector.
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Proof. First note that if the quiver is a disjoint union of two subquivers,
the preprojective algebra is the direct sum of two smaller preprojective al-
gebras and the representation space is the product of the corresponding
representation spaces of these smaller algebras. So we can assume that Q is
connected.

The tangent space to the zero ρ0 representation in RepαΠ(Q) is equal to
RepαQ because the derivative

∑
[ρ(a), ρ0(a

∗)] + [ρ0(a), ρ(a
∗)] =

∑
[ρ(a), 0] + [0, ρ(a)]

is identical to zero. Therefore the zero representation is smooth if and only
if RepαΠ(Q) = RepαQ. This means that the relation

∑
[ρ(a), ρ(a∗)] = 0 must

be identical to zero. This only happens when all arrows are loops and the
dimension in the vertex is 1 or there are no arrows.

Corollary 6.8. Let A be a 2-CY algebra and let ρ ∈ RepαA be semisimple.
Then ρ is smooth in RepαA if it is a direct sum of simples without extensions
between them, where a simple can occur with higher multiplicity if it has no
self-extensions.

If ρ has simple representations in its neighborhood then ρ itself must be
simple.

Finally we need to look at cyclic representations.

Lemma 6.9. Let A be a 2-CY algebra and let ρ be a non-simple semisimple
representation. If X is a component of RepαA containing ρ such that

• there are simples in X, and

• dimX//GLα > 2,

then this component contains a cyclic non-simple semisimple representation.

Proof. We will look at the representation space RepǫL//GLǫ, corresponding to
the representation ρ. Artin’s approximation theorem applied to the isomor-

phism ̂k[RepαA]
GLα

ρ
∼= ̂k[RepǫL]

GLǫ
ρ0

implies that there is a diagram of étale
covers RepαA//GLα ← U → RepǫL//GLǫ. Pulling back and pushing forward
we can find a semisimple representation σ̃ of A for every semisimple repre-
sentation σ that is close enough to the zero representation ρ0 ∈ RepǫL//GLǫ.
The representation σ̃ will be simple if and only if σ is simple.

Because A is 2-CY the local algebra L is a preprojective algebra and
ǫ 6= 1 because ρ is semisimple but not simple. Furthermore RepǫL//GLǫ
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contains simples because X does and L is not the preprojective algebra of
an extended Dynkin because RepǫL//GLǫ = dimX//GLα > 2. By Lemma
5.13 we can find a semisimple cyclic representation σ, corresponding to a
non-smooth point in RepǫL//GLǫ. We can choose σ in any neighborhood of
the zero representation by rescaling. By Remark 5.11, the dimensions of the
simple factors of its counterpart σ̃ ∈ RepαA//GLα are at least those of σ, so
Lemma 5.12 implies that σ̃ is cyclic.

Proof of Theorem 1.3. If all representations in the component are simple,
all local algebras are preprojective algebras over quivers with one vertex and
with dimension vector (1). This implies that RepǫL//GLǫ is smooth for all
representations in the component and hence both the component and the
Hilbert scheme are smooth.

If the component contains a non-simple semisimple representation, Lemma
6.9 implies that we can find a cyclic semisimple non-simple representation.
By Theorem 6.3 this representation corresponds to a non-smooth point in
RepαA and because it is cyclic also to a non-smooth point in HilbαA. �

To illustrate this theorem we end with 3 examples.

Example 6.10. Let Ag be the fundamental group algebra of a compact
orientable surface with genus g > 1. On this algebra we have an action of
the group G = Z

2g
2 which maps each generator Xi, Yj to ±Xi,±Yi. Because

these transformations leave the relation
∏

iXiYiX
−1
i Y −1

i − 1 invariant, the
skew group ring Ag ⋊G will be 2-CY.

It can be seen as the quotient of the path algebra of a quiver with 2g
vertices. The vertices are connected to each other with arrows coming from
the Xi, Yi. Because these are invertible, any representation of Ag ⋊ G will
have a dimension vector which assigns the same dimension to every vertex.

If n = 2g all vertices have dimension 1 and all arrows must be represented
by invertible numbers. This implies that the space RepnAg ⋊G//GLn only
has simple representations and its dimension is 2g, so its Hilbert scheme is
smooth. If n = 2gm with m > 1, there are nonsimple representations which
are direct sums of simples with dimension 2g, so these Hilbert schemes are
not smooth.

Example 6.11. Let K be an affine part of a 2-CY variety, such as the
product of 2 elliptic curves, an abelian or a K3 surface. The coordinate ring
R = k[K] is a 2-CY-algebra and by Corollary 3.6.6 of [20] it can be written
as D/〈w〉 where D is a formally smooth algebra. Furthermore there is a
noncommutative symplectic form ω ∈ (Ω2D)cyc such that dw = iδω (where
δ is the standard derivation δ(a) = 1⊗ a− a⊗ 1).
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Now consider the free product of m copies of D: D̃ = D1 ∗ · · · ∗ Dm

and let w̃ = w1 + · · · + wm be the sum of the correponding m copies of w.
Again we have a noncommutative symplectic form ω̃ = ω1 + · · · + ωm and
dw̃ = iδω̃. Theorem 3.6.4 of [20] implies that A = D̃/〈w̃〉 is 2-CY. The
dimension of RepnA//GLn is at least 2kn because for each k-tuple of points
in K we can make a 1-dimensional representation of D̃ that factors through
A. All the 1-dimensional representations are clearly simple so the Hilbert
scheme for n = 1 is smooth. If n > 1 the space RepnA contains nonsimple
representations, so the Hilbert scheme of A is only smooth for n = 1.

Example 6.12. The main ingredient in the proof of Theorem 1.3 is that
all local quivers are wild and hence they have cyclic semisimple nonsimple
representations. Because of Lemma 5.13, the proof also works in the case
that some of the local quivers are extended Dynkin of type An. As this
is the only extended Dynkin quiver with root (1, . . . , 1), this means that if
the component of ρ ∈ RepnA//GLn is two-dimensional and has a nonsimple
semisimple multiplicity-free representation, then it is also not smooth.

We can illustrate this with a variation on the McKay correspondence.
Consider the elliptic curve C with coordinate ring k[X,Y ]/(Y 2 − X3 − 1).
The product C × C has coordinate ring

R = k[X+, Y+,X−, Y−]/(Y
2
+ −X3

+ − 1, Y 2
− −X3

− − 1)

and on this ring we have an action of the group Z6 where the generator acts
by X± 7→ e±2πi/3X± and Y± 7→ −Y±. Because this action preserves the
volume form, the skew group ring R ⋊ G is a 2-CY algebra. The quotient
RepnR ⋊G//GLn for n = 6 will contain a component that is isomorphic to
C×C//G. Some points in C×C have a nontrivial stabilizer (e.g. (0,−1, 0,−1))
and therefore there are representations of R ⋊ G that are not simple. If
p ⊳ R is a point with a nontrivial stabilizer Gp then the corresponding
representation ρ ∈ RepnR⋊G//GLn is R/p⋊ kG and splits in Gp different
components parametrized by the characters of Gp. This implies that ρ
is multiplicity-free. From the discussion above we can conclude that the
corresponding component of the Hilbert scheme is not smooth.
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et Cohomologie Étale des Schemas, Tome 3. Séminaire de Géometrie
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