

UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Synthesis and Biological Evaluation of N2-Substituted 2,4-Diamino-6-cyclohexylmethoxy-5nitrosopyrimidines and Related 5-Cyano-NNO-azoxy Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1590609

since 2016-09-01T10:49:42Z

Published version:

DOI:10.1002/cmdc.201600108

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This is the author's final version of the contribution published as:

Synthesis and biological evaluation of new N2-substituted 2,4-diamino-6cyclohexylmethoxy-5-nitrosopyrimidines and related 5-cyano-NNO-azoxy derivatives as CDK2 Inhibitors., CHEMMEDCHEM, 11, 2016, pagg. xx-xx, DOI 10.1002/cmdc.201600108]

The publisher's version is available at:

http://onlinelibrary.wiley.com

When citing, please refer to the published version.

Link to this full text:

http://onlinelibrary.wiley.com/doi/10.1002/cmdc.201600108/abstract;jsessionid=D29B7643115E0EF3EF2C F5092532894B.f03t04

This full text was downloaded from iris-Aperto: <u>https://iris.unito.it/</u>

Synthesis and biological evaluation of new N2-substituted 2,4-diamino-6cyclohexylmethoxy-5-nitrosopyrimidines and related 5-cyano-NNO-azoxy derivatives as CDK2 Inhibitors.

Daniela Cortese,^[a] Konstantin Chegaev,^[a] Stefano Guglielmo,^[a] Lan Z. Wang,^[b] Bernard T. Golding,^[c] Céline Cano,^[c] and Roberta Fruttero^{*,[a]}

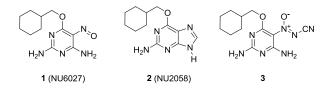
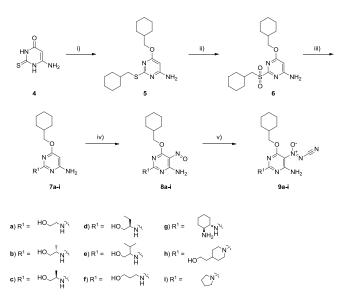
 ^[a] Dr. D. Cortese, Dr. K. Chegaev, Dr. S. Guglielmo, Prof. R. Fruttero: Department of Drug Science and Technology Università degli Studi di Torino Via P. Giuria 9, 10125 Turin, Italy.
 E-mail: roberta.fruttero@unito.it

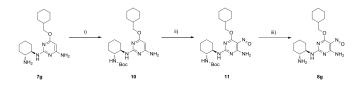
^[b] L. Z. Wang Northern Institute for Cancer Research Paul O'Gorman Building, Medical School Newcastle University Framlington Place, Newcastle Upon Tyne NE2 4HH

^[c] Prof. B. T. Golding, Dr. C. Cano Northern Institute for Cancer Research School of Chemistry, Bedson Building Newcastle University Newcastle Upon Tyne NE1 7RU.

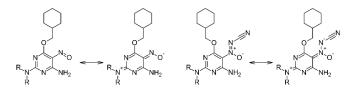
Abstract: The potent and selective Cyclin-Dependent Kinase 2 (CDK2) inhibitor NU6027 (6-cyclohexylmethoxy-5nitroso-2,4-diaminopyrimidine) was used as the lead for the synthesis of a series of analogues in order to provide further insights into the structure activity relationships for 2,4-diaminopyrimidine CDK2 inhibitors. Aliphatic amino substituents were introduced at position 2. The use of linear or less sterically hindered amines gave rise to compounds endowed with slightly improved activity with respect to the lead; on the other hand, the compounds were the less active when a bulkier amino substituent was used. Substitution of the 5-nitroso group with the 5-cyano-*NNO*-azoxy moiety afforded a new class of inhibitors whose activity against CDK2 was similar to that of the nitroso series. The most active nitroso compound was **8b** (IC₅₀ = 0.16 μ M) while in the 5-cyano-*NNO*-azoxy series the most active compound was **9b** (IC₅₀ = 0.30 μ M). Taken as a whole these new analogues of **NU6027** enhance understanding of the structure activity relationships for 2,4-diaminopyrimidine CDK2 inhibitors.

Cyclin-Dependent Kinases (CDKs) are serine/threonine kinases which display an abnormal activity in many kinds of tumours.^[1] This family of kinases is represented by eleven members (CDK1-CDK11) and related cyclins.^[2] Today, there is a great interest in small molecules able to behave as inhibitors of these enzymes as potential anticancer drugs. In the past decade, many such compounds belonging to different chemical classes have been developed.^[3] Among these inhibitors, an interesting type is represented by 2,4-diamino-6-cyclohexylmethoxy-5-nitrosopyrimidine (1) (NU6027) (Chart 1), a competitive inhibitor of CDK1 and CDK2 isoforms with respect to ATP (CDK2 IC₅₀ = $2.2 \mu M$).^[3-5] Owing to the intramolecular hydrogen bond between the adjacent 5-nitroso and 4-amino groups, this compound assumes a pseudo-purine geometry, which is reminiscent of the structure of 6-(cyclohexylmethoxy)-9H-purine (2) (NU2058) (Chart 1), an early relatively potent CDK1 and CDK2 inhibitor (CDK2 $K_i = 12 \mu M$).^[6] Compound **1** can interact with the ATP-binding site of the enzymes by a triplet of hydrogen bonds (for CDK2: 2-NH₂ to Leu-83 (CO), N³ to Leu-83 (NH), 4- NH_2 to Glu-81 (CO)).^[4] These interactions exactly reproduce those of **2**. An extended series of analogues of **1** modified at the 2-,5- and 6- position(s) were synthesized in order to shed light on the structure-activity relationships (SAR) in this lead compound.^[3, 4] In a recent paper we described a new pyrimidine scaffold, the 2,4-diamino-5-(cyano-*NNO*azoxy)-6-(cyclohexylmethoxy)pyrimidine (**3**) (Chart 1), endowed with potent inhibitory CDK2 activity.^[7] This substance can be formally obtained by substitution of the nitroso group of **1** with the , which is present in the antibiotic "calvatic acid" (4-[(Z)-cyano-NNO-azoxy]benzoic acid) isolated for the first time from cultural broth of Calvatia lilacina.^[8]. This unusual functional group has been used to design several bioactive compounds, such as antimicrobial and antitumor agents, enzyme inhibitors, and calcium channel blockers.^[9-13] The cyano-*NNO*-azoxy moiety displays an electron withdrawing property very similar to that of the nitroso group ($\sigma_{p NO} = 0.91$; $\sigma_{p ONNCN} = 0.89$), whereas it is endowed with different lipophilicity (π_{NO} = -1.20; π_{ONNCN} = -0.26) and steric properties.^[14,15]


Chart 1. Reference compounds.

A molecular modelling study has suggested a role for a conserved water molecule in stabilizing the bioactive pose of 3 in the interaction with the ATP site of the enzyme. Preliminary SAR showed that the substitution of the cyano group of 3 with other electron withdrawing moieties induced a significant decrease in activity, whilst the introduction at the 2-NH2 group of a p-methylaminosulfonyl-substituted phenyl ring gave rise to a product whose potency fell in the nM range.[7] In this study a detailed description of the synthetic routes to a series of new N2-substituted examples of this structural class (**9a-i**) and of their 5-nitroso precursors (**8a-i**) is reported and the influence of the lateral chain at this position on the their CDK2 inhibitory activity is discussed.


Scheme 1. Reagents and conditions: i) (bromomethyl)cyclohexane, 140°C μW heating, 16 min; ii) mCPBA, CH₂Cl₂, RT, 18 h; iii) R¹NH₂, 120°C, μW heating; iv) R²ONO, DMSO, RT; v) NH₂CN, (diacetoxyiodo)benzene (IBA), CH₃CN, RT, 2 h.

A series of N2-substituted 2,4-diamino-6-cyclohexylmethoxy-5-nitrosopyrimidines (**8a-i**) was prepared using a synthetic strategy (Scheme 1) similar to that described previously by Marchetti et al.^[5] Some modifications improved the reported reaction conditions. Alkylation of 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (**4**) was performed using (bromomethyl)cyclohexane. At variance with the previous synthetic strategy, (bromomethyl)cyclohexane was used to enable the concomitant alkylation at 2- and 4- positions. In addition, the use of microwave heating (μW) afforded the desired product 5 in 16 min at 140°C. Oxidation of 5 with mCPBA gave the corresponding cyclohexylmethylsulfone **6**. The nucleophilic displacement of cyclohexylsulfonyl group in 6 with diverse aliphatic amines was performed in an organic solvent (diglyme or THF) using microwave heating and in some cases, a Lewis acid such as Yb(OSO₂CF₃)₃ was added to improve the yield. The N2-substituted 4-amino-6-cyclohexylmethoxypyrimidines (**7a-i**) were thus obtained in moderate yield. Subsequent nitrosation at the 5-position with alkyl nitrites (menthyl nitrite or amyl nitrite), gave the desired nitroso compounds **8a-i**. The 5-nitroso derivative **8g** was obtained after (Boc)₂O protection of compound **7g**, followed by nitrosation and subsequent deprotection of the amino group (Scheme 2). The final products (**9a-i**) were prepared by treating the nitroso derivatives (**8a-i**) with (diacetoxyiodo)benzene (IBA) and cyanamide (NH₂CN) in dry CH₃CN.^[16]

Scheme 2. Reagents and conditions: i) (Boc)₂O, THF, RT, 2 h; ii) menthyl nitrite, DMSO, RT, 18 h; iii) TFA, CH₂Cl₂, RT, 2 h.

In the ¹H NMR experiments reported for the 5-nitroso derivatives (**8a-i**), the resonance of the 4-NH₂ group was split into two neat signals, which were observed at around 8 and 10 ppm, respectively. This observation was already reported in the previous work^[7] and confirms the formation of an intramolecular hydrogen bond between the nitroso oxygen atom and one hydrogen of NH₂ group in the 4-position. In contrast, for the cyano-*NNO*-azoxy derivatives (**9a-i**), the signal of the 4-NH₂ group was reported as a broad singlet. In addition, ¹H and ¹³C NMR spectra of both nitroso and cyano-*NNO*-azoxy derivatives presented two sets of resonances. This can be ascribed to the significant π component of the C2-N bond, as a consequence of strong conjugation between the electron donating N groups (e.g. NHCH₃ $\sigma p = -$ 0.84)^[14] and the strong electron withdrawing groups, the cyano-*NNO*-azoxy and the nitroso group respectively, with consequent restricted rotation around the C2-N bond at room temperature (**Figure 1**). This hypothesis was confirmed by a variable temperature NMR experiment (VT-NMR) performed on compound **8a** for which coalescence of the two sets of signals was observed at 125 °C.

Figure 1. Electronic conjugation between the electron releasing N group and the electron withdrawing NO or cyanoNNO-azoxy groups.

Ç _o					
Compound	R ¹	R ²	$IC_{50} \; (\mu M)^{[a], \; [b]}$		
1	NH_2	NO	2.2		
3		-N(O)=N-CN	0.94		
8a	HO N H	NO	0.61		
9a		-N(O)=N-CN	0.45		
8b	HO HO H	NO	0.16		
9b		-N(O)=N-CN	0.30		
8c	HO N	NO	0.84		
9c		-N(O)=N-CN	0.55		
8d	HO	NO	4.02		
9d		-N(O)=N-CN	2.19		
8e	HO	NO	24.5		
9e		-N(O)=N-CN	12.9		
8f	HO N ²⁴	NO	0.59		

 Table 1. Inhibitory activity of target compounds against CDK2.

9f		-N(O)=N-CN	0.42
8g	\bigcap	NO	35% at 100 μM
9g	NH2 NH2	-N(O)=N-CN	66
8h	N ²		9% at 100 μM
9h	но		65.5
8i	∕~N ^{>} ,		49% at 100 μM
9i			54% at 100 μM

^[a] All IC₅₀ or % inhibition values are results obtained from n = 2 determinations.

^[b] CDK assay conducted at 12.5 μ M of ATP – full details in in reference.^[17]

The new series of the 5-(cyano-*NNO*-azoxy) substituted compounds and of the related 5-nitroso precursors were evaluated for their CDK2 inhibitory activity using published procedures.^[18] The results, expressed as IC₅₀, are shown in Table 1 together with the inhibitory potency of compounds **1** and **3** as references. The potency in the 5-nitroso series exhibits the order **8b**>8f≥8a>8c>1>8d>8e>8i≥8g>8h. Analysis of the data shows that the introduction of the hydroxyethyl group at the 2-NH₂ of **1** (**8**a) increases the inhibitory potency by about three-fold, whilst the introduction of the hydroxypropyl substructure gives rise to **8**f, which is about four-fold more potent than the reference. Also, the presence of the 2-hydroxy-1-methylethyl moiety (as in **8b**, **8c**) induces a potency increase that is particularly evident in the S-stereoisomer (**8b**). As for compounds **8d**, **e**, **g**, the activity decreases with the growing of the substituent in the 2-position. This is probably due to the weakening for steric reasons of the hydrogen bond between the 2-NH group of the compounds and the CO of the Leu-83 residue in the enzyme and to the fact that, due to the partially hindered rotation around C2-NH bond, one of the two conformers is unable to give this interaction. As expected, compounds **8h**, **i** displayed very feeble activity due to the absence of NH. The potencies and the SAR in the 5-(cyano-*NNO*-azoxy) series (**9a-i**) closely paralleled what was found in 5-nitroso series. Again, the most active substance **9b** bears the 2-hydroxy-1-methylethyl moiety at the 2-position and is about three-fold more active than the reference compound **3**.

The study reported in this paper extends the findings of the previous investigation.^[7] A series of N2-substituted derivatives of the reference compound **1** was synthesized in order to explore structure-activity relationships concerning the substitution at this nitrogen position with aliphatic amino substituents present in relevant CDK inhibitors. Even though no significant improvements were achieved in term of biological activity, the SARs and understanding of the criteria for achieving CDK2 inhibitory activity were enhanced. Introduction of the 5-(cyano-*NNO*-azoxy) function gave no significant improvement comparing to the corresponding 5-nitroso derivatives. However, the cyano-*NNO*-azoxy group is a suitable replacement for the nitroso group at 5-position, able to maintain CDK2 inhibitory activity. Since these two moieties are endowed with different chemical and physical-chemical properties, they should give rise to two different classes of inhibitors, which should display different ADMET profiles worthy of additional investigation.

Acknowledgements

This study was supported by University of Turin, Ricerca Locale 2014. The authors thank Cancer Research UK for financial support, the EPSRC National Mass Spectrometry Service at the University of Wales (Swansea) for mass spectrometric determinations and Prof. Alberto Gasco for the helpful discussions.

Keywords: Cyclin Dependent Kinases (CDK), Anti tumor agents, CDK Inhibitors, Substituted pyrimidines, Nitrosation.

References:

[1] M. Malumbres, A. Carnero, Nat. Rev. Cancer 2009, 9, 153-166.

- [2] M. Malumbres, M. Barbacid, Trends Biochem. Sci. 2005, 30, 630-641.
- [3] F. Marchetti, K. L. Sayle, J. Bentley, W. Clegg, N. J. Curtin, J. A. Endicott, B. T. Golding, R. J. Griffin, K. Haggerty, R. W. Harrington, V. Mesguiche, D. R. Newell, M. E. M. Noble, R. J. Parsons, D. J. Pratt, L. Z. Wang, I. R. Hardcastle, Org. Biomol. Chem. 2007, 5, 1577-1585.
- [4] F. Marchetti, C. Cano, N. J. Curtin, B. T. Golding, R. J. Griffin, K. Haggerty, D. R. Newell, R. J. Parsons, S. L. Payne, L. Z. Wang, I. R. Hardcastle, Org. Biomol. Chem. 2010, 8, 2397-2407.
- [5] V. Krystof, S. Uldrijan, *Curr. Drug Targets* **2010**, *11*, 291-302.
- [6] C. E. Arris, F. T. Boyle, A. H Calvert, N. J. Curtin, J. A. Endicott, E.F. Garman, A. E. Gibson, B. T. Golding, S. Grant, R. J. Griffin, P. Jewsbury, L. N. Johnson, A. M. Lawrie, D. R. Newell, M. E. M. Noble, E. A. Sausville, R. Schultz, W. Yu, *J. Med. Chem.* 2000, 43, 2797-2804.
- [7] D. Boschi, P. Tosco, N. Chandra, S. Chaurasia, R. Fruttero, R. J., Griffin, L. Z. Wang, A. Gasco, Eur. J. Med. Chem. 2013, 68, 333-338.
- [8] A. Gasco, A. Serafino, V. Mortarini, E. Menziani, M. A. Bianco, J. Ceruti Scurti, *Tetrahedron Lett.* 1974, 15, 3431-3432.
- [9] R. Fruttero, R. Calvino, A. Di Stilo, A. Gasco, I. Galatulas, R. Bossa, Pharmazie 1988, 43, 499-500.
- [10] R. Fruttero, C. Tironi, R. Calvino, Pharmazie 1988, 43, 551-552.
- [11] A. M. Caccuri, G. Ricci, A. Desideri, M. Buffa, R. Fruttero, A. Gasco, P. Ascenzi, Biochem. Mol. Biol. Int. **1994**, *32*, 819-829.
- [12] A. M. Gasco, A. Di Stilo, R. Fruttero, G. Sorba, A. Gasco, R. Budriesi, A. Chiarini Med. Chem. Res. 1993, 3, 34-43.
- [13] F. G. Hansske , W. Simon, **2005**, DE102004017174.
- [14] C. Hansch, A. J. Leo in Substituent constant for correlation analysis in chemistry and biology, Chapter VI. New York, John Wiley and Sons, 1979, 49-50.
- [15] R. Calvino, R. Fruttero, A. Garrone, A. Gasco, *Quant. Struct.-Act. Relat.* 1988, 7, 26-30.
- [16] R. Fruttero, G. Mulatero, R. Calvino, A. Gasco, J. Chem. Soc., Chem. Commun. 1984, 5, 323-324.
- [17] I. R. Hardcastle, C. E. Arris, J. Bentley, T. Boyle, Y. Chen, N. J. Curtin, J. A. Endicott, A. E. Gibson, B. T. Golding, R. J. Griffin, P. Jewsbury, J. Menyerol, V. Mesguiche, D. R. Newell, M. E. M. Noble, D. J. Pratt, L. Z. Wang, H. Whitfield, J. Med. Chem. 2004, 47, 3710-3722.
- [18] J. Vesely, L. Havlicek, M. Strnad, J. J. Blow, A. Donella-Deana, L. Pinna, D. S. Letham, J. Y. Kato, L. Detivaud, S.
- Leclerc, L. Meijer, Eur. J. Biochem. 1994, 224, 771-786.